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Abstract
In this paper, we study the online shortest path problem in directed acyclic graphs (DAGs)

under bandit feedback against an adaptive adversary. Given a DAG G = (V,E) with a source
node vs and a sink node vt, let X ⊆ {0, 1}|E| denote the set of all paths from vs to vt. At each
round t, we select a path xt ∈ X and receive bandit feedback on our loss ⟨xt,yt⟩ ∈ [−1, 1],
where yt is an adversarially chosen loss vector. Our goal is to minimize regret with respect to the
best path in hindsight over T rounds. We propose the first computationally efficient algorithm to
achieve a near-minimax optimal regret bound of Õ(

√
|E|T log |X |) with high probability against

any adaptive adversary, where Õ(·) hides logarithmic factors in the number of edges |E|. Our algo-
rithm leverages a novel loss estimator and a centroid-based decomposition in a nontrivial manner
to attain this regret bound.

As an application, we show that our algorithm for DAGs provides state-of-the-art efficient al-
gorithms for m-sets, extensive-form games, the Colonel Blotto game, shortest walks in directed
graphs, hypercubes, and multi-task multi-armed bandits, achieving improved high-probability re-
gret guarantees in all these settings.
Keywords: Directed acyclic graphs, online shortest path, regret minimization, bandit feedback,
follow-the-regularized-leader, loss estimators, centroid-decomposition, combinatorial bandits

1. Introduction

Online decision-making is a well-studied area with applications in various domains, including rec-
ommendation systems, resource allocation, web ranking, shortest path planning, and portfolio se-
lection (e.g., Lin et al. (2020); Chen et al. (2017); Frigó and Kocsis (2022); Gordon (2006); Das
(2014)). In a typical online decision-making problem, a learner interacts with an adversary over
multiple rounds. The learner is given a set of arms X , and in each round t, selects an arm xt ∈ X .
Simultaneously, an adversary chooses a loss function yt : X → R. The learner then incurs a loss of
yt[xt] ∈ [−1, 1] and observes only the incurred loss, not the full loss function yt. After T rounds of
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interaction between the learner and the adversary, the learner’s regret relative to a fixed arm x ∈ X
is defined as

RT (x) =

T∑
t=1

yt[xt]−
T∑
t=1

yt[x].

The learner aims either to minimize the pseudo-regret, defined as maxx∈X E[RT (x)], or to provide
high-probability guarantees on maxx∈X RT (x). The latter is a stronger and more natural notion of
regret, as E[maxx∈X RT (x)] can far exceed the pseudo-regret against an adaptive adversary.

A major breakthrough in this area was achieved by Auer et al. (2002), who proposed the EXP3.P
algorithm, which attains a regret of Õ(

√
KT ) with high probability against an adaptive adversary,

where K is the number of arms in X . This bound is optimal, as there exists a minimax lower bound
of Ω(

√
KT ) for this problem.

However, one can hope for better guarantees when the loss functions and the set of arms exhibit
additional structure. Awerbuch and Kleinberg (2004) took a step in this direction by considering
the online shortest path problem in directed acyclic graphs (DAGs) under bandit feedback. In this
setting, an adversary assigns loss values to each edge of a given DAG, and the learner must select
a path from the source to the sink. Here, the set of arms consists of all such paths, and the loss of
a path is defined as the sum of the losses of its edges. Applying EXP3.P to this problem results in
regret that scales exponentially with the number of edges in the DAG, as the number of paths can
be exponentially large. To overcome this, Awerbuch and Kleinberg (2004) designed an algorithm
that achieves a pseudo-regret of T 2/3 that also scales polynomially with the number of edges. Later,
György et al. (2007) extended this result, showing that a regret bound of T 2/3 can be achieved
with high probability against adaptive adversaries, while maintaining polynomial dependence on
the number of edges.

Motivated by research on DAGs, a series of works have explored combinatorial linear bandits,
where X ⊆ {0, 1}d and yt is a linear loss function. Notably, the problem on DAGs is a special case
of combinatorial linear bandits. Several algorithms have been developed in this setting, including
Geometric Hedge (Dani et al., 2007), ComBand (Cesa-Bianchi and Lugosi, 2012), and EXP2 with
John’s exploration (Bubeck et al., 2012a). The best known pseudo-regret bound, O(

√
dT log |X |),

is achieved by EXP2 with John’s exploration. Later, Zimmert and Lattimore (2022) established
a high-probability regret bound of O(

√
dT log |X |) against adaptive adversaries for EXP3 with

Kiefer-Wolfowitz exploration.
While the above algorithms achieve low regret, they can be computationally inefficient. A series

of works have addressed this issue for continuous sets in Rd. Abernethy et al. (2008) were the first
to propose a computationally efficient algorithm that achieved a pseudo-regret of poly(d) ·

√
T .

They also proposed a computationally efficient algorithm for the online shortest path problem on
DAGs with the same pseudo-regret. The best known pseudo-regret for a computationally efficient
algorithm is Õ(d

√
T ), attained by the algorithms in Hazan and Karnin (2016) and Ito et al. (2020).

The efficient algorithm by Hazan and Karnin (2016) also matches the pseudo-regret of EXP2 with
John’s exploration for the online shortest path problem on DAGs.

For continuous sets in Rd, Lee et al. (2020) proposed the first efficient algorithm achieving a
high-probability regret of poly(d) ·

√
T against an adaptive adversary. Later, Zimmert and Lattimore

(2022) developed an efficient algorithm with a regret of Õ(d2
√
T ) with high probability against an

adaptive adversary, which remains the best known result to date. For a more detailed discussion of
all the related works, we refer the reader to Appendix A.
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Reference Regret Efficient Adaptive & high-prob.

Bubeck et al. (2012a)
√
|E|T log |X | ✗ ✗

Zimmert and Lattimore (2022)
√
|E|T log |X | ✗ ✓

Abernethy et al. (2008)
√
|E|3T ✓ ✗

Hazan and Karnin (2016)
√
|E|T log |X | ✓ ✗

Ito et al. (2020)
√
|E|2T ✓ ✗

Lee et al. (2020)
√
|E|7T ✓ ✓‡

Zimmert and Lattimore (2022)
√
|E|4T ✓ ✓‡

This paper (Theorem 7)
√
|E|T log |X | ✓ ✓

Table 1: Summary of regret guarantees for the online shortest path problem on a directed acyclic
graph (DAG) G = (V,E), with the set of paths X ⊆ {0, 1}E from source to sink, ignor-
ing constants and logarithmic factors in |E| and T . ‡The high-probability guarantee was
formally proved only for continuous sets. However, we believe that their analysis extends
to discrete decision sets, such as paths in a DAG, using the same techniques as Abernethy
et al. (2008).

In this paper, we revisit the online shortest path problem in DAGs—the motivation behind much
of the prior work—and pose the following question:

Can we design a computationally efficient algorithm for the online shortest path prob-
lem in a directed acyclic graph that, under bandit feedback, achieves a minimax-
optimal regret bound with high probability against adaptive adversaries, up to loga-
rithmic factors in the number of edges?

1.1. Contributions and Techniques

In this paper, we answer the above question in the affirmative. For any directed acyclic graph (DAG)
G = (V,E) with a set of paths X ⊆ {0, 1}E from source to sink, we design the first computation-
ally efficient algorithm to achieve a high-probability regret bound of Õ(

√
|E|T log |X |) against an

adaptive adversary under bandit feedback, where Õ(·) hides logarithmic factors in |E|. We refer
the reader to Table 1 for a comparison of our result with previous algorithms. Moreover, for the
class of DAGs with at most d edges and at most N paths, we establish a minimax lower bound of
Ω
(√

dT log(N)/ log(d)
)

. Hence, our algorithm is minimax-optimal upto logarithmic factors.
We further apply our efficient algorithm to combinatorial domains such as hypercubes, multi-

task multi-armed bandits (MAB), extensive-form games, walks in directed graphs, the Colonel
Blotto game, and m-sets, all of which can be represented as DAGs. This results in improved high-
probability regret bounds in each setting compared to those in Zimmert and Lattimore (2022). For
a detailed discussion of these improvements, we refer the reader to Section 4.

Our main technical contribution is a novel algorithmic approach for regret minimization on
DAGs. Prior works relied on variants of exponential weights or FTRL, requiring mixing with a
fixed distribution before selecting a path. Instead, we use a novel importance-sampling-inspired
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loss estimator to enable implicit exploration and apply centroid-based decomposition to modify the
input graph, achieving a nearly minimax optimal bound.

Our algorithm proceeds in two steps. The first step is to design an algorithm for graphs with
|V | vertices, |E| edges, and a longest path length of K. While a path can be represented using |E|
bits (one per edge), we introduce an extended representation with additional O(|V | +K) bits and
denote the corresponding set of paths as X †. We then solve the FTRL optimization problem:

x̃t ← argmin
x∈co(X †)

(
η

t−1∑
s=1

⟨x, ŷs⟩+ F (x)

)
,

where F (·) is a Legendre function, and in our work, we use the Tsallis-1/2 entropy. We then
efficiently sample a path xt such that its expectation is x̃t. We then introduce a novel importance-
sampling-inspired loss estimator ỹt, ensuring that the difference ⟨x1, ỹt⟩ − ⟨x2, ỹt⟩ remains an
unbiased estimate of the loss difference between any two paths encoded as x1,x2 in the DAG,
even though ỹt itself is not an unbiased estimator of the actual loss vector. Building on this, we
perform implicit exploration, similar to standard multi-armed bandits (Neu, 2015), by introducing
a bias in ỹt to construct our final estimator ŷt, thereby achieving a high-probability regret bound of
Õ(
√
K|E|T ) against any adaptive adversary.

The second step of our algorithmic approach considers the problem on an arbitrary DAG G =
(V,E) with the set of all paths from source to sink denoted by X and reduces it to a problem
on a newly constructed DAG G† = (V †, E†) that satisfies several key properties. The length of
any path from source to sink in G† is O(log |X |), while the number of vertices and edges satisfy
|V †| = O(|V |) and |E†| = Õ(|E|), respectively. Additionally, there exists a bijective mapping
between the paths in G and G†, which can be efficiently computed. To achieve this reduction, we
introduce a novel centroid–based decomposition approach. Applying our FTRL method to G†, we
obtain a high-probability regret bound of Õ(

√
|E|T log |X |) against any adaptive adversary.

2. Preliminaries

Let G = (V,E) be a Directed Acyclic Graph (DAG), where V is the set of vertices and E ⊆ V ×V
is the set of directed edges. A path P = (v0, e1, v1, . . . , ek, vk) of length k > 0 is an interleaved
sequence of vertices and edges satisfying vi ∈ V for i ∈ {0, 1, . . . , k} and ei = (vi−1, vi) ∈ E for
i ∈ {1, . . . , k}. Since G is acyclic, no path P can exist with v0 = vk.

For a vertex v ∈ V , the set of incoming edges is denoted by δ−(v) := {(u, v) ∈ E}, and the set
of outgoing edges is denoted by δ+(v) := {(v, u) ∈ E}. Given a weight function w : E → R that
assigns a weight to each edge, the shortest path problem seeks to find a path P from a source vertex
vs to a sink vertex vt that minimizes the total weight of the edges along the path, given by

w(P ) :=
k∑

i=1

w(ei).

