
Submitted to Transportation Science
manuscript TS-2018-0406.R1

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Impact of Off-Block Time Uncertainty on the
Control of Airport Surface Operations

Sandeep Badrinath and Hamsa Balakrishnan
Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Emily Joback and Tom G. Reynolds
MIT Lincoln Laboratory, Lexington, MA 02421, USA.

Congestion at major airports worldwide results in increased taxi times, fuel burn and emissions. Regulating

the pushback of aircraft from their gates, also known as departure metering, is a promising approach to

mitigating surface congestion. Departure metering algorithms require models of airport surface traffic, and

knowledge of when a flight would be to be ready for pushback, called the Earliest Off-Block Time (EOBT).

While EOBTs are known to be inaccurate due to several reasons, there has been little prior research on

characterizing EOBT uncertainty and its impact on departure metering.

We present a new class of queuing network models for the airport surface that are capable of capturing

congestion at multiple locations. We demonstrate our modeling approach using operational data from three

major US airports: Newark Liberty International airport (EWR), Dallas Fort Worth International airport

(DFW), and Charlotte Douglas International airport (CLT). We analyze the current levels of uncertainty

in the EOBT information published by the airlines and conduct a parametric analysis of the reduction in

departure metering benefits due to errors in the EOBT information. Our analysis indicates that the current

levels of EOBT uncertainty lead to a 50% reduction in benefits at some airports when compared to an ideal

case with no EOBT uncertainty. Two approaches to departure metering are considered: NASA’s ATD-2

logic, and a new optimal control approach. We show that our queuing network models can help design and

evaluate both approaches, and that the optimal control approach is more effective in accommodating EOBT

uncertainty while maintaining runway utilization.

Key words : Airport surface operations; Taxi-out processes; Departure metering; Earliest Off-Block Time;

Uncertainty
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1. Introduction

The imbalance between capacity and demand, particularly during periods of peak traffic, has led to

surface congestion at major airports worldwide. Delays resulting from airport congestion have an
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economic impact on airlines and passengers, as well as an environmental impact due to excessive

fuel consumption. Congestion-related delays at an airport can also propagate due to the networked

nature of the air transportation system (Pyrgiotis, Malone, and Odoni 2013, Gopalakrishnan, Bal-

akrishnan, and Jordan 2016).

Surface congestion mitigation approaches fall broadly into two categories: Demand management

(either strategic approaches such as slot constraints, or tactical approaches such as departure meter-

ing) and capacity improvements (Cheng et al. 2016, Diana 2018, Morrison and Winston 2007, Ryer-

son and Woodburn 2014). The latter class of approaches tends to be prohibitively expensive, requir-

ing significant changes in policy or additional infrastructure. By contrast, tactical demand manage-

ment approaches such as departure metering have been shown to reduce taxi-out delays (Nakahara

et al. 2011, Simaiakis et al. 2014, Sharma et al. 2018). Departure metering at the top 35 airports

in the US has been estimated to have potential fuel savings of 2.2-3.9 billion gallons over a 20-year

period, reducing costs by $5.5-9.5 billion (Nakahara and Reynolds 2013).

Several approaches to departure metering, based both on heuristics and optimization algorithms,

have been previously investigated (Pujet, Delcaire, and Feron 2000, Verma et al. 2018, Simaiakis,

Sandberg, and Balakrishnan 2014, Khadilkar and Balakrishnan 2014). The underlying objective

of departure metering is to assign appropriate holds for departing aircraft at their gates, so as to

minimize taxi-out times while maintaining runway utilization. The taxi-out process is subject to

significant uncertainties, including the time that an aircraft is ready to pushback, its pushback time,

taxi routes, taxi speeds, and separation between successive take-offs (Rappaport et al. 2009, Lee

2014). Prior work on departure metering under uncertainty has generally focused on the uncertainty

in taxi times and runway capacity (Burgain et al. 2012, Simaiakis, Sandberg, and Balakrishnan 2014,

Bosson and Sun 2016, Murça 2017). By contrast, demand-side uncertainty, namely, the uncertainty

associated with the time at which an aircraft will be ready to pushback, has received little attention.

The predicted departure demand a few hours prior to operations is based on the Scheduled Off-

Block Times (SOBTs) published by the airlines. Closer to the time of operation, departure demand

can be based on the Earliest Off-Block Times (EOBTs), which represent the times at which flights

are expected to be ready for pushback. Note: We adopt the nomenclature used by the US Surface

Collaborative Decision Making (S-CDM) community for different data elements. The nomenclature

used by EUROCONTROL’s Airport-CDM is significantly different; for example, EOBT is referred

to as Estimated Off-Block Time (FAA Surface CDM Team 2012, EUROCONTROL Airport CDM

Team 2017). In the US, airlines are now encouraged to publish EOBT information for their flights,

and they are expected to dynamically update each of them until the flight pushes back from the

gate (FAA Surface CDM Team 2012). The dynamic updates are intended to make the EOBT more
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representative of the actual demand compared to the static SOBT. Most departure metering con-

cepts assume the availability of EOBT information while making tactical gate-hold decisions (FAA

Surface CDM Team 2012, EUROCONTROL Airport CDM Team 2017). While prior efforts have

focused on near real-time departure metering (for example, over the next 15 minutes), departure

metering concepts call for assigning the gate-hold times over longer time-horizons, in order to

improve the predictability of operations (Liu et al. 2014). The EOBT is also a key input to the

calculation of downstream events within the S-CDM concept (Okuniek and Sparenberg 2017). The

actual pushback time (also referred to as the call-ready or push-ready time) of a flight often differs

from the published EOBT due to several reasons. The accuracy of the published EOBT depends on

an airline’s operating policies with respect to connecting passengers, and aircraft and crew schedules,

as well as CDM procedures (FAA Surface CDM Team 2012, Ball et al. 2001). Despite the significant

influence of EOBT accuracy on surface operations, there has, to the best of our knowledge, been

limited research on characterizing its magnitude and impact of the resulting uncertainty on the

efficacy of departure metering (Ball, Vossen, and Hoffman 2001, McFarlane and Balakrishnan 2016).

Departure metering algorithms generally require predictions of taxi-out times, which can be

obtained using a number of approaches including queuing models, stochastic node-link models,

discrete-event simulations, and models based on statistical regression (Simaiakis and Pyrgiotis 2010,

Khadilkar 2013, Windhorst et al. 2013, Lee et al. 2015). Queuing models have been widely used

to model the taxi-out process since queues naturally reflect the congestion that occurs at an air-

port (Simaiakis and Balakrishnan 2015, Jacquillat 2012). Most often, a single departure runway

queue is used to represent congestion, and the taxi-out time is given by the sum of the unimpeded

time to the runway and wait time in the queue (Simaiakis and Balakrishnan 2015). However, more

complex queuing network models may be needed for airports that have several points of congestion

or multiple departure runways (Badrinath, Li, and Balakrishnan 2018).

In this paper, we present an approach to developing queuing models of airport surface opera-

tions that can be easily adapted to a range of layouts and operating conditions. After validating

these models for three major US airports, we use them to conduct a parametric study of the

impact of EOBT uncertainty on two approaches to departure metering: NASA’s Airspace Tech-

nology Demonstration-2 (ATD-2) logic (Verma et al. 2018) and a new optimal control approach.

We also analyze the EOBT information published by airlines at these airports in order to evaluate

the current levels of uncertainty. The three airports considered – Dallas Fort-Worth International

Airport (DFW), Charlotte Douglas International Airport (CLT) and Newark Liberty International

Airport (EWR) – are chosen in part because of the differences in layout and traffic. DFW (621,684

aircraft movements in 2017, the 4th busiest airport in the world by number of movements) and

CLT (546,845 aircraft movements, the 7th busiest airport in the world by number of movements)
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are major hubs for American Airlines (Federal Aviation Administration 2018b). There have been

demonstrations of departure metering at CLT under Phase 2 of the ATD-2 program since November

2017, and DFW has been selected as the site for Phase 3 of the program. EWR handled 432,941

operations in 2017, is a hub for United airlines in the highly-constrained New York metroplex, and

is prone to frequent congestion.

The models and analyses presented in this paper are of potential benefit to multiple stakehold-

ers such as airlines, airport operators, and air navigation service providers (such as the FAA or

EUROCONTROL). For example, emerging terminal automation systems such as the FAA Terminal

Flight Data Manager (TFDM) rely on accurate EOBTs to be published for input to their departure

metering functions. Improvements in EOBT accuracy will require investments on the part of the

airlines in terms of new technologies and procedures. Our analyses help estimate the returns of these

investments in terms of taxi-out time and fuel burn savings. We show that the proposed class of

queuing network models can be easily adapted to new airports and operating environments, and can

help improve predictability as well as environmental impact assessments (Liu et al. 2014, Nakahara

and Reynolds 2013).

