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ABSTRACT

We study last-iterate convergence properties of algorithms for solving two-player
zero-sum games based on Regret Matching+ (RM+). Despite their widespread
use for solving real games, virtually nothing is known about their last-iterate
convergence. A major obstacle to analyzing RM-type dynamics is that their regret
operators lack Lipschitzness and (pseudo)monotonicity. We start by showing
numerically that several variants used in practice, such as RM+, predictive RM+

and alternating RM+, all lack last-iterate convergence guarantees even on a simple
3× 3 matrix game. We then prove that recent variants of these algorithms based
on a smoothing technique, extragradient RM+ and smooth Predictive RM+, enjoy
asymptotic last-iterate convergence (without a rate), 1/

√
t best-iterate convergence,

and when combined with restarting, linear-rate last-iterate convergence. Our
analysis builds on a new characterization of the geometric structure of the limit
points of our algorithms, marking a significant departure from most of the literature
on last-iterate convergence. We believe that our analysis may be of independent
interest and offers a fresh perspective for studying last-iterate convergence in
algorithms based on non-monotone operators.

1 INTRODUCTION

Saddle-point optimization problems have attracted significant research interest with applications in
generative adversarial networks (Goodfellow et al., 2020), imaging (Chambolle and Pock, 2011),
market equilibrium (Kroer et al., 2019), and game-solving (Von Stengel, 1996). Matrix games provide
an elementary saddle-point optimization setting, where the set of decisions of each player is a simplex
and the objective function is bilinear. Matrix games can be solved via self-play, where each player
employs a regret minimizer, such as online gradient descent ascent (GDA), multiplicative weight
updates (MWU), or Regret Matching+ (RM+). A well-known folk theorem shows that the average of
the strategies visited at all iterations converges to a Nash equilibrium, at a rate of O(1/

√
T ) for GDA,

MWU and RM+, and at a rate of O(1/T ) for predictive variants of GDA and MWU (Syrgkanis et al.,
2015; Rakhlin and Sridharan, 2013).

In recent years, there has been increasing interest in the last-iterate convergence properties of
algorithms for saddle-point problems (Daskalakis and Panageas, 2019; Golowich et al., 2020; Wei
et al., 2021; Lee et al., 2021). There are multiple reasons for this. First, since no-regret learning is
often viewed as a plausible method of real-world gameplay, it would be desirable to have the actual
strategy iterates converge to an equilibrium, instead of only having the average converge. Secondly,

∗Authors are listed in alphabetic order.
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suppose self-play via no-regret learning is being used to compute an equilibrium. In that case, iterate
averaging can often be cumbersome, especially when deep-learning components are involved in the
learning approach, since it may not be possible to average the outputs of a neural network. Thirdly,
iterate averaging may be slower to converge since the convergence rate is limited by the extent to
which early “bad” iterates are discounted in the average. Even in the simple matrix game setting,
interesting questions arise when considering the last-iterate convergence properties of widely used
algorithms. For instance, both GDA and MWU may diverge (Bailey and Piliouras, 2018; Cheung and
Piliouras, 2019), whereas their predictive counterparts, Optimistic GDA (OGDA) (Daskalakis et al.,
2018; Mertikopoulos et al., 2019; Wei et al., 2021) and Optimistic MWU (OMWU) (Daskalakis and
Panageas, 2019; Lei et al., 2021) converge at a linear rate under some assumptions on the matrix
games. Furthermore, it has been demonstrated that OGDA and the Extragradient Algorithm (EG)
have a last-iterate convergence rate of O(1/

√
T ) without any assumptions on the game (Cai et al.,

2022; Gorbunov et al., 2022b).

On the other hand, very little is known about the last-iterate convergence properties of RM+ and
its variants. This is in spite of the fact that RM+-based algorithms have been used in every case of
solving extremely large-scale poker games (Bowling et al., 2015; Moravčík et al., 2017; Brown and
Sandholm, 2018), one of the primary real-world instantiations of using learning dynamics to solve
huge-scale zero-sum games. Poker games are modeled as extensive-form games (EFGs), a class of
sequential games that capture imperfect information and stochasticity. RM+ is a regret minimizer
for strategy sets that are probability simplexes, and thus is not directly applicable to EFGs. In order
to apply it in EFGs, it is combined with counterfactual regret minimization (Zinkevich et al., 2007),
which enables solving an EFG by instantiating simplex regret minimizers at every decision point.
Despite its very strong empirical performance, the last-iterate behavior of any variant of RM+ is still
not understood. It has been found empirically that the last-iterate in RM+ combined with CFR (in
alternating self play) may achieve better performance than the average iterate (Bowling et al., 2015),
but on the other hand the last iterate may diverge even on rock-paper-scissors (Lee et al., 2021).
Moreover, unlike OGDA and OMWU, the predictive variants of RM+ do not enjoy a theoretical
speed up: Predictive RM+ (PRM+), a predictive variant of RM+, was introduced in Farina et al.
(2021) and shown to achieve very good empirical performance in some games. However, it still only
guarantees O(1/

√
T ) ergodic convergence for matrix games (unlike OGDA and OMWU). To address

this, Farina et al. (2023) introduce variants of RM+ with O(1/T ) ergodic convergence for matrix
games, namely, Extragradient RM+ (ExRM+) and Smooth Predictive RM+ (SPRM+), and show
that these algorithms also enjoy strong practical ergodic performance on matrix games.

Overall, while much is known about the last-iterate convergence properties of OGDA, OMWU, and
EG, these algorithms are not widely used in real large-scale EFG applications, and very little is
known about the last-iterate convergence of the RM+-based algorithms that are used in practice. As a
first step toward understanding the last-iterate convergence properties of RM+-algorithms in EFGs,
we study both theoretically and empirically the last-iterate behavior of RM+ and its variants for the
special case of matrix games. Our main results are as follows.

1. Divergence of RM+. We provide numerical evidence that RM+ and important variants of RM+,
including alternating RM+ and PRM+, may fail to have asymptotic last-iterate convergence and
best-iterate convergence. Conversely, we also prove that RM+ does have last-iterate convergence
in a very restrictive setting, where the matrix game admits a strict Nash equilibrium (Theorem 1)1.

2. Asymptotic convergence under the Minty condition. Zero-sum game solving with RM+ can be
seen as solving a variational inequality with a non-monotone operator, which we call the regret
operator (see Equation (3)). This is a significant departure from the existing results, e.g., for the
extragradient algorithm and optimistic gradient on monotone games (Cai et al., 2022).
Technical Contribution: We first show that ExRM+ and SPRM+ exhibit asymptotic last-iterate
convergence in the duality gap, enabled by our observation that the regret operator satisfies the
Minty condition (see (6)), a condition strictly weaker than (pseudo)monotonicity. However, con-
vergence in the duality gap is weaker than convergence in iterates, the usual form of convergence
guarantee for monotone operators. An important benefit of convergence in iterates is that it
1Meng et al. (2023) studies RM+ in strongly-convex-strongly-concave games and proves its asymptotic

convergence (without rate) to the unique equilibrium. Theorem 1’s proof largely follows from (Meng et al.,
2023) with the key observation that the properties of strict NE suffices to adapt the analysis in (Meng et al.,
2023) to zero-sum games (not strongly-convex-strongly-concave games) with a strict NE.
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ensures the stability of the dynamics, in the sense that the strategies asymptotically stop changing
(see Section 4.1 for a detailed discussion). Although the Minty condition is a well-studied concept
in variational inequalities (Kinderlehrer and Stampacchia, 2000), it does not generally imply
last-iterate convergence in iterates. Nevertheless, we are able to show that both ExRM+ and
SPRM+ exhibit asymptotic last-iterate convergence in iterates as well. Our proof relies on a new
characterization of the geometric structure of the limit points of the learning dynamics, which may
be of independent interest for analyzing last-iterate convergence in other algorithms.

3. Finite-time convergence. We then show a O(1/
√
t)-rate for the duality gap for the best iterate

after t iterations of both algorithms. Building on this observation, we finally introduce new variants
of ExRM+ and SPRM+ that restart whenever the distance between two consecutive iterates has
been halved, and prove that they enjoy linear last-iterate convergence.

4. Experiments. We validate the last-iterate convergence of ExRM+ and SPRM+ (including their
restarted variants that we propose) numerically on four instances of matrix games, including Kuhn
poker and Goofspiel. We also note that while vanilla RM+, alternating RM+, and PRM+ may not
converge, alternating PRM+ exhibits a surprisingly fast last-iterate convergence.

2 PRELIMINARIES ON REGRET MATCHING+

Notation. We write 0 for the vector with 0 on every component and 1d for the vector inRd with 1
on every component. We use the convention that 0/0 = (1/d)1d. ∆d is the simplex: ∆d = {x ∈
R

d
+ | ⟨x,1d⟩ = 1}. For x ∈ R, we write [x]+ for the positive part of x : [x]+ = max{0, x}, and we

overload this notation to vectors component-wise. We use ∥ · ∥ to denote the ℓ2 norm.

In this paper, we study iterative algorithms for solving the following matrix game:
min

x∈∆d1

max
y∈∆d2

x⊤Ay (1)

for a payoff matrix A ∈ Rd1×d2 . We define Z = ∆d1 × ∆d2 to be the set of feasible pairs of
strategies. The duality gap of a pair of feasible strategy (x, y) ∈ Z is defined as DualityGap(x, y) :=
maxy′∈∆d2 x

⊤Ay′ −minx′∈∆d1 x
′⊤Ay. Note that we always have DualityGap(x, y) ≥ 0, and it is

well-known that DualityGap(x, y) ≤ ϵ implies that the pair (x, y) ∈ Z is an ϵ-Nash equilibrium of
the matrix game (1). When both players of (1) employ a regret minimizer, a well-known folk theorem
shows that the averages of the iterates generated during self-play converge to a Nash equilibrium
(NE) of the game (Freund and Schapire, 1999). This framework can be instantiated with any regret
minimizers, for instance, online mirror descent, follow-the-regularized leader, regret matching, and
optimistic variants of these algorithms. We refer to (Hazan et al., 2016) for an extensive review on
regret minimization. From here on, we focus on solving (1) via Regret Matching+ and its variants.
To describe these algorithms, it is useful to define for a strategy x ∈ ∆d and a loss vector ℓ ∈ Rd,
the negative instantaneous regret vector f(x, ℓ) = ℓ − x⊤ℓ · 1d,2 and the normalization operator
g : Rd1

+ ×R
d2
+ → Z such that

g(z) =

(
z1
∥z1∥1

,
z2
∥z2∥1

)
,∀ z = (z1, z2) ∈ Rd1

+ ×R
d2
+ (2)

Regret Matching+ (RM+) and its variants. We describe Regret Matching+ (RM+) in Algo-
rithm 1 (Tammelin, 2014).3 It maintains two sequences: a sequence of joint aggregate payoffs
(Rt

x, R
t
y) ∈ R

d1
+ ×R

d2
+ updated using the instantaneous regret vector, and a sequence of joint strate-

gies (xt, yt) ∈ Z directly normalized from the aggregate payoff. The update rules are stepsize-free
and only perform closed-form operations (thresholding and rescaling). Predictive RM+ (PRM+,
Algorithm 2) (Farina et al., 2021) incorporates predictions of the next losses faced by each player
(using the most recent observed losses) when computing the strategies at each iteration, akin to
predictive/optimistic online mirror descent (Rakhlin and Sridharan, 2013; Syrgkanis et al., 2015). We
describe two popular variants of RM+ and PRM+, Alternating RM+ (Tammelin et al., 2015; Burch

2Here, d can be either d1 or d2. That is, we overload the notation f so its domain depends on the inputs.
3Typically, RM+ and PRM+ are introduced as regret minimizers that return a sequence of decisions against

any sequence of losses (Tammelin et al., 2015; Farina et al., 2021). For conciseness, we directly present them as
self-play algorithms for solving matrix games, as in Algorithm 1 and Algorithm 2.
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et al., 2019) and Alternating PRM+, in Appendix A. Using alternation, the updates between the two
players are asynchronous, and at iteration t, the second player observes the choice xt+1 of the first
player when choosing their own decision yt+1. Alternation leads to faster empirical performance for
solving matrix and extensive-form games, even though the theoretical guarantees remain the same as
for vanilla RM+ (Burch et al., 2019; Grand-Clément and Kroer, 2023).