Without loss of generality, we assume that every vertex v is reachable from vs and can reach vt.
We consider the online shortest path problem with bandit feedback. In each round t, an agent

selects a path Pt from vs to vt, while an adversary simultaneously selects a weight function wt(·).
The agent then observes only the loss, which is the path weight ℓt := wt(Pt). The objective is to
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minimize the cumulative regret against the optimal path:

Regret(T ) :=

T∑
t=1

wt(Pt)−min
P∈P

T∑
t=1

wt(P ),

where P is the set of all paths from vs to vt.
Denote by X ⊆ {0, 1}V ∪E the set of all paths in the graph G from vs to vt, indexed by the

vertices in V and the edges in E. Each vector x ∈ X encodes a path in the graph, where x[v] = 1
indicates that v ∈ V appears in the path, and x[e] = 1 indicates that e ∈ E appears in the path. The
convex hull of X forms the flow polytope:

co(X ) =

x ∈ [0, 1]V ∪E : x[vs] = x[vt] = 1, and x[v] =
∑

e∈δ−(v)

x[e] =
∑

e∈δ+(v)

x[e], ∀v ∈ V

 .

Correspondingly, the weight function wt(·) can be encoded as a vector yt ∈ RV ∪E , where yt[e] =
wt(e) for all edges e ∈ E and yt[v] = 0 for all vertices v ∈ V . In this formulation, the total path
weight can be expressed as the inner product wt(Pt) = ⟨xt,yt⟩, allowing the regret to be rewritten
as:

Regret(T ) =
T∑
t=1

⟨xt,yt⟩ −min
x∈X

T∑
t=1

⟨x,yt⟩.

Finally, we denote by Ft := {xτ ,yτ}tτ=1 the filtration generated by the first t rounds. We
further use Pt[·] := P[·|Ft−1] as the conditional probability and Et[·] := E[·|Ft−1] as the conditional
expectation. The adversary is allowed to choose loss vector yt that adapts to the past filtration and
the agent’s algorithm.

Throughout this paper, we impose the following standard assumption.

Assumption 1 The adversary can only choose weight function w such that the absolute weight of
any path is at most 1. That is, it can only choose y satisfying ⟨x,y⟩ ∈ [−1, 1] for all x ∈ X .

General notations. We define JkK := {1, 2, . . . , k} and Ja, bK := {a, a + 1, . . . , b}. Denote by
2C the power set of set C. Let ∅ denote the empty set. The logarithm of x to base 2 is denoted as
log x. For any pair of tuples A = (a1, . . . , an) and B = (b1, . . . , bm), let A ◦ B denote the tuple
(a1, . . . , an, b1, . . . , bm). Similarly, vectors x and y, let z = x ◦ y denote the vector obtained by
concatenating y to the end of x. For any edge e and path P , e ∈ P indicates e is part of P .

3. Algorithm for Online Shortest Paths in DAGs

In this section, we present our algorithm for the online shortest path problem in directed acyclic
graphs (DAGs). Our approach differs from the standard method of using exponential weights com-
bined with a fixed distribution, such as Kiefer-Wolfowitz exploration. We start by outlining an
efficient algorithm for the case where all paths have equal lengths in Section 3.1. In Section 3.2,
we introduce a method to relax this assumption. Finally, in Section 3.3, we show how to achieve a
regret bound of Õ(

√
|E|T log |X |) while maintaining computational efficiency.
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3.1. The Case of Equal Path Lengths

We first present an algorithm for a DAG G = (V,E), where every path from the source vs to the
sink vt contains exactly K edges. In each round t, the algorithm chooses a strategy in the flow
polytope co(X ) by solving the following optimization problem:

x̃t ← argmin
x∈co(X )

(
η

t−1∑
τ=1

⟨x, ŷτ ⟩+ F (x)

)
, (1)

where F (x) is some Legendre function, η is some learning rate and ŷτ is some loss estimator that
we define later. The actual path xt is then sampled as follows: Starting from the source vs, we
traverse to a node v and select an edge e ∈ δ+(v) among the outgoing edges of v with probability
proportional to x̃t[e], moving to the endpoint of edge e. This process repeats until we reach the sink
vt. We denote the path traversed as Pt and choose the corresponding vector in X as xt. It can be
easily verified that Et[xt] = x̃t. We then observe the loss ℓt := ⟨xt,yt⟩, construct our loss estimator
ŷt as shown below, and proceed to the next round.

Recall that Et[·] := E[·|Ft−1] and Pt[·] := P[·|Ft−1], where Ft−1 is the past filtration. Let
γ ∈ RV ∪E

>0 be a positive-valued vector indexed by the elements of V ∪ E. We start with defining
our estimator ŷt for the loss vector yt upon receiving the loss ℓt := ⟨xt,yt⟩:

ŷt[e] :=
(1 + ℓt)1[xt[e] = 1]

Pt[xt[e] = 1] + γ[e]
, ∀e ∈ E,

ŷt[v] :=
(1− ℓt)1[xt[v] = 1]

Pt[xt[v] = 1] + γ[v]
, ∀v ∈ V \ {vs, vt}, ŷt[vs] = ŷt[vt] := 0.

Note that even though the loss vector satisfies yt[v] = 0 for any vertex v ∈ V , the estimator is still
designed to assign weights to it. Next, let us define another estimator ỹt as:

ỹt[e] :=
(1 + ℓt)1[xt[e] = 1]

Pt[xt[e] = 1]
, ∀e ∈ E,

ỹt[v] :=
(1− ℓt)1[xt[v] = 1]

Pt[xt[v] = 1]
, ∀v ∈ V \ {vs, vt}, ỹt[vs] = ỹt[vt] := 0.

Observe that ŷt is the implicitly biased version of ỹt. Although ỹt appears to be a biased estimator
of yt, the next lemma shows that it can effectively compare the losses between different paths.

Lemma 1 For any path with representation x ∈ X , it holds that Et[⟨x, ỹt⟩] = ⟨x,yt⟩+ ∥x∥1− 2.

Proof. For some vertex v ∈ V , we denote by Et,v the event that vertex v is chosen in the path in
round t, i,e, 1[xt[v] = 1]. Under event Et,v, chosen path xt can be divided into two subpath: one
from vs to v, and other from v to vt. Let ℓ−t,v and ℓ+t,v be the total weight of the path from vs to v and
the path from v to vt, respectively. According to the linearity of expectation, it satisfies that

Et[ℓt | Et,v] = Et[ℓ
−
t,v | Et,v] + Et[ℓ

+
t,v | Et,v]. (2)

Note ℓ−t,vs = ℓ+t,vt = 0. For some edge e = (v−, v+) ∈ E, we similarly define by Et,e the event
that xt[e] = 1. The total weight of the path can also be decomposed into

Et[ℓt | Et,e] = Et[ℓ
−
t,v− | Et,e] + yt[e] + Et[ℓ

+
t,v+ | Et,e]. (3)
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Observe that our edge sampling procedure is Markovian. That is, under the event Et,u, the
probability of choosing an outgoing edge from node u does not depend on the path from vs to u.
This implies that:

Et[ℓ
−
t,v− | Et,v− ] = Et[ℓ

−
t,v− | Et,v− ∩ Et,e] = Et[ℓ

−
t,v− | Et,e] (4)

where the last inequality is given by Et,e ⊆ Et,v− . Similarly, we have that

Et[ℓ
+
t,v+ | Et,v+ ] = Et[ℓ

+
t,v+ | Et,e] (5)

Let P = (v0, e1, v1, . . . , ek, vk) be the path that corresponds to the vector x ∈ X , where v0 = vs
and vk = vt. The expectation of the inner product ⟨x, ỹt⟩ can be computed as follows:

Et[⟨x, ỹt⟩] =
k∑

i=0

Et [ỹt[vi]] +

k∑
i=1

Et [ỹt[ei]]

=
k−1∑
i=1

Et

[
(1− ℓt)1[xt[vi] = 1]

Pt[xt[vi] = 1]

]
+

k∑
i=1

Et

[
(1 + ℓt)1[xt[ei] = 1]

Pt[xt[ei] = 1]

]

=

k−1∑
i=1

Et[1− ℓt | Et,vi ] +
k∑

i=1

Et[1 + ℓt | Et,ei ]

= 2k − 1−
k−1∑
i=1

(
Et[ℓ

−
t,vi
| Et,vi ] + Et[ℓ

+
t,vi
| Et,vi ]

)
+

k∑
i=1

(
Et[ℓ

−
t,vi−1

| Et,ei ] + yt[ei] + Et[ℓ
+
t,vi
| Et,ei ]

)
= 2k − 1−

k−1∑
i=1

Et[ℓ
−
t,vi
| Et,vi ]−

k−1∑
i=1

Et[ℓ
+
t,vi
| Et,vi ]

+

k−1∑
i=1

Et[ℓ
−
t,vi
| Et,vi ] +

k∑
i=1

yt[ei] +

k−1∑
i=1

Et[ℓ
+
t,vi
| Et,vi ]

= ⟨x,yt⟩+ ∥x∥1 − 2.

where the second equality follows from the definition of ŷt, the third equality follows from the
definition of the events Et,v and Et,e, the fourth equality follows from equations (2) and (3), and the
fifth equality follows from equations (4), (5), and ℓ−t,vs = ℓ+t,vt = 0.

If all paths have the same length K, then Et[⟨x − x′, ỹt⟩] = ⟨x − x′,yt⟩ for all x,x′ ∈ X .
This equality is crucial for developing a framework in Appendix C, which enables implicit explo-
ration—similar to the framework for standard multi-armed bandits by Neu (2015)—within an FTRL
problem such as the one formulated in this section. The equality ensures the framework’s correct
application. Using F (x) = −

∑
v∈V

√
x[v] −

∑
e∈E

√
x[e] as our regularizer, we can apply this

framework to achieve a regret bound of at most O(
√
K|E|T log(|E|/δ)) with probability at least

1− δ against any adaptive adversary. We refer the reader to Appendix D.1 for the omitted details.
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3.2. Relaxing the Equal Path Length Assumption

In this section, we relax the assumption that all paths have the same length. Denote K(v) as the
length of the longest path from vs to vertex v. Let K = K(vt) denote the length of the longest path
within the DAG. Note that K(vs) = 0.

Construct the augmented vector as x† := x ◦ b(x), where b(x) ∈ {0, 1}K−1 is given by

b(x)[i] := 1
[
∃(u, v) ∈ E,x[(u, v)] = 1,K(u) < i < K(v)

]
.

We denote X † := {x† | x ∈ X} as the augmented decision space. Let γ̂ ∈ RK−1
>0 be a positive-

valued vector. Correspondingly, we construct the augmented loss estimator ŷ†
t := ŷt ◦ ĉt, where

ĉt ∈ RK−1
≥0 is defined as:

ĉt[i] :=
2 · 1[b(xt)[i] = 1]

Pt[b(xt)[i] = 1] + γ̂[i]
,

and xt is the path chosen according to the selection procedure from the previous section. We also
define c̃t ∈ RK−1

≥0 as:

c̃t[i] :=
2 · 1[b(xt)[i] = 1]

Pt[b(xt)[i] = 1]
,

Observe that ĉt[i] is the implicitly biased version of c̃t[i]. The next lemma establishes a key property
of the loss estimator ỹ†

t := ỹt ◦ c̃t, in which the implicit biasing is absent.

Lemma 2 For any path with representation x ∈ X , it holds that Et[⟨x†, ỹ†
t ⟩] = ⟨x,yt⟩+2K − 1.

Proof. Consider any x ∈ X , and its corresponding path P = (v0, e1, v1, . . . , ek, vk), where v0 = vs
and vk = vt. The expectation of the inner product of the auxiliary bits, ⟨b(x), c̃t⟩, satisfies

Et[⟨b(x), c̃t⟩] =
K−1∑
i=1

b(x)[i] · Et[c̃t[i]].

By construction, Et[c̃t[i]] = 2. Since K(vj−1) < K(vj) for all j ∈ JkK, for any given index
i ∈ JK − 1K, there is at most one index ji ∈ JkK such that K(vji−1) < i < K(vji). Consequently,

K−1∑
i=1

b(x)[i] =

K−1∑
i=1

k∑
j=1

1[K(vj−1) < i < K(vj)]

=

k∑
j=1

K−1∑
i=1

1[K(vj−1) < i < K(vj)]

=

k∑
j=1

(
K(vj)−K(vj−1)− 1

)
= K(vt)−K(vs)− k.

