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Abstract— An algorithm for generating schedules of airport
runway operations that are robust to perturbations caused by
system uncertainty is presented. The algorithm computes a
tradeoff curve between runway throughput and the probability
that random deviations of aircraft from the schedule violate
system constraints and require intervention from air traffic
controllers. The algorithm accommodates various operational
constraints imposed by the terminal-area system such as
minimum separation requirements between successive aircraft,
earliest and latest times for each aircraft, precedence constraints
among aircraft and the limited flexibility in deviating from the
First-Come-First-Served (FCFS) order afforded to air traffic
controllers (a concept known as Constrained Position Shifting).
When the maximum allowable number of position shifts from
the FCFS order is bounded by a constant, the complexity of the
algorithm is O(n(L/ǫ)3), where n is the number of aircraft, L
is largest difference between the latest and earliest arrival time
over all aircraft, and ǫ is the desired output accuracy.

I. I NTRODUCTION

The safe and efficient planning of airport operations are an
important part of the responsibility borne by the Air Traffic
Control (ATC) system. As aircraft arrive at the boundaries of
the Air Route Traffic Control Centers (ARTCCs or Centers),
air traffic controllers have a short period of time (about 45
minutes) to determine the landing times and positions of
aircraft in the landing sequence, and to also issue the appro-
priate control actions necessary to obtain the sequence [1,2].
Similar challenges are also faced by controllers who are
responsible for scheduling departure runways at airports.

Controllers also have to contend with various forms of
uncertainty in the system caused by weather effects such as
winds, the limitations imposed by the precision of onboard
equipment, as well as the uncertainty in pushback times and
taxi times for departing aircraft. The presence of uncertainty
in the system motivates the development of robust schedules
for runway operations. The notion of robustness is one
that can be defined in several ways. In the context of
aircraft arrival and departure sequences, the uncertaintyin
the system could result in the aircraft violating important
safety constraints, thereby necessitating re-sequencingon
the part of the air traffic controllers. For this reason, we
consider a runway sequence robust if there is a sufficiently
high probability that an air traffic controller does not have
to intervene once the schedule has been determined.

Runway schedules must satisfy the operational constraints
that are imposed by the system. In this paper, we present a
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technique to determine robust arrival and departure schedules
that can potentially improve runway productivity, while still
satisfying the various constraints required of any practical
solution. We show that the proposed method is computation-
ally efficient, with complexity that scales linearly with the
number of aircraft, and as the cube of the largest difference
between the latest and earliest arrival time over all aircraft.

The algorithm proposed in this paper is based on dy-
namic programming, using concepts from the algorithm for
scheduling arrival flows that was proposed in our earlier
work [3] for deterministic environments. However, the output
of the algorithm is not a single schedule, but a tradeoff
between the likelihood of controller intervention (robustness)
and the time to complete runway operations for the given
set of aircraft (makespan of the sequence). The technique
gives system designers the ability to set the appropriate
threshold that determines the tradeoff between robustness
and efficiency. The proposed algorithm can also be used to
assess broader policy measures such as the benefit (in terms
of throughput and safety) of introducing onboard or ground-
based systems to decrease the uncertainty in the system.

II. PROBLEM DESCRIPTION

The goal of algorithms for scheduling runway operations
is to increase the throughput of the runway system while
still satisfying the various safety and operational constraints
of the system. In this paper, we primarily use the example of
scheduling arrivals at a runway, but the techniques described
can also be utilized for departure runway scheduling.

A. Constraints

1) Minimum separation requirements:The primary con-
straint that air traffic controllers need to ensure in an arrival
sequence is that the inter-arrival spacings equal or exceed
the minimum requirements specified by the Federal Aviation
Administration (FAA). For reasons of safety, it is necessary
that an arriving aircraft does not face interference from the
wake-vortex of the aircraft landing in front of it. The risk
posed by the wake vortex depends on the sizes of both
the leading and trailing aircraft; therefore, the requiredtime
interval between two landings depends on the sizes of the two
aircraft. Similarly, separation is required between departures,
and between arrival and departure operations [4].