2. Queuing models of airport surface operations

Queuing models can be used to determine the lengths of various queues on the airport surface in

order to predict the taxi-out times of departures. The taxi-out time of a flight is determined as the

sum of the unimpeded travel time (the time it would take for the aircraft to move from the gate to

the runway with no congestion) and the wait time in queues. In general, queues are formed when

the demand for resources exceeds the available capacity. In the case of the airport surface, runways

and certain taxiways become bottlenecks during periods of heavy traffic, leading to the formation

of queues. Since the level of congestion depends on demand, aircraft fleet mix, airport procedures,

taxi routes, runway configuration (set of runways used for arrivals and/or departures) and weather,

queuing models need to be adapted to different operating conditions.

2.1. Queuing network models of EWR, DFW and CLT

Figure 1 shows the airport layouts of EWR, DFW and CLT, along with a snapshot of the traffic

movements on the surface to illustrate surface queues. Departures and arrivals are represented as

black and white triangles, respectively. Each of these airports operates primarily in one of two runway

configurations: North Flow (NF) and South Flow (SF). Figure 1 illustrates the most prevalent

runway configuration: SF for EWR (58% of the time in 2017), SF for DFW (70% of the time) and

NF for CLT (53% of the time). The layout for DFW is cropped to show only the primary runways

used in South Flow.
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(a) EWR-SF (b) DFW-SF (c) CLT-NF

Figure 1 Snapshots of traffic movements at EWR, DFW and CLT, and the corresponding queuing representations

under the most frequently-used configurations. The primary departure and arrival runways are indicated in

the figure using red and blue arrows, respectively. Departures and arrivals are represented as black and white

triangles, respectively.

All three airports experience large queues of aircraft waiting for take-off near the departure

runways. The number of departure runway queues varies by airport and runway configuration: the

scenarios considered in this paper result in one departure runway queue at EWR (22R), and two

each at DFW (18L, 17R) and CLT (36C, 36R). Runway separation requirements are the primary

driver of their capacity, and depend on weather (instrument vs. visual meteorological conditions,

IMC or VMC), the fleet mix of aircraft using the runway, and the relative proportion of arrivals

and departures (Simaiakis and Balakrishnan 2014).

Some airports (for example, CLT) experience queuing in the ramp area (region close to the airport

terminal building) in addition to near the departure runways. Consequently, flights at CLT spend

nearly half of their taxi-out time in the ramp area (Table 1). Queuing network models can be used to

represent multiple points of congestion on the airport surface. Figure 1 shows examples of queuing

network models for EWR, DFW and CLT. Since EWR and DFW do not exhibit significant ramp

congestion, queuing is assumed to occur primarily at the departure runway(s). By contrast, the

queuing network model for CLT includes a ramp queue in addition to two departure runway queues.

Arrivals and departures interact in the ramp area, motivating the need to model the taxi-in process.

The taxi-in process in CLT-NF is represented as follows: flights landing on the leftmost runway
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(36L) pass through a runway crossing queue and a taxi-in ramp queue, whereas flights landing on

one of the other runways just pass through the taxi-in ramp queue. The service rate of the taxi-out

ramp server is modeled as a function of the taxi-in ramp queue length, and vice versa (Badrinath,

Li, and Balakrishnan 2018). The three queuing network models (EWR-SF, DFW-SF and CLT-NF)

correspond to a progression of complexity, going from a single runway queue to two runway queues,

and finally multiple runway and ramp queues.

Airport Config. Avg. gate-to-spot (min) Avg. spot-to-runway (min) Avg. taxi-out
Unimpeded Delay Total Unimpeded Delay Total (min)

EWR NF 5.7 3.1 8.8 6.0 6.4 12.4 21.2
SF 5.9 3.2 9.1 5.4 6.1 11.4 20.6

DFW NF 5.1 2.4 7.4 6.5 4.4 10.9 18.4
SF 5.1 2.4 7.5 5.4 3.9 9.4 16.8

CLT NF 6.3 3.5 9.8 5.1 5.3 10.4 20.2
SF 7.4 4.2 11.6 3.2 4.4 7.6 19.2

Table 1 Taxi-out times, including the unimpeded and delay components, at EWR, DFW and CLT, separated by

ramp area (gate-to-spot) and active movement area (spot-to-runway). The statistics are computed using multiple data

sources (OAG 2016, Federal Aviation Administration 2018a,b) for a three month period (May-July 2016) for DFW

and EWR, and a five month period for CLT (May-July 2015; May-Jun 2016).

The taxi-out processes under each of the secondary runway configurations (EWR-NF, DFW-NF,

CLT-SF) is represented using a single queue for each active departure runway. It is worth noting

that while the ramp area taxi-out delays in Table 1 are not negligible for EWR (NF and SF) and

CLT (SF), this is in part due to an overflow of the runway queue into the ramp area.

2.2. Models of queue dynamics
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Figure 2 Number of pushbacks (per 15 min), declared departure capacity (per 15 min) and total runway queue length

for a typical day at CLT (05/22/2016).

A distinguishing feature of queues on the airport surface is their non-stationarity, which is driven

by the time-varying nature of demand and capacity. Figure 2 shows the number of pushbacks,
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declared departure capacity (Federal Aviation Administration 2018b), and total runway queue length

at CLT on a representative good weather day (5/22/2016). The variations in departure demand

(pushbacks) are as expected at a hub airport with banked operations. Demand exceeds departure

capacity during each departure bank, leading to the formation of large queues that fluctuate over

the course of the day. Capacity also varies because of changes in weather and arrival rate, resulting

in time-varying queues.

2.2.1. Fluid model of non-stationary queues. The exact analysis of non-stationary queuing

networks is analytically challenging, motivating the use of numerical simulations or approxima-

tions (Kivestu 1976, Hansen et al. 2009, Lovell et al. 2013). Probabilistic models using Markov

chains can be restrictive in terms of the service time distributions they can accommodate, and lead

to high-dimensional state spaces for large queuing networks. The size of the state space also poses a

challenge to the development of control strategies. A key innovation of this work is the development

of a fluid model of the time-varying taxi-out queuing network. The model is a continuous approx-

imation to the discrete queuing problem, derived by combining results from steady-state queuing

theory with the flow conservation principle, to obtain a point-wise stationary approximation (Tipper

and Sundareshan 1990, Wang, Tipper, and Banerjee 1996, Badrinath and Balakrishnan 2017).

2.2.2. Single queue and server. We first consider the simple case of a single queue and a

single server, with time-varying arrival and service rates. Let x(t) represent the average number

of customers in the queue at time t. Let λ(t) and µ(t) denote the average arrival rate and service

rate at time t, respectively. The word "average" here denotes the ensemble average at a particular

time-instant. Let fin(t) and fout(t) represent the in-flow and out-flow rate from the queue at time

t. From the flow conservation principle, we have:

ẋ(t) =−fout(t) + fin(t). (1)

Assuming that there are no constraints on the queue length, fin(t) = λ(t). For the out-flow, fout(t) =

µ(t)ρ(t), where ρ(t) is the average utilization of the server. The queue dynamics is given by:

ẋ(t) =−µ(t)ρ(t) +λ(t). (2)

The average utilization, ρ(t), is approximated by a function, G(x(t)), which satisfies the following

properties: (a) G(0) = 0 and G(∞) = 1; and (b) G(x) is strictly concave and nonnegative ∀x∈ [0,∞),

in order to represent congestion. The dynamics for x(t) can then be rewritten in terms of G(x) as:

ẋ(t) =−µ(t)G(x) +λ(t), x(0) = x0. (3)
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The expression forG(x) is obtained by matching the steady-state number of customers in the system.

Assuming a Poisson arrival process, the Pollaczek-Khinchine formula (4) provides an expression for

the mean number of customers (xs) at steady state (Wang, Tipper, and Banerjee 1996), namely,

xs = ρ+
ρ2(1 +C2

v)

2(1− ρ)
. (4)

Here, Cv is the coefficient of variation of the service time distribution. Expressing ρ in terms of xs,

we get:

ρ=
xs + 1−

√
x2
s + 2C2

vxs + 1

1−C2
v

. (5)

Rewriting xs in terms of ρ and using the fact that G(x) is an approximation of ρ:

ρ(t)≈G(x) =
x+ 1−

√
x2 + 2C2

vx+ 1

1−C2
v

. (6)

For a server with exponential service time distribution, Cv = 1, and the above expression for

G(x) simplifies to x/(1 +x). Motivated by this expression, the function G(x) is approximated by

Cx/(1 +Cx), where the parameter C is given by:

arg min
C

∫ xm

0

(
G(x)− Cx

(1 +Cx)

)2

dx, (7)

where xm denotes the maximum queue size expected in the system. The parameter C is essentially

an empirical value that depends on Cv and xm. The dependence of the C parameter on Cv for

xm = 10 is shown in Figure 3(a). Additionally, the value of C does not change significantly with xm
if it is considered to be sufficiently large (see Figure 3(b)). This is primarily because G(x) and its

approximation saturate close to one for large values of x. Moreover, C is less sensitive to xm for

larger values of Cv and it is completely independent of xm for Cv = 1 (case with exponential service

time distribution).