Hence, using the fact that ∥x∥1 = 2k + 1, which follows from the mapping between x and P ,

Et[⟨b(x), c̃t⟩] = 2(K(vt)−K(vs)− k) = 2K − ∥x∥1 + 1. (6)
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A B

C D E F

G H

G

⇒

AA♭ A♯ BB♭ B♯

CC♭ C♯ DD♭ D♯ EE♭ E♯ FF ♭ F ♯

GG♭ G♯ HH♭ H♯

G†

Figure 1: Example G and G† according to conversion in Section 3.3. The longest path from source
to sink in G† is upper bounded byO(log |X |). See Figure 2 in Appendix for more details.

As a result,

Et[⟨x†, ỹ†
t ⟩] = Et[⟨x, ỹt⟩+ ⟨b(x), c̃t⟩] = ⟨x,yt⟩+ ∥x∥1 − 2 + 2K − ∥x∥1 + 1

= ⟨x,yt⟩+ 2K − 1,

where the second equality follows from Equation (6) and Lemma 2.

We can appropriately modify our FTRL algorithm from the previous section to work with the
augmented decision space X † := {x† | x ∈ X}, augmented loss estimator ŷ†

t and augmented regu-
larizer F (x) = −

∑
v∈V

√
x[v]−

∑
e∈E

√
x[e]−

∑
i∈JK−1K

√
x[i] for any x ∈ [0, 1]V ∪E∪JK−1K.

Thus, we can apply our FTRL framework for implicitly biased estimators from Appendix C to ob-
tain a regret bound of at most O(

√
K|E|T log(|E|/δ)) with probability at least 1 − δ against any

adaptive adversary. Furthermore, we assert that our FTRL approach can be implemented efficiently,
as it can be easily shown that the set co(X †) can be represented using a polynomial number of linear
constraints. We refer the reader to Appendix D.2 for the omitted details of this section.

3.3. Achieving a Regret Upper Bound of Õ(
√
|E|T log |X |)

In this section, we transform the input DAG G into a new DAG G† with an equivalent decision
space but reduced complexity. The core idea is to introduce “express” edges that compress long
paths in G, ensuring the longest path in G† is bounded by O(log |X |) while minimally increasing
the number of edges and vertices. Consider a long path P = (v0, e1, . . . , ek, vk) in G. We concisely
represent all subpaths of P with the help of the middle vertex v⌊k/2⌋. For each i < ⌊k/2⌋, we
add an edge (vi, v⌊k/2⌋) to represent the subpath from vi to v⌊k/2⌋. Similarly, for each j > ⌊k/2⌋,
we add an edge (v⌊k/2⌋, vj). Thus, any subpath from vi to vj (where i < ⌊k/2⌋ < j) can be
represented with just two edges, (vi, v⌊k/2⌋) and (v⌊k/2⌋, vj). Recursively applying this method
creates a hierarchical structure where every subpath of P requires only O(1) edges. Extending
this concept using centroid-based decomposition for the spanning tree ensures that the longest path
in G† remains bounded by O(log |X |), with only a logarithmic increase in edges and vertices.
Consequently, the online shortest path problem in G reduces to G†, allowing our algorithm from
Section 3.2 to achieve a high-probability regret bound of Õ(

√
|E|T log |X |) against any adaptive

adversary. Further details, including omitted proofs, are provided in Appendix D.3.
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We formally begin our transformation. Let C : V → N denote the number of distinct paths from
the source vs to any vertex v. It holds that C(vs) = 1 and C(v) :=

∑
(u,v)∈δ−(v)C(u) for any v ̸=

vs. According to the definition, it satisfies that C(vt) = |X |. Let h(v) := argmax(u,v)∈δ−(v)C(u)
be the incoming edge that brings the maximum number of paths to vertex v, with ties broken arbi-
trarily. Let E♣ := {h(v) | v ∈ V \ {vs}} be the set of all such edges. The underlying subgraph
S := (V,E♣) forms a directed spanning tree of G. It can be easily shown that the number of
non-tree edges (edges not in E♣) on any path from vs to vt in G is at most log |X |.

We now introduce the centroid-based decomposition: Given a directed tree S = (V,E♣), we
identify a vertex c ∈ V such that the connected components Ŝ1, . . . , Ŝk resulting from its removal
satisfy |V̂i| ≤ |V |/2 for all i ∈ JkK, where V̂i is the set of vertices in the subtree Ŝi. Such a vertex
c, known as the centroid, always exists in any tree (Jordan, 1869; Della Giustina et al., 2019). We
associate the centroid c with the tree S by defining Sc := S. The above procedure is then applied
recursively to each component Ŝi for i ∈ JkK. If a component reduces to a single vertex c, we
designate c as its centroid and terminate the recursion.

Since the sets V̂i resulting from the removal of c form a partition of V \ {c}, each vertex v ∈ V
will eventually be assigned as the centroid of some subtree Sv = (Vv, E

♣
v ). Consequently, this

procedure generates a collection of subtrees T := {Sv : v ∈ V }, where each vertex v is uniquely
associated with a subtree of S in which it serves as the centroid. Furthermore, we define T (Sv) :=
{Sw : w ∈ Vv} as the centroid-based decomposition of the subtree Sv.

We now state the construction for a new graph G† = (V †, E†) using T as follows:

1. Initialize V † ← ∅ and E† ← ∅.
2. For each vertex c ∈ V :

(a) V † ← V † ∪ {c♭, c, c♯}.
(b) For each vertex v ∈ Vc:

i. If there is a directed path from v to c in Sc, or if v is c, update E† ← E†∪{(v♭, c)}.
ii. If there is a directed path from c to v in Sc, or if v is c, update E† ← E†∪{(c, v♯)}.

3. For each non-tree edge (u, v) ∈ E \ E♣, update E† ← E† ∪ {(u♯, v♭)}.

We refer to Figure 1 for one example of our conversion. It is easy to verify that the graph G†

is a Directed Acyclic Graph with source node v♭s and sink node v♯t . We now demonstrate that the
converted graph G† is essentially equivalent to G. We define a mapping σ : E† → 2E as follows:

• For e† = (v♭, c), σ(e†) consists of all edges on the unique path from v to c in the tree S.
• For e† = (c, v♯), σ(e†) consists of all edges on the unique path from c to v in the tree S.
• For e† = (u♯, v♭), σ(e†) = {(u, v)} ⊆ E \ E♣ contains the corresponding edge.

The above mapping assigns each edge e† = (u†, v†) ∈ E† a path from u to v (which may be empty),
as specified by σ(e†), where w† ∈ {w♭, w, w♯} for w ∈ {u, v}. Denote by P† the set of paths from
v♭s to v♯t in G†. The following lemma establishes an important property of σ(e†).

Lemma 3 For any path P † ∈ P†, σ(e†1) ∩ σ(e†2) = ∅ for any distinct edges e†1, e
†
2 ∈ P †.

The next lemma establishes that this mapping defines a bijection between the paths from vs to
vt in G and the paths P † from v♭s to v♯t in G†. We slightly abuse notation for σ.

Lemma 4 There exists an efficiently computable bijection σ : P† → P such that an edge e ∈ E
belongs to σ(P †) if and only if there exists an edge e† ∈ P † with e ∈ σ(e†).

10



EFFICIENT NEAR-OPTIMAL ALGORITHM FOR ONLINE SHORTEST PATHS IN DAGS

Let w : E → R be a weight function in the graph G = (V,E). Define w† : E† → R as the
weight function for the converted graph G† = (V †, E†):

w†(e†) := 1[|σ(e†)| ≥ 1] ·
∑

e∈σ(e†)

w(e). (7)

Using this mapping, we can convert a decision problem on G to a decision problem on G† as follows.

Lemma 5 The online shortest path problem on G = (V,E) can be efficiently reduced to the online
shortest path problem on G† = (V †, E†).

Proof. First, we can efficiently construct the DAG G† using the DAG G. Next, given any weight
function wt encoded as yt ∈ RV ∪E in the graph G, we can convert it into a weight function
y†
t ∈ RV †∪E†

corresponding to w†
t for G† according to (7). For any chosen path P †

t in G† (encoded
as x†

t ) , we can efficiently choose xt ∈ X corresponding to the path σ(P †) in G following the
bijective mapping g in Lemma 4. Due to Lemma 3 and Lemma 4, we have:

⟨x†,y†
t ⟩ =

∑
e†∈P †

1[|σ(e†)| ≥ 1] ·
∑

e∈σ(e†)

w(e) =
∑
e∈P

w(e) = ⟨x,yt⟩.

The second equality follows from the fact that the set of edges in σ(P †) is given by
⋃

e†∈P † σ(e†),
and that σ(e†1) ∩ σ(e†2) = ∅ for any distinct edges e†1, e

†
2 ∈ P †. Hence, we can efficiently reduce

the online shortest path problem on G to the online shortest path problem on G†.

Finally, the graph G† satisfies the required size constraints, as stated in the following lemma.

Lemma 6 The graph G† = (V †, E†) contains |V †| ≤ O(|V |) vertices and |E†| ≤ O(|V | log |V |+
|E|) edges. Moreover, The number of edges on the longest path from v♭s to v♯t is upper bounded by
O(log |X |).

By combining Lemmas 5 and 6, and applying our FTRL algorithm from the previous section on
the DAG G†, we establish the main theorem:

Theorem 7 There exists an computationally efficient algorithm that incurs a regret bound of at
most Õ(

√
|E|T log(|X |/δ)) with probability at least 1 − δ against any adaptive adversary, where

Õ(·) only hides logarithmic factors in |E|.
We refer the reader to Appendix D.3 for the omitted details of this section. Moreover, our

algorithm is nearly minimax-optimal as for the class of DAGs with at most d edges and at most N
paths, we establish a minimax lower bound of Ω(

√
dT log(N)/ log(d)) in Appendix F.4.

Remark 8 The key steps of our algorithm are computationally efficient, as outlined below:

1. We transform the DAG to reduce the maximum path length using a centroid-based decompo-
sition, which is computable in polynomial time. The bijection between paths in the original
and transformed DAGs can also be computed efficiently, as shown in Lemma 4.

2. We augment the path vector with additional bits, which are computed based on the longest
path from the source to each node—a task that can be performed in polynomial time.

3. In each round, we perform an FTRL update with a strongly convex regularizer over the convex
polytope co(X †), which is defined by a polynomial number of linear constraints and supports
efficient optimization using standard optimization methods.
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Combinatorial set Best known regret‡ Our improved regret

Hypercube d2
√
T d

√
T

Multi-task MAB (
∑m

i=1 di)
2
√
T

∑m
i=1

√
diT

m-sets d2
√
T

√
md2T

Shortest walk |E|2
√
T

√
K2|E|T

Extensive-form games |Z|2
√
T

√
|Z|T log(N)

Colonel Blotto game K2N2
√
T

√
K3NT

Table 2: Summary of high-probability regret guarantees for efficient algorithms across various
combinatorial sets, ignoring constants and logarithmic factors. ‡The best-known high-
probability regret guarantee for efficient algorithms was formally proven only for contin-
uous sets by Zimmert and Lattimore (2022). However, we believe their analysis extends
to discrete decision sets, such as the combinatorial sets considered, using the same tech-
niques as Abernethy et al. (2008).