The most common approach to sequencing aircraft has
been to maintain the First-Come-First-Served (FCFS) or-
der [4], under which aircraft utilize the runway in order of
their estimated arrival times at the runway, and air traffic con-
trollers only enforce the minimum separation requirements.
The FCFS schedule is easy to implement, reduces controller



workload, and maintains a sense of fairness but may lead
to reduced runway throughput due to large spacing require-
ments. This motivates deviating from the FCFS sequence to
achieve schedules that increase runway throughput.

2) Limited flexibility: The terminal area is an extremely
dynamic environment, and re-sequencing aircraft increases
the workload of controllers. Due to limited flexibility, it
might not be possible for air traffic controllers to implement
an efficient sequence that deviates significantly from the
FCFS order. This is the basic motivation for Constrained
Position Shifting (CPS) methods. CPS, first proposed by
Dear [5], stipulates that an aircraft may be moved up to a
specified maximum number of positions from its FCFS order.
We denote the maximum number of position shifts allowed
as k (k ≤ 3 for most runway systems), and the resulting
environment as ak-CPS scenario. For example, in 2-CPS,
an aircraft that is in the8th position in the FCFS order can be
placed at the6th, 7th, 8th, 9th, or 10th position in the new
order. The restricted deviation from the FCFS order helps
maintain equity among aircraft operators, and also increases
the predictability of landing times. A detailed description of
CPS can be found in our prior work [3].

3) Time-windows:While determining a schedule for the
runway, controllers need to account for the possible times
that an aircraft can utilize the runway. In the case of
the scheduling of aircraft landings, these times will be
the possible arrival times at the runway, corresponding to
different controller requests to the aircraft. There is typically
an earliest time at which the aircraft can reach the runway,
as well as a latest time [1]. In the case of departure
runway scheduling, these could be the result of traffic flow
management strategies, such as Ground Delay Programs at
destination airports, during which aircraft at origin airports
are assigned departure time windows [6]. In general, an
aircraft’s runway time of arrival could lie in any one of a
number of disjoint time-intervals [3].

4) Precedence relations:It is also necessary to consider
precedence constraints, which are those of the form “Aircraft
i must land before aircraftj”. Such constraints are important
because in current ATC automation systems overtaking is
limited [1]; in addition, airlines themselves may have prece-
dence preferences, arising from their banking strategies [7].

B. Uncertainty

In prior work [3], we presented an algorithm to compute
the optimal sequence of runway operations, subject to the
constraints outlined above, in a deterministic environment.
However, the presence of uncertainty results in perturbed
schedules, with the aircraft no longer landing at the intended
landing times. This lack of precision can lead to the violation
of the minimum separation requirements between aircraft,
and require intervention by air traffic controllers to enforce
the safety minimums. The degree to which an aircraft is
likely to be perturbed from its scheduled arrival time at the
runway depends on the equipage of the aircraft. For example,
aircraft with precise Flight Management Systems (FMS) are
likely to be more accurate in meeting their scheduled times

than aircraft which are less equipped [8,9,10]. Estimates of
runway arrival time accuracy when predicted at the metering
fix have also been measured for different aircraft types and
levels of equipage [9,11].

The benefits of improved accuracy of arrivals were studied
by Meyn and Erzberger [9], who used stochastic simulations
for FCFS sequencing with parallel runway reassignments.
The likelihood of spacings being violated due to uncertainty
was reduced by adding a buffer to the minimum inter-arrival
separation requirements, and then solving the deterministic
problem. This form of buffering is useful if all aircraft
separations were buffered by some fixed fraction. However,
we would like to solve the more difficult case in which all
aircraft are not equally equipped (mixed equipage), and the
uncertainty associated with meeting the scheduled times of
arrival is not the same for all of them. In such situations,
buffering all aircraft could lead to sub-optimal solutions.

