
Thirteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2015)

Predicting Airport Runway Configuration
A Discrete-Choice Modeling Approach

Jacob Avery and Hamsa Balakrishnan
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology
Cambridge, MA, USA

Abstract—The runway configuration is a key driver of airport
capacity at any time. Several factors, such as weather conditions
(wind and visibility), traffic demand, air traffic controller work-
load, and the coordination of flows with neighboring airports
influence the selection of runway configuration.

This paper identifies a discrete-choice model of the configu-
ration selection process from empirical data. The model reflects
the importance of various factors in terms of a utility function.
Given the weather, traffic demand and the current runway
configuration, the model provides a probabilistic forecast of
the runway configuration at the next 15-minute interval. This
prediction is then extended to obtain the 3-hour probabilistic
forecast of runway configuration. The proposed approach is
illustrated using case studies based on data from LaGuardia
(LGA) and San Francisco (SFO) airports, first by assuming
perfect knowledge of weather and demand 3-hours in advance,
and then using the Terminal Aerodrome Forecasts (TAFs). The
results show that given the actual traffic demand and weather
conditions 3 hours in advance, the model predicts the correct
runway configuration at LGA with an accuracy of 82%, and
at SFO with an accuracy of 85%. Given the forecast weather
and scheduled demand, the accuracy of correct prediction of the
runway configuration 3 hours in advance is 80% for LGA and
82% for SFO.

Keywords- runway configuration; air traffic control decision-
making; discrete-choice models; data-driven modeling

I. INTRODUCTION

Airport congestion leads to significant flight delays at the
busiest airports around the world. Such congestion occurs
when the demand for aircraft operations exceeds the available
airport capacity. Airport expansion projects to increase capac-
ity tend to be expensive and take several years to complete;
by contrast, the better utilization of existing airport capacity is
a less expensive approach to mitigating congestion. The key
driver of airport capacity at a given time is the active runway
configuration [1], which is chosen by air traffic control person-
nel, taking into consideration many different factors such as
wind speed, wind direction, meteorological conditions, arrival
demand, departure demand, noise mitigation, and coordination
with surrounding airports.

Airport capacity predictions are also needed for air traffic
flow management [2, 3], airport surface operations scheduling
[4], and system-wide simulations [5]. Since the capacity of
an airport depends on the runway configuration being used,
the forecast of the runway configuration is a key step toward
predicting the capacity of an airport.

This paper develops a data-driven model of the runway
configuration selection process using a discrete-choice model-
ing framework. The approach infers the air traffic controllers’
utility functions that would best explain (that is, maximize
the likelihood of) the observed decisions. The resultant model
yields a probabilistic prediction of the runway configuration
at any time, given a forecast of the influencing factors.

A. Related work

There are two main classes of models that have been devel-
oped for runway configuration selection: prescriptive models
and descriptive models. The former aim to recommend an op-
timal runway configuration, subject to operational constraints.
An early example of such a model is the Enhanced Preferential
Runway Advisory System (ENPRAS) that was developed for
Boston Logan International Airport [6]. Motivated by aircraft
noise considerations, runway allocation systems were designed
for Sydney and Brisbane airports [7]. More recently, several
authors have considered the problem of optimally scheduling
runway configurations, taking into account different models of
weather forecasts and the loss of capacity during configuration
switches [8, 9, 10, 11, 12].

Descriptive models analyze historical data in order to predict
the runway configuration selected by the decision-makers.
These models have received less attention, although data
mining approaches have been used to forecast airport arrival
rates, especially during Ground Delay Programs [13, 14]. A
24-hour forecast of runway configuration was developed for
Amsterdam Schiphol airport, using a probabilistic weather
forecast [15]. A logistic regression-based approach was used to
develop a descriptive model of runway configuration selection
at LaGuardia (LGA) and John F. Kennedy (JFK) airports.
although this was not a predictive model [16]. Discrete-choice
models of the runway configuration selection process have also
been studied, and applied to LGA and Newark (EWR) airports
[17, 18].