4. Applications

While it might not be apparent at first glance, learning in several structured domains X ⊆ {0, 1}d
can be efficiently reduced to online shortest paths in suitably-defined DAGs.1 These include at least
the following examples.
• Hypercube: X := {0, 1}d.
• Multi-task MAB: X := X1 ×X2 × · · · × Xm, where Xi = {e1, . . . , edi} is a set of unit vectors.
• m-sets: X := {x ∈ {0, 1}d : ∥x∥1 = m}.
• Shortest walk in directed graph. We consider the online shortest walk problem in a directed graph

G = (V,E), where walks can have a length of at most K ≤ |E|.
• Extensive-form games. The game consists of decision nodes X , observation nodes Y , and termi-

nal nodes Z . We choose one of the N ≤ 2|Z| possible strategies at the decision nodes and
aim to minimize the total loss incurred.

• Colonel Blotto games. In this game, the goal is to assign N soldiers across K battlefields while
minimizing the total loss incurred.

We refer the reader to Appendix E for a detailed discussion of each setting and its DAG reduction.
The important point is that in light of the connection to DAGs, our method applies directly to the
above settings as well. We summarize the results we obtain for these settings in Table 2, comparing
the regret guarantees enjoyed by our method compared to the prior known high-probability regret
guarantees achieved by efficient algorithms. We remark that our high-probability regret bound
matches that of EXP3 with Kiefer-Wolfowitz exploration for the Hypercube and Extensive-form
games. For Multi-task MAB, our high-probability regret bound significantly improves upon that
of EXP3 with Kiefer-Wolfowitz exploration, and we also establish a matching lower bound, up to
logarithmic factors. More details on previous approaches and implementation details of our methods
in these settings are available in Appendix E.

1. To our knowledge, we are the first to point out this fact in the case of m-sets and, more importantly, extensive-form
games, for which the reduction is not immediate.
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5. Conclusion and Future Work

In this paper, we studied the online shortest path problem on DAGs. We designed the first com-
putationally efficient algorithm to achieve a high-probability nearly minimax-optimal regret bound
of Õ(

√
|E|T log |X |) against any adaptive adversary, where Õ(·) hides logarithmic factors in |E|.

Beyond shortest paths, our algorithm can be applied to various combinatorial sets in {0, 1}d, and
we provided improved high-probability regret bounds for them.

Our work raises several interesting open questions in combinatorial bandits. First, can our
approach be further generalized to achieve high-probability regret bounds for any combinatorial set
in {0, 1}d? Second, is there an efficient algorithm that achieves a high-probability minimax-optimal
regret bound of O(

√
dT log |X |) for any combinatorial set X ⊆ {0, 1}d? Finally, given a fixed

combinatorial set X ⊆ {0, 1}d, what are the tight upper and lower bounds on regret relative to X ?
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Appendix A. Related Works

Multi-Armed Bandits. For non-stochastic Multi-Armed Bandits, Auer et al. (2002) introduced
the EXP3 algorithm (short for “exponential-weight algorithm for exploration and exploitation”),
which achieves a pseudo-regret of O(

√
KT logK). They also established a regret lower bound

of Ω(
√
KT ). Subsequently, Audibert and Bubeck (2010) introduced the implicitly normalized

forecaster, achieving a pseudo-regret bound of O(
√
KT ). Building on this, Bubeck and Slivkins

(2012) initiated the study of “best of both worlds” algorithms, which attain near-optimal pseudo-
regret bounds in both stochastic and non-stochastic settings. Finally, Zimmert and Seldin (2021)
demonstrated that Tsallis-1/2-INF achieves optimal pseudo-regret bounds for the best of both worlds
problem.

Auer et al. (2002) also introduced a variant of EXP3, called EXP3.P, which incorporates explicit
exploration and achieves a regret of O(

√
KT log(KT/δ)) with probability at least 1 − δ. Bubeck

et al. (2012b) later analyzed a version of EXP3.P that attains a regret of 5.15
√

KT log(K/δ) with
the same probability guarantee. Building on this, Neu (2015) proposed EXP3-IX (EXP3 with Im-
plicit Exploration), which leverages implicit exploration to achieve a regret of 2

√
2KT log(K/δ)

with probability at least 1− δ.

Adversarial Linear Bandits. For a bounded arm set X ⊂ Rd and loss values in [−1, 1] for any
arm, McMahan and Blum (2004) were the first to design a sublinear regret algorithm, achieving an
expected regret of T 3/4. A later, improved analysis by Dani and Hayes (2006) reduced this bound
to T 2/3, while maintaining polynomial dependence on d. This result holds even against an adaptive
adversary.

For the special case of DAGs, Awerbuch and Kleinberg (2004) designed the first algorithm
with a pseudo-regret of T 2/3 and polynomial dependence on d. Subsequently, György et al. (2007)
extended this result by developing an algorithm that achieves a high-probability regret bound of
T 2/3, also with polynomial dependence on d, even against an adaptive adversary.

Dani et al. (2007) were the first to design an algorithm called Geometric Hedge, which achieves
a regret of T 1/2 with polynomial dependence on d. Later, Bartlett et al. (2008) introduced a variant
of Geometric Hedge that incurs a high-probability regret bound of Õ(d3/2

√
T ).

Cesa-Bianchi and Lugosi (2012) followed up by designing an algorithm called Comband, which
achieves a pseudo-regret of O(

√
dT log |X |) for various combinatorial sets X ⊆ {0, 1}d. Subse-

quently, Bubeck et al. (2012a) showed that EXP2 with John’s exploration incurs a pseudo-regret of
O(
√

dT log |X |) for any finite set X ⊆ Rd. For a general regret analysis of a similar algorithm,
EXP3 for Linear Bandits with any fixed exploration distribution, we refer the reader to Lattimore
and Szepesvári (2020). Later, Zimmert and Lattimore (2022) designed a high-probability version
called EXP3 with Kiefer-Wolfowitz exploration, which achieves a regret of O(

√
dT log(|X |/δ))

with probability at least 1− δ for any finite set X ⊆ Rd.
For the combinatorial setting, where the loss of each individual coordinate is bounded between

−1 and 1, Audibert et al. (2014) provided near-optimal worst-case upper bounds for both semi-
bandit and bandit feedback. For combinatorial sets such as m-sets, DAGs, multi-task MAB, and
maximum matching in bipartite graphs, Cohen et al. (2017); Ito et al. (2019) established tight worst-
case lower bounds under bandit feedback. The techniques used in these works can be appropriately
adapted to derive tight lower bounds for the standard bandit setting, where the loss value of any arm
lies within [−1, 1].
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Computationally Efficient Algorithms. For compact convex sets X ⊂ Rd, Abernethy et al.
(2008) were the first to propose a computationally efficient algorithm that achieves a pseudo-regret
of poly(d) ·

√
T . Their approach leveraged efficient self-concordant barriers. They also analyzed

the online shortest path problem in DAGs, providing an efficient algorithm with a pseudo-regret of
Õ(
√
|E|3T ).

Cesa-Bianchi and Lugosi (2012) demonstrated computationally efficient implementations of
ComBand for certain combinatorial sets. For general convex decision sets, Hazan and Karnin (2016)
designed a computationally efficient algorithm with Õ(d

√
T ) pseudo-regret using volumetric span-

ners. Their approach extends to the online shortest path problem in DAGs, where their efficient
algorithm achieves a pseudo-regret of Õ(

√
|E|T log |X |).

Given access to an efficient linear optimization oracle, Ito et al. (2020) proposed a computation-
ally efficient algorithm based on continuous multiplicative weight updates, which achieves Õ(d

√
T )

pseudo-regret while also providing tight first- and second-order guarantees.

For compact convex setsX ⊂ Rd, Lee et al. (2020) proposed the first efficient algorithm achiev-
ing a high-probability regret of poly(d)·

√
T against an adaptive adversary. Their approach leveraged

an efficient self-concordant barrier and yielded a worst-case high-probability regret of Õ(
√
d7T ).

Subsequently, Zimmert and Lattimore (2022) developed an improved efficient algorithm with a re-
gret bound of Õ(d2

√
T ) with high probability against an adaptive adversary, which remains the best

known result to date. Their method relied on the entropic barrier. Notably, both high-probability
guarantees were formally established only for continuous decision sets. However, we believe their
analysis extends to discrete decision sets, such as paths in a DAG, using the same techniques as
Abernethy et al. (2008).

Appendix B. Technical Lemmas

Lemma 9 (Slivkins et al. (2019)) Fix ε ∈ (0, 14). Let RCε denote a random coin with bias ε, i.e., a
distribution over {0, 1} with expectation 1

2 + ε. Then KL(RCε, RC0) ≤ 8ε2 and KL(RC0, RCε) ≤
4ε2.

Lemma 10 (Chain Rule) Let f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) be two joint PMFs for a
tuple of random variables (Xi)i∈[n]. Let the sample space be Ω = {0, 1}n. Then we have the
following:

KL(f, g) =
∑
ω∈Ω

f(ω)

(
KL(f(X1), g(X1)) +

n∑
i=2

KL(f(Xi|X−i = ω−i), g(Xi|X−i = ω−i))

)

where X−i = (X1, . . . , Xi−1), ω−i = (ω1, . . . , ωi−1).
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Proof. Let Ωi = {0, 1}i. Now we have the following:

KL(f, g) =
∑
ω∈Ω

f(ω) log

(
f(ω)

g(ω)

)
=
∑
ω∈Ω

f(ω) log

(
f(ω1)

∏n
i=2 f(ωi|ω−i)

g(ω1)
∏n

i=2 g(ωi|ω−i)

)

=
∑
ω∈Ω

f(ω)

(
log

(
f(ω1)

g(ω1)

)
+

n∑
i=2

log

(
f(ωi|ω−i)

g(ωi|ω−i)

))

=
∑
ω∈Ω

f(ω) log

(
f(ω1)

g(ω1)

)
+

n∑
i=2

∑
ω∈Ω

f(ω) log

(
f(ωi|ω−i)

g(ωi|ω−i)

)

=
∑
ω1∈R

f(ω1) log

(
f(ω1)

g(ω1)

)
+

n∑
i=2

∑
ω∈Ωi

f(ω) log

(
f(ωi|ω−i)

g(ωi|ω−i)

)

= KL(f(X1), g(X1)) +

n∑
i=2

∑
ω−i∈Ωi−1

f(ω−i)
∑

ωi∈Ω1

f(ωi) log

(
f(ωi|ω−i)

g(ωi|ω−i)

)

= KL(f(X1), g(X1)) +

n∑
i=2

∑
ω−i∈Ωi−1

f(ω−i)KL(f(Xi|X−i = ω−i), g(Xi|X−i = ω−i))

=
∑
ω∈Ω

f(ω)KL(f(X1), g(X1)) +

n∑
i=2

∑
ω∈Ω

f(ω)KL(f(Xi|X−i = ω−i), g(Xi|X−i = ω−i))

=
∑
ω∈Ω

f(ω)

(
KL(f(X1), g(X1)) +

n∑
i=2

KL(f(Xi|X−i = ω−i), g(Xi|X−i = ω−i))

)

Lemma 11 ((Fiegel et al., 2023)) Let (ut)t∈JT K be a random process adapted to the filtration
(Ft)t∈[T ] such that 0 ≤ ut ≤ H for all t ∈ JT K. Then, with probability at least 1− δ, we have

T∑
t=1

[ut − E[ut|Ft−1]] ≤ H
√

2T log(1/δ)

Similarly, with probability at least 1− δ, we have

T∑
t=1

[E[ut|Ft−1]− ut] ≤ H
√

2T log(1/δ)

Corollary 12 ((Fiegel et al., 2023)) Let (ut)t∈JT K be a random process adapted to the filtration
(Ft)t∈[T ] such that −H ≤ ut ≤ H for all t ∈ JT K. Then, with probability at least 1− δ, we have

T∑
t=1

[ut − E[ut|Ft−1]] ≤ H
√

8T log(1/δ)
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Similarly, with probability at least 1− δ, we have

T∑
t=1

[E[ut|Ft−1]− ut] ≤ H
√

8T log(1/δ)

Lemma 13 (Lattimore and Szepesvári (2020)) Let η > 0 and f be Legendre and twice differ-
entiable with positive definite Hessian in A = int(dom(f)). Then for all x, y ∈ A, there exists a
z ∈ [x, y] = {(1− α)x+ αy : α ∈ [0, 1]} such that

⟨x− y, u⟩ −
Df (x, y)

η
≤ η

2
∥u∥2(∇2f(z))−1 .

where Df (x, y) with respect to f .