Most prior research on the accuracy of aircraft arrivals
make the simplifying assumption that the inter-arrival spac-
ings in a sequence of aircraft landings are independent of
each other [9,12]. However, this assumption does not hold
true in practice, and the exact distribution of the inter-arrival
spacing between two aircraft is dependent on the inter-arrival
spacing between all pairs of aircraft that preceded them.
However, it can be shown that when there is a substantial
difference in the accuracy of equipped and non-equipped
aircraft, it is sufficient to consider all preceding spacings
until the closest equipped aircraft in the sequence. In this
paper, we assume that the inter-arrival spacing depends only
on the immediately preceding inter-arrival time. We believe
that this will be a reasonable approximation in the future
system, where incentives to equip will result in at least 50%
of aircraft being equipped, especially in congested areas.

There is also uncertainty associated with the aircraft being
able to be present at the runway at a particular time. This
implies that instead of time-windows representing the times
when an aircraft can utilize the runway, there is a distribution
representing the probability that an aircraft can use the
runway at a particular time (for example, the probability
that an aircraft can land at a particular time, in the case of
arrival flows into an airport). This would reflect the impact
of weather on traffic and pilot behavior [13].

C. Robustness and reliability

There are several possible definitions of the robustness or
reliability of a schedule for runway operations. For example,
airlines schedule their flights in major hubs such that passen-
gers from a bank of arriving flights connect to (one or more)
departing flights. In such situations, airlines prioritizetheir
flights, and reliability is measured by the degree to which
aircraft maintain their order with respect to other aircraft in
the same bank, and not on the landing times [7]. Precedence
relations can account for this form of airline prioritization.
The more adverse effect of uncertainty from an air traffic
control perspective is the violation of minimum separation
requirements [9]. The violation of these spacing constraints
means that an air traffic controller has to intervene to enforce



spacing between the two aircraft involved. This in turn may
affect the schedule of all the aircraft that follow, requiring
interventions to readjust the scheduled landing times of
subsequent aircraft in the sequence. Given a sequence of
aircraft, the reliability of a schedule can be measured in
terms of the probability that none of the inter-aircraft spacing
constraints will be violated.

Let “ti↔ tj” represent the event that the minimum spacing
between two aircrafti andj (denotedδij) will notbe violated
given thati is scheduled to land atti andj is scheduled to
land attj . If the scheduled arrival times are denoteds(·) and
the actual landing times are denoteda(·), then
ti↔ tj ⇒ {a(j) ≥ a(i) + δij| s(i) = ti ∧ s(j) = tj}.

Given a sequence of aircraft{i1, . . . , in} with correspond-
ing scheduled arrival times{ti1 , . . . , tin

}, we define the
reliability of the schedule, denoted byR(ti1 , . . . , tin

), as the
probability that none of the spacing requirements is violated.
R(ti1 , · · · , tin) = Pr{ti1 ↔ ti2 ∧ ti2 ↔ ti3 ∧ · · · ∧ tin−1 ∧ tin}

= Pr{tin−1↔ tin| ti1↔ ti2∧· · ·∧ tin−2↔ tin−1}
×Pr{ti1 ↔ ti2 ∧ · · · ∧ tin−2 ↔ tin−1}.

As explained in Section II-B, we assume that the inter-
arrival spacing between any pair of aircraft is conditionally
independent of the past history of arrivals, given the inter-
arrival spacing of the immediately preceding pair. In other
words,Pr{tin−1↔ tin|ti1↔ ti2∧· · ·∧tin−2↔ tin−1} = Pr{tin−1↔

tin|tin−2↔ tin−1}. This can be used to show that the reliability
of a sequence can be expressed as follows.
R(ti1 , · · · , tin) = Pr{t1↔ t2} × Pr{t2↔ t3 | t1↔ t2} × · · ·

· · · × Pr{tin−1↔ tin | tin−2↔ tin−1} (1)

The two objectives of increasing throughput (or minimiz-
ing makespan) and increasing reliability are conflicting: it
is possible to propose a sequence with very large buffers
in inter-aircraft separations to obtain a runway schedule that
was very robust but would take a long time to complete;
similarly, the most efficient (deterministic) schedule would
maintain inter-aircraft spacings as close to the minimums
as possible, but would be very sensitive to uncertainty.
The technique we propose helps us determine the tradeoff
contours between reliability and throughput for the runway
operations scheduling problem. In the context of a con-
strained optimization problem with uncertain inputs, a robust
solution is defined as one that has low likelihood of violating
the constraints while being acceptably close to optimal [14].
In our case, given an upper bound on the makespan, a robust
schedule is one that maximizes reliability.