Figure 4 compares the approximation for G(x) and the actual value for the case of an Erlang

distribution with shape parameter of 10 and rate of 5, resulting in a coefficient of variation (Cv) of

0.2. In this example, if xm = 10, then C = 1.52. There is a good match between the approximation

and the actual value. Finally, the above approximation for G(x) results in the following ODE for

the evolution of the mean queue length:

ẋ(t) =−µ(t)
C(t)x(t)

1 +C(t)x(t)
+λ(t). (8)

We illustrate the performance of the analytical queuing model for some standard queues. Figure 5

compares the mean queue length for aMt/M/1 queuing system obtained from the analytical queuing

model, against the corresponding output of a discrete stochastic simulation (obtained from 3,000

independent samples). The results from the analytical queuing model are found to closely match the
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Figure 5 Comparison of the mean queue lengths obtained from simulations and the proposed analytical queuing

model for an Mt/M/1 queue. Note the different x-axis limits.

simulation. As the load on the server (λ(t)
µ
) increases, the model begins to deviate from the discrete

simulation (Figure 5(b)). The model also shows deviations if the queue length fluctuates rapidly,

as seen in Figure 5(c), which was obtained by increasing the sinusoidal frequency of the arrival
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rate into the queue. Such a deviation is expected since the assumption of a point-wise stationary

approximation breaks down. Finally, although prior work has considered finite queue buffers for

point-wise stationary fluid flow models (Wang, Tipper, and Banerjee 1996), the results are too

complex for practical implementation. However, the limitation of unconstrained queue sizes does

not preclude these analytical queuing models from being used at most major airports.

We consider the case of an Erlang service time distribution (Figure 6), which is encountered

frequently in communication networks and transportation systems. Once again, the analytical model

is a close match to the exact simulations, while offering a considerable computational advantage.
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Figure 6 Comparison of the mean queue lengths obtained from simulations and the proposed analytical queuing

model for an Mt/E10/1 queue. Note the different x-axis limits.

2.2.3. Multiclass queues. The model for a single queue can be extended to handle multiple

classes of customers (Tipper and Sundareshan 1990). Let i = 1,2, · · · , l denote different classes of

customers in the system, and xi be the number of customers of class i in the queue buffer. The

evolution of total number of customers in the queue (xT =
∑l

i=1 xi) can be obtained using Eq. (8):

ẋT =−µ CxT
1 +CxT

+λ. (9)

The effective mean service rate for each class in the queuing dynamics is assumed to be proportional

to the fraction of customers of that particular class in the queue buffer, considering service time

distribution is same for all the customers. Using this assumption, the evolution of mean queue length

of a particular class i is given by:

ẋi = −µ CxT
1 +CxT

xi
xT

+λ = −µ Cxi
1 +CxT

+λ. (10)
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2.2.4. Queuing networks. The single queue model can be extended to a network of multiple

queues using the flow conservation principle: The output of one queue becomes the input to the

second queue if they are connected. Let R be the routing matrix, with elements rij representing the

fraction of customers joining queue j after being served by server i. Let λi be the exogenous input

into queue i with mean service rate µi. The dynamics of the mean queue length for each queue in

the network is given by:

ẋi =−µi
Cixi

1 +Cixi
+λi(t) +

∑
j

µj
Cjxj

1 +Cjxj
rji. (11)

While deriving the analytical model for a single queue, we assumed that the arrival process into

the queue is Poisson. However, the output of one queue that becomes the input to the second queue

need not follow a Poisson process for a general service time distribution. We make an approximation

that the arrivals into the queue follows a Poisson process even in the case of a queuing network to

obtain Eq. (11). However, one needs to note that this particular approximation might not work well

for queues with small buffer capacity (which is not a constraint for the current problem of interest).

2.2.5. Queuing networks with time-delays. Another aspect that arises in many realistic

queuing networks are time-delays due to propagation. Note that the propagation delay does not

include the wait time in the queue. Let τij be the propagation time (travel time) from server i to j.

Then, the mean queue length is given by the following delay differential equation:

ẋi =−µi
Cixi

1 +Cixi
+λi +

∑
j

µj(t− τji)
Cj(t− τji)xj(t− τji)

1 +Cj(t− τji)xj(t− τji)
rji(t− τji). (12)

Since the arrival times and service times are stochastic in nature, the queue length is a random

variable. The proposed analytical queuing model governs the evolution of the ensemble mean queue

length. By contrast, probabilistic queuing models such as Markov chains provide the probabilities

of queue length at any time instant. However, such probabilistic models are often complex, making

it difficult to model large queuing networks and to develop feedback controllers. As an alternative,

one can develop congestion control strategies by assuming that the actual queue length at any time

instant is a small deviation from the ensemble mean queue length.

2.3. Application of analytical queuing models to the airport surface

Suppose the airport surface is represented using a queuing network with p queues. Let x(t)∈Rp be

a vector of queue lengths on the airport surface at any time instant t. Let ud(t)∈Rq be a vector of

the pushback rates at time t, where each component, udi(t) represents the pushback rate to the ith

runway. The pushback rate refers to the number of departures pushing back from the gate per unit

time (say, 5-min). Similarly, let ua(t) ∈ Rq be a vector of landing rates of arrivals on the runway.
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Let µ(t) ∈ Rp be a vector of the time-varying mean service rates for each of the servers, and let

C(t) ∈ Rp be the vector of parameters associated with the approximation of the utilization factor

for each of the servers (from Eq. (7)). The input to each queue in the network is assumed to be

Poisson. The evolution of the queues can then be expressed as:

ẋ= f
(
x(t),x(t− τ1), · · · ,x(t− τm), µ(t), µ(t− τ1), · · · , µ(t− τm),C(t),C(t− τ1), · · · ,C(t− τm),

ud(t− τm+1), · · ·ud(t− τw),ua(t− τm+1), · · ·ua(t− τw)
)
, (13)

where τk is the time to move unimpeded between two points in the queuing network, for k =

1,2, · · · ,w. The function f(.) is obtained from the fluid model and depends on the connectivity of

the queuing network. We consider the taxi-out process for the following cases:

• [Case 1] An airport represented using q departure runway queues:

ẋri =−µri(t)
Cri(t)xri(t)

Cri(t)xri(t) + 1
+udi(t− τi), i= 1,2, · · · , q (14)

where xri represents the queue length of the ith departure runway, and τi is the average unimpeded

travel time from a gate to the ith departure runway. The unimpeded time is computed as the 10th

percentile of the taxi-time distribution. This model with only runway departure queues is used for

EWR (q= 1), DFW (q= 2), and CLT-SF (q= 2).

• [Case 2] An airport modeled by a single ramp queue and q departure runway queues:

We model the ramp queue as a multi-class queue, the class of customers representing the runway

assignment of the aircraft in the queue. The service rate for a particular class is proportional to the

number of customers of that class in the queue. The queuing dynamics are then given by

xs =

q∑
i=1

xsi (15)

ẋsi =−µs(t)
Cs(t)xsi(t)

Cs(t)xs(t) + 1
+udi(t− τgs) (16)

ẋri =−µri(t)
Cri(t)xri(t)

Cri(t)xri(t) + 1
+µs(t− τsi)

Cs(t− τsi)xsi(t− τsi)
Cs(t− τsi)xs(t− τsi) + 1

, (17)

where xsi represents the number of aircraft in the ramp queue that are bound for the ith departure

runway, τgs is the average unimpeded travel time from the gate to the spot, and τsi represents the

unimpeded travel time from the spot to the ith runway. All departures are assumed to traverse

through a single congested spot to reach the runway. While this assumption is found to be reasonable

for CLT-NF, the approach can be easily extended to scenarios with multiple ramp queues.

The model parameters were determined from airport operational data that include flight tracks (Fed-

eral Aviation Administration 2018a), the actual pushback, in-air (wheels-off), landing (wheels-on)
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and in-gate times, and gate assignments (OAG 2016), and meteorological conditions at the air-

port (Federal Aviation Administration 2018b). The data was obtained for a three month period

(May-July 2016) for DFW and EWR, and a five month period for CLT (May-July 2015; May-Jun

2016). The dataset includes the periods of peak demand experienced in summer.

The service time distributions were obtained by computing the difference between successive exit

times from a queue when there is pressure on the server. These distributions differ for different

airports because of different procedures and fleet mix. The service time distribution for a departure

runway server is conditioned on the number of landings and the weather at the airport (IMC/VMC).

For example, the mean service rate µ (in aircraft per minute) for the the departure runway server

(36R) at CLT under different weather conditions is estimated to be:

µd,r(t)|VMC = − 0.11na,r(t) + 0.79; and µd,r(t)|IMC = − 0.11na,r(t) + 0.77, (18)

where na,r(t) denotes the number of landings on runway r in a 5-min time window containing t.