Appendix C. General Framework for FTRL with Implicit Exploration

In this section, we extend the ideas from Neu (2015) to provide a general framework for using FTRL
with implicit exploration in combinatorial bandits. In this setting, we are given a combinatorial set
X ⊆ {0, 1}d. Define the ℓ1-norm of the set as m := maxx∈X ∥x∥1.

In each round t, the algorithm selects xt ∈ X and incurs a loss given by ℓt := ⟨xt,yt⟩ ∈ [−1, 1]
where yt is the loss vector chosen adaptively by an adversary based on the past filtration Ft−1 and
the algorithm. The regret with respect to a fixed element x ∈ X is defined as

RT (x) :=
T∑
t=1

⟨xt,yt⟩ −
T∑
t=1

⟨x,yt⟩.

The goal is to provide a high-probability regret guarantee on maxx∈X RT (x).
Let ỹt ∈ Rd be a relatively unbiased estimator defined as

ỹt[i] :=
1[xt[i] = 1] · ℓt,i
Pt[xt[i] = 1]

,

where ℓt,i is some random variable based on ℓt. Assume there is an absolute constant b such that
ℓt,i ∈ [0, b] for every t ∈ JT K and i ∈ JdK. An estimator is relatively unbiased when it satisfies

Et[⟨x− x′, ỹt⟩] = ⟨x− x′,yt⟩

for any two elements x,x′ ∈ X , preserving their differences.
We analyze the FTRL algorithm, which follows the update rule

x̃t ← arg min
x∈co(X )

(
η

t−1∑
τ=1

⟨x, ŷτ ⟩+ F (x)

)
,

where F (·) is a Legendre function such that ∇2F (·) is always a diagonal matrix with positive
diagonal entries for any point on the chord [x̃t, x̃t+1]. Moreover, ŷt ∈ Rd is the loss estimator given
by

ŷt[i] :=
1[xt[i] = 1] · ℓt,i
Pt[xt[i] = 1] + γi

.
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The algorithm then samples xt ∈ X such that Et[xt] = x̃t. Note that it holds Pt[xt[i] = 1] = x̃t[i]
for every i ∈ JdK.

Now, we begin our regret analysis.

Lemma 14 Denote by E1 the event that
T∑
t=1

⟨xt − x̃t,yt⟩ ≤
√
8T log(1/δ0).

It satisfies that P[E1] ≥ 1− δ0.

Proof. First observe that
T∑
t=1

⟨xt,yt⟩ =
T∑
t=1

⟨x̃t,yt⟩+
T∑
t=1

(⟨xt,yt⟩ − Et[⟨xt,yt⟩]).

As ⟨xt,yt⟩ ∈ [−1, 1], according to Corollary 12, with probability at least 1− δ0, we have
T∑
t=1

(⟨xt,yt⟩ − Et[⟨xt,yt⟩]) ≤
√
8T log(1/δ0),

which concludes the proof.

Lemma 15 Denote by E2 the event that
T∑
t=1

⟨x̃t,Et[ŷt]− ŷt⟩ ≤ b ·m
√

2T log(1/δ0).

It satisfies that P[E2] ≥ 1− δ0.

Proof. The lemma can be proved directly by applying Lemma 11 and the fact that ⟨x̃t, ŷt⟩ ∈
[0, b ·m].

Lemma 16 It always holds that
T∑
t=1

⟨x̃t,Et[ỹt]− Et[ŷt]⟩ ≤ b · T ·
d∑

i=1

γi.

Proof. From definition,
T∑
t=1

⟨x̃t,Et[ỹt]− Et[ŷt]⟩ =
T∑
t=1

d∑
i=1

x̃t[i] · Et[ỹt[i]] ·
(
1− x̃t[i]

x̃t[i] + γi

)
≤ b ·

T∑
t=1

d∑
i=1

x̃t[i] · γi
x̃t[i] + γi

(x̃t[i] ≤ 1,Et[ỹt[i]] ≤ b)

≤ b ·
T∑
t=1

d∑
i=1

γi

= b · T ·
d∑

i=1

γi
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Lemma 17 Define βi := 2γi/b. Let E3 be the event that simultaneously for all i ∈ JdK,

T∑
t=1

(ŷt[i]− Et[ỹt[i]]) ≤
log(d/δ0)

βi

It satisfies that P[E3] ≥ 1− δ0. Furthermore, under event E3, it satisfies that

T∑
t=1

⟨x, ŷt − Et[ỹt]⟩ ≤
d∑

i=1

x[i] · log(d/δ0)
βi

, ∀x ∈ X .

Proof. Fix i ∈ JdK. First we have the following:

ŷt[i] =
xt[i] · ℓt,i
x̃t[i] + γi

≤ xt[i] · ℓt,i
x̃t[i] + (γi/b) · ℓt,i

(as ℓt,i ∈ [0, b])

=
1

βi
· βi · xt[i] · ℓt,i
x̃t[i] + (βi/2) · ℓt,i

(as βi = 2γi
b )

≤ 1

βi
· βi · xt[i] · ℓt,i
x̃t[i] + (βi/2) · xt[i] · ℓt,i

(as xt[i] ∈ {0, 1})

=
1

βi
· βi · ỹt[i]

1 + (βi/2) · ỹt[i]
(as ỹt[i] = xt[i] · ℓt,i/x̃t[i])

≤ 1

βi
· ln (1 + βi · ỹt[i]) (as z

1+z/2 ≤ ln (1 + z) for all z ≥ 0)

Next, we have the following:

Et[exp(βiŷt[i])] ≤ Et[(1 + βiỹt[i])]

= 1 + βiEt[ỹt[i]]

≤ exp(βiEt[ỹt[i]]) (as 1 + z ≤ exp(z) for all z ∈ R)

Hence, the process Z0 = 1 and Zt = exp(βi
∑t

τ=1(ŷτ [i] − Et[ỹτ [i]])) for all t ≥ 1 is a
supermartingale with respect to (Ft) as Et[Zt] ≤ Zt−1. Hence, we have E[Zt] ≤ E[Zt−1] ≤ . . . ≤
1. Therefore, by Markov inequality we have,

P

[
T∑
t=1

ŷt[i]− Et[ỹt[i]] >
log(d/δ0)

βi

]
≤ E

[
exp

(
βi ·

T∑
t=1

(ŷt[i]− Et[ỹt[i]])

)]
·exp (log(d/δ0)) ≤

δ0
d

By union bound over i ∈ JdK, we get that the event E3 holds with probability at least 1− δ0.
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Finally, under event E3,

T∑
t=1

⟨x, ŷt − Et[ỹt]⟩ =
d∑

i=1

x[i] ·
T∑
t=1

(ŷt[i]− Et[ỹt[i]]) ≤
d∑

i=1

x[i] · log(d/δ0)
βi

Lemma 18 Given Bregman divergence DF (p, q) := F (p)− F (q)− ⟨∇F (q), p− q⟩, let

VARt := ⟨x̃t − x̃t+1, ŷ
+
t ⟩ −

1

η
· DF (x̃t+1, x̃t).

Denote by E4 the event that

T∑
t=1

VARt ≤
T∑
t=1

Et

[η
2
||ŷ+

t ||2(∇2F (zt))−1

]
+ b ·m ·

√
2T log(1/δ0)

where ŷ+
t ∈ Rd is a vector defined as

ŷ+
t [i] := ŷt[i] · 1[x̃t+1[i] ≤ x̃t[i]].

It satisfies that P[E4] ≥ 1− δ0.

Proof. Let VAR+t := max{VARt, 0}. Since DF (x̃t+1, x̃t) ≥ 0 and ŷ+
t [i] ≥ 0 for all i ∈ JdK, we

obtain the following:

VAR+t ≤ ⟨x̃t, ŷ
+
t ⟩ ≤ ⟨x̃t, ŷt⟩ ≤ b ·m.

According to Lemma 11, with probability at least 1− δ0, we have

T∑
t=1

VAR+t ≤
T∑
t=1

Et[VAR
+
t ] + b ·m ·

√
2T log(1/δ0).

Next, due to Lemma 13, we have VARt ≤ η
2 ||ŷ

+
t ||2(∇2F (zt))−1 , where zt is some point on the

chord [x̃t, x̃t+1]. Since η
2 ||ŷ

+
t ||2(∇2F (zt))−1 ≥ 0, it follows that VAR+t ≤

η
2 ||ŷ

+
t ||2(∇2F (zt))−1 .

Since VARt ≤ VAR+t for all t ∈ JT K, the event E4 holds with probability at least 1− δ0.

Let E :=
4⋃

i=1
Ei be our good event. Due to union bound, the event E holds with probability at

least 1 − 5δ0. Let us assume that the good event E holds and let us fix x ∈ X . First we have the
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following:

RT (x) =
T∑
t=1

⟨xt − x,yt⟩

≤
T∑
t=1

⟨x̃t − x,yt⟩+
√
8T log(1/δ0) (as event E1 holds)

=
T∑
t=1

⟨x̃t − x,Et[ỹt]⟩+
√

8T log(1/δ0)

=
T∑
t=1

⟨x̃t − x, ŷt⟩+
T∑
t=1

⟨x̃t,Et[ŷt]− ŷt⟩+
T∑
t=1

⟨x̃t,Et[ỹt]− Et[ŷt]⟩

+

T∑
t=1

⟨x, ŷt − Et[ỹt]⟩+
√

8T log(1/δ0)

≤
T∑
t=1

⟨x̃t − x, ŷt⟩+
√

8T log(1/δ0) + b ·m
√

2T log(1/δ0)

+ b · T
d∑

i=1

γi + b ·
d∑

i=1

x[i] · log(d/δ0)
2γi

(as events E2, E3 hold)

Observe that if γi = γ for all i ∈ J[dK], we also get the following as ||x||1 ≤ m:

RT (x) ≤
T∑
t=1

⟨x̃t−x, ŷt⟩+
√

8T log(1/δ0)+ b ·m
√

2T log(1/δ0)+ b ·T ·d ·γ+ b ·m · log(d/δ0)
2γ

As x̃t is the solution to our FTRL equation above, we get the following using the standard FTRL
analysis from Lattimore and Szepesvári (2020) and the fact that event E4 holds:

T∑
t=1

⟨x̃t−x, ŷt⟩ ≤
diamF

η
+

T∑
t=1

VARt ≤
diamF

η
+

T∑
t=1

Et

[η
2
||ŷ+

t ||2(∇2F (zt))−1

]
+b·m·

√
2T log(1/δ0)

where zt is some point on the chord [x̃t, x̃t+1] and diamF := maxx,x′∈co(X ) F (x) − F (x′). Now
we have the following theorem under our assumptions.

Theorem 19 Let δ0 = δ
5 and γi =

√
m log(5d/δ)

dT for all i ∈ JdK. Given an FTRL algorithm
satisfying the assumptions of this section, we have the following guarantee on regret with probability
at least 1− δ against any adaptive adversary:

max
x∈X

RT (x) ≤
diamF

η
+

T∑
t=1

Et

[η
2
||ŷ+

t ||2(∇2F (zt))−1

]
+ c · b ·

√
mdT log(d/δ)

where c is some absolute constant and zt is some point on the chord [x̃t, x̃t+1].
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Algorithm 1: FTRL for online shortest path in a DAG G = (V,E) with equal path lengths

1 Let K be the length of every path in the DAG G from source to sink.
2 for t = 1 to T do
3 Compute x̃t ← argminx∈co(X )

(
η
∑t−1

τ=1⟨x, ŷτ ⟩+ F (x)
)

.