This paper extends the discrete-choice modeling approach
[18], and applies it to LaGuardia (LGA) and San Francisco
(SFO) airports. A key novelty in this paper is that the
constraints pertaining to maximum tailwinds and crosswinds
allowable for the use of a runway are learned from real data.
The utility functions capture the importance of wind speed
and direction, traffic demand, noise abatement procedures, the
coordination of flows with neighboring airports, as well as



“inertia” (or the resistance to configuration changes). While
the influence of inertia may be less important at long fore-
cast horizons (when the key factors are likely to be wind
conditions, visibility and demand), at shorter time-horizons
such as up to 3 hours ahead, the resistance to configuration
changes play a more important role. Without accounting for
the inertia factor, tools that suggest runway configuration
choices have been found to recommend significantly more
frequent changes than was seen in actual operations [12]. The
discrete-choice modeling framework helps accommodate the
effect of inertia, in addition to the other influencing factors.
This paper illustrates the proposed approach using case studies
of LGA and SFO, first assuming a knowledge of the actual
weather conditions and traffic demand 3 hours ahead, and then
using the most recent Terminal Aerodrome Forecast (TAF)
available 3 hours in advance. The results show that given the
scheduled traffic demand, runway configuration being used
and TAFs available 3 hours in advance, the configuration used
during any 15-minute time-period can be predicted with an
accuracy of 79-80% at both LGA and SFO.

B. Notation

Runway configurations are typically designated in the form
‘A1, A2 | D1, D2’ where A1 and A2 are the arrival runways,
and D1 and D2 are the departure runways. The numbers for
each active runway are reported based on their bearing from
magnetic north (in degrees) divided by 10. Pairs of parallel
runways are differentiated by ‘R’ and ‘L’. The layouts of
SFO and LGA are illustrated in Figs. 1 and 2, respectively.

Figure 1: Layout of SFO airport.

Theoretically, an airport with N runways has O(6N) possible
configurations, since each runway can be used for arrivals,
departures or both, and in either direction. However, only 5-
10 configurations are typically used at an airport. In addition,
due to the additional coordination required during switches,
runway configurations only change 1-3 times per day on
average.

Table I shows the frequencies with which the most
commonly-used configurations at SFO and LGA were ob-

Figure 2: Layout of LGA Airport.

served in 2011. Hours between midnight and 6AM are not
included.

Table I: Configurations observed at SFO and LGA in 2011.
Airport Configuration Frequency

SFO

28R,28L|1R,1L 18,952
28R,28L|28R,28L 2,490
28R/L|1R,1L 1,627
19R,19L|10R,10L 752

LGA

31|4 6,772
22|13 5,679
22|31 4,488
4|13 3,325
31|31 1,483
22,31|31 820
4|4 813

II. METHODOLOGY

A. Discrete-choice modeling framework

Discrete-choice models are behavioral models that describe
the choice selection of a decision maker, or the nominal deci-
sion selection among an exhaustive set of possible alternative
options, called the choice set [19]. Each alternative in the
choice set is assigned a utility function based on defining
attributes that are related to the decision selection process.
At any given time, the feasible alternative with the maximum
utility is assumed to be selected by the decision maker.

The utility function is modeled as stochastic random vari-
able, with an observed (deterministic) component, V , and a
stochastic error component, ε . For the nth selection, given a
set of feasible alternatives Cn, the utility of choice ci ∈Cn is
represented as

Un,i =Vn,i + εn,i. (1)

The decision maker selects the alternative with maximum
utility, that is, c j ∈Cn such that

j = argmax
i:ci∈Cn

(Un,i) (2)

The observable component of the utility function is defined
as a linear function of the observed vector of attributes, ~Xn,i.
The attributes include the different factors that can influence



the decision. They are weighted by the values in vector, ~βn,i,
and include alternative specific constants, αn,i, as follows:

Vn,i = αn,i +[~βn,i ·~Xn,i]. (3)

The random error component of the utility function re-
flects all measurement errors, including unobserved attributes,
variations between different decision-makers, proxy variable
effects, and reporting errors. The error term is assumed to be
distributed according to a Type I Extreme Value (or Gumbel)
distribution with a location parameter of zero, that is:

f (x) = µe−µ(x−η)e−eµ(x−η)
(4)

where µ is the scale parameter and η is the location parameter.
The location parameter is set to zero when defining the
discrete choice models. The Gumbel distribution is used to
approximate a normal distribution due to its computational ad-
vantages. The Multinomial Logit (MNL) model assumes that
the error components of each utility function are independent
from one another, as shown in Fig. 3. Under the assumptions

Figure 3: Schematic of a MNL model structure.

of the MNL model, the probability that choice i is chosen
during the nth selection is given by

Pn,i =
eVn,i

∑ j:c j∈Cn [e
Vn, j ]

. (5)

The independence among the error terms of each utility
function in the MNL model assumes that all correlation among
alternatives has been captured by the attributes included in the
utility function [19]. The Nested Logit (NL) model relaxes
this assumption by grouping alternatives into subsets, or nests
(denoted Bk), which have correlation between their error terms
(Fig. 4).

Figure 4: Example of a NL model structure.