The above expression for the mean service rate was empirically determined using linear regression

with operational data (Badrinath et al. 2018). As one would expect, the mean service rate decreases

as the number of landings on the runway increases (negative slope), and the intercept of the mean

service rate is lower in IMC than during VMC. The service rate of the taxi-out ramp server is

modeled as a function of the queue length of the taxi-in ramp queue, and vice versa. For example,

the relationship between the taxi-out ramp service rates (µd,s(t)) and the taxi-in ramp queue (xa,s)

at CLT is found to be:

µd,s(t) = −0.033xa,s(t) + 1.7. (19)

The wait times of aircraft entering the queue are determined using the predictions of queue

length and time-varying mean service rates (Badrinath, Li, and Balakrishnan 2018). Let x(tin) be

the predicted queue length at time t = tin, µ(t) the mean service rate of the server, and ∆t an

appropriately small time-step. Then, the wait time (W ) for an aircraft that enters the queue at tin
is estimated as follows:

Q= x(tin);
q=Q; t= tin; W = 0;
while q > 0 do

q= q−µ(t)∆t;
W =W + ∆t;
t= t+ ∆t;

end
W =W + q/µ(t);

Algorithm 1: Calculation of wait time in a queue.

The predicted taxi time is the sum of unimpeded travel time and wait times in the different

queues. To summarize, the proposed queuing model can predict surface queue lengths and taxi-out
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times, given the pushback times, landing times and weather conditions, as well as the appropriate

initial conditions on the queue lengths.

2.4. Predictive performance of the queuing model

Figure 7 shows a comparison of the predicted and observed departure runway queue lengths at

DFW for a typical day. The data corresponds to a time-based definition of queue length, in which

an aircraft is said to be in the runway queue if it has spent unimpeded gate-to-runway time after

pushback but is yet to take-off. Our analysis has found that this time-based definition is consistent

with the observed physical queue. The taxi-out times for this particular day, averaged over 15-min

windows, are shown in Figure 8. These figures show a good match between the predictions and

observed values. We also note that errors in the taxi-out time predictions appear to be correlated

with prediction errors in queue lengths.
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Figure 7 Comparison of model predictions and observed queue lengths on a typical good weather day at DFW

(07/20/2016).

Table 2 shows the aggregate error statistics of taxi-out time prediction for individual flights,

computed for an independent test set. Flights with taxi-out times greater than 50 min were not
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Figure 8 Taxi-out times averaged over 15-min intervals on 07/20/2016.
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included while computing the statistics. The mean errors (ME) are found to be small relative to the

mean taxi-out times and negative at all three airports. The mean absolute error (MAE) of the taxi-

out time is similar to the results obtained from other probabilistic queuing models (Simaiakis and

Balakrishnan 2015). A high value of MAE indicates that the takeoff sequence does not necessarily

follow the first-come-first-served assumed by the queuing model. Figure 9 compares the predicted

and actual taxi-out time distributions. We note that the right tail of the taxi-out time distribution

is not captured by the queuing model, resulting in a negative value of the mean error. This right-tail

is more pronounced for EWR and CLT, where in addition to queuing delays, surface gridlock can

cause further delays that are not accounted for by the queuing model. Table 3 shows the prediction

error statistics for individual flights grouped by different quartiles of the actual taxi-out time. For

flights in the first quartile (0-25th percentile), the MAE is small and ME is positive. The model

slightly over-predicts taxi-out time in this range because it assumes that the unimpeded time is

the 10th percentile of the taxi-out time distribution. For the flights belonging to the upper quartile

(75th-100th percentile), the magnitude of the ME is negative and large. From the point of view

of departure metering, positive errors correspond to over-prediction of the taxi-out time, leading

to overly aggressive hold decisions, loss in runway utilization, and delays in wheels-off time. By

contrast, negative taxi-out time errors will yield lower metering benefits, but there would be no loss

in throughput and no additional delays.

Airport Configuration Number of Taxi-out time (min) Percentage of flights
departures Mean ME MAE with |error| < 5 min

EWR NF 2,596 21.3 -1.4 4.9 61.9
SF 6,877 21.5 -1.9 5.3 61.1

DFW NF 2,769 18.5 -1.2 3.9 72.3
SF 19,207 17.4 -1.1 4.2 71.5

CLT NF 7,464 20.1 -1.4 4.4 69.0
SF 6,120 20.1 -1.9 5.2 61.0

Table 2 Error statistics of the taxi-out time predictions from the analytical queuing model on a test set.

Airport Configuration 0-25th %ile 25th-50th %ile 50th-75th %ile 75th-100th %ile
ME MAE ME MAE ME MAE ME MAE

EWR NF 2.9 3.6 0.8 3.5 -1.7 4.6 -7.2 8
SF 2.5 3.2 0.7 3.4 -1.5 4.4 -9.2 10.1

DFW NF 1.4 2.5 0.3 2.9 -0.7 3.5 -5.1 6.4
SF 1.7 2.5 0.8 2.9 -0.4 3.5 -5.8 7.4

CLT NF 1.8 2.9 0.3 3.2 -1.3 3.9 -6.3 7.5
SF 2.5 3.3 0.5 3.5 -2.3 4.6 -7.7 9.1

Table 3 Error statistics for the taxi-out time predictions for individual flights from the queuing model based on the

test set for different quartiles of the actual data.
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(a) EWR-SF (b) DFW-SF (c) CLT-NF

Figure 9 Comparison of the predicted and actual taxi-out time distributions.

3. Departure metering

During periods in which demand exceeds capacity, queues build up on the airport surface, leading to

an increase in taxi-out times. The idea behind departure metering is to tactically assign hold-time

for departures at the gate during periods of peak traffic, so that smaller queues are formed on the

airport surface, leading to a reduction in taxi-out time. The challenge is to assign appropriate hold-

times to maximize benefits in terms of taxi-out time reduction, while maintaining runway utilization.

Departure metering is an integral part of the FAA’s Terminal Flight Data Manager (TFDM), which

is a NextGen initiative that is scheduled to be deployed from 2020 (Federal Aviation Administration

2018c). Several algorithms have been previously proposed to determine the appropriate hold times

at the gate (Simaiakis et al. 2014, Pujet, Delcaire, and Feron 2000, Badrinath and Balakrishnan

2017, Khadilkar 2013). This paper considers two approaches to departure metering: The first one

based on NASA’s ATD-2 logic, and the second based on an optimal control formulation.

3.1. ATD-2 logic for departure metering

Figure 10 A timeline diagram of the ATD-2 logic for departure metering. UTOT indicates undelayed takeoff time.

The ATD-2 logic for departure metering computes a gate-hold time for each flight based on its

predicted taxi-out time as follows (Verma et al. 2018):

TOBT = max(EOBT,TTOT −UTT −Y ), (20)

where TOBT is the Target-Off-Block-Time or the new gate release time decided by the controllers,

TTOT is the Target Take-Off-Time, UTT is the unimpeded time to take-off that depends on the
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gate-runway pair, and Y is the excess queue time buffer (Verma et al. 2018). The target take-off

time is computed by adding the predicted taxi-out time to the flight’s EOBT. In this paper, we

use the queuing model presented earlier to obtain the taxi-out time prediction for each flight. In

other words, the hold time assigned to each flight is the predicted wait time in queue for that flight

minus the excess queue time buffer. The idea is to transfer the predicted wait time in the queues to

a gate-hold time, saving fuel. The excess queue time buffer (Y ) is subtracted to account for errors

in the taxi-out time prediction. The buffer value (Y ) is a constant design parameter that is chosen

for each airport and runway configuration. It is important to choose the optimal buffer parameter.

If the buffer parameter is too high, it will lead to decreased benefits; if the buffer parameter is too

low, it could lead to reduced runway utilization. A timeline diagram of the ATD-2 logic is shown in

Figure 10.

Given the weather condition (IMC/VMC), landing times for arrivals, runway assignments and

EOBT time for departures, the queuing model can predict the taxi-out time for each flight based

on the current queue length at an airport. The hold time is then assigned to each flight based on

its predicted taxi-out time. To have higher predictability in the system, the hold decisions are made

Tp minutes prior to a flight’s EOBT (where Tp is the planning horizon).

3.2. Simulation environment for the evaluation of departure metering algorithms

The departure metering approaches are evaluated using a simulation of airport surface operations.

The simulators are based on discrete queuing network models (as described in Section 2), with the

service time for each server being sampled from an empirical distribution. The empirical service time

distributions are a function of the airport weather and traffic (such as number of landings on the

runway and traffic on the ramp) as we had discussed earlier. The simulations are repeated multiple

times to obtain consistent statistics (a Monte Carlo simulation with 20 runs). We consider a 15 day

period for each airport-runway configuration pair to evaluate the benefits of departure metering.

Table 4 shows the error statistics for the taxi-out time predictions from the simulator in the baseline

case without any metering by comparing it with the actual data. Although we consider a 15-day

period for each airport-runway-configuration pair, the total number of departures vary between NF

and SF, because the total time duration operating in a particular configuration is different. The

results indicate that the errors are small relative to the mean taxi-out times, but their magnitudes

are slightly larger than the analytical queuing model.