4 Initialize path Pt ← (vs) and reset v0 ← vs.
5 for i = 1 to K do
6 Sample outgoing edge ei = (vi−1, vi) ∈ δ+(vi−1) with probability proportional to

x̃t[ei].
7 Update Pt ← Pt ◦ (ei, vi)
8 end
9 Choose the path Pt and observe loss its ℓt.

10 Determine xt ∈ X corresponding to the path Pt and construct the loss estimator ŷt.
11 end

Appendix D. DAGs: Additional Details

D.1. Omitted Details from Section 3.1

First, we prove the following proposition.

Proposition 20 Et[xt] = x̃t

Proof. Let v1, v2, . . . , v|V | be the topological order of the vertices in the DAG G, where v1 = vs and
v|V | = vt. We now prove our proposition using mathematical induction. Let P (i) be the statement
that for all j ∈ JiK, we have Et[xt[vj ]] = x̃t[vj ] and Et[xt[e]] = x̃t[e] for any outgoing edge e from
vj .

Consider the base case of i = 1. First, observe that Et[xt[v1]] = 1 = x̃t[v1]. Next, due to our
sampling procedure, we have

Et[xt[e]] =
x̃t[e]∑

e′∈δ+(v1)
x̃t[e]

= x̃t[e]

for any outgoing edge e from v1. Hence, P (1) is true.
Next, let us make the inductive hypothesis that P (k) is true. Now we show that P (k + 1) is

true. First, observe that

Et[xt[vk+1]] = Et

[ ∑
e∈δ−(vk+1)

xt[e]
]

=
∑

e∈δ−(vk+1)

x̃t[e] (due to inductive hypothesis)

= x̃t[vk+1] (due to flow constraints)
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Next, observe that for any outgoing edge e from vk+1, we have:

Et[xt[e]] = Et[xt[e] | xt[vk+1] = 1] · Pt[xt[vk+1] = 1]

=
x̃t[e]∑

e′∈δ+(vk+1)
x̃[e′]

· x̃t[vk+1] (due to our sampling procedure)

=
x̃t[e]

x̃t[vk+1]
· x̃t[vk+1] (due to flow constraints)

= x̃t[e]

Hence, P (k + 1) is true. Hence, due to principle of mathematical induction, we have Et[xt] = x̃t.

Next, recall that if all the paths have equal length of K, then we have Et[⟨x − x′, ỹt⟩] =
⟨x−x′,yt⟩ for all x,x′ ∈ X . If we use F (x) = −

∑
v∈V

√
x[v]−

∑
e∈E

√
x[e] as our regularizer,

it easily follows that Equation (1) has a unique minimizer x̃t and x̃t[v] > 0 for all v ∈ V and
x̃t[e] > 0 for all e ∈ E. Therefore, ∇2F (z) is a diagonal matrix for any point z on the chord
[x̃t, x̃t+1]. Let ŷ+

t ∈ RV ∪E
≥0 be a vector indexed by the elements in V ∪ E such that ŷ+

t [v] =

ŷt[v] · 1[x̃t+1[v] ≤ x̃t[v]] for all v ∈ V and ŷ+
t [e] = ŷt[e] · 1[x̃t+1[e] ≤ x̃t[e]] for all e ∈ E. Let us

set every entry of γ to
√

K log(5(|V |+|E|)/δ)
|E|T . Now we apply Lemma 19 from Appendix C to get the

following:

Theorem 21 Algorithm 1 has the following guarantee on regret with probability at least 1 − δ
against any adaptive adversary:

max
x∈X

RT (x) ≤
diamF (co(X ))

η
+

T∑
t=1

Et

[η
2
||ŷ+

t ||2(∇2F (zt))−1

]
+ c ·

√
K|E|T log(|E|/δ)

where c is some absolute constant, diamF (co(X )) := maxx,x′∈co(X ) F (x)−F (x′), and zt is some
point on the chord [x̃t, x̃t+1].

First we upper bound
∑
v∈V

√
x[v] +

∑
e∈E

√
x[e] for any x ∈ co(X ) as follows:

∑
v∈V

√
x[v] +

∑
e∈E

√
x[e] ≤

√
(|V |+ |E|) · (

∑
v∈V

x[v] +
∑
e∈E

x[e]) (Cauchy-Schwarz inequality)

≤
√
(2|E|+ 1) · (

∑
v∈V

x[v] +
∑
e∈E

x[e]) (as |V | ≤ |E|+ 1)

≤
√

4(K + 1)(|E|+ 1)

We get the last inequality due to the following. First by definition any point in x ∈ co(X ) is a
convex combination of points in X . Therefore an upper bound on maxx′∈X

∑
v∈V

x′[v] +
∑
e∈E

x′[e] is

also an upper bound on
∑
v∈V

x[v] +
∑
e∈E

x[e]. As any path in the DAG G has exactly K edges, we

have
∑
v∈V

x′[v] = K + 1 and
∑
e∈E

x′[e] = K for any x′ ∈ X .
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Now we upper bound the diameter as follows:

diamF (co(X )) ≤ max
x∈co(X )

∑
v∈V

√
x[v] +

∑
e∈E

√
x[e] ≤

√
4(K + 1)(|E|+ 1)

Next, we upper bound the second term of the regret upper bound above. Observe that∇2F (z) =
diag(1/(4z3/2)). Due to the definition of ŷ+

t , it follows that the term ||ŷ+
t ||2∇2F (zt)−1 is maxi-

mized when zt = x̃t. Hence, we have Et

[
||ŷ+

t ||2∇2F (zt)−1

]
≤ 16

∑
v∈V

√
x̃t[v] + 16

∑
e∈E

√
x̃t[e] ≤

32
√

(K + 1)(|E|+ 1). Hence, we have the following by setting η = 1√
T

:

Regret(T ) ≤ diamF (co(X ))
η

+
T∑
t=1

Et

[η
2
||ŷ+

t ||2(∇2F (zt))−1

]
+ c ·

√
K|E|T log(|E|/δ)

≤
2
√
(K + 1)|E|

η
+

32Tη

2

√
(K + 1)|E|+ c ·

√
K|E|T log(|E|/δ)

≤ 18
√
(K + 1)(|E|+ 1)T + c ·

√
K|E|T log(|E|/δ)

where we get the last inequality by setting η = 1√
T

.

Theorem 22 Under the assumption that every path from the source to the sink has length K,
Algorithm 1 incurs a regret of at most O(

√
K|E|T log(|E|/δ)) against any adaptive adversary

with probability at least 1− δ.

D.2. Omitted Details from Section 3.2

Algorithm 2: FTRL for online shortest path in a DAG G = (V,E)

1 Let K be the longest path in the DAG G from source to sink.
2 for t = 1 to T do
3 Compute x̃t ← argminx∈co(X †)

(
η
∑t−1

τ=1⟨x, ŷ
†
τ ⟩+ F (x)

)
.

4 Initialize path Pt ← (vs) and reset v0 ← vs.
5 for i = 1 to K do
6 Sample outgoing edge ei = (vi−1, vi) ∈ δ+(vi−1) with probability proportional to

x̃t[ei].
7 Update Pt ← Pt ◦ (ei, vi)
8 end
9 Choose the path Pt and observe loss its ℓt.

10 Determine x†
t ∈ X † corresponding to the path Pt and construct the loss estimator ŷ†

t .
11 end

Recall that K(v) is the length of the longest path from vs to v and K(vs) = 0. For any edge
(u, v) ∈ E, define I((u, v)) := {i ∈ JK − 1K : K(u) < i < K(v)}. Now we make the following
assumption.
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Assumption 2 For any i ∈ JK − 1K, |e ∈ E : i ∈ I(e)| ≥ 1.

Note that if there exists an index i ∈ JK − 1K such that |e ∈ E : i ∈ I(e)| = 0, then we have
b(x)[i] = 0 for all x ∈ X . Consequently, this bit can be excluded from our representation.

Next, we prove the following proposition.

Proposition 23 Et[x
†
t ] = x̃t

Proof. Due to Proposition 20, we have Et[x
†
t [v]] = x̃t[v] for all v ∈ V and Et[x

†
t [e]] = x̃t[e] for

all e ∈ E. Fix i ∈ JK− 1K. Later in this section, we prove that for any x ∈ co(X †), we have x[i] =∑
e∈E:i∈I(e) x[e]. Hence, we have x̃t[i] =

∑
e∈E:i∈I(e) x̃t[e] = Et[

∑
e∈E:i∈I(e) x

†
t [e]] = Et[x

†
t [i]].

Recall the definition of the loss estimators ŷ†
t and ỹ†

t from Section 3.2. Next, recall that we have
Et[⟨x†

(1)−x
†
(2), ỹ

†
t ⟩] = ⟨x(1)−x(2),yt⟩ for all x(1),x(2) ∈ X . If we use F (x) = −

∑
v∈V

√
x[v]−∑

e∈E
√
x[e]−

∑
i∈JK−1K

√
x[i] as our regularizer, it easily follows that our FTRL equation has a

unique minimizer x̃t and x̃t[v] > 0 for all v ∈ V , x̃t[e] > 0 for all e ∈ E and x̃t[i] > 0 for all
i ∈ JK − 1K. Therefore, ∇2F (z) is a diagonal matrix for any point z on the chord [x̃t, x̃t+1]. Let
ŷ+
t ∈ RV ∪E∪JK−1K

≥0 be a vector indexed by the elements in V ∪ E ∪ JK − 1K such that ŷ+
t [v] =

ŷ†
t [v] · 1[x̃t+1[v] ≤ x̃t[v]] for all v ∈ V , ŷ+

t [e] = ŷt[e] · 1[x̃t+1[e] ≤ x̃t[e]] for all e ∈ E, and
ŷ+
t [i] = ŷt[i] · 1[x̃t+1[i] ≤ x̃t[i]] for all i ∈ JK − 1K. Let us set every entry of γ and γ̂ to√
K log(5(|V |+|E|+K)/δ)

|E|T . Now we apply Lemma 19 from Appendix C to get the following:

Theorem 24 Algorithm 1 has the following guarantee on regret with probability at least 1 − δ
against any adaptive adversary:

max
x∈X

RT (x) ≤
diamF (co(X †))

η
+

T∑
t=1

Et

[η
2
||ŷ+

t ||2(∇2F (zt))−1

]
+ c ·

√
K|E|T log(|E|/δ)

where c is some absolute constant, diamF (co(X †)) := maxx,x′∈co(X †) F (x) − F (x′), and zt is
some point on the chord [x̃t, x̃t+1].

First we upper bound
∑
v∈V

√
x[v] +

∑
e∈E

√
x[e] +

K−1∑
i=1

√
x[i] for any x ∈ co(X †) as follows:

∑
v∈V

√
x[v] +

∑
e∈E

√
x[e] +

K−1∑
i=1

√
x[i]

≤

√√√√(|V |+ |E|+K − 1) · (
∑
v∈V

x[v] +
∑
e∈E

x[e] +

K−1∑
i=1

x[i]) (Cauchy-Schwarz inequality)

≤

√√√√(3|E|) · (
∑
v∈V

x[v] +
∑
e∈E

x[e] +

K−1∑
i=1

x[ℓ+ i]) (as |V | ≤ |E|+ 1, K ≤ |E|)

≤
√

9K|E|
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We get the last inequality due to the following. First by definition any point in x ∈ co(X †) is a
convex combination of points inX . Therefore, an upper bound on maxx′∈X †

∑
v∈V

x′[v]+
∑
e∈E

x′[e]+

K−1∑
i=1

x′[i] is also an upper bound on
∑
v∈V

x[v]+
∑
e∈E

x[e]+
K−1∑
i=1

x[ℓ+i]. As any path in the DAG G has

at most K edges, we have
∑
v∈V

x′[v] ≤ K +1 and
∑
e∈E

x′[e] ≤ K. We also have
K−1∑
i=1

x′[i] ≤ K − 1.