Algorithm 1 Regret Matching+ (RM+)

1: Initialize: (R0
x, R

0
y) = 0, (x0, y0) ∈ Z

2: for t = 0, 1, . . . do
3: Rt+1

x = [Rt
x − f(xt, Ayt)]+

4: Rt+1
y = [Rt

y + f(yt, A⊤xt)]+

5: (xt+1, yt+1) = g(Rt+1
x , Rt+1

y )

Algorithm 2 Predictive RM+ (PRM+)

1: Initialize: (R0
x, R

0
y) = 0, (x0, y0) ∈ Z

2: for t = 0, 1, . . . do
3: Rt+1

x = [Rt
x − f(xt, Ayt)]+

4: Rt+1
y = [Rt

y + f(yt, A⊤xt)]+

5: (xt+1, yt+1) = g([Rt+1
x −f(xt, Ayt)]+, [Rt+1

y +

f(yt, A⊤xt)]+)

Despite its strong empirical performance, it is unknown if alternating PRM+ enjoys ergodic con-
vergence. In contrast, based on the aforementioned folk theorem and the regret guarantees of
RM+ (Tammelin, 2014), alternating RM+ (Burch et al., 2019), and PRM+ (Farina et al., 2021), the
duality gap of the average strategy of all these algorithms goes down at a rate of O(1/

√
T ). However,

we will show in the next section that the iterates (xt, yt) themselves may not converge. We also note
that despite the connections between PRM+ and predictive online mirror descent, PRM+ does not
achieve O(1/T ) ergodic convergence, because of its lack of stability (Farina et al., 2023).

Extragradient RM+ and Smooth Predictive RM+ We now describe two theoretically-faster
variants of RM+ recently introduced in Farina et al. (2023). To provide a concise formulation,
we first need some additional notation. First, we define the clipped positive orthant ∆di

≥ := {u ∈
R

di
+ : u⊤1di

≥ 1} for i = 1, 2 and Z≥ = ∆d1

≥ × ∆d2

≥ . For a point z ∈ Z≥, we often write it as
z = (Rx,Qy) for positive real numbers R and Q such that (x, y) = g(z). Moreover, we define the
operator F : Z≥ → Rd1+d2 as follows: for z ∈ Z≥, let (x, y) = g(z) and

F (z) =

[
f(x,Ay)

f(y,−A⊤x)

]
=

[
Ay − x⊤Ay · 1d1

−A⊤x+ x⊤Ay · 1d2

]
(3)

Note that F is Lipschitz continuous over Z≥ with LF =
√
6∥A∥op max{d1, d2} (Farina et al., 2023),

but F is not Lipschitz continuous over the larger set Rd1+d2
+ , as we show in Appendix B. This is

because in the expression of F (z) as in (3), x and y are the ℓ1 normalization of the first and second
components of z (see the definition of g as in (2)), and the function z 7→ g(z) is badly behaved and
may vary rapidly when z ∈ Rd1+d2

+ is close to the origin. We also write ΠZ≥(u) for the projection
onto Z≥ of the vector u: ΠZ≥(u) = argminz′∈Z≥ ∥z′ − u∥2. With these notations, Extragradient
RM+ (ExRM+) and Smooth PRM+ (SPRM+) are defined in Algorithm 3 and in Algorithm 4.

Algorithm 3 Extragradient RM+ (ExRM+)

1: Input: Step size η ∈ (0, 1
LF

).
2: Initialize: z0 ∈ Z
3: for t = 0, 1, . . . do
4: zt+1/2 = ΠZ≥ (zt − ηF (zt))

5: zt+1 = ΠZ≥

(
zt − ηF (zt+1/2)

)

Algorithm 4 Smooth PRM+ (SPRM+)

1: Input: Step size η ∈ (0, 1
8LF

].
2: Initialize: z−1 = w0 ∈ Z
3: for t = 0, 1, . . . do
4: zt = ΠZ≥

(
wt − ηF (zt−1)

)
5: wt+1 = ΠZ≥ (wt − ηF (zt))

ExRM+ is connected to the Extragradient (EG) algorithm (Korpelevich, 1976) and SPRM+ is
connected to the Optimistic Gradient (OG) algorithm (Popov, 1980; Rakhlin and Sridharan, 2013)
(see Section 4 and Section 5 for details). Farina et al. (2023) show that ExRM+ and SPRM+ enjoy
fast O( 1

T ) convergence (for the average of the iterates) for solving matrix games, but since the regret
operator F is not monotone, existing results for the convergence of EG and Optimistic Gradient
on monotone games Cai et al. (2022) do not apply, and nothing is known about the last-iterate
convergence properties of ExRM+ and SPRM+.
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3 NON-CONVERGENCE OF RM+, ALTERNATING RM+, AND PRM+

In this section, we show empirically that several existing variants of RM+ may not converge in
iterates. Specifically, we numerically investigate four algorithms—RM+, alternating RM+, PRM+,
and alternating PRM+—on a simple 3× 3 game matrix A = [[3, 0,−3], [0, 3,−4], [0, 0, 1]] that has
the unique Nash equilibrium (x⋆, y⋆) = ([ 1

12 ,
1
12 ,

5
6 ], [

1
3 ,

5
12 ,

1
4 ]). The same instance was also used

in (Farina et al., 2023) to illustrate the instability of PRM+ and slow ergodic convergence of RM+ and
PRM+. The results are shown in Figure 1. We observe that for RM+, alternating RM+, and PRM+,
the duality gap remains on the order of 10−1 even after 105 iterations, which also suggests that these
algorithms do not enjoy any best-iterate convergence properties. Our empirical findings are in line
with Theorem 3 of Lee et al. (2021), who pointed out that RM+ diverges on the rock-paper-scissors
game. In contrast, alternating PRM+ enjoys good last-iterate convergence properties on this instance.
Overall, our empirical results suggest that RM+, alternating RM+, and PRM+ all fail to converge in
iterates, even when the game has a unique Nash equilibrium, a more regular and benign setting than
the general case. To illustrate their non-converging properties, we provide the plots of the last iterates
of RM+, alternating RM+, PRM+ after 105 iterations in Appendix C.

101 102 103 104 105

Number of iterations

10−10
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10−1

D
ua

lit
y

ga
p

RM+

PRM+

alt. RM+

alt. PRM+

Figure 1: Duality gap of the current
iterates generated by RM+, PRM+,
and their alternating variants on the
zero-sum game with payoff matrix
A = [[3, 0,−3], [0, 3,−4], [0, 0, 1]].

We complement our empirical non-convergence results by
showing that RM+ has asymptotic convergence under the re-
strictive assumption that the game has a strict NE. To our
knowledge, this is the first positive last-iterate convergence
result related to RM+. In a strict NE (x⋆, y⋆), x⋆ is the unique
best-response to y⋆ and vice versa.
Theorem 1 (Convergence of RM+ to Strict NE). If a ma-
trix game has a strict Nash equilibrium (x⋆, y⋆), RM+ (Algo-
rithm 1) converges in last-iterate, that is, limt→∞{(xt, yt)} =
(x⋆, y⋆).

The assumption of strict NE in Theorem 1 cannot be weakened
to the assumption of a unique, non-strict NE, as our empirical
counterexample shows. Despite the isolated positive result
given in Theorem 1 (under a very strong assumption that we
do not expect to hold in practice), the negative empirical results
from Figure 1 paint a bleak picture of the last-iterate conver-
gence of unmodified regret-matching algorithms. This sets the stage for the rest of the paper, where
we will show unconditional last-iterate convergence of SPRM+ and ExRM+.

4 CONVERGENCE PROPERTIES OF EXRM+

In this section, we study ExRM+, an algorithm proposed by (Farina et al., 2023). Although ExRM+

lacks the no-regret property in the adversarial setting, understanding its performance is crucial due to
its similarity to the important optimization algorithm EG. We show that ExRM+ exhibits favorable
last-iterate properties. We start by showing convergence in duality gap, and strengthen the result to
convergence in iterates in Section 4.1. Then, in Section 4.2, we provide a concrete rate of O(1/

√
T )

for the best iterate, based on which we finally show a linear last-iterate convergence rate using a
restarting mechanism in Section 4.3. All omitted proofs for this section can be found in Appendix F.
In Section 5, we study SPRM+, a regret minimizer in adversarial settings, and show similar results.

ExRM+ (Algorithm 3) is equivalent to the Extragradient (EG) algorithm of Korpelevich (1976) for
solving a variational inequality VI(Z≥, F ). For a closed convex set S ⊆ Rn and an operator G :
S → Rn, the variational inequality problem VI(S, G) is to find z ∈ S , such that ⟨G(z), z − z′⟩ ≤ 0
for all z′ ∈ S . We denote SOL(S, G) the solution set of VI(S, G). For any solution z of VI(Z≥, F ),
the strategy profile after ℓ1-normalization (x, y) = g(z) is a Nash equilibrium of the matrix game A.
The last-iterate properties of EG are known in several settings, including:

1. If G is Lipschitz and pseudo monotone with respect to the solution set SOL(S, G), i.e.,
∀ z⋆ ∈ SOL(S, G),∀ z ∈ S, ⟨G(z), z − z⋆⟩ ≥ 0 (4)

then iterates produced by EG converge to a solution of VI(S, G) (Facchinei and Pang, 2003,
Ch. 12);
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2. If G is Lipschitz and monotone, i.e.

∀ z, z′ ∈ S, ⟨G(z)−G(z′), z − z′⟩ ≥ 0 (5)

then iterates {zt} produced by EG have O( 1√
t
) last-iterate convergence such that

⟨G(zt), zt − z⟩ ≤ O( 1√
t
) for all z ∈ S (Golowich et al., 2020; Gorbunov et al., 2022a;

Cai et al., 2022).

Unfortunately, these results do not apply directly to our case: although the operator F (as defined
in Equation (3)) is LF -Lipschitz-continuous over Z≥, it is not monotone or even pseudo monotone
with respect to SOL(Z≥, F ), as we show in Appendix D. However, F satisfies the Minty condition:

∃ z⋆ ∈ SOL(Z≥, F ),∀ z ∈ Z≥, ⟨F (z), z − z⋆⟩ ≥ 0. (6)

The Minty condition is weaker than pseudo monotonicity (4) (note the different quantifiers ∀ and ∃
for z⋆ in the two conditions). We now show that F satisfies the Minty condition.
Lemma 1. For any Nash equilibrium z⋆ ∈ Z , ⟨F (z), z − az⋆⟩ ≥ 0 holds for all a ≥ 1.

We are now ready to show convergence in duality gap for the iterates produced by ExRM+, which is
weaker than convergence in iterates, studied in the next subsection. Our analysis follows from some
results in Facchinei and Pang (2003), stated for the case of pseudomonotonicity, but extending for the
Minty condition.
Lemma 2 (Adapted from Lemma 12.1.10 in (Facchinei and Pang, 2003)). Let z⋆ ∈ Z≥ be a point
such that ⟨F (z), z − z⋆⟩ ≥ 0 for all z ∈ Z≥. Let {zt} be the sequence produced by ExRM+. Then

∥zt+1 − z⋆∥2 ≤ ∥zt − z⋆∥2 − (1− η2L2
F )∥zt+

1
2 − zt∥

2
,∀ t ≥ 0.