The NL model splits the observable part of the utility
function into a component that is common among the alter-
natives within a nest, and a component that varies between
the different alternatives in a nest. The NL model can then be
treated as nested MNL models using conditional probabilities.
The probability that a specific alternative is chosen is given
by the probability that its nest is chosen, multiplied by the

probability that the specific alternative is chosen from among
the alternatives in that nest. In other words

Pn(ci) = Pn(ci|Bk)Pn(Bk), (6)

where Pn(Bk) =
exp(In,k)

∑
K
l=1[exp(In,l)]

(7)

Pn(ci|Bk) =
exp(µkVn,i)

∑ j∈Bk
[exp(µkVn, j)]

(8)

In,k =
1
µk

ln( ∑
j∈Bk

exp(µkVn,i)). (9)

Equation (7) has an additional term in the numerator called
the inclusive value, that acts as a bridge between the lower
level MNL models within each nest, and the upper level.

B. Maximum-likelihood estimation of model parameters

Maximum-likelihood estimates of the linear weighting pa-
rameters, alternative specific constants, and scale parameters
are estimated from the training data. The maximum-likelihood
function is defined as the joint probability that the vector
of sample data will occur, given a vector of parameters
~θ =< α,~β ,µ > as follows,

L (~θ) = P(~X;~θ). (10)

The estimated parameters are those that maximize the
likelihood of the observations:

(α̂,~̂β , µ̂) = argmax
α,~β ,µ

(L (α,~β ,µ)). (11)

The resulting nonlinear optimization problem is solved
computationally using an open-source software package called
BIOGEME [20].

C. Statistical tests

The discrete-choice models for SFO and LGA were iden-
tified iteratively, and variables were added or removed based
on their statistical significance. Different network structures
were also tested and evaluated for statistical significance. The
statistical significance of different attributes with respect to the
training data were determined using the t-test. The significance
of their effects on the overall model were tested using a
likelihood-ratio test. Likelihood-ratio tests were also used to
evaluate the effect of adding nests to NL models [19].

III. APPLICATION TO RUNWAY CONFIGURATION
SELECTION AT LGA AND SFO

A. Training data

The training and test datasets were obtained from the
Aviation System Performance Metrics (ASPM) database [21].
The data included the active runway configuration, the arrival
and departure demand, ceiling and visibility conditions, and
wind speed and direction, for each 15-minute interval. The
training datasets used to determine the parameters of the LGA
and SFO models were taken from year 2011.

The ASPM dataset gives both the wind direction, θ and
wind speed, v, for each 15-minute interval. Fig. 5 illustrates



that the headwind and crosswind components are given by
vcos(ϕ −θ) and vsin(ϕ −θ), respectively, where ϕ denotes
the orientation of the runway. Tailwinds occur when the
headwind function takes a negative value.

Figure 5: Determination of the headwind and crosswind components.

B. Attributes of the utility functions

The utility function is assumed to be a linear function of
the observed vector of attributes, or factors that can influence
the decision. For the runway configuration selection problem,
the following attributes were considered.
• Inertia: The inertia variable reflects the preference of

air traffic controllers to stay in the same configuration,
since configuration changes require increased coordina-
tion among the different stakeholders, and reduce airport
throughput [11]. The inertia variable is expected to have
a positive impact on the utility function of the incumbent
configuration.

• Wind speed and direction: Wind speed and direction
are key factors that influence runway configuration. High
tailwind or crosswind speeds are not favorable for oper-
ations, and can render some runways unusable. While
prior work had used FAA-guidelines to determine the
maximum allowable tailwind and crosswind components
[18], this paper learns these threshold values from actual
data (ASPM, 2011).

Figs. 6 and 7 show the identified ranges of feasible
wind speed and direction for each runway at SFO and
LGA, respectively. The tailwind and crosswind limits
were taken as their 95th percentile threshold values in
order to account for any reporting errors. While there
is no limit set on headwind speeds for feasibility, the
figures use a maximum headwind speed of 40 knots for
illustrative purposes. The dashed lines show the 75th
percentile of the head/tailwinds and crosswinds.

Even with the maximum tailwind and crosswind lim-
itations, several runway configurations may be feasible
at any time. Fig. 8 shows the actual observations of
wind speed and direction at SFO, for each 15-minute
interval in 2011. We see that the significant majority of
points correspond to conditions in which all the runways
are feasible (although some may be more favorable than
others). Fig. 9 shows the same data for LGA in 2011.