Now we upper bound the diameter as follows:

diamF (co(X †)) ≤ max
x∈co(X †)

∑
v∈V

√
x[v] +

∑
e∈E

√
x[e] +

K−1∑
i=1

√
x[i] ≤

√
9K|E|

Next, we upper bound the second term of the regret upper bound above. Next observe that
∇2F (z) = diag(1/(4z3/2)). Due to the definition of ŷ+

t , it follows that the term ||ŷ+
t ||2∇2F (zt)−1 is

maximized when zt = x̃t. Hence, we have Et

[
||y′

t||2∇2F (zt)−1

]
≤ 16

∑
v∈V

√
x̃t[v]+16

∑
e∈E

√
x̃t[e]+

16
K−1∑
i=1

√
x̃t[i] ≤ 48

√
K|E|.

Hence, we have the following by setting η = 1√
T

:

Regret(T ) ≤ diamF (co(X †))

η
+

T∑
t=1

Et

[η
2
||ŷ+

t ||2(∇2F (zt))−1

]
+ c ·

√
K|E|T log(|E|/δ)

≤
3
√
K|E|
η

+
48Tη

2

√
K|E|+ c ·

√
K|E|T log(|E|/δ)

≤ 27
√
K|E|T + c ·

√
K|E|T log(|E|/δ)

Our analysis leads to the following main theorem.

Theorem 25 Under the assumption that every path from the source to the sink has length at most
K, Algorithm 2 incurs a regret of at most O(

√
K|E|T log(|E|/δ)) against any adaptive adversary

with probability at least 1− δ.

We now show that co(X †) can be represented using a polynomial number of linear constraints.
Recall that X † represents the set of all paths, including the appended K−1 bits. We now claim that,
given a point x ∈ [0, 1]V ∪E∪JK−1K, we can efficiently determine whether x lies within the convex
hull of X †. The coordinate values corresponding to the edges and vertices must satisfy the flow
constraints, which can be verified efficiently.

Recall that for any edge (u, v) ∈ E, we defined I((u, v)) := {i ∈ JK − 1K : K(u) < i <
K(v)}. For any two edges e1, e2 on the same path, observe that I(e1)∩ I(e2) = ∅. Consequently,
the coordinate values of x corresponding to the indices in JK − 1K must satisfy the following
condition:

x[i] =
∑

e∈E:i∈I(e)

x[e] ∀i ∈ JK − 1K.
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If this condition fails for some i ∈ JK − 1K, then x does not lie in the convex hull of X †.
Conversely, if all flow constraints and the above condition hold, then x belongs to the convex hull.
This verification is efficient, as I(e) can be computed efficiently.

Remark: One does not need to compute the exact minimizer x̃t of the FTRL equation in each
round t. Our analysis remains valid if we instead compute an approximate minimizer x̂t satisfying
∥x̂t − x̃t∥∞ ≤ 1

T 2 and ∥x̂t∥∞ > 0. Such an approximate minimizer can be efficiently computed
using standard optimization methods, such as the Ellipsoid method, in poly(|E|, log T ) time steps,
since our regularizer is both Legendre and strongly convex over co(X †), and co(X †) can be repre-
sented using a polynomial number of linear constraints.

D.3. Omitted Details from Section 3.3

Here, we present the full version of Section 3.3, including the omitted details.
Recall that δ−(v) denotes the incoming edges and δ+(v) denotes the outgoing edges of vertex

v. Let C : V → N denote the number of distinct paths from the source vs to any vertex v. It holds
that C(vs) = 1 and C(v) :=

∑
(u,v)∈δ−(v)C(u) for any v ̸= vs. According to the definition, it

satisfies that C(vt) = |X |.
Let h(v) := argmax(u,v)∈δ−(v)C(u) be the incoming edge that brings the maximum number

of paths to vertex v, with ties broken arbitrarily. Let

E♣ := {h(v) | v ∈ V \ {vs}}

be the set of all such edges. The underlying subgraph S := (V,E♣) forms a directed spanning tree
of G. The next lemma shows that the number of non-tree edges (edges not in E♣) on any path from
vs to vt in G is at most log |X |.

Lemma 26 Let P = (v0 = vs, e1, v1, . . . , ek, vk = vt) be a path from the source to sink. We have
that the number of non-tree edges on the path P is upper bounded by

k∑
i=1

1[ei /∈ E♣] ≤ log (|X |) .

Proof. Since the number of distinct paths is always non-negative, for any i ∈ JkK, we have

C(vi) =
∑

(u,vi)∈δ−(vi)

C(u) ≥ C(vi−1),

where vi−1 ∈ δ−(vi). Moreover, for any non-tree edge ei = (vi−1, vi) /∈ E♣, consider the tree
edge h(vi) = (ui−1, vi), which is an incoming edge to vertex vi. The number of distinct paths from
vs to vi can then be lower bounded by:

C(vi) =
∑

(u,vi)∈δ−(vi)

C(u) ≥ C(ui−1) + C(vi−1) ≥ 2C(vi−1),

where the last inequality follows from the selection criteria of the tree edge h(vi). More generally,
we have that
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1[ei /∈ E♣] ≤ log

(
C(vi)

C(vi−1)

)
.

Since C(vk) = C(vt) = |X | and C(v0) = C(vs) = 1, summing these inequalities yields

k∑
i=1

1[ei /∈ E♣] ≤ log

(
C(vt)

C(v0)

)
= log (|X |) .

We now introduce the centroid-based decomposition: Given a directed tree S = (V,E♣), we
identify a vertex c ∈ V such that the connected components Ŝ1, . . . , Ŝk resulting from its removal
satisfy |V̂i| ≤ |V |/2 for all i ∈ JkK, where V̂i is the set of vertices in the subtree Ŝi. Such a vertex
c, known as the centroid, always exists in any tree (see (Jordan, 1869; Della Giustina et al., 2019)).

We associate the centroid c with the tree S by defining Sc := S. The above procedure is then
applied recursively to each component Ŝi for i ∈ JkK. If a component reduces to a single vertex c,
we designate c as its centroid and terminate the recursion.

Since the sets V̂i resulting from the removal of c form a partition of V \ {c}, each vertex v ∈ V
will eventually be assigned as the centroid of some subtree Sv = (Vv, E

♣
v ). Consequently, this

procedure generates a collection of subtrees T := {Sv : v ∈ V }, where each vertex v is uniquely
associated with a subtree of S in which it serves as the centroid. Furthermore, we define T (Sv) :=
{Sw : w ∈ Vv} as the centroid-based decomposition of the subtree Sv.

The above construction transforms S into a hierarchy of subtrees. The following folklore lemma
establishes that the centroid-based decomposition systematically organizes every path in S.

Lemma 27 Let T be the centroid-based decomposition of the directed tree S. For any pair of
vertices (u, v) ∈ V × V , there exists a unique subtree Sw ∈ T with centroid w such that:

• Both u and v belong to the subtree Sw, i.e., u, v ∈ Vw, where Vw is the vertex set of Sw.

• The path from u to v in the underlying undirected graph of S passes through w.

Proof. We will prove the statement by induction, showing that it holds for any tree S = (V,E♣)
with at most k vertices, along with its corresponding centroid-based decomposition T .

Base Case: When the tree S = ({c},∅) contains only a single vertex v = c, the statement holds
trivially by Sc. The only valid pair is (v, v), and the path from v to itself contains c by definition.

Inductive Step: Assume the statement holds for all trees with at most k vertices. Consider a tree
S = (V,E♣) with |V | = k+1 vertices and a pair of vertices (u, v) ∈ V × V . Let c be the centroid
of S, and consider the path from u to v in the underlying undirected graph of S. We distinguish two
cases:

1. If the path from u to v contains c: Then Sc is the desired subtree. Since the undirected
path from u to v passes through c, u and v must either lie in different connected components
formed after removing c from S, or one of them is c itself. In both cases, no other subtree
Sw′ ∈ T can contain both u and v. Hence, Sc is the only subtree satisfies the condition.
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2. If the path from u to v does not contain c: In this case, both u and v lie entirely within one
of the connected components Ŝi formed by removing c from S. By the induction hypothesis,
there exists one subtree Sw ∈ T (Ŝi) with the statement holds. For any other subtree Sw′ ∈
T \ T (Ŝi), we have neither u nor v contained in Sw′ . Thus, Sw is the only subtree satisfies
the condition.

Conclusion: By mathematical induction, the statement holds for any tree S = (V,E♣). Thus, for
any pair of vertices (u, v) ∈ V × V , there exists a unique vertex c ∈ V such that u, v ∈ Vc and the
path from u to v in the underlying undirected graph of S passes through c.

The following folklore lemma demonstrates that the total number of vertices introduced by the
centroid-based decomposition is nearly linear in the number of vertices of the original tree:

Lemma 28 Let T be the centroid-based decomposition of the directed tree S. The total number of
vertices among Sv = (Vv, E

♣
v ) ∈ T in centroid-based decomposition is upper-bounded by∑

Sv∈T
|Vv| ≤ (1 + log |V |)|V |.

Proof. We will prove the statement by induction, showing that it holds for any tree S = (V,E♣)
with at most k vertices, along with its corresponding centroid-based decomposition T .

Base Case: When the tree S = ({c},∅) contains only a single vertex v = c, we have:∑
Sv∈T

|Vv| = |V | = 1 ≤ (1 + log |V |)|V |,

so the inequality holds.

Inductive Step: Assume the statement holds for all trees with at most k vertices. Consider a tree
S = (V,E♣) with |V | = k + 1 vertices. Denote by Ŝ1, . . . , Ŝk the subtrees after the removal of
centroid c from S. Let V̂i be the set of vertices of Ŝi. By the induction hypothesis, we have∑

v∈V̂i

|Vv| ≤ (1 + log |V̂i|)|V̂i| ≤ |V̂i| log |V |,

where the second inequality follows from |V̂i| ≤ |Vc|/2 which is the property of the centroid.
Therefore, the summation

∑
v∈V |Vv| can be upper-bounded via:

∑
Sv∈T

|Vv| = |Vc|+
k∑

i=1

∑
v∈V̂i

|Vv| ≤ |V |+
k∑

i=1

|V̂i| log |V | ≤ (1 + log |V |)|V |.

where the last equality holds as
∑k

i=1 |V̂i| = |V | − 1.
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A

C(A) = 1

B

C(B) = 1

CC(C) = 1 D

C(D) = 2

E

C(E) = 3

F C(F ) = 4

G

C(G) = 3

H

C(H) = 10

G

AA♭ A♯ BB♭ B♯

CC♭ C♯ DD♭ D♯ EE♭ E♯ FF ♭ F ♯

GG♭ G♯ HH♭ H♯

G†

A B

C D E F

G H

S = SD

AA♭ A♯ BB♭ B♯

CC♭ C♯ DD♭ D♯ EE♭ E♯ FF ♭ F ♯

GG♭ G♯ HH♭ H♯

S† = S†
D

A B

C E F

G H

SA ∪ SG ∪ SF

AA♭ A♯ BB♭ B♯

CC♭ C♯ EE♭ E♯ FF ♭ F ♯

GG♭ G♯ HH♭ H♯

S†
A ∪ S†

G ∪ S†
F

Figure 2: An example graph conversion from G to G† is shown. The non-tree edges E \ E♣ are
shaded in G, and they correspond to the shaded edges in G†. The graph S = (V,E♣) has
a centroid vertex D. Removing D from S results in three subtrees: SA, SG, and SF . The
new linked edges for the corresponding centroids are shaded in the graphs on the right.
Recall C(·) is the number of distinct path from source to the vertex.