3.3. Departure metering benefits with accurate EOBTs

In this section, we assume that we have accurate EOBT information, that is, the estimate of the

push-ready time published by the airlines is accurate. This is a reasonable assumption for scenarios

in which the hold time is assigned to flights when the pilot calls ready (Simaiakis et al. 2014, Verma
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Airport Configuration Number of Taxi-out time (min) Percentage of flights
departures Mean ME MAE with |error| < 5 min

EWR NF 4,117 21.6 0.4 5.4 60.4
SF 4,493 21.0 0.5 5.4 59.0

DFW NF 6,377 18.7 -0.4 4.2 70.6
SF 9,212 17.3 0.6 4.9 64.4

CLT NF 6,447 20.1 1.1 4.6 64.2
SF 4,493 19.7 -1.0 5.0 63.8

Table 4 Error statistics for the baseline taxi-out time predictions from the queuing simulation over a 15 day period.

et al. 2018), including the current phase of the ATD-2 demonstration. However, in the long-term,

the plan is to assign gate holds several minutes (say 10-30 min) prior to the flight’s EOBT. At time

Tp prior to a flight’s EOBT, the taxi-out time for a flight is predicted from the analytical queuing

model using the EOBT information for all the departures, landing times for future arrivals, weather

condition and current traffic at the airport. For the purpose of evaluating the departure metering

benefits with accurate EOBTs, we consider the flight’s EOBT to be equal its Actual Off-Block

Time (AOBT) obtained from historical data. The gate release time (TOBT) for the flight is then

determined using Eq. (20). The flights are released at TOBT in the discrete queuing simulation

of the airport. In the field demonstrations at CLT, NASA uses a different model for taxi-out time

prediction, a microscopic node-link model of the airport, instead of a queuing model (Verma et al.

2018).
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Figure 11 Metering simulation results for different excess queue time buffer values. The plots show averaged values

over a 15 min time window for a typical day at DFW in North-Flow configuration (07/20/2016).

Figure 11 shows the simulation results of departure metering with a planning horizon of 20 min

for different values of the excess queue time buffer values (Y ), on a typical day at DFW. The

reduction in taxi-out time is correlated with the hold-time, which in turn is larger during periods

when the baseline taxi-out time is high. As the excess queue time buffer increases, the average

hold-time decreases, leading to lower taxi-out time reduction benefits. On the other hand, a lower

excess queue time buffer might lead to aircraft being held longer than necessary, leading to a delayed
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(a) Average taxi-out reduction and hold time

for different buffers (min).
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(b) Hold time distribution for the flights that

were held.

Figure 12 Departure metering statistics for DFW-SF. The statistics were calculated over 9,212 flights in a 15 day

period.

wheels-off time (Figure 11(c)). The excess queue time buffer is therefore an important parameter

that influences the taxi-out time reduction and airport throughput. In the field demonstrations at

CLT conducted by NASA, ramp managers are allowed to pick the excess queue time buffer based

on their experience (Verma et al. 2018). We present a methodology for systematically selecting the

excess queue time buffer parameter.
The wheels-off delay for a flight because of departure metering is given by,

wheels-off delay= (wheels-off time)metering− (wheels-off time)baseline (21)

=
(

(taxi-out time)metering + hold-time+AOBTbaseline

)
−
(

(taxi-out time)baseline +AOBTbaseline

) (22)

= hold-time−
(

(taxi-out time)baseline− (taxi-out time)metering

)
(23)

= hold-time− (taxi-out time reduction) (24)

The difference between the hold-time and taxi-out time reduction is equal to the wheels-off delay.

A positive value of this change indicates that the runway is underutilized. Figure 12(a) shows the

average hold time and taxi-out time reduction for different excess queue time buffers in DFW-SF. As

the buffer value increases, the hold-time as well as reduction in the taxi-out time decreases. We can

see that at small values of the excess queue time buffer, the wheels-off delay is positive, indicating

that the runway is underutilized. The optimal excess queue time buffer is chosen to achieve as large

a taxi-out time reduction as possible while not losing runway utilization. For the 20 min horizon

considered here, the optimal excess queue time buffer is 5 min for DFW-SF, with an average taxi-out

time reduction of 2.1 min.

The optimal buffer size and taxi-out time reduction vary by airport and runway configuration.

Table 5 shows the optimal buffer size and taxi-out time reduction from the simulations of departure
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Parameter EWR DFW CLT
NF SF NF SF NF SF

Optimal buffer (min) 7 8 5 5 7 5
Mean taxi-out time reduction(min) 2.0 1.7 2.0 2.0 2.7 1.9

Mean hold-time (min) 2.1 1.7 2.0 2.1 2.8 1.9
Mean wheels-off delay (min) 0.07 0.02 0.05 0.02 0.10 0.06
Percentage of flights held 61% 56% 58% 59% 64% 53%

Mean hold time of the flights held (min) 3.4 3.1 3.5 3.5 4.3 3.6
Table 5 Effects of departure metering with 20-min planning horizon without EOBT uncertainty.

metering, assuming perfect EOBT information. As one would expect, the optimal buffer size is

higher for airports with higher taxi-out time prediction errors. Although the taxi-out delays at EWR

and CLT are larger than those at DFW, the reduction in taxi-out time is about the same due to

differences in prediction errors. At all the airports, about 60% of flights are held at their gates, and

the mean hold time of these flights is about 3 min. The distribution of the hold time for the flights

that were held is shown in Figure 12(b) for DFW-SF.

3.3.1. Gate conflicts A gate conflict occurs when an arriving flight needs to wait for the gate

occupied by another aircraft that is supposed to depart but which is currently being held. Gate

conflicts could potentially decrease the benefits of departure metering, since an arrival may need to

use a gate at which a departure is being held. Figure 13 shows the cumulative distribution of the

time between pushback and the next arrival time at the gate for the current operations at DFW. It

shows that only 20% of the departing flights have an arriving aircraft that uses the same gate within

20 min of the departing flight’s pushback time. Since the simulations indicate that the average hold

time for the flights held at the gate is 3.5 min and maximum hold time is 14 min (corresponding

to optimal buffer size), we do not expect a significant reduction in the taxi-out time savings due to

gate conflicts.
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Figure 13 Cummulative distribution of the time between the actual pusback and next arrival at a gate.
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4. Impact of EOBT uncertainty
The results for the taxi-out time prediction and departure metering presented so far assumed that

the EOBT information provided by the airlines was accurate. However, the EOBTs published by

airlines often deviate from the actual push-ready times, motivating the study of the impact of EOBT

errors on departure metering.

4.1. Evaluating EOBT uncertainty

EOBT information was obtained from the FAA’s Traffic Flow Management System (TFMS) for

EWR, DFW and CLT. Based on the data availability, we considered the following periods for our

analysis: Jan 01 - Nov 11, 2018 (EWR), May 01 - July 31, 2018 (DFW) and Dec 13, 2017 - Feb

12, 2018 (CLT). Flights departing between 9AM and 12PM (local time) were removed from CLT’s

dataset to eliminate any effects of the ATD-2 departure metering demonstration.
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Figure 14 Message time of the EOBT information relative to the EOBT time (Airline A).

Figure 14 shows the distribution of the time when the EOBT information was published for a

flight relative to its EOBT for a major airline (Airline A) at the three airports. Most of the EOBT

messages appear to be published within 40 min prior to the flight’s EOBT (median: 20-23 min),

with an additional spike at around 73 min. Further analysis indicates that airlines publish the Initial

Gate Time of Departure (IGTD) or the original scheduled gate pushback time prior to the 40 min

mark (Badrinath et al. 2018). Table 6 shows the EOBT update statistics for the three airports.

Parameter Mean Median σ
EWR DFW CLT EWR DFW CLT EWR DFW CLT

Message time − EOBT (min) -22.7 -22.2 -18.6 -23.0 -23 -20.1 5.5 5.5 8.3
Time between updates (min) 2.7 4.4 2.8 1.6 1.8 2.0 3.3 5.3 2.6

No. of EOBT messages per flight 10.3 9.8 13.3 9 8 10 5.3 5.8 10.2
Table 6 EOBT update statistics computed for lookahead horizons lesser than 40 min (Airline A).

The EOBT information is also dynamically updated by airlines at irregular intervals until the

flight pushes back from the gate (FAA Surface CDM Team 2012). The EOBT updates are a concern
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Figure 15 Time between EOBT updates for lookahead time lesser than 40 min (Airline A).
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Figure 16 Distribution of number of EOBT updates recieved by a flight which had its EOBT published (Airline A).

for the decision makers who need a ‘stable’ information for making decisions. Figure 15 shows the

distribution of the time between EOBT updates for a flight, considering messages within 40 min

of the flight’s EOBT. Only 28% of the flights operating out of EWR currently have their EOBT

published. However, all flights with a planned departure are expected to publish EOBT information

in the near future (FAA Surface CDM Team 2012). Figure 16 shows the distribution of the number

of EOBT updates for a flight, given that EOBT information for it was published at least once. The

median number of updates is between 8 and 10 depending on the airport.