Headwinds are expected to add a positive contribu-
tion to the runway configuration utility functions, while
tailwinds are expected to add a negative contribution.
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Figure 6: Wind speed and direction thresholds for different runway configurations at
SFO, as estimated from 2011 data. The solid lines correspond to the 95th percentile,
while the dashed lines correspond to the 75th percentile.
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Figure 7: Wind speed and direction thresholds for different runway configurations at
LGA, as estimated from 2011 data. The solid lines correspond to the 95th percentile,
while the dashed lines correspond to the 75th percentile.

However, significant head winds may have an adverse
effect on operations by decreasing spacing between pairs
of aircraft on final approach, a phenomenon known as
compression [22]. In order to account for this possibility,
headwinds speeds in the top quartile (that is, above the
75th percentile) were treated as “high” headwinds. Com-
pression was found not to have a statistically significant
impact at SFO. However, as will be seen in Section III-C,

Figure 8: Wind speed and direction observed at SFO in 2011. The solid lines correspond
to the maximum thresholds. The colors indicate the frequency of occurrence of different
points.



Figure 9: Wind speed and direction observed at LGA in 2011. The solid lines correspond
to the maximum thresholds. The colors indicate the frequency of occurrence of different
points.

the weighting factor of the headwind attribute of the
utility functions does decrease for headwind speeds in
the top quartile at LGA.

• Demand: Airport arrival and departure demand play
a significant role when picking a runway configuration.
Specifically, in high demand situations, high capacity
configurations are preferred. High capacity configurations
usually include an extra arrival or departure runway.

• Ceiling and visibility: Meteorological conditions, as
represented by the visibility and cloud ceiling, are an
important consideration in the selection of runway config-
uration. Visual Meteorological Conditions (VMC) refer to
times when the visibility is sufficient for pilots to main-
tain visual separation from the ground and other aircraft,
while Instrument Meteorological Conditions (IMC) refer
to times when pilots are required to primarily use their
flight instruments. IMC is defined by a visibility less than
3 miles and a ceiling less than 1,000 ft [23].

The LGA model incorporates variables for each utility
function corresponding to visual and instrument condi-
tions. In this manner, these variables will capture any
preferences for one configuration over another under
VMC or IMC.

The optimal capacity configuration at SFO is
28R,28L|1R,1L, which involves simultaneous arrivals on
closely-spaced parallel runways. Since the centerlines of
28R and 28L are only 750 ft apart, simultaneous landings
are not possible in IMC [23]. One would therefore expect
that the 28R/L|1R,1L configuration (which involves using
only one of the two runways for arrivals) would be
favored under IMC. In short, the VMC/IMC attribute is
expected to have a very strong influence on the utility
function of different runway configurations at SFO.

Table II: OCCURRENCES OF 28R,28L|1R,1L AND 28R/L|1R,1L AT SFO IN 2011.
Configuration VMC IMC
28R,28L|1R,1L 19,832 4,161
28R/L|1R,1L 3,466 1,844

Table II shows the relative use of each of these configu-
rations under VMC and IMC. As shown, the single arrival
runway configuration is used a greater fraction of the time

in IMC than in VMC. However, runway configuration
28R,28L|1R,1L is still used the majority of the time
during IMC. During IMC periods, simultaneous (side-by)
landings are not possible, and the airport operates almost
as it would in a single arrival runway configuration.
However, there may be a small increase in the airport
capacity when 28R,28L|1R,1L is used under IMC. In
order to evaluate these effects, new variables that combine
the effects of visibility and demand were used in the SFO
model. Four categorical variables were defined for periods
of:

1) IMC + low demand,
2) IMC + high demand,
3) VMC + low demand,
4) VMC + high demand,
where a low (high) demand period was defined by an
arrival demand less than (greater than) 5 flights per 15-
minute interval.

• Noise abatement procedures: Noise abatement proce-
dures are used at most major airports to reduce the
impacts of noise on neighboring communities, especially
during early morning and nighttime periods. At SFO,
configurations that arrive and depart over the water are
preferred over configurations that arrive and depart over
the suburbs. At LGA, configurations with flight paths
over the city and away from suburban areas are preferred
during the nighttime hours. Variables were included in
both the SFO and LGA models to account for these
effects.

• Coordination with neighboring airports: In multi-
airport terminal-areas, flows into and out of the different
airports need to be coordinated. Therefore, in the LGA
model, variables were added to test whether runway
configuration decisions at LGA were affected by the
runway configurations at JFK, at any given time.

• Switch proximity: Despite the resistance to configuration
changes, changes in the attributes described above can
necessitate a configuration switch. Certain configuration
switches require more coordination relative to others.
For instance, the addition of an arrival runway may
be easier to implement than a change in the direction
of operations. To account for these effects, variables
were added that weight each utility function differently
depending on the runway configuration in the previous
time-step. These variables are fundamentally the same as
the inertia variable, but operate on the utility functions of
different alternatives instead of the utility function of the
same runway configuration.