D. Problem statement

We define the minimum time-separation matrix by∆,
where the elementδij is the minimum required time between
runway operations, if aircrafti lands before aircraftj.
Currently, these classes are defined based on the maximum
take-off weight for scheduling runway operations, but could
be generalized to other classifications as well. In this paper,
we assume that the separations satisfy the triangle inequality,
that is,δik ≤ δij + δjk ∀i, j, k. This condition is satisfied by
current separation minimums [4].

We represent precedence relations by ann × n matrix
{mij}, such that elementmij = 1 if aircraft i must land
before aircraftj, andmij = 0 otherwise.

We identify two different forms of uncertainty:

1) For every aircrafti, the probabilityPri(t) represents
the likelihood thati can utilize the runway at timet.

2) For every aircrafti, we also consider the distribution
Pri(t|ti), which is the probability that aircrafti lands
at time t given that it was scheduled to land at time
ti. This distribution reflects the accuracy of the aircraft
navigation system, and the effect of uncertainty on an
aircraft’s schedule. We denote the probability density
function (p.d.f.) of this distribution asfi(t|ti).

Consolidating our objective and constraints, we can pose
the following problem:
Given n aircraft indexed1, · · · , n, probability distribution
Pri(t) over the times at which aircrafti can land, separation
matrix ∆, precedence matrix{pij}, the maximum number
of position shiftsk, and the p.d.f.fi(t|ti) for the delivery
accuracy of the aircraft at the runway, compute thek-CPS
sequence and corresponding times of runway utilization that
minimize the makespan of the sequence, while satisfying
the minimum level of reliability. Alternatively, compute the
runway utilization schedule that maximizes the level of
reliability, while possessing a makespan that is less than
a specified maximum value. The solution to this problem
allows us to determine the tradeoff between reliability and
throughput for the system.

For simplicity, we assume that the aircraft are labeled
(1, 2, · · · , n), according to their position in the FCFS
sequence. We also note that given any three consecutive
aircraft in the sequence (a–b–c), and their arrival time error
distributions fa(t|ta), fb(t|tb) and fc(t|tc), it is possible
to compute the probability distributions forPr{ta ↔ tb},
Pr{tb ↔ tc} andPr{tb ↔ tc | ta ↔ tb}. Due to limitations
of space, this paper is restricted to the case wherePri(t) = 1
for all t ∈ I(i), the set of times during which aircrafti is
allowed to land. The proposed technique can be extended
quite easily to more general distributions forPri(t).

III. D YNAMIC PROGRAMMING ALGORITHM

In prior work [3], we demonstrated that everyk-CPS
sequence can be represented as a path in a directed graph
whose size is polynomially bounded inn andk. We briefly
describe the structure of this network and its properties.

A. The CPS network

The network consists ofn stages{1, · · · , n}, where each
stage corresponds to an aircraft position in the final sequence.
A node in stagep of the network represents a subsequence
of aircraft of lengthmin{2k+1, p} wherek is the maximum
position shift. For example, forn = 5 andk = 1, the nodes
in stages3, · · · , 5 represent all possible sequences of length
2k + 1 = 3 ending at that stage. Stage 2 contains a node
for every possible aircraft sequence of length 2 ending at
position 2, while stage 1 contains a node for every possible
sequence of length 1 starting at position 1. This network,



shown in Figure 1, is obtained using all possible aircraft
assignments to each position in the sequence (given below).

Position 1 2 3 4 5 6
Possible 1 1 2 3 4 5
aircraft 2 2 3 4 5 6

assignments 3 4 5 6

Fig. 1. Network forn = 5, k = 1.

For convenience, we refer to the last aircraft in a node’s
sequence as thefinal aircraft of that node. For each node
in stagep, we draw directed arcs to all the nodes in stage
p + 1 that can follow it. For example, a sequence (1–2–
3) in stage 3 can be followed by the sequences (2–3–4)
or (2–3–5) in stage 4. This results in a network where
every directed path from a node in stage 1 to one in stage
n represents a possiblek-CPS sequence. For example, the
path (2)→(2–1)→(2–1–3)→(1–3–5)→(3–5–4) represents the
sequence 2–1–3–5–4.