Lemma 2 shows that the sequence {zt} is bounded, so it has at least one limit point ẑ ∈ Z≥
by compactness.4 Using Lemma 2 and minor modifications to the proof of Theorem 12.1.11
in Facchinei and Pang (2003), the next lemma shows that every limit point ẑ of {zt} lies in
SOL(Z≥, F ) and thus induces a Nash equilibrium. Moreover, limt→∞ ∥zt − zt+1∥ = 0 and
limt→∞ DualityGap(g(zt)) = 0.
Lemma 3. Let {zt} be the iterates produced by ExRM+. Then the following holds:

1. limt→∞ ∥zt − zt+1∥ = 0.
2. If ẑ is a limit point of {zt}, then ẑ ∈ SOL(Z≥, F ).
3. limt→∞ DualityGap(g(zt)) = 0.

As shown in Lemma 3, for an operator that only satisfies the Minty condition, classical analysis yields
asymptotic convergence in duality gap.

4.1 CONVERGENCE OF THE ITERATES

Convergence in the Duality Gap Does Not Rule Out Cycling. Convergence in the duality gap only
implies that the trajectory {zt} converges to the set of solutions but does not guarantee convergence
in iterates, i.e., that limt→∞ zt exists and is a solution. Even when combined with the conditions
limt→∞ ∥zt − zt+1∥ = 0 and limt→∞ DualityGap(g(zt)) = 0 (Lemma 3), we cannot conclude
that the trajectory {zt} converges to a single point. It is possible for the trajectory to cycle around the
set of Nash equilibria without ever converging to a single point. Specifically, these two conditions
do not exclude the possibility that the per-iteration movement ∥zt − zt+1∥ vanishes (e.g., at a rate
O( 1

ta ) for some 0 < a ≤ 1), while the total movement
∑∞

t=1 ∥zt − zt+1∥ diverges to infinity.

Geometric Structure of Limit Points To show the strong last-iterate convergence in the iterate
property, we make new observations on the structure of the solution set and provide characterizations
of the learning dynamics’ limit points. First, the sequence {zt} has at least one limit point ẑ ∈
SOL(Z≥, F ). If ẑ is the unique limit point, then {zt} converges to ẑ. In the next proposition, we
provide another condition on the limit point under which {zt} converges.
Proposition 1. If the iterates {zt} produced by ExRM+ have a limit point ẑ such that ẑ = az⋆ for
z⋆ ∈ Z and a ≥ 1 (equivalently, colinear with a pair of strategies), then {zt} converges to ẑ.

4A limit point of a sequence is the limit of one of its subsequences.

6



Published as a conference paper at ICLR 2025

However, the condition of Proposition 1 may not hold in general, and we empirically observe in
experiments that it is not uncommon for the limit point ẑ = (Rx̂,Qŷ) to have R ̸= Q. To proceed, we
will use the observation that the only “bad” case that prevents us from proving convergence of {zt} is
that {zt} has infinitely-many limit points (note that the number of solutions |SOL(Z≥, F )| is indeed
infinite). This is because if {zt} has a finite number of limit points, then since limt→∞ ∥zt+1 − zt∥ =
0 (Lemma 3), it must have a unique limit point (see a formal proof in Proposition 3). In the
following, to show that it is impossible that {zt} has infinitely many limit points, we first prove
a lemma showing the structure of limit points of {zt}. We illustrate this lemma in Figure 2.5

z⋆

az⋆az⋆

ẑ̂z

z̃̃z

Figure 2: Pictorial il-
lustration of Lemma 4.

Lemma 4 (Structure of Limit Points). Let {zt} be the iterates produced by
ExRM+ and z⋆ ∈ ∆d1 ×∆d2 be any Nash equilibrium of A. If ẑ and z̃ are
two limit points of {zt}, then the following holds.

1. ∥az⋆ − ẑ∥2 = ∥az⋆ − z̃∥2 for all a ≥ 1.
2. ∥ẑ∥2 = ∥z̃∥2.
3. ⟨z⋆, ẑ − z̃⟩ = 0.

Proof. Let {ki ∈ Z} be an increasing sequence of indices such that {zki}
converges to ẑ and {li ∈ Z} be an increasing sequence of indices such that
{zli} converges to z̃. Let σ : {ki} → {li} be a mapping that always maps
ki to a larger index in {li}, i.e. σ(ki) > ki. Such a mapping clearly exists.
Since Lemma 2 applies to az⋆ for any a ≥ 1, we get

∥az⋆ − ẑ∥2 = lim
i→∞

∥∥az⋆ − zki
∥∥2 ≥ lim

i→∞

∥∥∥az⋆ − zσ(ki)
∥∥∥2 = ∥az⋆ − z̃∥2.

By symmetry, the other direction also holds. Thus ∥az⋆ − ẑ∥2 = ∥az⋆ − z̃∥2 for all a ≥ 1.
Expanding ∥az⋆ − ẑ∥2 = ∥az⋆ − z̃∥2 gives ∥ẑ∥2 − ∥z̃∥2 = 2a⟨z⋆, ẑ − z̃⟩ for all a ≥ 1. It implies
that ∥ẑ∥2 = ∥z̃∥2 and ⟨z⋆, ẑ − z̃⟩ = 0.

We are now ready to show that {zt} necessarily has a unique limit point.
Lemma 5 (Unique limit point). The sequence {zt} produced by ExRM+ has a unique limit point.

Proof. For the sake of contradiction, let ẑ = (R̂x̂, Q̂ŷ) and z̃ = (R̃x̃, Q̃ỹ) be any two distinct limit
points of {zt}. We first prove a key equality R̂+ R̃ = Q̂+ Q̃ by considering two cases.

• Case 1: ẑ = (R̂x⋆, Q̂y⋆) and z̃ = (R̃x⋆, Q̃y⋆) for a Nash equilibrium z⋆ = (x⋆, y⋆). Part 2 of
Lemma 4 gives ∥ẑ∥2 = ∥z̃∥2 ⇒ (R̂2 − R̃2)∥x⋆∥2 = (Q̃2 − Q̂2)∥y⋆∥2. Part 3 of Lemma 4 gives
⟨z⋆, ẑ − z̃⟩ = 0⇒ (R̂− R̃)∥x⋆∥2 = (Q̃− Q̂)∥y⋆∥2. Combining the above two equalities with the
fact that ẑ ̸= z̃, we get R̂+ R̃ = Q̂+ Q̃.

• Case 2: ẑ = (R̂x̂, Q̂ŷ) and z̃ = (R̃x̃, Q̃ỹ) for different Nash equilibria (x̂, ŷ) and (x̃, ỹ). Since
both (x̂, ŷ) and (x̃, ỹ) are Nash equilibrium (Lemma 3), we have (x̂, ỹ) is also a Nash equilibrium by
exchangeability of Nash equilibria in zero-sum games. By Lemma 4, we have the following equalities

1. ∥ẑ∥2 = ∥z̃∥2⇒ R̂2∥x̂∥2 − R̃2∥x̃∥2 = Q̃2∥ỹ∥2 − Q̂2∥ŷ∥2

2. 0 = ⟨(x̂, ŷ), ẑ − z̃⟩ = R̂∥x̂∥2 − R̃⟨x̂, x̃⟩+ Q̂∥ŷ∥2 − Q̃⟨ŷ, ỹ⟩
3. 0 = ⟨(x̃, ỹ), ẑ − z̃⟩ = R̂⟨x̂, x̃⟩ − R̃∥x̃∥2 + Q̂⟨ŷ, ỹ⟩ − Q̃∥ỹ∥2

4. 0 = ⟨(x̂, ỹ), ẑ − z̃⟩ = R̂∥x̂∥2 − R̃⟨x̂, x̃⟩+ Q̂⟨ŷ, ỹ⟩ − Q̃∥ỹ∥2

Combing the last three equalities gives

c := R̂∥x̂∥2− R̃⟨x̂, x̃⟩ = R̂⟨x̂, x̃⟩− R̃∥x̃∥2, and − c = Q̂∥ŷ∥2− Q̃⟨ŷ, ỹ⟩ = Q̂⟨ŷ, ỹ⟩− Q̃∥ỹ∥2.

Further combining the first equality gives

(R̂+ R̃)c+ (Q̂+ Q̃)(−c)
= R̂(R̂∥x̂∥2 − R̃⟨x̂, x̃⟩) + R̃(R̂⟨x̂, x̃⟩ − R̃∥x̃∥2) + Q̂(Q̂∥ŷ∥2 − Q̃⟨ŷ, ỹ⟩) + Q̃(Q̂⟨ŷ, ỹ⟩ − Q̃∥ỹ∥2)

5We draw z⋆ in a simplex only as a simplified illustration—technically z⋆ should be from the Cartesian
product of two simplices instead.
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= R̂2∥x̂∥2 − R̃2∥x̃∥2 − Q̃2∥ỹ∥2 + Q̂2∥ŷ∥2 = 0.

If c ̸= 0, then we get R̂+R̃ = Q̂+Q̃. If c = 0, then R̂R̃∥x̂∥2∥x̃∥2 = R̂R̃⟨x̂, x̃⟩2 and Q̂Q̃∥ŷ∥2∥ỹ∥2 =

Q̂Q̃⟨ŷ, ỹ⟩2 gives the equality condition of Cauchy-Schwarz inequality and we get x̂ = x̃ and ŷ = ỹ.
This reduced to Case 1 where we know R̂ + R̃ = Q̂ + Q̃ holds. This completes the proof of
R̂+ R̃ = Q̂+ Q̃.

Note that R̂+ R̃ = Q̂+ Q̃ must hold for any two distinct limit points ẑ and z̃ of {zt}. If R̂ = Q̂, then
ẑ = R̂(x̂, ŷ) is colinear with a Nash equilibrium (x̂, ŷ) and by Proposition 1, {zt} converges to ẑ and
ẑ is the unique limit point. If R̂ ̸= Q̂, we argue that ẑ and z̃ are the only two possible limit points. To
see why, let us suppose that there exists another limit point z = (Rx,Qy) distinct from ẑ and z̃. If
R = R̂, then by R+ R̃ = Q+ Q̃, we know Q = Q̂. However, R+ R̂ = 2R̂ ̸= 2Q̂ = Q+ Q̂ gives
a contradiction to the equality R̂+ R̃ = Q̂+ Q̃ we just proved. If R ̸= R̂, then combing

R̂+R = Q̂+Q, R̃+R = Q̃+Q, R̂+ R̃ = Q̂+ Q̃

gives R̂− Q̂ = Q−R = R̃− Q̃ = Q̂− R̂. Thus, we have R̂ = Q̂, and it contradicts the assumption
that R̂ ̸= Q̂. Now we conclude that {zt} has at most two distinct limit points which means {zt} has
a unique limit point given the fact that {zt} is bounded and limt→∞ ∥zt+1 − zt∥ = 0.

Our main result now follows from Lemma 3 and Lemma 5. To our knowledge, this is the first last-
iterate convergence result for a variational inequality problem satisfying only the Minty condition.
Theorem 2 (Last-Iterate Convergence of ExRM+). Let {zt} be the sequence produced by ExRM+,
then {zt} converges to z⋆ ∈ Z≥ with g(z⋆) = (x⋆, y⋆) ∈ ∆d1 ×∆d2 being a Nash equilibrium.

4.2 BEST-ITERATE CONVERGENCE RATE OF EXRM+

We now prove an O( 1√
T
) best-iterate convergence rate of ExRM+. The following key lemma relates

the duality gap of a pair of strategies (xt+1, yt+1) and the distance ∥zt+ 1
2 − zt∥.