C. Estimated discrete-choice models
1) SFO model: The training data set used to estimate the

parameters for the SFO model consisted of 24,820 decision
selection periods. Runway configurations that were utilized
more than 1

The estimated weighting parameters for the utility function
(β values from (3)) are reported in Table III. The table



Figure 10: SFO model specification.

includes the estimated weight of each attribute in the utility
function, the standard error of the estimate, and its t-statistic.
Parameters that did not have a statistically significant t-statistic
(absolute value less than 1.96) were removed from the model,
except in cases where removing these variables could bias the
predictions.

Table III: ESTIMATED UTILITY FUNCTION WEIGHTS FOR SFO.
Parameters Value Std. error t-statistic
Inertia parameters
28R,28L|1R,1L 4.48 0.139 31.87
19R,19L|10R,10L 3.20 0.376 8.64
28R,28L|28R,28L 4.35 0.209 20.82
28R/L|1R,1L 4.48 0.139 31.87
Wind parameters
Headwind on arrival Runway 0.0415 0.0131 3.2
Tailwind on arrival Runway -0.0415 0.0131 -3.2
Headwind on departure Runway 0.0608 0.0076 8.14
Tailwind on departure Runway -0.0608 0.0076 -8.14
Noise parameters
Depart Runway 28 during evening -0.356 0.176 -3.23
Arrive Runway 10 during evening -0.356 0.176 -3.23
Switch proximity parameters
28R,28L|1R,1L to 28R,28L|28R,28L -0.775 0.649 -1.22
28R/L|1R,1L to 28R,28L|28R,28L -0.775 0.649 -1.22
19R,19L|10R,10L to 28R,28L|1R,1L -0.775 0.649 -1.22
19R,19L|10R,10L to 28R/L|1R,1L -0.775 0.649 -1.22
19R,19L|10R,10L to 28R,28L|28R,28L -0.946 0.601 -1.57
28R,28L|28R,28L to 28R,28L|1R,1L 1.33 0.251 4.97
28R,28L|28R,28L to 28R/L|1R,1L 1.33 0.251 4.97
Demand/visibility parameters
VMC + high demand; 28R/L|1R,1L -1.66 0.39 -3.44
IMC + low demand; 28R/L|1R,1L 0.327 0.381 0.93

The estimated values of ~β shown in Table III indicate that
the inertia parameters are the most important factor in the
SFO runway configuration selection process. Wind also has
a heavy influence on the canidate utility functions, espscially
during unfavorable weather conditions. Low pressure systems
typically have high circulating winds that disrupt the typical
high wind from the San Bruno Gap (which corresponds
to headwinds on runway 28). When this occurs, air traffic
controllers are highly inclined to change the configuration
[24]. The noise parameter favors configurations in which
arrivals and departures fly over the Bay (instead of over the
suburbs) during the evening and morning hours. As expected,
the single arrival runway configuration, 28R/L|1R,1L, gets a
positive contribution to its utility function during periods of
low demand and IMC, and a negative contribution to its utility
function during periods of high demand and VMC.

2) LGA model: The training data set used to estimate the
parameters for the LGA model consisted of 26,203 decision
selection periods. Again, only runway configurations that were
utilized more than 1% during the year were considered, result-
ing in 7 different runway configuration alternatives. Shown in

Fig. 11, the chosen model had a nested logit structure with
a single nest containing all alternatives using runway 22 for
arrivals. The scale parameter for the nest was µARR22 = 1.1.
The estimated values of the of the weights on different
attributes (i.e., ~β ), their standard errors and t-statistics are
presented in Table IV.

Figure 11: LGA model specification.

