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Reinforcement Learning: breakthroughs & frontiers




Reinforcement Learning: breakthroughs & frontiers

many involve
multiple players!

Lectures 9-11: investigate questions regarding equilibrium existence, computation
and learning in multi-player RL and its underlying game-theoretic models



Stochastic Games [Shapley’53]
infinite horizon, finite states/actions ;ﬁs :ﬁ‘ tﬁ\ ®

NP i .. ) ) Receive rewards 7;(s, a)
« An m-player, infinite-horizon, finite state/action space, stochastic (or Markov) +  Tansitontos' ~P(-|s,@) |

game G = (S, A, P, r,y, u) is specified via the following ingredients:

e S :afinite set of states

A= A;X XA, :ajoint action set, where 4; is the finite action set of agent i € [m]

P(s’|s,a), fors,s’ € S, a € A: the transition matrix of the environment

r = (1, ..., Iy): the reward functions of the environment where 7;(s, @) is the reward function of agent i

v € (0,1): the discount factor

p € A(S): the initial state distribution
* Given an infinite state-action sequence (s;, a;); players derive discounted utilities: u; ((S;, @t)¢) = X0V - 1:(Se )
* Arandomized strategy, or policy, of player i is a function m;: SX(SXA)* — A(A;), mapping histories to action distributions

* Given policies 14, ..., T, the discounted expected utility of agent i is:

Ui (1, oo, ) = E So~H [DXeso V" - 1i(se ap)]
api~Ti(|se,(Sp.ar)r<t)
St+1~P(:|st,at)



Stochastic Games [Shapley’53]
infinite horizon, finite states/actions @ oﬁ‘ tﬁ\ ®

Receive rewards 7;(s, a)
* In general, a policy ;: SX(S§XA)* — A(A;) can be history dependent 4  Tansitiontos' ~P(-|s,@) |

* A policy is history-independent or Markovian if it only depends on the current state and time
- ie.forallt,s, (s, @)=, (Sp, ar)e=1: mi(s, (S, a)7=1) = mi(s, (s¢, ar)e=1

* such policy can be also represented as a function 7;: S X N = A(4;)

e A policy is stationary and Markovian if it only depends on the current state
* such policy can be also represented as a function m;: S = A(4;)
* Given stationary, Markovian policies 7y, ..., Ty : U; (71, o, Ty) = E  so~u D0V - 1i(se ap)]

agi~Ti(-|st)
St+1~P(:|St.at)

* [Takahashi’64, Fink’64]: There exists a Nash equilibrium in stationary, Markovian policies, i.e. a collection of stationary and
Markovian policies 1y, ..., ,, s.t. for all i, for all (possibly history-dependent) «;: u;(7;, m_; ) = u; (], m_; ).

* [Shapley’53]: In two-player zero-sum stochastic games: max min u, (¢, 7,) = min maxu,(mw, T, ).
1aX MIN Uy (7T, 7T N Max u; (1, 77
1 2 2 1

* Costis’s comment: pretty cool because u; (m;; T_;) is non-concave in 1;



Stochastic Games [Shapley’53]

finite-horizon variant ;is ﬁ ;i\ @

* An m-player, finite-horizon, finite state/action space, stochastic (or Markov) Receive rewards 7;(s, @)
Transitionto s’ ~ P(: |s, @)

game G = (S,A,P,r, H, u,y) is specified via the following ingredients:

* S :afinite set of states
e A= A;X--XA,, :ajoint action set, where A; is the finite action set of agent i € [m]

P(s'|s,a), fors,s’ € S, a € A: the transition matrix of the environment
* v =(ry, ..., 1y): the reward functions of the environment where r;(s, @) is the reward function of agent i

H € N_: the number of interaction steps
1 € A(S): the initial state distribution
v € (0,1]: the discount factor y; not that in contrast to the infinite-horizon setting,  can be chosen to be 1

* Given a finite state-action sequence (s;, a;);—, players derive discounted utilities: u; (s, @r)s) = Yieo ¥ 1i(Se, ar)
* A randomized strategy, or policy, of player i is a function m;: SX(SxA)<" — A(4;), mapping histories to action distributions

* Given policies 1y, ..., T, the discounted expected utility of agent i is:

changes compared
w;(1q, oo, ) = E So~H e vt ri(se ar)] to the infinite horizon

ati~m;(|se,(St.ar) <t ) case in light blue
St+1~P(|st.at)