Lemma 6. Let {zt} be iterates produced by ExRM+ and (xt+1, yt+1) = g(zt+1). Then

DualityGap(xt+1, yt+1) ≤ 12∥zt+1
2 −zt∥
η .

Now combining Lemma 2 and Lemma 6, we conclude the following best-iterate convergence rate.
Theorem 3. Let {zt} be the sequence produced by ExRM+ with initial point z0. Then for any
Nash equilibrium z⋆, any T ≥ 1, there exists t ≤ T with (xt, yt) = g(zt) and, for η = 1√

2LF
,

DualityGap(xt, yt) ≤ 24LF ∥z0−z⋆∥√
T

.

Proof. Fix a NE z⋆. From Lemma 2,
∑T−1

t=0 ∥zt+
1
2 − zt∥

2
≤ ∥z0−z⋆∥2

1−η2L2
F
. This implies that ∃ t ≤ T−1

such that ∥zt+ 1
2 − zt∥ ≤ ∥z0−z⋆∥√

T
√

1−η2L2
F

. We then get the result by applying Lemma 6.

4.3 LINEAR LAST-ITERATE CONVERGENCE FOR EXRM+ WITH RESTARTS

In this section, based on the best-iterate convergence result from the last section, we further provide a
simple restarting mechanism under which ExRM+ enjoys linear last-iterate convergence. To show
this, we recall that zero-sum matrix games satisfy the following metric subregularity condition.
Proposition 2 (Metric Subregularity (Wei et al., 2021)). Let A ∈ Rd1×d2 be a matrix game.
There exists a constant c > 0 (only depending on A) such that for any z = (x, y) ∈ ∆d1 × ∆d2 ,
DualityGap(x, y) ≥ c∥z −ΠZ⋆ [z]∥ where Z⋆ denotes the set of all Nash equilibria.

Together with Theorem 3 (with η = 1√
2LF

), we obtain that for any T ≥ 1, there exists 1 ≤ t ≤ T

such that ∥(xt, yt)−ΠZ⋆ [(xt, yt)]∥ ≤ DualityGap(xt,yt)
c ≤ 24LF

c
√
T
· ∥z0 −ΠZ⋆ [z0]∥. This inequality

further implies that if T ≥ 482L2
F

c2 , then there exists 1 ≤ t ≤ T such that∥∥(xt, yt)−ΠZ⋆ [(xt, yt)]
∥∥ ≤ 1

2

∥∥z0 −ΠZ⋆ [z0]
∥∥.
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Therefore, after at most a constant number of iterations (smaller than 482L2
F

c2 ), the distance of the best-
iterate (xt, yt) to the equilibrium set Z⋆ is halved compared to that of the initial point. If we could
somehow identify this best iterate, then we just need to restart the algorithm with this best iterate as the
next initial strategy. Repeating this would then lead to a linear last-iterate convergence. The issue in
this argument above is that we cannot exactly identify the best iterate since ∥(xt, yt)−ΠZ⋆ [(xt, yt)]∥
is unknown. However, we use ∥zt+ 1

2 − zt∥ as a proxy, since∥∥(xt, yt)−ΠZ⋆ [(xt, yt)]
∥∥ ≤ 1

c
DualityGap(xt, yt) ≤ 12∥zt+ 1

2 − zt∥
cη

by Lemma 6. This motivates the design of Restarting ExRM+ (RS-ExRM+, Algorithm 5), which
restarts for the k-th time if ∥zt+ 1

2 − zt∥ is less than O( 1
2k
). Importantly, RS-ExRM+ does not require

knowing the value of c, the constant in the metric subregularity condition, which can be hard to
compute. The main result of this section is the following linear convergence rates of RS-ExRM+.

Algorithm 5 Restarting ExRM+ (RS-ExRM+)

1: Input: Step size η ∈ (0, 1
LF

), ρ > 0.

2: Initialize: z0 ∈ Z , k = 1
3: for t = 0, 1, . . . do
4: zt+1/2 = ΠZ≥ (zt − ηF (zt))

5: zt+1 = ΠZ≥

(
zt − ηF (zt+1/2)

)
6: if ∥zt+1/2 − zt∥ ≤ ρ/2k then
7: zt+1 ← g(zt+1) ∈ ∆d1 ×∆d2

8: k ← k + 1

Algorithm 6 Restarting SPRM+ (RS-SPRM+)

1: Input: Step size η ∈ (0, 1
8LF

].
2: Initialize: z−1 = w0 ∈ Z, k = 1
3: for t = 0, 1, . . . do
4: zt = ΠZ≥

(
wt − ηF (zt−1)

)
5: wt+1 = ΠZ≥ (wt − ηF (zt))

6: if ∥wt+1 − zt∥+ ∥wt − zt∥ ≤ 8/2k then
7: zt, wt+1 ← g(wt+1) ∈ ∆d1 ×∆d2

8: k ← k + 1

Theorem 4 (Linear Last-Iterate Convergence of RS-ExRM+). Let {zt} be the sequence produced by
RS-ExRM+ with constant step size η and let ρ = 4√

1−η2L2
F

. For any t ≥ 1, the iterate (xt, yt) =

g(zt) satisfies DualityGap(xt, yt) ≤ c · α · (1− β)t where α = 576
c2η2(1−η2L2

F )
and β = 1

3(1+α) .

Proof sketch. Let tk be the iteration where the k-th restart happens. From the restart condition and
Lemma 6, at iteration tk, the duality gap of (xtk , ytk) and its distance to Z⋆ is at most O( 1

2k
). For

iterate t ∈ [tk, tk+1] at which the algorithm does not restart, we can use Theorem 3 to show that its
performance is not much worse than that of (xtk , ytk). Then we prove tk+1− tk is upper bounded by
a constant for every k, which leads to a linear last-iterate convergence rate for all iterations t ≥ 1.

5 LAST-ITERATE CONVERGENCE OF SPRM+

In this section we study SPRM+ (Algorithm 4), an important variant of RM+ based on OG. For the
sake of conciseness, we only state the main results here. The proofs are presented in Appendix G.
Theorem 5 (Asymptotic Last-Iterate Convergence of SPRM+). Let {wt} and {zt} be the sequences
produced by SPRM+, then {wt} and {zt} are bounded and both converge to z⋆ ∈ Z≥ with g(z⋆) =
(x⋆, y⋆) ∈ ∆d1 ×∆d2 being a Nash equilibrium of the matrix game A.
Theorem 6 (Best-Iterate Convergence Rate of SPRM+). Let {wt} and {zt} be the sequences
produced by SPRM+. For any Nash equilibrium z⋆, any T ≥ 1, there exists 1 ≤ t, t′ ≤ T such
that the iterate g(wt), g(zt

′
) ∈ ∆d1 × ∆d2 satisfy DualityGap(g(wt)) ≤ 10∥w0−z⋆∥

η
1√
T
, and

DualityGap(g(zt)) ≤ 18∥w0−z⋆∥
η

1√
T
.

We apply the idea of restarting to SPRM+ to design a new algorithm called Restarting SPRM+(RS-
SPRM+; see Algorithm 6) with provable linear last-iterate convergence.
Theorem 7 (Linear Last-Iterate Convergence of RS-SPRM+). Let {wt} and {zt} be the sequences
produced by RS-SPRM+ with constant step size η. Let α = 400

c2η2 and β = 1
3(1+α) . For t ≥ 1, the

iterates g(wt), g(zt) ∈ Z satisfy DualityGap(g(wt)) ≤ c · α · (1− β)t and DualityGap(g(zt)) ≤
2c · α · (1− β)t.
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Figure 3: Empirical performances of several algorithms on the 3× 3 matrix game (left plot), Kuhn
poker and Goofspiel (center plots), and random instances (right plot).

6 NUMERICAL EXPERIMENTS

The goal in this section is to verify numerically our theoretical findings from the previous sections,
pertaining to the lack of convergence properties of RM+, PRM+ and to the convergence properties
of ExRM+ and SPRM+. For the sake of completeness, we also show the performances of the
extragradient algorithm (EG) and optimistic gradient descent (OG) Cai et al. (2022). We use the
3 × 3 matrix game instance from Section 3, the normal-form representations of Kuhn poker and
Goofspiel, as well as 25 random matrix games of size (d1, d2) = (10, 15) (for which we average
the duality gaps across the instances and show the associated confidence intervals). More details on
the games and on EG and OG can be found in Appendix H. For the algorithms requiring a stepsize
(ExRM+, SPRM+, EG and OG), we choose the best stepsizes η ∈ {1, 10−1, 10−2, 10−3, 10−4}.
We initialize all algorithms at ((1/d1)1d1 , (1/d2)1d2). In every iteration, we plot the duality gap
of (xt, yt) for RM+, PRM+, and alternating PRM+; the duality gap of g(zt) for ExRM+; the
duality gap of g(wt) for SPRM+; and the duality gap of zt in EG and OG. The results are shown
in Figure 3. To avoid issues with numerical precisions, we set a lower threshold of 10−10 for the
duality gaps displayed in all the figures in this paper, including Figure 1 and the additional numerical
results in the appendices. For the small matrix game, alternating PRM+, ExRM+, and SPRM+

achieve machine precision after 103 iterations (while other RM-based algorithms stay around 10−1

as discussed earlier), slightly faster than EG and OG. On Kuhn poker, PRM+ and alternating PRM+

have faster convergence early, but later all algorithms perform on par (except RM+). On Goofspiel,
all algorithms (except RM+) have comparable performance after 105 iterations, except EG which
achieves machine precision. Finally, on random instances, the last iterate performance of ExRM+,
SPRM+, and EG vastly outperform RM+, PRM+, and alternating RM+, but we note that alternating
PRM+ outperforms all other algorithms. OG appears to be slow on these instances. We include
additional experiments studying the best-iterate performances in Appendix H.4. They corroborate
our theoretical findings of a O(1/

√
T ) best-iterate convergence rates for ExRM+ (Theorem 3) and

SPRM+ (Theorem 6).

Overall, these empirical results are consistent with, and validate, our theoretical findings of ExRM+

and SPRM+. That said, understanding the good practical performance of alternating PRM+ (an
algorithm for which neither ergodic nor last-iterate convergence guarantees are known) remains
open. We also numerically investigate the impact of restarting for RS-ExRM+ and RS-SPRM+ (see
Appendix H), where we note that both algorithms achieve linear last-iterate convergence (Theorem 4
and 7) and are faster than their non-restarting counterparts on some instances.

7 CONCLUSIONS

In this paper, we investigate the last-iterate convergence properties of regret-matching algorithms, a
class of popular methods for equilibrium computation in games. Despite these methods enjoying
strong average performance in practice, we show that, unfortunately, many practically-used variants
might not converge. Motivated by these findings, we set out to investigate variants with provable
last-iterate convergence, establishing a suite of new results by using techniques from the literature on
variational inequalities. For a restarted variant of these algorithms, we were able to prove, for the first
time for regret matching algorithms, linear last-iterate convergence rates. Several questions remain
open, including giving concrete rates for (non-restarted) ExRM+, SPRM+, and alternating PRM+.
Another open problem is understanding if our results extend to the case of solving EFGs with RM+

via the CFR framework. However, analyzing RM+ behavior in the CFR setup is much more difficult
because even in the two-player zero-sum case, the variational inequality characterization must be
applied separately at every decision point.
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A ALTERNATING VARIANTS OF RM+

We describe the alternating variants of RM+ and Predictive RM+ in Algorithm 7 and Algorithm 8.