The EOBT error was calculated by subtracting the ASPM-derived Actual Off Block Time (AOBT)

for that flight from the published EOBT (Federal Aviation Administration 2018b). These errors

were compared over different lookahead time horizons (the difference between the EOBT message

transmission time and the EOBT value published at that time). Figure 17 shows the results of fitting

a Probability Density Function (PDF) to the EOBT error distributions for different lookahead times,

obtained for Airline A at EWR, DFW and CLT. The key error statistics are presented in Table 7.

As expected, the standard deviations of the distributions increase with increasing lookahead time.

The EOBT error distributions also vary by airport. It is worth noting that the standard deviation

of the EOBT error, even for lookahead times of 10-20 min, is of the same order of magnitude as the

taxi-out time prediction errors from the queuing model. It is therefore important to consider the
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Figure 17 EOBT error distribution for different lookahead horizons (Airline A).

uncertainty in EOBT information while evaluating the benefits of departure metering. The EOBT

error distributions for all lookahead horizons are negatively skewed. The distributions for a 20-min

horizon show that flights generally do not pushback more than 10 min prior to their EOBT; however,

there are flights that get delayed beyond 20 mins of the published EOBT.

The EOBT error distributions vary by airline, since each airline does its EOBT computation

internally. Table 8 shows the EOBT error statistics for two other airlines at EWR (Airline B and

Airline C ). The errors are significantly higher for these two airlines compared to Airline A. Figure 18

presents the EOBT update distributions for Airline B at EWR, and shows that Airline B tends to

update its EOBT information less frequently than Airline A.

Lookahead Mean error (min) Median error (min) σ error (min)
time (min) EWR DFW CLT EWR DFW CLT EWR DFW CLT

10 1.0 -1.8 1.5 1.1 -0.4 1.8 3.1 5.9 3.9
20 1.5 -1.8 1.4 1.8 -0.2 1.7 3.5 6.1 3.9
30 0.0 -6.2 -0.1 2.0 -2.0 2.2 8.2 13.7 8.9
40 -1.5 -12.9 -4.5 0.0 -7.0 0.0 8.9 18.4 14.7

Table 7 EOBT error statistics for different lookahead times (Airline A).

Lookahead Mean error (min) Median error (min) σ error (min)
time (min) Airline B Airline C Airline B Airline C Airline B Airline C

10 -3.9 -3.9 -1.0 0.2 11.4 9.8
20 -7.7 -5.1 -5.0 0.3 14.3 10.9
30 -7.9 -7.2 -5.0 0.5 14.8 9.8
40 -9.1 -7.5 -4.0 0.7 17.0 13.2

Table 8 EOBT error statistics for Airline B and Airline C at EWR computed for different lookahead horizons.
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Figure 18 EOBT information update statistics for Airline B at EWR.

4.2. Parametric analysis of the impacts of EOBT uncertainty on departure metering

The uncertainty in EOBT information impacts departure metering for two reasons:

• Reduced accuracy of taxi-out time predictions: Departure metering algorithms require an esti-

mate of taxi-out times to determine gate-hold times. The taxi-out time predictions need the EOBTs

as inputs (for example, to a queuing model). Errors in EOBT result in taxi-out time prediction

errors, leading to inefficient gate-hold times.

• Noncompliance with assigned gate release times: The pushback time recommendation (TOBT)

is given by the EOBT time plus the gate-hold time. However, a flight may not be ready to push at

its TOBT due to errors in its EOBT, resulting in a loss in runway throughput.

We conduct a parametric study of the impacts of inaccurate EOBTs on departure metering using

the ATD-2 logic. We assume that the EOBT error distributions are Gaussian with a zero mean,

and we vary the standard deviations. This methodology allows us to investigate the impact of

different error distributions in a systematic way. The range of the parametric space for the standard

deviation of the error distribution follows from the operational data. The EOBT time is synthetically

computed for every flight in the data-set by adding a random variable sampled from the EOBT

error distribution to the AOBT (in other words, EOBT = error + AOBT).

For a flight with an uncertain EOBT, we can have one of the following three cases:

1. Push-ready time < EOBT : In this case, the metering logic would recommend a gate-hold

until the EOBT time even if the predicted excess queue time is equal to zero. While this strategy

may improve predictability, flights would have to hold unnecessarily at the gate, resulting in a loss

in runway throughput. To prevent unnecessary holds, the metering logic is modified to let flights

pushback at the push-ready time if the predicted excess queue time (along with the buffer) is equal

to zero.

2. EOBT ≤ push-ready time ≤ TOBT : In this case, the flight waits and then pushback occurs

at its TOBT. The gate-hold time would be expected to translate into a reduction in taxi-out time.
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3. TOBT < push-ready time: In this case, the flight is not ready to pushback at its TOBT and

the pushback occurs later. Once again, there is a loss of predictability and a potential loss in runway

throughput because the flight did not pushback when expected.

The optimal buffer size in the ATD-2 logic can be adjusted to account for the EOBT uncertainties,

in addition to the taxi-out time prediction errors. The optimal excess queue buffer is the smallest

value of the queue buffer for which there is no increase in the wheels-off time. Figure 19(a) shows

the optimal excess queue buffer time for different EOBT distributions and two different planning

horizons (10-min and 20-min) for DFW-SF. For a particular planning horizon, the optimal excess

queue buffer increases with an increase in EOBT error and then saturates beyond a particular

point. This behavior is as expected, since the taxi-out time prediction error increases with EOBT

uncertainty and needs to be compensated with a larger excess queue time buffer. For higher EOBT

errors, a larger buffer size is required at the 20-min planning horizon than the 10-min horizon, due

to the expected decrease in prediction performance.

There is an inherent trade-off in choosing the planning horizon: A larger planning horizon is

preferable since it leads to more predictability, but it yields lower departure metering benefits. One

would ideally identify the optimal value of the planning horizon by evaluating the tradeoff between

predictability and fuel savings; however, it is difficult to do so since the value of predictability is

not known. In this paper, we consider the two values of planning horizon (10 and 20 min) that have

been proposed for ATD-2.

We can also evaluate the departure metering benefits for different EOBT error distributions using

the optimal excess queue buffer time. The taxi-out time savings decreases as the standard deviation

of the EOBT error increases (Figure 19(b)). At a 20-min planning horizon, with the current level

of EOBT uncertainty at DFW (standard deviation of 6 min), there is a 50% decrease in taxi-out

time reduction benefits compared to the case with perfect EOBT information.

EOBT error EWR DFW CLT
σ (min) NF SF NF SF NF SF

0 2.0 (5) 1.7 (8) 2.0 (5) 2.1 (5) 2.7 (7) 1.9 (5)
2 1.6 (6) 1.3 (8) 1.7 (6) 1.8 (6) 2.3 (8) 1.6 (5)
4 1.2 (8) 1.2 (9) 1.2 (8) 1.3 (8) 1.8 (10) 1.4 (6)
6 0.9 (10) 1.2 (10) 0.9 (10) 1.0 (10) 1.3 (12) 1.3 (7)
8 0.7 (11) 0.9 (12) 0.7 (11) 0.8 (11) 1.1 (13) 1.1 (8)
10 0.5 (12) 0.9 (13) 0.5 (12) 0.6 (12) 1.0 (13) 1.1 (9)
12 0.5 (12) 0.9 (13) 0.5 (12) 0.5 (12) 0.9 (13) 0.9 (10)

Table 9 Average taxi-out time reduction in minutes for different EOBT error distributions with a planning horizon

of 20-min. The optimal buffer for the ATD-2 logic is indicated in brackets.

Table 9 shows the average taxi-out time reduction and optimal buffer for different levels of EOBT

uncertainty at different airports and a 20-min planning horizon. The trends in the reduction of



Badrinath et al.: Impact of Uncertainty on Airport Operations
26 Article submitted to Transportation Science; manuscript no. TS-2018-0406.R1

0 2 4 6 8 10 12
Std. dev. of EOBT error (min)

4

6

8

10

12

14

O
p

ti
m

a
l 
e

x
c
e

s
s
 q

u
e

u
e

 t
im

e
 (

m
in

) 10 min planning horizon
20 min planning horizon

(a) Optimal excess queue buffer

0 2 4 6 8 10 12
Std. dev. of EOBT error (min)

0

0.5

1

1.5

2

2.5

T
a

x
i-
o

u
t 

ti
m

e
 r

e
d

u
c
ti
o

n
 (

m
in

)

10 min planning horizon
20 min planning horizon

(b) Taxi-out time reduction

Figure 19 Optimal excess queue buffer and taxi-out time reduction for DFW-SF.
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Figure 20 Annualized taxi-out time reduction and fuel burn reduction per flight using the ATD-2 logic for different

levels of EOBT uncertainty.

metering benefits with EOBT uncertainty are consistent across all the airports. Figure 20 shows the

annualized average taxi-out time and fuel burn reductions as a function of the EOBT error. These

calculations account for the relative frequency of different runway configurations and the average

fleet mixes at the different airports. The values of the average taxi fuel flow rate per flight were

found to be 0.20 kg/s for EWR and DFW, and 0.17 kg/s at CLT (due to the higher fraction of

regional jets) (ICAO 2018). Table 10 shows the estimated annualized total fuel burn saving at the

three airports obtained by multiplying the average fuel burn savings per flight with the total number

of operations in 2017.