Stochastic Games: Single- vs Multi-Agent Case

Markov Decision Process (n=1) Stochastic Game (n>1)
St+1~P( |s¢, ar) St+1~P( |Se, a1, ) Aem)
r(se ar) 1i(St, Qg 1) ) Aem)
Agent’s policy m: SX(SXA)* - A(A) Agent i’s policy m;: SX(SXA)* = A(4;)
Agent’s objective: Agent i’s objective:
u(m) =E So~H Xesov"  7(Se ap)] u;(m) = E So~H Xtz0v" - 1i(se ar)]
ar~1(:|St,(S7,.07)7) ar~1(:|st,(Sp,ar)7)
St+1~P([sear) St+1~P([s¢.ar)

Choose actiona € A Choose actions a; € A;

Environment Environment
I.I @ |.I |.I |.I @
Receive reward r (s, a) Receive rewards 7;(s, @)

Transitionto s’ ~ P(: |s,a) Transitionto s’ ~ P(: |s, a)




Stochastic Games: Single- vs Multi-Agent Case

Markov Decision Process (n=1)

St+1~P( |st, at)
r(Se ar)

Agent’s policy m: SX(SXA)* - A(A)

Agent’s objective:

u(m) = E So~HU [Xt=0 yt- r(se, at)]
a~1(:|St,(Sg,ar)7)
St+1~P(:|st.at)

Folklore Result: exists optimal policy that is

stationary and Markovian

e optimal policy can be found using Linear
Programming

* also using policy iteration/value iteration
methods

Stochastic Game (n>1)

St+1~P( |St, At 1 ey at,m)

ri (Str at,1; sy at,m)
Agent i’s policy ;: SX(SXA)* — A(4;)

Agent i’s objective:

ui(m) = E So~H [Xt=0 Vt - Ti(St, ap)]
ar~1(|S¢,(Sg,ar))
St+1~P(:|st.at)

Corresponding Result: 3 Nash eq in stationary Markovian policies

e computing Nash equilibrium: PPAD-hard

* in zero-sum games: open in general; tractable if discount factor
bounded away from 1 and goal is approximate min-max

» correlated equilibria: open in general; some hardness results,
depending on type

* more tractable when game is finite horizon



Stochastic Games: Planning vs Learning

Markov Decision Process (n=1) Stochastic Game (n>1)
St+1~P(: st ar) St+1~P( IS, ag 1) ) Atm)
r(se ar) 1i(St» Q1) -0 Atym)

Agent’s policy m: SX(SXA)* - A(A) Agent i’s policy m;: SX(SXA)* = A(4;)

Agent’s objective: Agent i’s objective:

u(mr) =E So~H [Xes0¥© - 7(St ap)] ui(r) = E So~H [Xes0vt - 1i(se ap)l
as~7(-|St,(S7,a7)7) ar~1(*|St,(Sp.a:)7)

St+1~P(|st.at) St+1~P(|st.a¢)

Planning: find a good policy with knowledge of Distinction between planning and learning similar

environment i.e. dynamics & rewards extra complication: do agents observe each

Reinforcement Learning: find a good policy without other’s actions? can agents communicate?

a priori knowledge (or at least not complete

knowledge) of the environment Multi-Agent Reinforcement Learning

* by interacting with environment less well explored

 or with simulator access to the environment

+ or with enough offline data Algorithms/Learning/Complexity: next week (guest: Noah Golowich)

RL through Q-learning, policy gradient methods, ... Equilibrium Existence Results: this week




Equilibrium Existence:
Finite Horizon Stochastic Games

Proposition: Exists Nash equilibrium in Markovian policies
Proof: via “backwards induction”

* Construct Nash equilibrium policies inductively, starting at t = H — 1 (last interaction round) and proceeding backwards

* l.e.for alli’s together compute m; (- |s,t) fromt = H — 1 downto 0
* Auxiliary variables constructed inductively V; . (s): continuation value that player i expects to receive if they were to
start at state s at time t under selected Nash equilibrium policies at times t, t+1,...