Algorithm 7 Alternating RM+ (alt. RM+)

1: Initialize: (R0
x, R

0
y) = 0, (x0, y0) ∈ Z

2: for t = 0, 1, . . . do
3: Rt+1

x = [Rt
x − f(xt, Ayt)]+

4: xt+1 =
Rt+1

x

∥Rt+1
x ∥1

5: Rt+1
y = [Rt

y + f(yt, A⊤xt+1)]+

6: yt+1 =
Rt+1

y

∥Rt+1
y ∥1

Algorithm 8 Alternating Predictive RM+ (alt.
PRM+)

1: Initialize: (R0
x, R

0
y) = 0, (x0, y0) ∈ Z

2: for t = 0, 1, . . . do
3: Rt+1

x = [Rt
x − f(xt, Ayt)]+

4: xt+1 =
[Rt+1

x −f(xt,Ayt)]+

∥[Rt+1
x −f(xt,Ayt)]+∥1

5: Rt+1
y = [Rt

y + f(yt, A⊤xt+1)]+

6: yt+1 =
[Rt+1

y +f(yt,A⊤xt+1)]+

∥[Rt+1
y +f(yt,A⊤xt+1)]+∥1

B NON-LIPSCHTIZNESS OF THE REGRET OPERATOR F

Here, we show that the operator F defined in (3) is not L-Lipschitz continuous overRd1+d2
+ for any

L > 0. Take any point z, z′ ∈ ∆d1 ×∆d2 and let c := ∥F (z)−F (z′)∥. Note that by definition of F
we have F (a · z) = F (z) for any a > 0. Therefore, ∥F (az)− F (az′)∥ = ∥F (z)− F (z′)∥ = c for
any a > 0, yet we can choose a > 0 small enough so that ∥az − az′∥ = a∥z − z′∥ < c/L, which
shows that F cannot be L-Lipschitz continuous, otherwise we would obtain ∥F (az)− F (az′)∥ ≤
L∥az − az′∥ < c which is a contradiction.

C DIVERGING TRAJECTORIES OF RM+, ALTERNATING RM+ AND
PREDICTIVE RM+

In this section we plot the last 2000 iterations (out of 105 iterations) of RM+, alternating RM+ and
Predictive RM+ for solving the matrix game from Figure 1. The results are presented in Figure 4,
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Figure 5 and Figure 6. Since xt ∈ ∆3 we only plot the first two components of xt and similarly for
yt ∈ ∆3.

(a) x-player. (b) y-player.

Figure 4: Last 2000 iterates of Regret Matching+ after 105 iterations for solving the matrix game
from Figure 1.

(a) x-player. (b) y-player.

Figure 5: Last 2000 iterates of Alternating Regret Matching+ after 105 iterations for solving the
matrix game from Figure 1.

(a) x-player. (b) y-player.

Figure 6: Last 2000 iterates of Predictive RM+ after 105 iterations for solving the matrix game from
Figure 1.
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D USEFUL PROPOSITIONS

Lemma 7 (Solution to VI Corresponds to Nash Equilibrium). If z ∈ SOL(Z≥, F ), then (x, y) =
g(z) is a Nash equilibrium of the matrix game A.

Proof. Since z ∈ SOL(Z≥, F ) is a solution, we have z = ΠZ≥ [z − ηF (z)] for any η > 0. Then by
Lemma 11, DualityGap(g(z)) = 0. This implies (x, y) = g(z) is a Nash equilibrium.

In the following two lemmas, we show that the gradient operator of a matrix game is always
monotone, whereas its regret operator (used in RM-type algorithm) is not monotone, or even pseudo
monotone with respect to the solution set.

Lemma 8 (Gradient Operator is Monotone). For any matrix game A ∈ Rd1×d2 , its gradient operator
G : Z = ∆d1 ×∆d2 → Rd1 ×Rd2 , defined as G(z) = [Ay,−A⊤x]⊤ for each z = (x, y) ∈ Z , is
monotone.

Proof. For any two point z = (x, y) and z′ = (x′, y′), we have

⟨G(z)−G(z′), z − z′⟩ = (x− x′)⊤Ay − x⊤A(y − y′)− (x− x′)⊤Ay′ + x′⊤A(y − y′) = 0.

Thus G is monotone over Z .

Lemma 9 (Regret Operator can be Non-Monotone). There exists a matrix game A ∈ Rd1×d2

whose regret operator F : Z≥ = ∆d1

≥ × ∆d2

≥ → R, defined as for each z = (Rx,Qy) with
x, y ∈ Z = ∆d1 ×∆d2

F (z) = F ((Rx,Qy)) =

[
f(x,Ay)

f(y,−A⊤x)

]
=

[
Ay − x⊤Ay · 1d1

−A⊤x+ x⊤Ay · 1d2

]
,

is not monotone, or even pseudo monotone w.r.t the solution set SOL(Z≥, F ).

Proof. We consider a matrix A = [[3, 1], [4, 5]] whose unique Nash equilibrium is (x∗, y∗) =
([1, 0]⊤, [1, 0]⊤). We define

• z = (x, y) = ([0, 1]⊤, [0, 1]⊤);

• z′ = (x∗, 5y∗).

Then we have
⟨F (z)− F (z′), z − z′⟩ = −4 < 0.

Thus F is not monotone over Z≥. Moreover, z′ belongs to SOL(Z≥, F ) and

⟨F (z), z − z′⟩ = −1 < 0.

Thus F is not pseudo monotone with respect to the solution set SOL(Z≥, F ). This also proves the
equivalent claim that not all solutions in SOL(Z≥, F ) satisfies the Minty condition (6).

The rest of this section consists in the proof of Proposition 3.

Proposition 3. Let S ⊆ Rn be a compact convex set and {zt ∈ S} be a sequence of points in S
such that limt→∞ ∥zt − zt+1∥ = 0, then one of the following is true.

1. The sequence {zt} has infinite limit points.

2. The sequence {zt} has a unique limit point.

Proof. We denote a closed Euclidean ball inRn as B(x, δ) := {x′ ∈ Rn : ∥x′ − x∥ ≤ δ}. For the
sake of contradiction, assume that neither of the two conditions are satisfied. This implies that the
sequence {zt} has a finite number (≥ 2) of limit points. Then there exists ϵ > 0 and two distinct
limit points ẑ1 and ẑ2 such that
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1. ∥ẑ1 − ẑ2∥ ≥ ϵ;

2. ẑ1 is the only limit point of {zt} within B(ẑ1, ϵ/2) ∩ S;

3. ẑ2 is the only limit point of {zt} within B(ẑ2, ϵ/2) ∩ S .

Given that limt→∞ ∥zt − zt+1∥ = 0, there exists T > 0 such that for any t > T , ∥zt − zt+1∥ ≤ ϵ
4 .

Now since ẑ1 and ẑ2 are limit points of {zt}, there exists sub-sequences {ztk} and {ztj} that
converges to ẑ1 and ẑ2, respectively. This means that there are infinite points from {ztk} within
B(ẑ1, ϵ/4) ∩ S and infinite points from {ztj} within B(ẑ2, ϵ/4) ∩ S. However, for t > T , there
must also be infinite points from {zt} within the region (B(ẑ1, ϵ/2)−B(ẑ1, ϵ/4))∩ S . This implies
there exists another limit point within B(ẑ1, ϵ/2) ∩ S and contradicts the assertion that ẑ1 is the only
limit point within B(ẑ1, ϵ/2) ∩ S .

E PROOF OF THEOREM 1

We remark that Theorem 1’s proof largely follows from (Meng et al., 2023) with the key observation
that the properties of strict NE suffices to adapt the analysis in (Meng et al., 2023) to zero-sum games
(not strongly-convex-strongly-concave games) with a strict NE.

Proof of Theorem 1. We will use an equivalent update rule of RM+ (Algorithm 1) proposed by Farina
et al. (2021): for all t ≥ 0, zt+1 = Π

R
d1+d2
≥0

[zt − ηF (zt)] where we use zt to denote (Rt
x, R

t
y) and

F as defined in (3). The step size η > 0 only scales the zt vector and produces the same strategies
{(xt, yt) ∈ ∆d1 × ∆d2} as Algorithm 1. In the proof, we also use the following property of the
operator F , which is weaker than Lipschitzness.

Claim 1 (Adapted from Lemma 5.7 in (Farina et al., 2023)). For a matrix game A ∈ Rd1×d2 , let
L1 = ∥A∥op

√
6max{d1, d2} with ∥A∥op := sup{∥Av∥2/∥v∥2 : v ∈ Rd2 , v ̸= 0}. Then for any

z, z′ ∈ Rd1+d2

≥0 , it holds that ∥F (z)− F (z′)∥ ≤ L1∥g(z)− g(z′)∥.

For any t ≥ 1, since zt+1 = Π
R

d1+d2
≥0

[zt − ηF (zt)], we have for any z ∈ Rd1+d2

≥0〈
zt − ηF (zt)− zt+1, z − zt+1

〉
≤ 0.

⇒
〈
zt − zt+1, z − zt

〉
≤ −

〈
zt − zt+1, zt − zt+1

〉
+
〈
ηF (zt), z − zt+1

〉
. (7)

By three-point identity, we have∥∥zt+1 − z
∥∥2 =

∥∥zt − z
∥∥2 + ∥∥zt+1 − zt

∥∥2 + 2
〈
zt − zt+1, z − zt

〉
≤
∥∥zt − z

∥∥2 − ∥∥zt+1 − zt
∥∥2 + 2

〈
ηF (zt), z − zt+1

〉
. (by (7))

We define kt := argmink≥1 ∥zt − kz⋆∥. With z = ktz⋆, the above inequality is equivalent to∥∥zt+1 − ktz⋆
∥∥2 + 2η

〈
F (z⋆), zt+1

〉
≤
∥∥zt − ktz⋆

∥∥2 + 2η
〈
F (z⋆), zt

〉
−
∥∥zt+1 − zt

∥∥2 + 2η
〈
F (zt)− F (z⋆), zt − zt+1

〉
+ 2η

〈
F (zt), ktz⋆

〉
(We use ⟨F (zt), zt⟩ = 0)

≤
∥∥zt − ktz⋆

∥∥2 + 2η
〈
F (z⋆), zt

〉
+ η2

∥∥F (zt)− F (z⋆)
∥∥2 + 2η

〈
F (zt), ktz⋆

〉
(−a2 + 2ab ≤ b2)

≤
∥∥zt − ktz⋆

∥∥2 + 2η
〈
F (z⋆), zt

〉
+ η2L2

1

∥∥(xt, yt)− z⋆
∥∥2 + 2η

〈
F (zt), ktz⋆

〉
.

Since z⋆ = (x⋆, y⋆) is a strict Nash equilibrium, by Lemma 10, there exists a constant c > 0 such
that

2η
〈
F (zt), ktz⋆

〉
= −2ηkt

(
(xt)⊤Ay⋆ − (x⋆)⊤Ayt

)
≤ −2ηckt

∥∥(xt, yt)− z⋆
∥∥2

≤ −2ηc
∥∥(xt, yt)− z⋆

∥∥2,
17
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where in the last inequality, we use kt ≥ 1 by definition. Thus, combining the above two inequalities
gives∥∥zt+1 − ktz⋆

∥∥2 + 2η
〈
F (z⋆), zt+1

〉
≤
∥∥zt − ktz⋆

∥∥2 + 2η
〈
F (z⋆), zt

〉
+ (η2L2

1 − 2ηc)
∥∥(xt, yt)− z⋆

∥∥2.
Using definition of kt+1 and choosing η < c

L2
1

, we have 2ηc− η2L2
1 > 0 and

(2ηc−η2L2
1)
∥∥(xt, yt)− z⋆

∥∥2 ≤ ∥∥zt − ktz⋆
∥∥2+2η

〈
F (z⋆), zt

〉
−
∥∥zt+1 − kt+1z⋆

∥∥2−2η〈F (z⋆), zt+1
〉
.