Table IV: Estimated utility function weights for LGA.
Parameters Value Std. error t-statistic
Inertia parameters
Config. 22|13 4.58 0.187 24.5
Config. 22|31 7.41 0.36 20.57
Config. 22,31|31 7.41 0.36 20.57
Config. 31|31 4.91 0.401 12.24
Config. 31|4 3.16 0.25 12.6
Config. 4|13 3.99 0.196 20.34
Config. 4|4 5.44 0.416 13.1
Wind parameters
High headwind on arrival runway 0.0952 0.0161 5.89
Normal headwind on arrival runway 0.123 0.0197 6.26
Tailwind on arrival runway -0.0946 0.0199 -4.74
Tailwind on departure runway -0.211 0.0173 -12.2
Tailwind on extra arrival runway -0.348 0.07 -4.97
Demand parameters
Arrival demand; 31|31 -0.101 0.0312 -3.24
Arrival demand; 4|4 -0.0807 0.0327 -2.47
VMC/IMC parameters
VMC on 31|31 2.09 0.402 5.19
VMC on 31|4 1.36 0.231 5.9
Switch proximity parameters
31|4 to 31|31 -1.4 0.463 -3.03
4|13 to 31|31 -2.52 0.714 -3.53
4|4 to 31|31 -1.32 0.747 -1.77
22|13 to 31|31 -1.99 0.577 -3.45
4|13 to 31|4 -2.19 0.368 -5.94
4|4 to 31|4 -1.05 0.515 -2.04
22|13 to 31|4 -2.14 0.355 -6.04
4|13 to 4|4 -1.6 0.443 -3.61
22|13 to 4|4 -1.92 0.532 -3.6
31|31 to 22|13 -1.05 0.573 -1.84
Inter-airport coordination parameters
JFK arr. on 13; LGA arr. on 22/ dep. on 4 0.85 0.308 2.76
JFK arr. on 13; LGA arr. on 31/ dep. on 13 1.27 0.464 2.75
JFK dep. on 13; LGA dep. on 31 -1.99 0.224 -8.88
JFK arr. on 13; LGA arr. on 4 -0.448 0.172 -2.6
JFK arr. on 13; LGA dep. on 31 -1.61 0.222 -7.26
JFK arr. on 13; LGA arr. on 31/dep. on 13 0.796 0.25 3.19
JFK dep. on 4; LGA dep. on 31 -2.5 0.341 -7.34
JFK arr. on 4; LGA arr. on 22/ dep. on 4 -0.737 0.293 -2.51
JFK dep. on 13; LGA arr. on 4 -1.15 0.312 -3.68

The estimated values of the weighting parameters once
again indicate the importance of the inertia variables in the
runway configuration selection process at LGA. The results
show that the headwind parameters are statistically signifi-
cant for the primary arrival runway, but not for the primary
departure runway or the extra arrival runway. This finding
suggests that the alignment of the primary arrival runway is
more important than the departure or extra arrival runways.
Furthermore, the influence of tailwinds was found to be statis-



tically significant for all runway configurations. Compression
is found to have a small, but statistically significant effect
on the runway configuration choice. The weighting parameter
corresponding to high headwinds (in the top quartile) is found
to be smaller than the one for normal headwinds, indicating
that high headwinds (that can cause compression) are less
preferable.

IV. PREDICTION OF RUNWAY CONFIGURATION

A. 3-hour forecast, assuming actual weather and demand

The estimated utility functions and the discrete-choice
model can be used in (6)-(9) to determine the probability
of choosing a runway configuration alternative during each
15-minute selection period, given the values of the attributes
for that time-period. The attributes considered include the
runway configuration in the previous time-period, the wind and
weather conditions in the time-period being considered, as well
as the demand in that time-period. In order to predict a runway
configuration 3-hours in the future, one needs to determine the
probability of choosing a particular configuration, considering
not just the demand and weather in that time-period, but also
all possible evolutions of the runway configuration in the
next three hours. The runway configuration alternative with
the maximum probability of being chosen is selected as the
predicted runway configuration.

Bayes’ rule can be recursively applied for each 15-minute
interval to determine the probabilities of selecting a runway
configuration at a 3-hour time horizon. For example, consid-
ering the attributes of the current time at SFO, the runway
configuration alternatives 28R,28L|1R,1L, 19R,19L|10R,10L,
28R,28L|28R,28L, and 28R/L|1R,1L may have selection prob-
abilities of 5%, 75%, 5%, and 15% respectively, for the
next 15-minute interval. The probabilities of being in each
configuration 30-min (i.e., 2 time-periods) from now will have
to be conditioned on the runway configuration in the next
time-period, and so on. In this manner, the probabilities of be-
ing in 28R,28L|1R,1L, 19R,19L|10R,10L, 28R,28L|28R,28L,
or 28R/L|1R,1L 3-hours from now may have changed to
7%, 50%, 3%, and 40% respectively. Runway configuration
19R,19L|10R,10L is then taken as the 3-hour prediction be-
cause it has the highest probability.

The accuracy of the predictions are first evaluated assuming
a perfect knowledge of the wind, visibility, and demand
variables for the subsequent 3-hours. Accuracy is defined as
the percentage of correct predictions for that configuration. In
other words, if a runway configuration is predicted correctly
for every 15-minute interval in which it is observed, the
accuracy for that configuration would be 100%. In the previous
example, if the actual configuration used 3-hours from now
were 19R,19L|10R,10L, it would correspond to a correct
prediction. The accuracy for configuration 19R,19L|10R,10L
is given by the number of times it was correctly predicted,
divided by the number of times that the configuration was
observed in the year.