4.3. An optimal control approach for departure metering

We propose an approach based on optimal control technique to departure metering in the presence

of EOBT uncertainty, by leveraging the analytical queuing models developed in Section 2. The

objective of the formulation is to regulate the rate of aircraft pushbacks so as to achieve smaller

queue lengths on the airport surface, while maintaining runway throughput.
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Airport EOBT error σ (min)
0 2 4 6 8 10 12

EWR 4.9 4 3.4 3.2 2.7 2.6 2.5
DFW 8.4 7.2 5.3 4 3.3 2.4 2
CLT 6.6 5.5 4.6 3.8 3.2 3.1 2.7

Table 10 Annualized fuel burn savings (×106 kg) using the ATD-2 departure metering logic.

Let x(t) ∈ Rp be a vector of taxi-out queue lengths on the airport surface at any time instant

t. Let d(t) ∈ Rq be the departure demand rate, with the elements representing the demand rate

to each runway. The departure demand corresponds to the push-ready time for departures, and is

obtained from the EOBT information provided by the airlines. These rates are obtained over 5-min

windows. Let ud(t) be the pushback rate at the gate that is assigned by the controllers, and h(t)

be the number of aircraft held at the gate due to departure metering. The number of holds at any

instant, h(t), is the difference between the total demand and total pushbacks until time t. The

dynamics for the number of holds is then given by:

h(t) =

∫ t

0

d(x)dx−
∫ t

0

ud(x)dx (25)

ḣ(t) = d(t)−ud(t) (26)

The control objective is to minimize the length of taxi-out queues while maintaining throughput,

the state variables are the taxi-out queue lengths on the airport surface and the number of holds,

and the control variable is the departure pushback rate (ud(t)). The problem formulation for an

airport queuing network is then as follows:

min
ud(t)

∫ T

0

(
xTQx+hTRh

)
dt (27)

Subject to: (28)

ẋ= f(x(t),x(t− τ1), ....x(t− τm),ud(t− τm+1), ...ud(t− τw), t) (29)

ḣ= d(t)−ud(t) (30)

0≤ xi, hi; 0≤ udi ≤ um; i= 1,2,3, ...w (31)

udi(t) = gi(t), t∈ [−τdi,0); i= 1,2,3, ...w (32)

xi(t) = φi(t), t∈ [−τki,0], h(0) = h0; i= 1,2,3, ...w (33)

Here, T is the optimization window over which the cost needs to minimized, and Q ∈ Rp×p and

R ∈ Rq×q are constant weighting matrices. Equations (29) and (30) specify the dynamics for the

length of the queues and number of holds. The inequalities in (31) impose nonnegativity constraints

on the number of holds, queue lengths and pushback rate. The delay differential equations also

require an initial history, specified by Eqs. (32)-(33). The cost function (27) penalizes a weighted
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sum of the square of the queue lengths and number of holds. The queue length is penalized to reduce

taxi-out times, while the holds are penalized to avoid having large holds and to maintain runway

throughput.

In Section 2, we saw that the dynamics of surface queues depend on the service time of several

servers. The service time distributions for the departure runway queues depend on the landing rates

and meteorological conditions, which are assumed to be known. The service time distribution of

the taxi-out ramp queue requires the number of taxi-in flights on the ramp (in the case of CLT-

NF). The taxi-in ramp queue length is pre-computed using the queuing model with the EOBTs and

arrival times, and is used to determine the service rate for the taxi-out ramp queue. This service

rate is used for the taxi-out ramp queue dynamics in the optimal control problem. In this manner,

the interdependencies between departures and arrivals in the ramp are simplified so that only the

arrivals impact the departures. This methodology reduces the number of constraints in the optimal

control problem. To speed up the computation further, the optimal pushback rate is computed only

when the runway queue length at Tp min in the future is predicted to be greater than 2.

The optimal control problem is solved in a receding horizon framework, accounting for the current

state of the airport surface. The entire day in divided into 5-min intervals. At the beginning of each

interval, pushback rate decisions are made for [Tp, Tp + 5] min, where Tp is the planning horizon.

The optimal control problem is solved for [Tp, Tp + T ] where T is the optimization window over

which the cost is minimized, and the pushback rate is implemented for the first 5 min. The initial

conditions for the optimal control problem at Tp min into the future are obtained using the queuing

network model with the current state as the input. The number of aircraft that can be released

during each 5 min window (n) is determined from the pushback rate. The first n aircraft in the 5

min window are released as per the optimal control decision and rest of the aircraft are pushed to

the beginning of the next time window, awaiting decision for release. In contrast to the ATD-2 logic

which assigns and freezes the hold time for flights that have an EOBT Tp min ahead, the optimal

control approach only specifies the flights that need to be released in [Tp, Tp + 5] time window, and

pushes the remaining flights to the next time window. Consequently, aircraft can be pushed multiple

times to the next time window but the release decision is made Tp minutes ahead.

The optimal control problem is solved numerically rather than analytically due to the challenges

posed by time delays and nonlinear dynamics. The optimal control problem is solved by discretiz-

ing the state and control variables. The equations governing the dynamics are discretized using

a first-order Euler method. The discretized control problem is then transformed into a non-linear

programming problem (NLP) that can be solved using a standard solver in MATLAB.

We demonstrate the benefits of the optimal control approach by simulating 3 days of operations

in DFW-SF and CLT-NF. The queuing models of these two airport-configuration pairs differ signif-

icantly in complexity. The DFW dataset consisted of 2,708 departures and CLT dataset consisted
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Figure 21 Relative frequency of the number of updates for the release time for the flights that were held at the gate

using the optimal control policy.

of 1,817 departures. We penalize the departure runway queue in the cost function with a weight

equal to one, and impose a weight of 0.4 for the holding term (Q = Ip,R = 0.4Iq). The weight of

the holding term was determined in a similar way as we had determined the optimal queue buffer

for ATD-2 logic, to ensure that the mean wheels off delay is close to zero. We consider T , the opti-

mization window over which the cost is minimized to be 30-min for CLT and 60-min for DFW. The

longer horizon yielded better departure metering benefits at DFW, because of the longer departure

banks.

Table 11 compares the benefits of the optimal control approach and the ATD-2 logic. While

the ATD-2 logic yields more benefit with perfect EOBT information, the optimal control approach

performs better in the presence of uncertainty. The benefits in terms of taxi-out time reduction

with the optimal control approach in the presence of EOBT uncertainty are about 66% higher for

DFW-SF and 33% higher for CLT-NF. Figure 21 shows the relative counts of the number of times

a flight is pushed to the next 5 min interval, given that it was asked to hold at least once. Most of

the flights that are held at the gate receive at most two updates.

Parameter
DFW-SF CLT-NF

Perfect EOBT Uncert. EOBT Perfect EOBT Uncert. EOBT
Opt. ATD-2 Opt. ATD-2 Opt. ATD-2 Opt. ATD-2

Mean taxi-out time reduction(min) 1.4 1.9 1.0 0.6 1.3 2.6 1.2 0.9
Mean hold-time (min) 1.5 1.9 1.1 0.7 1.5 2.8 1.3 1.0

Mean wheels-off delay (min) 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.0
Fraction of flights held 0.3 0.6 0.2 0.1 0.3 0.6 0.2 0.1

Mean hold time of flights held (min) 4.9 3.5 5.3 6.3 4.5 4.3 6.2 6.8
Table 11 Comparison of the departure metering benefits with and without EOBT uncertainty (assuming σ= 6 min).

Opt. refers to results from the optimal controller.
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Table 12 compares the computational times of the optimal control approach and the ATD-2 logic,

based on the simulation of a single day of airport operations. The computations were done on a

computer with 2.8 GHz Intel Core i7 processor with 16 GB memory, and the scripts were run on

MATLAB. The computational time of the ATD-2 logic corresponds to deciding the gate-holds for

one or more flights that have the same EOBT. The computational time can vary slightly depending

on the number of flights that share a particular EOBT. The computational time indicated for the

optimal control approach is the time required to make a decision for every 5-min window in the

receding horizon framework. The time duration to solve the optimal control problem can vary based

on the instance of the optimization problem. In general, the ATD-2 logic is orders of magnitude

faster than the optimal control approach in terms of computational time. However, the optimal

control approach is still practical: The mean time for planning a 5-min window is around 2 sec, and

maximum computation time is around 40 sec. Finally, the computational time for CLT is higher

than that for DFW, because of the more complex queuing network.

Airport Mean comp. time (sec) Max. comp. time (sec)
ATD-2 Opt. Ctrl. ATD-2 Opt. Ctrl.