Nodes such as (1–2–4) in stage 4 that cannot belong
to a path from stage 1 to stagen are removed from the
network. Finally, nodes that violate precedence constraints
are also eliminated to generate a “pruned” network that
may be significantly smaller than the original network. The
key properties of this network, as shown in [3], but stated
somewhat differently here are as follows.

(i) Every possiblek-CPS subsequence of length2k+1 or
less is contained in some node of the network.

(ii) Every feasible sequence (one that satisfies maximum
position shift constraints and precedence constraints)
can be represented by a path in the network from a
node in stage1 to a node in stagen.

(iii) Every path in the network from a node in stage 1 to a
node in stagen represents a feasiblek-CPS sequence.

B. Dynamic programming recursion

We use the following notation.
ℓ(x) The last (final) aircraft of nodex.
ℓ′(x) The second from last aircraft of nodex.
P (x) Set of nodes that precedex. (A nodew is said

to precedex if arc (w, x) exists).
I(j) Set of times during which aircraftj can land.

Let Jx(t1, t2) be the maximum reliability of a sequence

starting in stage 1 and ending in nodex, given thatℓ(x) is
scheduled to land at timet2 and ℓ′(x) is scheduled to land
at time t1. The reliability of the sequence is as defined in
Equation 1. We would like to compute the value ofJ(·) for
all nodes in stagen.

Lemma 1:The values ofJ(·) are correctly computed by
the following recursion:

Jy(tℓ′(y), tℓ(y)) = max
x∈P (y)

max
tℓ′(x)∈I(ℓ′(x))

˘

Jx(tℓ′(x), tℓ(x))

×Pr{tℓ(x) ↔ tℓ(y) | tℓ′(x) ↔ tℓ(x)}
¯

,

∀ tℓ(y) ∈ I(ℓ(y)) : tℓ(y) ≥ tℓ(x) + δℓ(x),ℓ(y).

Proof: The proof follows standard techniques for
proving the validity of dynamic programming recursions, and
is presented in the appendix for completeness.

We can now compute the value ifJy(·) for each node in stage
n by unrolling the recursion using the boundary condition
Jx(tℓ′(x), tℓ(x)) = Pr{ℓ′(x) ↔ ℓ(x)} for every nodex in
stage 2 and for alltℓ′(x) ∈ I(ℓ′(x)) and tℓ(x) ∈ I(ℓ(x)).

C. Algorithm

Since the state space forJ(·) is infinite, the recursion
as such is computationally not practical. Therefore, we
discretize all times into periods of lengthǫ. In practice, the
accuracy of measurements in the airspace is of the order of
seconds, so anǫ value between 1 and 10 sec is reasonable.

At the end of this procedure, the values ofJ for all nodes
in stagen are obtained for all feasible time periods. The
maximum reliability sequence for a given makespant is
the maximum over allJx(tℓ′(x), tℓ(x)) for tℓ(x) = t. This
value can be computed for all periods of interest to generate
a curve that trades off makespan against reliability. The
corresponding schedule can be recovered by keeping track
of the argument of the maximization during the algorithm.

D. Complexity

We had shown in [3] that the number of nodes in the
network isO(n(2k + 1)(2k+1)), and the number of arcs is
O(n(2k + 1)(2k+2)).

The algorithm loops through 3 time intervals (correspond-
ing to three aircraft) for each arc in the network. Given
a period length ofǫ, the total work done throughout the
algorithm isO((L/ǫ)3) per arc whereL is the length of the
largest intervalI(·) among all aircraft. In practice, the value
of the maximum position shift parameterk is usually 1, 2,
or 3, so the terms ink can be regarded as a constant.

Lemma 2:The complexity of the proposed dynamic pro-
gramming algorithm isO(n(L/ǫ)3), wheren is the number
of aircraft,L is the largest difference between the latest and
earliest arrival times over all aircraft, andǫ is the desired
output accuracy.