Telescoping the above inequality for t ∈ [1, T ] gives

(2ηc− η2L2
1)

T∑
t=1

∥∥(xt, yt)− z⋆
∥∥2 ≤ ∥∥z1 − k1z⋆

∥∥2 + 2η
〈
F (z⋆), z1

〉
< +∞

It implies that the sequence {(xt, yt)} converges to z⋆. Moreover, it also gives a O( 1√
T
) best-iterate

convergence rate with respect to ∥(xt, yt)− z⋆∥2.

Lemma 10. If a matrix game A has a strict Nash equilibrium (x⋆, y⋆), then there exists a constant
c > 0 such that for any (x, y) ∈ ∆d1 ×∆d2 ,

x⊤Ay⋆ − (x⋆)⊤Ay ≥ c∥(x, y)− (x⋆, y⋆)∥2.

Proof. Since (x⋆, y⋆) is strict, it is also the unique and pure Nash equilibrium. we denote the unit
vector ei⋆ = x⋆ with i⋆ ∈ [d1]

6 and constant c1 := maxi ̸=i⋆ e
⊤
i Ay⋆ − e⊤i⋆Ay⋆ > 0. Then, by

definition, we have

x⊤Ay⋆ − (x⋆)⊤Ay⋆ =
∑
i ̸=i⋆

x[i]
(
e⊤i Ay⋆ − ei⋆Ay⋆

)
≥ c1

∑
i̸=i⋆

x[i]

=
c1
2

∑
i̸=i⋆

x[i] +
c1
2
(1− x[i⋆]) (

∑
i∈[d1]

x[i] = 1)

≥ c1
2

∑
i̸=i⋆

x[i]2 +
c1
2
(1− x[i⋆])2 (x[i] ∈ [0, 1])

=
c1
2
∥x− x⋆∥2.

Similarly, denote ej⋆ = x⋆ with j⋆ ∈ [d2] and constant c2 = (x⋆)⊤Ay⋆ −maxj ̸=j⋆(x
⋆)⊤Aej , we

get (x⋆)⊤Ay⋆ −maxj ̸=j⋆(x
⋆)⊤Ay ≥ c2

2 ∥y − y⋆∥2. Combining the two inequalities above and let
c = 1

2 min(c1, c2), we have x⊤Ay⋆ − (x⋆)⊤Ay ≥ c∥(x, y)− (x⋆, y⋆)∥2 for all (x, y).

F PROOFS FOR SECTION 4

F.1 PROOFS FOR SECTION 4

Proof of Lemma 1. Let z⋆ = (x⋆, y⋆) ∈ ∆d1 ×∆d2 be a Nash equilibrium of the matrix game. For
any z = (Rx,Qy) ∈ Z≥, using ⟨F (z), z⟩ = 0 and the definition of Nash equilibrium, we have
⟨F (z), z − az⋆⟩ = −⟨F (z), az⋆⟩ = a(x⊤Ay⋆ − (x⋆)⊤Ay) ≥ 0.

The proof of lemma 3 closely follows that of Theorem 12.1.11 in Facchinei and Pang (2003)

Proof of Lemma 3. From Lemma 2, we know

(1− η2L2
F )

∞∑
t=0

∥∥∥zt+ 1
2 − zt

∥∥∥2 ≤ ∥∥z0 − z⋆
∥∥2.

6Given a positive integer d, we denote the set {1, 2, . . . , d} by [d].
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Since 1− η2L2
F > 0, this implies

lim
t→∞

∥∥∥zt+ 1
2 − zt

∥∥∥ = 0.

Using Proposition 4, we know that ∥zt+1 − zt+
1
2 ∥ ≤ ηLF ∥zt+

1
2 − zt∥. Thus

lim
t→∞

∥∥zt+1 − zt
∥∥ ≤ lim

t→∞

∥∥∥zt+1 − zt+
1
2

∥∥∥+ ∥∥∥zt+ 1
2 − zt

∥∥∥ = lim
t→∞

(1 + ηLF )
∥∥∥zt+ 1

2 − zt
∥∥∥ = 0.

If ẑ is the limit point of the subsequence {zt : t ∈ κ}, then we must have

lim
t(∈κ)→∞

zt+
1
2 = ẑ.

By the definition of zt+
1
2 in Algorithm 3 and by the continuity of F and of the projection, we get

ẑ = lim
t(∈κ)→∞

zt+
1
2 = lim

t(∈κ)→∞
ΠZ≥

[
zt − ηF (zt)

]
= ΠZ≥ [ẑ − ηF (ẑ)].

This shows that ẑ ∈ SOL(Z≥, F ).

For the third claim, suppose for the sake of contradiction that the sequence {DualityGap(g(zt))}
does not converge to 0. Then we know that there exists a subsequence {zt : t ∈ κ} that converges to
ẑ and DualityGap(g(ẑ)) > 0. But since ẑ is a limit point of {zt}, we have ẑ ∈ SOL(Z≥, F ). Then
g(ẑ) is a Nash equilibrium and DualityGap(g(ẑ)) = 0. This gives a contradiction and we conclude
that limt→∞ DualityGap(g(zt)) = 0.

F.2 PROOFS FOR SECTION 4.1

Proof of Proposition 1. Denote by {zt}t∈κ a subsequence of {zt} that converges to ẑ. By Lemma 1,
the Minty condition holds for ẑ, so by Lemma 2, {∥zt − ẑ∥} is monotonically decreasing and
therefore converges. Since limt→∞ ∥zt − ẑ∥ = limt(∈κ)→∞ ∥zt − ẑ∥ = 0, {zt} converges to
ẑ.

Proof of Lemma 4. Let {ki ∈ Z} be an increasing sequence of indices such that {zki} converges to ẑ
and {li ∈ Z} be an increasing sequence of indices such that {zli} converges to z̃. Let σ : {ki} → {li}
be a mapping that always maps ki to a larger index in {li}, i.e. σ(ki) > ki. Such a mapping clearly
exists. Since Lemma 2 applies to az⋆ for any a ≥ 1, we get

∥az⋆ − ẑ∥2 = lim
i→∞

∥∥az⋆ − zki
∥∥2 ≥ lim

i→∞

∥∥∥az⋆ − zσ(ki)
∥∥∥2 = ∥az⋆ − z̃∥2.

By symmetry, the other direction also holds. Thus ∥az⋆ − ẑ∥2 = ∥az⋆ − z̃∥2 for all a ≥ 1.

Expanding ∥az⋆ − ẑ∥2 = ∥az⋆ − z̃∥2 gives

∥ẑ∥2 − ∥z̃∥2 = 2a⟨z⋆, ẑ − z̃⟩, ∀a ≥ 1.

It implies that ∥ẑ∥2 = ∥z̃∥2 and ⟨z⋆, ẑ − z̃⟩ = 0.

F.3 PROOFS FOR SECTION 4.2

We will need the following lemma. Recall the normalization operator g : Rd1
+ ×R

d2
+ → Z such that

for z = (z1, z2) ∈ Rd1
+ ×R

d2
+ , we have g(z) = (z1/∥z1∥1, z2/∥z2∥1) ∈ Z .

Lemma 11. Let z ∈ ∆d1 ×∆d2 and z1, z2, z3 ∈ Z≥ such that z3 = ΠZ≥ [z1 − ηF (z2)]. Denote
(x3, y3) = g(z3), then

DualityGap(x3, y3) := max
y∈∆d2

x⊤
3 Ay− min

x∈∆d1

x⊤Ay3 ≤
(∥z1 − z3∥+ ηLF ∥z3 − z2∥)(∥z3 − z∥+ 2)

η
).
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Proof of Lemma 11. Let x̂ ∈ argminx x
⊤Ay3 and ŷ ∈ argmaxy x

⊤
3 Ay. Then we have

max
y

x⊤
3 Ay −min

x
x⊤Ay3

= x⊤
3 Aŷ − x̂⊤Ay3

= −⟨F (z3), ẑ⟩

=
1

η
(⟨z1 − z3 + ηF (z3)− ηF (z2), z3 − ẑ⟩+ ⟨z1 − ηF (z2)− z3, ẑ − z3⟩)

≤ 1

η
⟨z1 − z3 + ηF (z3)− ηF (z2), z3 − ẑ⟩ (z3 = ΠZ≥ [z1 − ηF (z2)])

≤ (∥z1 − z3∥+ ηLF ∥z3 − z2∥)∥z3 − ẑ∥
η

.

Moreover, we have
∥z3 − ẑ∥ ≤ ∥z3 − z∥+ ∥z − ẑ∥ ≤ ∥z3 − z∥+ 2.

Combining the above two inequalities completes the proof.

We now show a few useful properties of the iterates.

Proposition 4. In the same setup of Lemma 2, for any t ≥ 1, the following holds.

1. ∥zt+1 − zt+
1
2 ∥ ≤ ηLF ∥zt+

1
2 − zt∥ ≤ ∥zt+ 1

2 − zt∥;

2. ∥zt+1 − zt∥ ≤ (1 + ηLF )∥zt+
1
2 − zt∥ ≤ 2∥zt+ 1

2 − zt∥.

Proof of Proposition 4. Using the update rule of ExRM+ and the non-expansiveness of the projection
operator ΠZ≥ [·] we have∥∥∥zt+1 − zt+

1
2

∥∥∥ ≤ ∥∥∥zt − ηF (zt)− (zt − ηF (zt+
1
2 ))
∥∥∥

= η
∥∥∥F (zt+

1
2 )− F (zt)

∥∥∥ ≤ ηLF

∥∥∥zt+ 1
2 − zt

∥∥∥.
Using triangle inequality, we have∥∥zt+1 − zt

∥∥ ≤ ∥∥∥zt+1 − zt+
1
2

∥∥∥+ ∥∥∥zt+ 1
2 − zt

∥∥∥ ≤ (1 + ηLF )
∥∥∥zt+ 1

2 − zt
∥∥∥.

We are now ready to prove Lemma 6.

Proof of Lemma 6. Let z⋆ be any Nash equilibrium of the game. Since zt+1 = ΠZ≥ [z
t−ηF (zt+

1
2 )],

applying Lemma 11 gives

DualityGap(xt+1, yt+1) ≤ (∥zt+1 − zt∥+ ηLF ∥zt+1 − zt+
1
2 ∥)(∥zt+1 − z⋆∥+ 2)

η

≤ 3∥zt+ 1
2 − zt∥(∥zt+1 − z⋆∥+ 2)

η
(ηLF ≤ 1 and Proposition 4)

≤ 3∥zt+ 1
2 − zt∥(∥z0 − z⋆∥+ 2)

η
(Lemma 2)

≤ 12∥zt+ 1
2 − zt∥
η

, (z0 and z⋆ are both in the simplex ∆d1 ×∆d2 )

which finishes the proof.
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F.4 PROOFS FOR SECTION 4.3

Proof of Theorem 4. We note that RS-ExRM+ always restarts in the first iteration since ∥z 1
2 − z0∥ ≤

∥z0−z⋆∥√
1−η2L2

F

≤ 2√
1−η2L2

F

. Let 1 = t1 < t2 < . . . be the iterations where the algorithm restarts with

(xtk , ytk). Using Lemma 6 and the restart condition, we know that for any k ≥ 1,

DualityGap(xtk , ytk) ≤ 12∥ztk− 1
2 − ztk−1∥
η

≤ 48

η
√

1− η2L2
F

· 1
2k∥∥(xtk , ytk)−ΠZ⋆ [(xtk , ytk)]

∥∥ ≤ DualityGap(xtk , ytk)

c
≤ 48

cη
√
1− η2L2

F

· 1
2k

.

Moreover, for any iterate t ∈ [tk + 1, tk+1 − 1], using Lemma 6, we get

DualityGap(xt, yt) ≤ 12∥zt− 1
2 − zt−1∥
η

≤ 12∥ztk −ΠZ⋆ [(xtk , ytk)]∥
η
√
1− η2L2

F

≤ 576

cη2(1− η2L2
F )
· 1
2k

.