The test data for this validation exercise was the ASPM
database for the year 2012. We note that the test set from

year 2012 is an independent dataset from the training set
from year 2011. The inputs included the actual arrival and
departure demand, ceiling and visibility conditions, and wind
speed and direction, for each 15-minute interval. The output
was a prediction of the runway configuration 3-hours in the
future. The results of the predictions, both for the next 15
minutes and 3 hours in the future, are shown in Table V
for SFO and in Table VI for LGA. The tables show that the
prediction accuracy at the 15-minute horizon is nearly 98% at
both airports, given the actual weather and demand conditions.

Table V: PREDICTION ACCURACY (USING ACTUAL WEATHER AND DEMAND) FOR SFO
IN 2012, FOR 15-MINUTE AND 3-HOUR PREDICTION HORIZONS.

Configuration Frequency Prediction accuracy
15 min 3 hr

28R,28L|1R,1L 21,582 99.1% 93.6%
28R/L|1R,1L 5,060 93.4% 63.7%

28R,28L|28R,28L 2,450 95.9% 58.0%
19R,19L|10R,10L 1,133 99.4% 76.3%

Total 25,175 97.9% 85.1%

A major challenge at SFO is accurately predicting between
the configuration 28R,28L|1R,1L with arrivals on the closely-
spaced parallel runways, and the single arrival runway con-
figuration, 28R/L|1R,1L. As mentioned before, simultaneous
(side-by) landings are not possible under IMC, and the airport
operates almost as it would in a single arrival runway configu-
ration, even in 28R,28L|1R,1L. The reported configurations in
the ASPM data set do not differentiate between simultaneous
and staggered parallel approaches, even though the latter has a
capacity that would be close to 28R/L|1R,1L. This fact, along
with the other similarities between these two runway configu-
ration alternatives, makes it difficult to predict either of these
alternatives accurately without introducing a selection bias.
Accurately predicting 28R,28L|28R,28L is also challenging
due to the limitations from the ASPM dataset. This runway
configuration is typically only used for long-haul departures
over the Pacific Ocean and to Hawaii, and the aggregate flight
counts in ASPM are not sufficient to account for this factor.
Despite these challenges, the overall accuracy for the 3-hour
prediction of runway configuration at SFO is 80%, assuming
perfect knowledge of future wind and weather conditions, and
traffic demand.
Table VI: PREDICTION ACCURACY (USING ACTUAL WEATHER AND DEMAND) FOR
LGA IN 2012, FOR 15-MINUTE AND 3-HOUR PREDICTION HORIZONS.

Configuration Frequency Prediction accuracy
15 min 3 hr

22|13 8,220 98.3% 89.0%
31|4 6,454 98.0% 84.8%
4|13 4,851 98.0% 83.0%
22|31 2,938 97.3% 71.6%
31|31 2,136 96.5% 67.0%

22,31|31 1,838 96.8% 67.2%
4|4 795 96.5% 68.2%

Total 27,232 97.8% 82.2%

Even with these challenges, the accuracy of the predictive
model for SFO is promising. The overall accuracy for pre-
dicting the active runway configuration on a three hour time
horizon reached upwards of 80% assuming perfect knowl-
edge of the future weather and demand. The overall 3-hour



prediction accuracy for LGA in 2012 was 82%, given the
future wind, weather, and airport demand values. As with SFO,
configurations that were seen more often than others exhibited
a higher relative prediction accuracy. For comparison, prior
research (with no look-ahead, and using logistic regression
models) achieved a prediction accuracy of 75% at LGA and
63% at JFK, respectively [16].

B. 3-hour forecast using weather forecasts and scheduled
demand

The discrete-choice models developed in this paper were
combined with Terminal Aerodrome Forecast (TAF) data, in
order to predict future runway configurations. This would
correspond to a practical implementation, where the actual
values of the attributes are not available, and instead weather
forecasts and schedules have to be used. Table VII shows the
3-hour prediction performance for SFO in 2012 using TAF
data (and scheduled demand), while Table VIII shows same
results for LGA in 2012.

Table VII: PREDICTION ACCURACY AT THE 3 HR AND 6 HR FORECAST HORIZONS
(USING TAF AND SCHEDULED DEMAND), FOR SFO IN 2012.