Since there are relatively few types of
aircraft, the probabilities Pr{ℓ′(x) ↔ ℓ(x)} and
Pr{tℓ(x) ↔ tℓ(y) | tℓ′(x) ↔ tℓ(w)} can be computed (either
through a simulation or analytically depending on the
distribution) and stored offline. The work done to compute
these probabilities needs to be done only once, and hence
is not part of the complexity expression.



IV. EXAMPLES

We consider the example of scheduling aircraft landings
on a single runway. The times at which aircraft cross the
Center boundaries are generated using a Poisson distribution.
Jet routes are assigned based on traffic flow statistics and
determine the precedence relations, since aircraft along the
same jet route are not allowed to overtake each other. Since
the runway schedules are determined when the aircraft cross
the Center boundary using a nominal trajectory, there is
considerable inaccuracy in an aircraft meeting its scheduled
landing time. We model the distribution of the error (that is,
the difference between actual landing time and the scheduled
landing time) as a triangular distribution, with a range
of ±300 sec for aircraft not equipped with an FMS, and
±150 sec for equipped aircraft. Fuel considerations make
speed-ups of more than a minute inefficient, therefore the
earliest possible scheduled time of arrival is a minute before
the estimated time of arrival (ETA). The latest possible
scheduled time of arrival is set to one hour after the ETA.

The aircraft belong to one of three categories based on
their Maximum Takeoff Weight (MTOW): Small, Large
or Heavy, and can be either equipped with FMS or be
controlled by pilots. A representative matrix of minimum
time separations in seconds is given in the table below [4].

Trailing Aircraft
Leading Aircraft Heavy Large Small

Heavy 96 157 196
Large 60 69 131
Small 60 69 82

One approach to accommodating the uncertainty in arrival
times is to buffer the required separation requirements. The
size of this buffer is set to12 sec if both the leading and
trailing aircraft are equipped with an FMS, and24 sec if at
least one of them is not equipped. The FCFS sequence is
then determined by maintaining the order of the estimated
runway times of arrival, but by enforcing the minimum
spacing requirements with the appropriate buffering. We use
this FCFS order with buffering as the baseline makespan with
which to determine improved schedules. This is the minimum
acceptable makespan. The probability of this FCFS sequence
being feasible (i.e., none of the separation requirements is
violated) is the baseline value of the robustness. We use the
ratio of the probability of a schedule being feasible to the
probability of FCFS sequence as the measure of reliability
or robustness of the schedule. We represent the throughput
of the schedule as the number of aircraft divided by the
time taken to complete the schedule (the makespan). We can
then use the dynamic programming algorithm to compute the
tradeoff curve between throughput and robustness.

We present an example that illustrates the potential of the
proposed technique to produce robust schedules. We consider
a sequence of 20 aircraft landing on a single runway, gen-
erated using a Poisson distribution at the rate of 45 aircraft
an hour. The sequence of aircraft along with their weight
classes, equipage and arrival times in the FCFS schedule
with buffering are presented in Table I. The landing times in
the FCFS schedule satisfy the separation requirements, but

do not necessarily form the most robust schedule, even for
the FCFS landing order. We can compute the tradeoff curve
between the throughput and reliability to determine a more
robust FCFS sequence. Similarly, we compute the tradeoff
between reliability and throughput fork = 1 and k = 2.
The results are plotted in Figure 2, and are representative
of the type of output we would like to produce using the
proposed algorithm. We note that the FCFS makespan can
be achieved with a substantially higher level of reliability,
and a greater throughput can be achieved with the same level
of reliability. We also note that the tradeoff improves as we
move from FCFS to 1-CPS, and as we proceed to 2-CPS.
The schedules (with landing times) are presented in Table I
for sequences which have the same makespan as the baseline
FCFS sequence with buffering.
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Fig. 2. (Top) Reliability-throughput tradeoff contours ina semi-log scale.

The method proposed in this paper is amenable to real time
implementation since the computation time (once internal
data structures have been created) for 1- or 2-CPS is less
than1 sec for a 30-min time horizon for up to 50 aircraft.

