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ABSTRACT: A linear stability analysis of the boundary laygrer an axisymmetric body shows that
transverse curvature has a significant effect ersthbility. Depending on the curvature axisymrmetrinon-
axisymmetric modes may be dominant. Detailed coatfuis of energy balance are also done. The
disturbance kinetic energy production indicates sieweral modes can co-exist giving rise to poks#s for
different routes to transition.

Introduction

The destabilization of the laminar boundary layethie first step in the process of transition
to turbulence. A range of analytical and experirakmtork has been done to understand the
stability of 2D-laminar boundary layer, but we @mé&erested here in the boundary layer over an
axisymmetric body. In the case of 2D mean flow aiseally resorts to the Squire’s theorem,
which states that for every 3D disturbance, thedste corresponding 2D disturbance which is
destabilised at a lower Reynolds number. This #monowever not apply to axisymmetric flows
and here an assortment of 3D modes may go unstabte Although the behavior of non-
axisymmetric modes in pipe flows has been studieth bheoretically (Lessen, Sadler & Liu,
1968) and experimentally (Leite, 1959 and Fox, eas& Bhat, 1968), investigations on external
boundary layers on axisymmetric bodies are sparsbe literature. An exception is the work by
Rao (1967) about the effect of transverse curvatmethe transition in the flow around an
axisymmetric body. He found that transverse conmawvature has a destabilising effect on the
laminar flow boundary layer subjected to small wlisances. This equations and analysis had
many limitations due to the absence of computirgifies at that time.

It is therefore our aim here to study the stabitifyjpoundary layers on axisymmetric bodies
(such as underwater bodies), moving parallel to thés. Our analysis is limited in this abstrawt t
thick cylinders, i.e., those whose radius is muhér than the thickness of the boundary layer;
results on general bodies will be presented atdbeference. We also neglect the spatial
development of the boundary layer. We find that esog=0,1 or 2 may dominate depending on
the body radius and the Reynolds number, wineiethe number of waves encircling the body.
From computations of energy balance of the distwrbinetic energy we find that these modes
can co-exist simultaneously, i.e. their productayers coincide which would promote non-linear
interactions at an early stage and lead to a éifitekind of transition.

Formulation of the stability equations

Equations of the linear stability of this flow avbtained by the standard procedure. We
begin with the Navier-Stokes and continuity equatiin polar cylindrical coordinates. They are
non-dimensionalised using the free-stream velodityand the momentum thickne$sas the
velocity and length scales respectively. The Nagiekes equations are written as,
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where Ris the Reynolds number,
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v is the kinematic viscosity. The basic flow is asednto be parallel and the components of the
mean flow velocity in the radial and azimuthal direns are zero. Here the U is the local stream
velocity which is defined as,
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All flow quantities are split into their respectimeean and a fluctuating part, where the suffixes, z
r and @ denote the streamwise, radial and azimuthal coewsnrespectively. The equations are
linearised by neglecting the higher order termhédisturbance. The disturbance is taken to be in
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normal mode form:
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Q= %(q)(r).exp[i{a(x - ct) +né}. exp(wt) +c.c), (5.b)
such that,
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Here we have made use of the equation of contirtaiyefiney and@, reducing the number of
equations from 4 to 3z is the streamwise wave number, c is the phaselspee oy is the growth
rate of the disturbance.is an integer which is the number of waves enaigcthe body. When=0
the disturbance is axisymmetric, non-zero valugsesgent non-axisymmetric disturbances. Making
use of equations 4 and 5 and eliminating the pressum, we arrive at two equations df drder,
which are,
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The boundary conditions are,
Y, o', ¢g=0 at r=r, }
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Since the analysis here is carried out for a thiokly, where Mangler’s transformation (White,
1991) is valid and therefore a Blasius mean prafiley be used. This constitutes an eigen value
problem: a non-trivial solution is obtained for &vem a and Re at particular values of phase
speed(c) and growth ratg. The least stable mode is one with the largestdroate.

As described in (Govindarajan et. al. 2001) endr@gance equation is obtained by taking
the dot product of the linearised vector stabiiguations with the disturbance velocity vector and

summing and averaging over one cycle in z. Theamest disturbance kinetic energy may be
written as,
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The final energy equation is in the form,
2a,&(r)=0.3(N+ W, (r)-W._(r), (11)
where energy flux J(r) , energy production rate (yand the dissipation W- (r)are given by,
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where the superscript * denotes the complex comgugéhe total production and dissipation across
the boundary layer are given by,

For an unstable perturbatidbn would exceed -.
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M ethod of solution
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Equations (6 and 7) with boundary conditions giuen (8 ) are discretised using
Chebychev polynomials and written in matrix formhexrew are the eigenvalues. The following
grid stretching is used to allow greater clustefigrid for smallery near the wall. Here, gire the
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Chebychev collocation points arids the edge of the computational domain, whictpiscéfied to
be about 5 times the boundary layer thickness. ug& 81 collocation points, which gave an
accuracy of 5 decimal places.

Results and discussions

Figure 1 shows neutral stability boundaries fofeddnt curvatures for an axisymmetric
disturbance.e. n=0. The critical Reynolds number increases with thagverse convex curvature.
The minimum surface curvature use®js0.001, Here S is defined as the inverse of the radial co
ordinate and the subscript o refers to the valubebody surface. The critical Reynolds number
for this curvature is 200, which is close to the-Sommerfeld solution for 2D boundary layers.
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Fig.1 Neutral stability curves for different curvatures (n =0) Fig 2. Neutral stability curves for diffeent curvatures (n=1)

In the case of mode n=1 (fig.2) , where a singlevevancircles the body, the critical
Reynolds number increases with curvatures at stoallatures. After reaching a maximum value
at some curvature it starts decreasing. This meatsthere is a critical curvature for which the
first (n=1) non-axisymmetric mode is most stable.

For all higher modes (n=2,3...) the critical Reynotdsnber increases with curvature.
(Fig .3). The range of unstable frequency also besonarrower as the curvature increases. Modes



3 and above never become dominant for the cunatoresidered. So it is sufficient to study only
the first three modes.
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Fig. 3 Neutral stahility curves for different curvamures ( n=2)

The critical Reynolds number is plotted againstex@ curvature is plotted for different
modes in fig 4. It is clear that the axisymmetrioda is dominant for surface curvatures less than
0.04 and the second mode (n=2) is least stable whesature is between 0.04 and 0.125. For any
higher curvatures the first mode is the most unstabe. For higher modes (n=3,4,..) the critical
Reynolds number increases with curvature.

Figures 5,6 and 7 show the distribution acrossbitnendary layer of the production and
dissipation of disturbance kinetic energy for thekfferent modes. The curvature chosen is
S,=0.025 and Reynolds number is 260. As expectegrbeuctions peak in the respective critical
layers of the modes, while the dissipation is maximat the wall. In this case mode 0 is unstable,
while n=1 and n=2 are stable. It is noteworthy, beer that there is a significant overlap of the
production zones of these. This indicates a pdagilf early non-linear interaction between the
modes. Mode 2 shows a second dissipation peak tdhe maximum in production. These issues
along with the quantitative of local disturbancasdtic energy for a range of curvatures will be
presented at the conference.
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Conclusions

It is demonstrated that the transverse curvatase & direct effect on the stability of an
axisymmetric boundary layer. In these flows the -agisymmetric modes(n=1 and 2) play a
dominant role at higher curvatures.
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