Base Case: a, € A,
Vig(s) « 0 foralls,i

Inductivestep(t =H — 1, ...,0)
1. AssumegivenV;,..1:§ > R
2. Foreachs € S, construct a game where i’s a, € 4, Fis(ay, az)
utility F;s: A — Ris as shown at right
3. Compute a Nash equilibrium of the game
(Fig, ..., Eys), and let that be (- |s, t) € A(A)

4. LetV;.(s) = Eqern(ist [Fis(a)]. Fi.(a) == ri(s,a) + IES’~IP’(-|S,a) [V; t+1(s)]




Equilibrium Existence:
Finite-Horizon Stochastic Games

Construct Nash equilibrium policies inductively, starting at t = H — 1 (last interaction round) and proceeding backwards
 l.e.foralli, compute m;(: |s,t) fromt = H — 1 downto 0

* Auxiliary variables constructed inductively V; . (s): continuation value of player i under Nash equilibrium

t=20 t=1 t=2=H-1

States —




Equilibrium Existence:
Finite-Horizon Stochastic Games

Construct Nash equilibrium policies inductively, starting at t = H — 1 (last interaction round) and proceeding backwards
 l.e.foralli, compute;(: |s,t) fromt = H —1downto0
* Auxiliary variables constructed inductively V; . (s): continuation value of player i under Nash equilibrium

t=20 t=1 t=2=H-1
‘ Base Case:
Vig(s) « 0 foralls,i

States —




Equilibrium Existence:
Finite-Horizon Stochastic Games

Construct Nash equilibrium policies inductively, starting at t = H — 1 (last interaction round) and proceeding backwards

 l.e.foralli, compute m;(: |s,t) fromt = H — 1 downto 0

* Auxiliary variables constructed inductively V; . (s): continuation value of player i under Nash equilibrium
t=20 t=1 t=2=H-1

Base Case:
Vig(s) « 0 foralls,i

Inductive step:
1. AssumegivenV;,..1:5 > R(e.g,t =1)
2. Foreachs € §, player i € [m], define local payoff
function Fi.;: A - R:

Fis(a) = 1i(s,a) + Eg _p(is,0)[Vie+1(s")]
3. Compute a Nash equilibrium of game (Fy, ..., F,;5)
at each state s, and let that be (- |s,t) € A(4)

States —




Equilibrium Existence:
Finite-Horizon Stochastic Games

Construct Nash equilibrium policies inductively, starting at t = H — 1 (last interaction round) and proceeding backwards
 l.e.foralli, compute;(: |s,t) fromt = H —1downto0

* Auxiliary variables constructed inductively V; . (s): continuation value of player i under Nash equilibrium

t=20 t=1 t=2=H-1
‘ Base Case:
Vig(s) « 0 foralls,i

Inductive step:
1. AssumegivenV;,..1:5 > R(e.g,t =1)
2. Foreachs € §, player i € [m], define local payoff
function Fi.;: A - R:

Fis(a) = 1i(s,a) + Eg _p(is,0)[Vie+1(s")]

3. Compute a Nash equilibrium of game (Fy, ..., F,;5)
at each state s, and let that be (- |s,t) € A(4)

4. LetVin(s) = Eqop(ysp[Fis(a@)]

States —




Equilibrium Existence:
Finite-Horizon Stochastic Games

Construct Nash equilibrium policies inductively, starting at t = H — 1 (last interaction round) and proceeding backwards

States —

l.e. for all i, compute m; (- |s, t) fromt = H — 1 down to 0

Auxiliary variables constructed inductively V; . (s): continuation value of player i under Nash equilibrium

t=20 t=1 t=2=H-1
_ ‘ Base Case:
Vig(s) « 0 foralls,i

Inductive step:
1. AssumegivenV;,..1:5 > R(e.g,t =1)
2. Foreachs € §, player i € [m], define local payoff
function Fi.;: A - R:

Fis(a) = 1i(s,a) + Eg _p(is,0)[Vie+1(s")]

3. Compute a Nash equilibrium of game (Fy, ..., F,;5)
at each state s, and let that be (- |s,t) € A(4)

4. LetVin(s) = Eqop(ysp[Fis(a@)]

Exercise: why are inductively computed policies a Nash equilibrium?



Equilibrium Existence:
Infinite-Horizon Stochastic Games

[Takahashi’64, Fink’64]: There exists a Nash equilibrium in stationary, Markovian policies, i.e. a collection of stationary and
Markovian policies 7y, ..., T, s.t. for all i, for all (possibly history-dependent) ;: u; (7r;, m_; ) = u; (], m_; ).

Proof: on the board