V. CONCLUSIONS

We have presented an approach for determining the
tradeoff between robustness and throughput, while schedul-
ing single runway operations under Constrained Position
Shifting. The approach we present can handle precedence
constraints that could arise from operational constraintsor
airline preferences, and take into account restrictions on
possible arrival times of aircraft. The proposed Dynamic
Programming approach can accommodate several sources
of uncertainty, and is computationally efficient enough for
a real-time application. We believe that this technique will
be valuable both in assessing the benefits of equipping
aircraft with advanced Flight Management Systems, and in
determining robust schedules for runway operations.
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APPENDIX

Proof: [Lemma 1] We first observe that, by construction,ℓ(x) = ℓ′(y)
for x ∈ P (y). Therefore,Jy(tℓ′(y), tℓ(y)) = Jy(tℓ(x), tℓ(y)).

SinceJy(tℓ(x), tℓ(y)) is the maximum value of reliability over all paths
leading to nodey,

Jy(tℓ(x), tℓ(y)) ≥ Jx(tℓ′(x), tℓ(x)) × Pr{tℓ(x)↔ tℓ(y)| tℓ′(x)↔ tℓ(x)}

∀ x ∈ P (y), tℓ′(x) ∈ I(ℓ′(x)), tℓ(x) ∈ I(ℓ(x)), tℓ(y) ∈ I(ℓ(y)),

wheretℓ(x) − tℓ′(x) ≥ δℓ′(x),ℓ(x) and tℓ(y) − tℓ′(y) ≥ δℓ′(y),ℓ(y).

This means that, in particular,

Jy(tℓ′(y), tℓ(y)) ≥ max
x∈P (y)

max
tℓ′(x)∈I(ℓ′(x))

˘

Jx(tℓ′(x), tℓ(x))

×Pr{tℓ(x) ↔ tℓ(y) | tℓ′(x) ↔ tℓ(x)}
¯

,

∀ tℓ(y) ∈ I(ℓ(y)) : tℓ(y) ≥ tℓ(x) + δℓ(x),ℓ(y)

To complete the proof, we only need to show that the above relationship
can never hold as a strict inequality. Suppose (for contradiction) that

Jy(tℓ(x), tℓ(y)) > Jx(tℓ′(x), tℓ(x)) × Pr{tℓ(x)↔ tℓ(y)| tℓ′(x)↔ tℓ(x)}

∀ x ∈ P (y), tℓ′(x) ∈ I(ℓ′(x)), tℓ(x) ∈ I(ℓ(x)), tℓ(y) ∈ I(ℓ(y))

Given that the times are feasible and that all spacings satisfy at least the min-
imum separation requirement,Pr{tℓ(x) ↔ tℓ(y) | tℓ′(x) ↔ tℓ(x)} > 0.
Dividing by this probability, we get

Jy(tℓ(x), tℓ(y))

Pr{tℓ(x) ↔ tℓ(y) | tℓ′(x) ↔ tℓ(x)}
> Jx(tℓ′(x), tℓ(x)),

∀ x ∈ P (y), tℓ′(x) ∈ I(ℓ′(x)), tℓ(x) ∈ I(ℓ(x)), tℓ(y) ∈ I(ℓ(y)).

This implies that

max
w∈P (y)

t
ℓ′(w)

∈I(ℓ′(w))

tℓ(w)∈I(ℓ(w))

tℓ(y)∈I(ℓ(y))

Jy(tℓ(w) , tℓ(y))

Pr{tℓ(w)↔ tℓ(y)| tℓ′(w)↔ tℓ(w)}
> Jx(tℓ′(x), tℓ(x))

∀ x ∈ P (y), tℓ′(x) ∈ I(ℓ′(x)), tℓ(x) ∈ I(ℓ(x)).

However,
Jy(tℓ(w),tℓ(y))

Pr{tℓ(w)↔tℓ(y) | tℓ′(w)↔tℓ(w)}
is the reliability of the subse-

quence ofJy(tℓ(w) , tℓ(y)) that ends at nodew and timeℓ′(w) and ℓ(w).
This contradicts the maximality ofJx(tℓ′(x), tℓ(x)) for x = w.