Using metric subregularity (Proposition 2), we have for any iterate t ∈ [tk + 1, tk+1 − 1],∥∥(xt, yt)−ΠZ⋆ [(xt, yt)]
∥∥ ≤ 576

c2η2(1− η2L2
F )
· 1
2k

.

If we can prove tk+1 − tk is always bounded by a constant C ≥ 1, then tk ≤ C(k − 1) + 1 ≤ Ck.
Then for any t ≥ 1, we have t ≥ t⌊ t

C ⌋ and∥∥(xt, yt)−ΠZ⋆ [(xt, yt)]
∥∥ ≤ 576

c2η2(1− η2L2
F )
· 1

2⌊
t
C ⌋ ≤

576

c2η2(1− η2L2
F )
· 2− t

C ≤ 576

c2η2(1− η2L2
F )
· (1− 1

3C
)t.

Bounding tk+1 − tk If tk+1 − tk = 1, then the claim holds. Now we assume tk+1 − tk ≥ 2.
Before restarting, the updates of zt for tk ≤ t ≤ tk+1 − 2 is just ExRM+. By Lemma 2, we know

tk+1−2∑
t=tk

∥∥∥zt+ 1
2 − zt

∥∥∥2 ≤ ∥(xtk , ytk)−ΠZ⋆ [(xtk , ytk)]∥2

1− η2L2
F

It implies that there exists t ∈ [tk, tk+1 − 2] such that∥∥∥zt+ 1
2 − zt

∥∥∥ ≤ ∥(xtk , ytk)−ΠZ⋆ [(xtk , ytk)]∥√
1− η2L2

F

√
tk+1 − tk − 1

≤ 48

cη(1− η2L2
F )
√
tk+1 − tk − 1 · 2k

.

On the other hand, since the algorithm does not restart in [tk, tk+1 − 2], we know for every t ∈
[tk, tk+1 − 2], ∥∥∥zt+ 1

2 − zt
∥∥∥ >

4√
1− η2L2

F · 2k+1
.

Combining the above inequalities gives

tk+1 − tk − 1 ≤ 482

c2η2(1− η2L2
F )

2 · 22k
· (1− η2L2

F ) · 22k+2

16

=
482/4

c2η2(1− η2L2
F )

=
576

c2η2(1− η2L2
F )

.

Linear Last-Iterate Convergence Combing all the above, we get for all t ≥ 1,

DualityGap(xt, yt) ≤ 576

cη2(1− η2L2)
·

(
1− 1

3(1 + 576
c2η2(1−η2L2

F )
)

)t

∥∥(xt, yt)−ΠZ⋆ [(xt, yt)]
∥∥ ≤ 576

c2η2(1− η2L2)
·

(
1− 1

3(1 + 576
c2η2(1−η2L2

F )
)

)t

.

This completes the proof.
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G PROOFS FOR SECTION 5

G.1 ASYMPTOTIC CONVERGENCE OF SPRM+

In the following, we will prove last-iterate convergence of SPRM+ (Algorithm 4). The proof follows
the same idea as that of ExRM+ in previous sections. Applying standard analysis of OG, we have the
following important lemma for SPRM+.
Lemma 12 (Adapted from Lemma 1 in (Wei et al., 2021)). Let z⋆ ∈ Z≥ be a point such that
⟨F (z), z − z⋆⟩ ≥ 0 for all z ∈ Z≥. Let {zt} and {wt} be the sequences produced by SPRM+. Then
for every iteration t ≥ 0 it holds that∥∥wt+1 − z⋆

∥∥2+ 1

16

∥∥wt+1 − zt
∥∥2 ≤ ∥∥wt − z⋆

∥∥2+ 1

16

∥∥wt − zt−1
∥∥2−15

16

(∥∥wt+1 − zt
∥∥2 + ∥∥wt − zt

∥∥2).
It also implies for any t ≥ 0,∥∥wt+1 − zt

∥∥+ ∥∥wt − zt
∥∥ ≤ 2

∥∥w0 − z⋆
∥∥, ∥∥wt − zt

∥∥+ ∥∥wt − zt−1
∥∥ ≤ 2

∥∥w0 − z⋆
∥∥.

Lemma 13. Let {zt} and {wt} be the sequences produced by SPRM+, then

1. The sequences {wt} and {zt} are bounded and thus have at least one limit point.

2. If the sequence {wt} converges to ŵ ∈ Z≥, then the sequence {zt} also converges to ŵ.

3. If ŵ is a limit point of {wt}, then ŵ ∈ SOL(Z≥, F ) and g(ŵ) is a Nash equilibrium of the
game.

Proof. By Lemma 12 and the fact that w0 = z−1, we know for any t ≥ 0,∥∥wt+1 − z⋆
∥∥2 + 1

16

∥∥wt+1 − zt
∥∥2 ≤ ∥∥w0 − z⋆

∥∥2,
which implies the sequences {wt} and {zt} are bounded. Thus, both of them have at least one limit
point. By Lemma 12, we have

15

32

T∑
t=1

∥∥wt+1 − wt
∥∥2 ≤ 15

16

T∑
t=1

(∥∥wt+1 − zt
∥∥2 + ∥∥wt − zt

∥∥2) ≤ ∥∥w0 − z⋆
∥∥2+ 1

16

∥∥w0 − z−1
∥∥2.

This implies

lim
t→∞

∥∥wt+1 − wt
∥∥ = 0, lim

t→∞

∥∥wt − zt
∥∥ = 0, lim

t→∞

∥∥wt+1 − zt
∥∥ = 0.

If ŵ is the limit point of the subsequence {wt : t ∈ κ}, then we must have

lim
(t∈κ)→∞

wt+1 = ŵ, lim
(t∈κ)→∞

zt = ŵ.

By the definition of wt+1 in SPRM+ and by the continuity of F and of the projection, we get

ŵ = lim
t(∈κ)→∞

wt+1 = lim
t(∈κ)→∞

ΠZ≥

[
wt − ηF (zt)

]
= ΠZ≥ [ŵ − ηF (ŵ)].

This shows that ŵ ∈ SOL(Z≥, F ). By Lemma 11, we know g(ŵ) is a Nash equilibrium of the
game.

Proposition 5. Let {zt} and {wt} be the sequences produced by SPRM+. If {wt} has a limit point
ŵ such that ŵ = az⋆ for z⋆ ∈ ∆d1 ×∆d2 and a ≥ 1 (equivalently, colinear with a pair of strategies
in the simplex), then {wt} converges to ŵ.

Proof. By Lemma 1, we know the MVI condition holds for ŵ, Then by Lemma 12, {∥wt − ŵ∥2 +
1
16∥w

t − zt−1∥2} is monotonitically decreasing and therefore converges. Let ŵ be the limit of the
sequence {wt : t ∈ κ}. Using the fact that limt→∞ ∥wt − zt−1∥ = 0, we know that {∥wt − ŵ∥}
also converges and

lim
t→∞

∥∥wt − ŵ
∥∥2 + 1

16

∥∥wt − zt−1
∥∥2 = lim

t→∞

∥∥wt − ŵ
∥∥2 = lim

t(∈κ)→∞

∥∥wt − ŵ
∥∥2 = 0

Thus, {wt} converges to ŵ.
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Lemma 14 (Structure of Limit Points). Let {zt} and {wt} be the sequences produced by SPRM+.
Let z⋆ ∈ ∆d1 ×∆d2 be any Nash equilibrium of A. If ŵ and w̃ are two limit points of {wt}, then the
following holds.

1. ∥az⋆ − ŵ∥2 = ∥az⋆ − w̃∥2 for all a ≥ 1.

2. ∥ŵ∥2 = ∥w̃∥2.

3. ⟨z⋆, ŵ − w̃⟩ = 0.

Proof. Let {ki ∈ Z} be an increasing sequence of indices such that {wki} converges to ŵ and
{li ∈ Z} be an increasing sequence of indices such that {wli} converges to w̃. Let σ : {ki} → {li}
be a mapping that always maps ki to a larger index in {li}, i.e. σ(ki) > ki. Such a mapping clearly
exists. Since Lemma 12 applies to az⋆ for any a ≥ 1 and limt→∞ ∥wt − zt−1∥ = 0, we get

∥az⋆ − ŵ∥2 = lim
i→∞

∥∥az⋆ − wki
∥∥2 + 1

16

∥∥wki − zki−1
∥∥2

≥ lim
i→∞

∥∥∥az⋆ − wσ(ki)
∥∥∥2 + 1

16

∥∥∥wσ(ki) − zσ(ki)−1
∥∥∥2

= ∥az⋆ − w̃∥2.

By symmetry, the other direction also holds. Thus, ∥az⋆ − ŵ∥2 = ∥az⋆ − w̃∥2 for all a ≥ 1.

Expanding ∥az⋆ − ŵ∥2 = ∥az⋆ − w̃∥2 gives

∥ŵ∥2 − ∥w̃∥2 = 2a⟨z⋆, ŵ − w̃⟩, ∀a ≥ 1.

It implies that ∥ŵ∥2 = ∥w̃∥2 and ⟨z⋆, ŵ − w̃⟩ = 0.

With Lemma 12, Lemma 13, Proposition 5, and Lemma 14, by the same argument as the proof for
ExRM+ in Lemma 5, we can prove that {wt} produced by SPRM+ has a unique limit point and thus
converges, as shown in the following lemma.
Lemma 15 (Uniqueness of Limit Point). The iterates {wt} produced by SPRM+ have a unique limit
point.

Thus, Theorem 5 directly follows from Lemma 13 and Lemma 15.

G.2 BEST-ITERATE CONVERGENCE OF SPRM+

Lemma 16. Let {zt} and {wt} be the sequences produced by SPRM+ (Algorithm 4). Then

1. DualityGap(g(wt+1)) ≤ 5(∥wt−zt∥+∥wt+1−zt∥)
η ;

2. DualityGap(g(zt)) ≤ 9(∥wt−zt∥+∥wt−zt−1∥)
η .

.

Proof of Lemma 16. Since wt+1 = ΠZ≥ [w
t − ηF (zt)], by Lemma 11, we know for any z⋆ ∈ Z⋆

DualityGap(g(wt+1)) ≤ (∥wt+1 − wt∥+ ηLF ∥wt+1 − zt∥)(∥wt+1 − z⋆∥+ 2)

η

≤ (1 + ηLF )(∥wt − zt∥+ ∥wt+1 − zt∥)(∥wt+1 − z⋆∥+ 2)

η

≤ (1 + ηLF )(∥wt − zt∥+ ∥wt+1 − zt∥)(∥w0 − z⋆∥+ 2)

η

≤ 5(∥wt − zt∥+ ∥wt+1 − zt∥)
η

,
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where in the second inequality we apply ∥wt+1 − wt∥ ≤ ∥wt+1 − zt∥ + ∥wt − zt∥; in the third
inequality we use ∥wt+1 − z⋆∥ ≤ ∥w0 − z⋆∥ by Lemma 12; in the last inequality we use ηLF ≤ 1

8

and ∥w0 − z⋆∥ ≤ 2 since w0, z⋆ ∈ ∆d1 ×∆d2 .

