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ABSTRACT: A linear stability analysis of the boundary layer over an axisymmetric body shows that 
transverse curvature has a significant effect on the stability. Depending on the curvature axisymmetric or non-
axisymmetric modes may be dominant. Detailed computations of energy balance are also done. The 
disturbance kinetic energy production indicates that several modes can co-exist giving rise to possibilities for 
different routes to transition. 
 
Introduction 
 

The destabilization of the laminar boundary layer is the first step in the process of transition 
to turbulence. A range of analytical and experimental work has been done to understand the 
stability of 2D-laminar boundary layer, but we are interested here in the boundary layer over an 
axisymmetric body. In the case of 2D mean flow one usually resorts to the Squire’s theorem, 
which states that for every 3D disturbance, there exist a corresponding 2D disturbance which is 
destabilised at a lower Reynolds number. This theorem however not apply to axisymmetric flows 
and here an assortment of 3D modes may go unstable first. Although the behavior of non-
axisymmetric modes in pipe flows has been studied both theoretically (Lessen, Sadler & Liu, 
1968) and experimentally (Leite, 1959 and Fox, Lessen & Bhat, 1968), investigations on external 
boundary layers on axisymmetric bodies are sparse in the literature. An exception is the work by 
Rao (1967) about the effect of transverse curvature on the transition in the flow around an 
axisymmetric body. He found that transverse convex curvature has a destabilising effect on the 
laminar flow boundary layer subjected to small disturbances. This equations and analysis had 
many limitations due to the absence of computing facilities at that time. 

 
It is therefore our aim here to study the stability of boundary layers on axisymmetric bodies 

(such as underwater bodies), moving parallel to their axis. Our analysis is limited in this abstract to 
thick cylinders, i.e., those whose radius is much higher than the thickness of the boundary layer; 
results on general bodies will be presented at the conference. We also neglect the spatial 
development of the boundary layer. We find that modes n=0,1 or 2 may dominate depending on 
the body radius and the Reynolds number, where n is the number of waves encircling the body. 
From computations of energy balance of the disturbance kinetic energy we find that these modes 
can co-exist simultaneously, i.e. their production layers coincide which would promote non-linear 
interactions at an early stage and lead to a different kind of transition. 
 
Formulation of the stability equations 
 
 Equations of the linear stability of this flow are obtained by the standard procedure. We 
begin with the Navier-Stokes and continuity equations in polar cylindrical coordinates. They are 
non-dimensionalised using the free-stream velocity, V and the momentum thickness θ, as the 
velocity and length scales respectively. The Navier-Sokes equations are written as, 
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where Re is the Reynolds number, 

ν is the kinematic viscosity. The basic flow is assumed to be parallel and the components of the 
mean flow velocity in the radial and azimuthal directions are zero. Here the U is the local stream 
velocity which is defined as, 
 

 
All flow quantities are split into their respective mean and a fluctuating part, where the suffixes, z, 
r and θ denote the streamwise, radial and azimuthal components respectively. The equations are 
linearised by neglecting the higher order terms in the disturbance. The disturbance is taken to be in 

normal mode form: 

   
such that, 

Here we have made use of the equation of continuity to define ψ and φ, reducing the number of 
equations from 4 to 3. α is the streamwise wave number, c is the phase speed and  ωi is the growth 
rate of the disturbance. n is an integer which is the number of waves encircling the body. When n=0 
the disturbance is axisymmetric, non-zero values represent non-axisymmetric disturbances. Making 
use of equations 4 and 5 and eliminating the pressure term, we arrive at two equations of 4th order, 
which are, 
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The boundary conditions are, 

 
Since the analysis here is carried out for a thick body, where Mangler’s transformation (White, 
1991) is valid and therefore a Blasius mean profile may be used. This constitutes an eigen value 
problem: a non-trivial solution is obtained for a given α and Re at particular values of phase 
speed(c) and growth rate ωi. The least stable mode is one with the largest growth rate. 
 
 As described in (Govindarajan et. al. 2001) energy balance equation is obtained by taking 
the dot product of the linearised vector stability equations with the disturbance velocity vector and 
summing and averaging over one cycle in z. The averaged disturbance kinetic energy may be 
written as, 
 

 
 
The final energy equation is in the form, 

 
where energy flux J(r) , energy production rate W+ (r)and the dissipation W- (r)are given by, 

 
where the superscript * denotes the complex conjugate. The total production and dissipation across 
the boundary layer are given by,  

 
For an unstable perturbation Γ+ would exceed Γ−. 
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Method of solution 
 
 

 
Equations (6 and 7) with boundary conditions given by (8 ) are discretised using 

Chebychev polynomials and written in matrix form, where ω are the eigenvalues. The following 
grid stretching is used to allow greater clustering of grid for smaller γ near the wall. Here yi are the 

Chebychev collocation points and l is the edge of the computational domain, which is specified to 
be about 5 times the boundary layer thickness.  We use 81 collocation points, which gave an 
accuracy of 5 decimal places.  
 
Results and discussions 

 
Figure 1 shows neutral stability boundaries for different curvatures for an axisymmetric 

disturbance i.e. n=0. The critical Reynolds number increases with the transverse convex curvature. 
The minimum surface curvature used is So=0.001, Here S is defined as the inverse of the radial co-
ordinate and the subscript o refers to the value at the body surface. The critical Reynolds number 
for this curvature is 200, which is close to the Orr-Sommerfeld solution for 2D boundary layers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the case of mode n=1 (fig.2) , where a single wave encircles the body, the critical 

Reynolds number increases with curvatures at small curvatures. After reaching a maximum value 
at some curvature it starts decreasing. This means that there is a critical curvature for which the 
first (n=1) non-axisymmetric mode is most stable. 

 
For all higher modes (n=2,3…) the critical Reynolds number increases with curvature. 

(Fig .3). The range of unstable frequency also becomes narrower as the curvature increases. Modes 
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3 and above never become dominant for the curvatures considered. So it is sufficient to study only 
the first three modes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The critical Reynolds number is plotted against surface curvature is plotted for different 

modes in fig 4. It is clear that the axisymmetric mode is dominant for surface curvatures less than 
0.04 and the second mode (n=2) is least stable when curvature is between 0.04 and 0.125. For any 
higher curvatures the first mode is the most unstable one. For higher modes (n=3,4,..) the critical 
Reynolds number increases with curvature. 

 
 
Figures 5,6 and 7 show the distribution across the boundary layer of the production and 

dissipation of disturbance kinetic energy for these different modes. The curvature chosen is 
So=0.025 and Reynolds number is 260. As expected the productions peak in the respective critical 
layers of the modes, while the dissipation is maximum at the wall. In this case mode 0 is unstable, 
while n=1 and n=2 are stable. It is noteworthy, however that there is a significant overlap of the 
production zones of these. This indicates a possibility of early non-linear interaction between the 
modes. Mode 2 shows a second dissipation peak close to the maximum in production. These issues 
along with the quantitative of local disturbance kinetic energy for a range of curvatures will be 
presented at the conference. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusions 
 
 It is demonstrated that the transverse curvature has a direct effect on the stability of an 
axisymmetric boundary layer. In these flows the non-axisymmetric modes(n=1 and 2) play a 
dominant role at higher curvatures.  
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