DFW-SF 0.5 ×10−3 1 17 ×10−3 31
CLT-NF 0.9 ×10−3 3 24 ×10−3 39

Table 12 Computational times for the ATD-2 logic and the optimal control approach.

5. Discussion and extensions

We discuss some of the open questions as well as extensions of this work.

5.1. Integrated control of arrival and departure queues

The optimal control formulation above only considered the taxi-out queues on the surface. Since we

have an integrated model for taxi-out and taxi-in flights (as in CLT-NF), it would be a straightfor-

ward extension to account for taxi-in queues as well. The objective of the integrated arrival-departure

control problem would be to minimize the weighted sum of all queue lengths on the airport surface

by controlling the pushback rate and the arrival rate, accounting for the number of holds in the

air (arrivals) and at the gate (departures). Additionally, the weights in the cost function could be

chosen to penalize airborne holds more than the ground holds. In addition to assigning gate-holds,

the optimal control approach can be extended to assign runways. However, there is less flexibility

in assigning runways since there are constraints arising from the runway length required by aircraft,

departure fix assignments, etc.
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5.2. Robust control techniques

One could explore concepts from robust control theory to determine an algorithm that explicitly

accounts for model uncertainties with theoretical guarantees. The dynamics of the queuing network

being represented as a differential equation makes it amenable to use standard techniques in robust

control such as robust model predictive control, sliding mode controllers, or H∞ controllers. The

underlying challenges of using these approaches are that the nonlinearities in the queuing dynamics

and the time delay.

The other source of uncertainty is the error in the predicted arrival rate and weather conditions.

For airports that have runways under mixed operations (such as CLT-NF), we have assumed a

knowledge of the landing times of arrivals in order to estimate the runway capacity for the departures.

It is worth exploring the impact of arrival rate uncertainty as well.

5.3. Fairness of departure metering

The parameters of the departure metering algorithms were tuned to ensure that there was no loss

in throughput, that is, no net delay for the departures from the airport. However, depending on the

hold-time assigned to the flights, the take-off order in the presence of metering might be different

compared to the baseline. This could result in one flight experiencing less delay at the expense of

more delay for another flight.

Table 13 shows the mean absolute displacement in the takeoff order with metering. Here, “dis-

placement” refers to the rank difference of the takeoff order at each runway with departure metering,

compared to the baseline case without departure metering. The buffer parameter ensures that there

is no loss in throughput, and that the average takeoff delay is zero. However, a higher value of mean

absolute displacement indicates that some flights take off earlier in the metering case compared

to the baseline, while some others take off later. Ideally, fairness suggests that the takeoff order

should be the same in the metering case as in the baseline. Table 13 shows that the mean absolute

displacement is higher in the presence of EOBT uncertainty.

Category
DFW-SF CLT-NF

Perf. EOBT Uncert. EOBT Perf. EOBT Uncert. EOBT
Opt. ATD-2 Opt. ATD-2 Opt. ATD-2 Opt. ATD-2

Mean absolute displacement
of flights that are not held 0.2 0.0 0.5 0.6 0.4 0.2 0.6 0.8

Mean absolute displacement
of flights that are held 1.5 1.2 1.9 4.0 1.6 1.7 2.0 3.9

Mean absolute displacement
of all flights 0.6 0.7 0.8 1.0 0.8 1.2 0.9 1.3

Table 13 Mean absolute displacement of the takeoff order with and without EOBT uncertainty (assuming σ= 6

min). Opt. refers to results from the optimal control approach.
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5.4. Incentives to improve EOBT accuracy

The analysis presented in this paper quantifies the benefits of more accurate EOBTs in terms of

taxi-out time savings. The standard deviation of the EOBT error distribution is around 4 min at a

20-min time horizon for EWR and CLT, while it is 6 min at DFW (Table 7). If the airlines were

to improve the EOBT accuracy by reducing the standard deviation of the EOBT error to about 2

min, the benefits in terms of taxi-out time savings increases by 15% at EWR, 75% at DFW, and

22% at CLT. This improvement in EOBT accuracy yields an additional fuel burn savings of 600K

kg/yr at EWR, 3.4M kg/yr at DFW, and 1.1M kg/yr at CLT. Assuming the jet fuel price to be

$0.68/kg (IATA 2018), the additional annual fuel savings will correspond to $400K at EWR, $2.3M

at DFW, and $740K at CLT. The airlines can use these estimates to decide on investment decisions

that could improve their EOBT accuracy.

The parametric analysis assumed that the EOBT uncertainty distribution was the same for all

airlines at an airport. However, seen in Section 4, the uncertainty in EOBT varies by airline. An

interesting question is whether an airline would be rewarded for improved EOBT accuracy by

achieving greater taxi-out time reduction. A related question would involve opportunities for airlines

to manipulate the system by publishing inaccurate EOBTs to obtain more benefits.

To incentivize airlines to publish more accurate EOBTs, the ATD-2 program categorizes flights

into a "planning" group and an "uncertainty" group based on the historical accuracy of their EOBT

information. The idea is to give priority to the flights in the planning group so that they are able to

get more benefits. Challenges remain with this approach: (a) Deciding on a criterion to categorize

flights into two groups (airlines could game by reporting accurate EOBTs during periods with less

congestion and incorrect EOBTs during periods with congestion to obtain more benefits); and (b)

developing strategies to disincentivize the uncertain group. One possible approach is to penalize

airlines if they do not meet the TOBT assigned by the controller. For example, under the Airport

Collaborative Decision Making concept, if a flight is unable to pushback within TOBT+5 min, its

existing slot is cancelled and it receives a new TOBT (Changi Airport 2018).

5.5. Impact of EOBT information updates

This paper did not consider the impact of EOBT updates by the airlines. As we had discussed in

Section 4, airlines update the EOBT information at irregular intervals until a flight pushes back

from the gate. If gate-hold decisions are made 20 min prior to a flight’s EOBT which continues to

be updated, then one would have to determine the most efficient way to accommodate flights with

updated EOBTs.

If an airline updates a flight’s EOBT, we have one of the following two cases: (a) the new EOBT is

prior to the assigned pushback time, in which case, the flight needs to wait at the gate before pushing
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back (equivalent to an additional hold); or (b) the new EOBT is after the assigned pushback time. In

the latter case, the controller considers the flight to be entering the system at max((t+Tp),EOBT),

and reassigns the gate-hold for that flight. In the above discussion, t is the time at which the EOBT

was updated. Both cases penalize the airline, incentivizing airlines to report a more stable EOBT.

This is just one approach by which EOBT updates can be accommodated; we could also devise

alternative strategies.

5.6. Other considerations

Ramp operations (including clearance for gate pushbacks) in the US are primarily managed by the

airlines and not by the FAA. While spot metering has been proposed as a solution to this ‘jurisdic-

tional’ challenge, its practicality remains to be demonstrated. In the departure metering field tests

at CLT under the ATD-2 program, gate-hold decisions were made by the ramp controllers (airline

personnel) by coordinating with the single airline that handles more that 90% of the operations.

The methodology presented in this paper can be adapted to consider spot metering, assuming that

the implementation challenges can be addressed.

This paper focused on uncertainties pertaining to EOBTs and taxi times. However, there are

multiple sources of uncertainty on the airport surface; for example, departures being subject to

Traffic Management Initiatives (TMIs) such as Approval Requests (APREQs) or Miles-In-Trail

(MIT) restrictions. However, only a small fraction of flights (fewer than 9% of CLT departures) are

affected by such TMIs. We therefore believe that we have considered the uncertainties that have

the most significant impact on departure metering.

6. Conclusions

This paper presented an approach to developing queuing network models of airport surface traffic.

The proposed models reflected the time-varying nature of capacity and demand, and could be used

to predict the queue lengths at congested locations on the airport surface and the taxi times of

aircraft. The modeling approach was applied to three U.S airports (EWR, DFW and CLT) with

different operating characteristics in order to demonstrate its general applicability.

The queuing network models were used to evaluate two approaches for departure metering to

reduce airport taxi-out times: NASA’s ATD-2 logic and a new optimal control algorithm. The

proposed queuing network models could be used to estimate the optimal value of the excess queue

time buffer, which is an important parameter within the ATD-2 logic. Departure metering algorithms

require as inputs information on departure demand, usually in the form of the Earliest Off-Block

Times or EOBTs. This paper evaluated the accuracy of the EOBT information currently published

by the airlines, and conducted a parametric analysis of the impacts of EOBT uncertainty on the

performance of departure metering algorithms. The results showed that EOBT uncertainty can
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significantly reduce the departure metering benefits in terms of taxi-out time and fuel burn savings.

For example, reducing the standard deviation of the EOBT error from 6 min to 4 min at a 20-min

planning horizon would yield an additional annual fuel burn savings of 200 metric tonnes at EWR,

1,300 metric tonnes at DFW, and 800 metric tonnes at CLT. This analysis can potentially incentivize

airlines to improve the accuracy of reported EOBTs. Finally, we showed that the proposed optimal

control approach to departure metering can handle EOBT uncertainty while still providing taxi-out

time reductions.
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