Similarly, since zt = ΠZ≥ [w
t − ηF (zt−1)], by Lemma 11, we know for any z⋆ ∈ Z⋆

DualityGap(g(zt))

≤ (∥zt − wt∥+ ηLF ∥zt − zt−1∥)(∥zt − z⋆∥+ 2)

η

≤ (1 + ηLF )(∥wt − zt∥+ ∥wt − zt−1∥)(∥wt − z⋆∥+ ∥wt − zt∥+ 2)

η

≤ (1 + ηLF )(∥wt − zt∥+ ∥wt − zt−1∥)(∥w0 − z⋆∥+ 2∥w0 − z⋆∥+ 2)

η

≤ 9(∥wt − zt∥+ ∥wt − zt−1∥)
η

,

where in the second inequality we apply ∥zt − zt−1∥ ≤ ∥zt − wt∥+ ∥wt − zt−1∥ and ∥zt − z⋆∥ ≤
∥zt − wt∥+ ∥wt − z⋆∥; in the third inequality we use ∥wt+1 − z⋆∥ ≤ ∥w0 − z⋆∥ and ∥wt − zt∥ ≤
2∥w0 − z⋆∥ by Lemma 12; in the last inequality we use ηLF ≤ 1

8 and ∥w0 − z⋆∥ ≤ 2 since
w0, z⋆ ∈ ∆d1 ×∆d2 .

Proof of Theorem 6. Fix any Nash equilibrium z⋆ of the game. From Lemma 12, we know that

T−1∑
t=0

(∥∥wt+1 − zt
∥∥2 + ∥∥wt − zt

∥∥2) ≤ 16

15
·
∥∥w0 − z⋆

∥∥2.
This implies that there exists 0 ≤ t ≤ T − 1 such that ∥wt+1 − zt∥+ ∥wt − zt∥ ≤ 2∥w0−z⋆∥√

T
(we

use a+ b ≤
√
2(a2 + b2)). By applying Lemma 16, we then get

DualityGap(g(wt+1)) ≤ 5(∥wt − zt∥+ ∥wt+1 − zt∥)
η

≤ 10∥w0 − z∗∥
η
√
T

.

Similarly, using Lemma 12 and the fact that w0 = z−1, we know

T∑
t=0

(∥∥wt − zt
∥∥2 + ∥∥wt − zt−1

∥∥2) ≤ T∑
t=0

(∥∥wt − zt
∥∥2 + ∥∥wt+1 − zt

∥∥2) ≤ 16

15
·
∥∥w0 − z⋆

∥∥2.
This implies that there exists 0 ≤ t ≤ T such that ∥wt − zt∥+ ∥wt − zt−1∥ ≤ 2∥w0−z⋆∥√

T
(we use

a+ b ≤
√
2(a2 + b2)). By applying Lemma 16, we then get

DualityGap(g(zt)) ≤ 9(∥wt − zt∥+ ∥wt − zt−1∥)
η

≤ 18∥w0 − z∗∥
η
√
T

.

G.3 LINEAR CONVERGENCE OF RS-SPRM+.

Proof of Theorem 7. We note that Algorithm 6 always restarts in the first iteration t = 1 since

∥w1 − z0∥+ ∥w0 − z0∥ ≤
√

32
15∥w0 − z⋆∥2 ≤ 4 = 8

21 . We denote 1 = t1 < t2 < . . . < tk < . . .

the iteration where Algorithm 6 restarts for the k-th time, i.e., the “If" condition holds. Then by
Lemma 16, we know for every tk, wtk = g(wtk) ∈ Z = ∆d1 ×∆d2 and

DualityGap(wtk) ≤ 5(∥wtk − ztk−1∥+ ∥wtk−1 − ztk−1∥)
η

≤ 40

η · 2k
,
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and by metric subregularity (Proposition 2), we have∥∥wtk −ΠZ⋆ [wtk ]
∥∥ ≤ DualityGap(g(wtk))

c
≤ 40

cη · 2k
.

Then, for any iteration tk + 1 ≤ t ≤ tk+1 − 1, using Lemma 12 and Lemma 16, we have

DualityGap(g(wt)) ≤ 5(∥wt − zt−1∥+ ∥wt−1 − zt−1∥)
η

(Lemma 16)

≤ 10∥wtk −ΠZ⋆ [wtk ]∥
η

(Lemma 12)

≤ 400

cη2 · 2k
.

Then again by metric subregularity, we also get ∥g(wt)−ΠZ⋆ [g(wt)]∥ ≤ 400
c2η2·2k for every t ∈

[tk + 1, tk+1 − 1].

Similarly, for any iteration tk ≤ t ≤ tk+1 − 1, using Lemma 12 and Lemma 16, we have

DualityGap(g(zt)) ≤ 9(∥wt − zt∥+ ∥wt − zt−1∥)
η

(Lemma 16)

≤ 18∥wtk −ΠZ⋆ [wtk ]∥
η

(Lemma 12)

≤ 720

cη2 · 2k
.

Then by metric subregularity, we also get ∥g(zt)−ΠZ⋆ [g(zt)]∥ ≤ 400
c2η2·2k for every t ∈ [tk, tk+1 −

1].

Bounding tk+1 − tk Fix any k ≥ 1. If tk+1 = tk + 1, then we are good. Now we assume
tk+1 > tk + 1. By Lemma 12, we know

tk+1−2∑
t=tk

(
∥∥wt+1 − zt

∥∥2 + ∥∥wt − zt
∥∥2) ≤ 16

15

∥∥wtk −ΠZ⋆ [wtk
∥∥2.

This implies that there exists t ∈ [tk, tk+1 − 2] such that∥∥wt+1 − zt
∥∥+ ∥∥wt − zt

∥∥ ≤ 2∥wtk −ΠZ⋆ [wtk ]∥√
tk+1 − tk − 1

≤ 80

cη2k
1√

tk+1 − tk − 1
.

On the other hand, since Algorithm 6 does not restart in [tk, tk+1 − 2], we have for every t ∈
[tk, tk+1 − 2], ∥∥wt+1 − zt

∥∥+ ∥∥wt − zt
∥∥ >

8

2k+1
.

Combining the above two inequalities, we get

tk+1 − tk − 1 ≤ 400

c2η2
.

Linear Last-Iterate Convergence Rates Define C := 1 + 400
c2η2 ≥ tk+1 − tk. Then tk ≤ Ck and

for any t ≥ 1, we have t ≥ t⌊ t
C ⌋ and

DualityGap(g(wt)) ≤ 400

cη2
· 2−⌊ t

C ⌋ ≤ 400

cη2

(
1− 1

3C

)t

=
400

cη2
·

(
1− 1

3(1 + 400
c2η2 )

)t

.

Using metric subregularity, we get for any t ≥ 1.∥∥g(wt)−ΠZ⋆ [g(wt)]
∥∥ ≤ 400

c2η2
·

(
1− 1

3(1 + 400
c2η2 )

)t

.

Similarly, we have for any t ≥ 1

DualityGap(g(zt)) ≤ 720

cη2
·

(
1− 1

3(1 + 400
c2η2 )

)t

,
∥∥g(zt)−ΠZ⋆ [g(zt)]

∥∥ ≤ 720

c2η2
·

(
1− 1

3(1 + 400
c2η2 )

)t

.

This completes the proof.
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H ADDITIONAL DETAILS ON NUMERICAL EXPERIMENTS

H.1 EXTRAGRADIENT ALGORITHM AND OPTIMISTIC GRADIENT

We describe the extragradient algorithm (EG) and optimistic gradient descent (OG) in Algorithm 9 and
Algorithm 10. Recall that the gradient operator gradient operator G : Z = ∆d1 ×∆d2 → Rd1 ×Rd2

is defined as G(z) = (Ay,−A⊤x) for z = (x, y).

Algorithm 9 Extragradient algorithm (EG)

1: Input: Step size η > 0.
2: Initialize: z0 ∈ Z
3: for t = 0, 1, . . . do
4: zt+1/2 = ΠZ (zt − ηG(zt))
5: zt+1 = ΠZ

(
zt − ηG(zt+1/2)

)

Algorithm 10 Optimistic gradient descent (OG)

1: Input: Step size η > 0.
2: Initialize: z−1 = w0 ∈ Z
3: for t = 0, 1, . . . do
4: zt = ΠZ

(
wt − ηG(zt−1)

)
5: wt+1 = ΠZ (wt − ηG(zt))

H.2 GAME INSTANCES

Below we describe the extensive-form benchmark game instances we test in our experiments. These
games are solved in their normal-form representation. For each game, we report the size of the
payoff matrix in this representation. All the algorithms were coded with Python 3.8.8, and we ran our
numerical experiments on a laptop with 2.2 GHz Intel Core i7 and 8 GB of RAM. In this setup, he
performance of each algorithm on the instances considered in this paper (see details below) can be
computed in a few hours.

Kuhn poker Kuhn poker is a widely used benchmark game introduced by Kuhn (1950). At the
beginning of the game, each player pays one chip to the pot, and each player is dealt a single private
card from a deck containing three cards: jack, queen, and king. The first player can check or bet, i.e.,
putting an additional chip in the pot. Then, the second player can check or bet after the first player’s
check, or fold/call the first player’s bet. After a bet of the second player, the first player still has to
decide whether to fold or to call the bet. At the showdown, the player with the highest card who has
not folded wins all the chips in the pot.

The payoff matrix for Kuhn poker has dimension 27× 64 and 690 nonzeros.

Goofspiel We use an imperfect-information variant of the standard benchmark game introduced by
Ross (1971). We use a 4-rank variant, that is, each player has a hand of cards with values {1, 2, 3, 4}.
A third stack of cards with values {1, 2, 3, 4} (in order) is placed on the table. At each turn, a prize
card is revealed, and each player privately chooses one of his/her cards to bid. The players do
not reveal the cards that they have selected. Rather, they show their cards to a fair umpire, which
determines which player has played the highest card and should receive the prize card as a result. In
case of a tie, the prize is split evenly among the winners. After 4 turns, all the prizes have been dealt
out and the game terminates. The payoff of each player is computed as the sum of the values of the
cards they won.

The payoff matrix for Goofspiel has dimension 72× 7,808 and 562,176 nonzeros.

Random instances. We consider random matrices of size (10, 15). The coefficients of the
matrices are normally distributed with mean 0 and variance 1 and are sampled using the
numpy.random.normal function from the numpy Python package (Harris et al., 2020). In
all figures, we average the last-iterate duality gaps over the 25 random matrix instances, and we also
show the confidence intervals.

H.3 EXPERIMENTS WITH RESTARTING

In this section, we compare the last-iterate convergence performances of ExRM+, SPRM+ and their
restarting variants RS-ExRM+ and RS-SPRM+ as introduced in Section 4.3 and Section 5. We
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present our results when choosing a stepsize η = 0.05 in Figure 7 and Figure 8. To better illustrate the
linear convergence rate, we use semi-log plot in Figure 8 and plot a reference line (1− 0.002)t. The
numerical results show that both RS-ExRM+ and RS-SPRM+ have linear last-iterate convergence
and confirm our theoretical results in Theorem 4 and Theorem 7. Moreover, we also observe that
restarting accelerates the convergence in these two examples.
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Figure 7: For a stepsize η = 0.05, empirical performances of several algorithms on our 3× 3 matrix
game (left plot), Kuhn Poker and Goofspiel (center plots) and on random instances (right plot).
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Figure 8: The last-iterate convergence rate of ExRM+ and SPRM+ and their restarting variants
RS-ExRM+ and RS-SPRM+ on the 3× 3 hard instance and a random 10× 15 matrix game. The
step size is η = 0.05 for all algorithms. We also plot the line (1− 0.002)t for reference.

H.4 EXPERIMENTS WITH BEST-ITERATE CONVERGENCE

In this section we compare the empirical performances of the best-iterate visited by the algorithms
studied in this paper. For the sake of completeness we also show the best-iterate convergence of EG
and OG. We present our results in Figure 9, where we also show the line associated with 1/

√
T for

reference. The setup is the same as for Figure 3 in Section 6.
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Figure 9: Empirical best-iterate performances of several algorithms on the 3× 3 matrix game (left
plot), Kuhn poker and Goofspiel (center plots), and random instances (right plot).
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