Intermediate-depth Earthquakes

The physical mechanism responsible for intermediate-depth earthquakes is still under debate. In contrast to conditions in the crust and shallow lithosphere, at temperatures and pressures corresponding to depths >50 km one would expect rocks to yield by creep or flow and not by brittle failure. Earthquake nests represent a region with high earthquake concentration that is isolated from nearby activity, and one such regions is the intermediate-depth Bucaramanga Nest. Given the nature and characteristics of this nest, it can be thought as natural laboratories for understanding the mechanism of intermediate-depth earthquakes. I am studying this place using a wide variety of seismological tools to resolve this issue.

Intermediate-depth Earthquake Nests

s_scale The physical mechanism responsible for intermediate-depth earthquakes is still under debate. In contrast to conditions in the crust and shallow lithosphere, at temperatures and pressures corresponding to depths >50 km one would expect rocks to yield by creep or flow and not by brittle failure. Earthquake nests represent a region with high earthquake concentration that is isolated from nearby activity, and one such regions is the intermediate-depth Bucaramanga Nest. Given the nature and characteristics of this nest, it can be thought as natural laboratories for understanding the mechanism of intermediate-depth earthquakes. I am studying this place using a wide variety of seismological tools to resolve this issue.

To see more click here.