Configuration Frequency Prediction accuracy
3 hr 6 hr

28R,28L|1R,1L 22,173 94.3% 95.9%
28R/L|1R,1L 4,700 57.1% 39.5%

28R,28L|28R,28L 2,875 44.0% 8.5%
19R,19L|10R,10L 1120 30.3% 88.6%

Total 30,868 81.8% 76.5%

Table VIII: PREDICTION ACCURACY AT THE 3 HR AND 6 HR FORECAST HORIZONS
(USING TAF AND SCHEDULED DEMAND), FOR LGA IN 2012.

Configuration Frequency Prediction accuracy
3 hr 6 hr

22|13 7,677 85.1% 78.1%
31|4 6,541 84.8% 81.2%
4|13 4,665 75.8% 58.6%

22|31 2,678 74.8% 57.6%
31|31 2,451 70.0% 39.2%

22,31|31 1,707 72.2% 52.2%
4|4 885 65.3% 38.9%

Total 26,604 79.5% 66.8%

The overall accuracy using TAF forecast data from 2012
was 80.4% for SFO, and 79% for LGA. It is promising that
the accuracy of the model is not substantially degraded by
using forecast data, which is inherently prone to error. As
before, the accuracy of specific configurations increased as the
frequency of their occurrence increased. These results are very
promising, considering that logistic regression based models
with no lookahead have been found to achieve a prediction
accuracy of 75% at LGA [16].

C. Comparison with baseline heuristic

Since runway configuration changes only occur a handful
of times in a day, a baseline heuristic would be to assume that
the airport remains in the current configuration. A comparison
of the discrete-choice model and such a constant baseline is
shown in Figure 12, for increasing forecast horizons. We see
that at short horizons, when the airport generally stays in
the same configuration, the accuracy of the two models are
comparative. However, as the forecast horizon increases, the

difference in the two models increases: At a 3-hour forecast
horizon, there is a 5 percentage point improvement in the
performance of the discrete-choice model, and at a 6-hour
forecast horizon, the discrete-choice model outperforms the
baseline by more than 10 percentage points.

Figure 12: Prediction accuracy of discrete-choice model and a constant baseline model
as functions of the forecast horizon, for LGA airport in 2012.

D. Limitations of approach and potential extensions

Discrete-choice models are inherently data-driven, and
therefore only predict configurations that have been observed
before. The models need to be re-estimated when there are
major changes in the decision process, such as capacity en-
hancements or new procedures [25]. Similarly, configurations
that are infrequently used are difficult to predict.

Also, discrete-choice models do not account for the vari-
ability among decision-makers, who may have varying levels
of experience, diverse concerns, and different rationales for
selecting a runway configuration. Only “nominal” behavior is
captured by these models. The model assumes the presence
of rational decision-makers who share a utility function that
reflects nominal system behavior.

Bias can be another limitation when modeling the runway
configuration selection process with a discrete choice model.
Any errors or biases produced in the 15-minute selection
probabilities are magnified when forecasting on a 3-hour time
horizon. As a result, the inertia parameter frequently causes the
utility function of the incumbent configuration to overpower
the utility functions of the other alternatives. When the weather
conditions do not heavily favor a configuration switch, these
models will tend to predict that the configuration will remain
the same. As a result, the prediction accuracy is reduced in
time-periods close to a configuration switch.

Despite these limitations, the prediction performance of
the proposed discrete-choice models suggests that they are
a promising approach to predict runway configuration a few
hours ahead of time. The inertia term could be further im-
proved by limiting its effect as time progresses within a 3-
hour prediction period. Biases within the estimated parameters
could be reduced by estimating the utility parameters using a
balanced data set. The effect of wind gusts, which are currently
ignored, can also be easily included in the utility models.

V. CONCLUSIONS

This paper presented a framework to build a discrete-choice
model of the configuration selection process using empirical



observations. The proposed model included a utility function
that reflected the importance of various factors, including
weather, wind speed and direction, arrival and departure
demand, noise mitigation procedures, and coordination with
neighboring airports. The resulting model considers the cur-
rent runway configuration, weather and traffic demand, and
provides a probabilistic forecast of the runway configuration
at the next 15-minute interval. The predictive model was
then extended to obtain the 3-hour probabilistic forecast of
configuration.

Case studies based on data from LaGuardia (LGA) and San
Francisco (SFO) airports were used to evaluate the model.
Given a perfect knowledge of weather and demand 3-hours in
advance, the model was shown to predict the correct runway
configuration at SFO with 81% accuracy, and LGA with 82%
accuracy. For a practical implementation, weather forecasts in
the form of TAF were used to predict the weather conditions 3-
hours in advance. The results showed that even using weather
forecasts and scheduled demand, the model can predict the
correct runway configuration 3 hours in advance with an
accuracy of 79% for LGA and 80% for SFO.
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