Conclusion: By mathematical induction on the size of the tree, we have that∑
Sv∈T

|Vv| ≤ (1 + log |V |)|V |.

Starting from the tree S = (V,E♣), we start by transforming a selected tree Sc = (Vc, E
♣
c ) with

centroid vertex c into an equivalent graph S†
c = (V †

c , E
†
c) in a recursive way, using the centroid-
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based decomposition. Let Ŝ1, . . . , Ŝk be the subtrees obtained after removing the centroid c from
the tree Sc. Now, we do the following in a recursive way:

1. Initialize S†
c ←

⋃k
i=1 Ŝ

†
i , where Ŝ†

i is the transformed graph of Ŝi.

2. Update V †
c ← V †

c ∪ {c♭, c, c♯}.

3. For each vertex v ∈ Vc:

(a) If there is a directed path from v to c in Sc, or if v is c, update E†
c ← E†

c ∪ {(v♭, c)}.

(b) If there is a directed path from c to v in Sc, or if v is c, update E†
c ← E†

c ∪ {(c, v♯)}.

Finally, the graph G† = (V †, E†) is generated as follows:

1. Initialize G† ← S†.

2. For each non-tree edge (u, v) ∈ E \ E♣, update E† ← E† ∪ {(u♯, v♭)}.

We refer the reader to Figure 2 for one example of such a conversion. We now demonstrate that the
converted graph G† is essentially equivalent to G. We define a mapping σ : E† → 2E as follows:

• For e† = (v♭, c), σ(e†) consists of all edges on the unique path from v to c in the tree S.

• For e† = (c, v♯), σ(e†) consists of all edges on the unique path from c to v in the tree S.

• For e† = (u♯, v♭), σ(e†) = {(u, v)} ⊆ E \ E♣ contains the corresponding edge.

The above mapping assigns each edge e† = (u†, v†) ∈ E† a path from u to v (which may be empty),
as specified by σ(e†), where w† ∈ {w♭, w, w♯} for w ∈ {u, v}. Denote by P† the set of paths from
v♭s to v♯t in G†. The following lemma establishes an important property of σ(e†).

Lemma 3 (restatement) For any path P † ∈ P†, σ(e†1)∩σ(e
†
2) = ∅ for any distinct edges e†1, e

†
2 ∈

P †.

Proof. Consider a path P † in G†. Suppose, for the sake of contradiction, that there exist two distinct
edges e†1 and e†2 in P † such that σ(e†1) ∩ σ(e†2) ̸= ∅. Let (u, v) be an edge in the intersection. This
implies that there is a sub-path in G that starts at u, passes through v, and ends at u, contradicting
our assumption that G is a DAG.

The next lemma shows that G† is a DAG:

Lemma 29 The graph G† is a Directed Acyclic Graph with source node v♭s and sink node v♯t .

Proof. First, we show that G† is a directed acyclic graph. Note that by construction, there is no
directed cycle involving only the three vertices c♭, c, c♯ for any c ∈ V . Suppose, for the sake of
contradiction, that there exists a path P † = (v†0, e

†
1, v

†
1, . . . , v

†
ℓ−1, e

†
ℓ, v

†
ℓ) in G† such that v†0 = v†ℓ

and w† ∈ {w♭, w, w♯} for all w ∈ V . Let i be the smallest index such that v0 ̸= vi. This implies
that there is a path in G from v0 to vi using the edges

⋃
j∈JiK σ(e

†
j), and a path from vi back to v0

using the edges
⋃

j∈Ji+1,ℓK σ(e
†
j), which contradicts our assumption that G is a DAG.
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By construction, there is no incoming edges to v♭s in G† as there are no incoming edges to vs in
G†. Similarly, there is no outgoing edges from v♭t in G† as there are no outgoing edges from vt in
G†.

The next lemma demonstrates that this mapping establishes a bijection between the paths from
vs to vt in G and the paths P † from v♭s to v♯t in G†. Note that we slightly abuse the notation σ.

Lemma 4 (restatement) There exists an efficiently computable bijection σ : P† → P such that an
edge e ∈ E belongs to σ(P †) if and only if there exists an edge e† ∈ P † with e ∈ σ(e†).

Proof. First, observe that for a path P † in G† from v♭s to v♯t , the set of edges
⋃

e†∈P † σ(e†) forms
a path P from vs to vt, where the union is over all the edges in P †. This is because any edge
(u†, v†) ∈ E† corresponds to a path from u to v in G. As σ(e†) can be computed efficiently for any
edge e†, σ(P †) can be computed efficiently for any path P †. Let g denote this mapping from P † to
P . We now show that the mapping g is a bijection.

Consider a path P = (v0, e1, v1, . . . , ek, vk) in G, where v0 = vs and vk = vt. Let us assume
that there is at least one non-tree edges. An analogous proof exists if there are no non-tree edges.
Let ei1 , ei2 , . . . , eit be the sequence of non-tree edges in the path, that is, eij ∈ E \ E♣ for each
j ∈ JtK. These edges partition the path P into several segments:

(v0, e1, . . . , vi1−1), ei1 , (vi1 , ei1+1, . . . , vi2−1), . . . , eit , (vit , eit+1, . . . , vk),

where each segment (vij , eij+1, . . . , vij+1−1) is a path in G that consists only of edges from the
directed tree S = (V,E♣).

Let i0 = 0 and it+1 = k + 1. By Theorem 27, for any j ∈ J0, tK, there exists a unique subtree
Scj ∈ T with centroid cj such that Scj contains the path from vij to vij+1−1, and this path contains
cj . By the construction of the graph G†, the edges

e♭j := (v♭ij , cj) ∈ E† and e♯j := (cj , v
♯
ij+1−1) ∈ E†

are present in G†. Furthermore, for any j ∈ JtK, the graph G† also contains the edge e†ij :=

(v♯ij−1, v
♭
ij
) ∈ E†, since eij = (vij−1, vij ) ∈ E \ E♣ is a non-tree edge. As a result, G† contains

the following path from v♭i0 = v♭s to v♯it+1−1 = v♯t :

P † := (v♭i0 , e
♭
i0 , ci0 , e

♯
i0
, v♯i1−1, e

†
i1
, v♭i1 , . . . , e

♯
it
, v♯it+1−1).

The previous lemma shows that the decision problem for the shortest path in G can be converted
to the shortest path problem in G†, and vice versa. Let w : E → R be a weight function in the graph
G = (V,E). Define w† : E† → R as the weight function for the converted graph G† = (V †, E†):

w†(e†) := 1[|σ(e†)| ≥ 1] ·
∑

e∈σ(e†)

w(e). (8)

Using this mapping, we can convert a decision problem on G to a decision problem on G†:
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Lemma 5 (restatement) The online shortest path problem on G = (V,E) can be efficiently re-
duced to the online shortest path problem on G† = (V †, E†).

The proof of the above lemma can be found in the main body. Finally, we need to show that the
graph G† satisfies the required size constraints:

Lemma 6 (restatement) The graph G† = (V †, E†) contains |V †| ≤ O(|V |) vertices and |E†| ≤
O(|V | log |V | + |E|) edges. Moreover, The number of edges on the longest path from v♭s to v♯t is
upper bounded by O(log |X |).

Proof. Each vertex v ∈ V corresponds to three vertices v♭, v, and v♯ in the graph G†. Thus, G†

contains a total of 3|V | vertices. Moreover, for each node c ∈ V , we add at most |Vc|+ 1 edges of
the form (v♭, c) or (c, v♯). For each non-tree edge e ∈ E \ E♣, we add one additional edge to E†.
Therefore, the total number of edges can be bounded by:

|E†| ≤
∑
c∈V

(|Vc|+ 1) + |E \ E‡| ≤ |V | log |V |+ 2|V |+ |E|,

where the last inequality follows from Lemma 28.
Recall from the proof of Lemma 4 that any path P † can be represented as

P † := (v♭0, e
♭
0, c0, e

♯
0, v

♯
i1−1, e

†
i1
, v♭i1 , . . . , e

♯
t, v

♯
it
),

where e†ij corresponds to some non-tree edge eij ∈ E \ E♣. According to Lemma 26, we have
t ≤ log |X |. Since there are exactly 3t+ 2 edges in P †, the longest path in G† is upper bounded by
O(log |X |).

By combining Lemma 5, Lemma 6, and applying the regret guarantee of our FTRL algorithm
from the previous section, we establish the main theorem:

Theorem 7 (restatement) There exists an computationally efficient algorithm that incurs a regret
bound of at most Õ(

√
|E|T log(|X |/δ)) with probability at least 1− δ against any adaptive adver-

sary, where Õ(·) only hides logarithmic factors in |E|.

Appendix E. Applications

In this section, we demonstrate the application of our FTRL approach to various well-known com-
binatorial sets X ⊆ {0, 1}d. The core idea is to efficiently reduce problems involving these combi-
natorial sets to a problem on a directed acyclic graph (DAG) and establish the corresponding regret
bound. Our method can be seen as a computationally efficient FTRL approach for these sets.

In certain cases, we either match or improve upon the O(
√
dT log |X |) regret bound achieved

by EXP3 with Kiefer-Wolfowitz exploration. In other cases, we demonstrate improvements over
the best-known high-probability regret guarantees achieved by an efficient algorithm, specifically
that of (Zimmert and Lattimore, 2022). We note that the high-probability regret guarantee was
formally proven only for continuous sets by Zimmert and Lattimore (2022). However, we believe
their analysis extends to discrete decision sets, such as the combinatorial sets considered, using the
same techniques as Abernethy et al. (2008).
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E.1. Hypercube

Let X = {0, 1}d denote the combinatorial hypercube. We construct a DAG G as follows. The
vertex set and edge set are

V := {v0} ∪ {v†i , vi}
d
i=1, E := {(vi−1, vi), (vi−1, v

†
i ), (v

†
i , vi)}

d
i=1

respectively. In the graph G, vs = v0 is the source vertex, and vt = vd is the sink vertex.

v0

v
†
1

v1 . . . vd−1

v
†
d

vd

Figure 3: Conversion of hypercube to DAG

Next, for any loss function yt : JdK→ R, we define a weight function wt : E → R as follows:

wt(e) =

{
yt[i] if e = (vi−1, v

†
i ) for some i ∈ JdK

0 otherwise
.

We now apply our FTRL algorithm from Section 3.1 to the DAG G. At each round t, if the
FTRL algorithm selects a path Pt in G, we choose xt ∈ X such that for any i ∈ JdK, xt[i] = 1 if the
edge (vi−1, v

†
i ) is part of the path Pt, and xt[i] = 0 otherwise. By the construction of wt, it follows

that ⟨xt,yt⟩ = wt(Pt). Consequently, we provide ⟨xt,yt⟩ as the bandit feedback for the path Pt to
the FTRL algorithm. The way we choose xt induces a bijective mapping between the set of vectors
in X and the set of paths in G, ensuring correctness. Moreover, our algorithm is computationally
efficient.

Finally, observe that each path in G has a length of d. Thus, we incur a high-probability regret
of Õ(d

√
T ) against an adaptive adversary, which is near-optimal for the hypercube. This also

improves upon the best-known high-probability regret bound of Õ(d2
√
T ) achieved by (Zimmert

and Lattimore, 2022).

E.2. Multi-Task Multi-Armed Bandits

In the Multi-task Multi-Armed Bandit problem, we are given a set of m MAB problems, where
in the i-th MAB problem there are di arms. In each round, we choose one arm from each MAB
problem simultaneously and receive the sum of the losses of the arms chosen as the loss feedback.
The goal is to do regret minimization w.r.t best arm in each MAB problem in hindsight.

The multi-task MAB problem is formally formulated as follows. Let d =
∑m

i=1 di. Let d1:i =∑i
j=1 dj and let d1:0 = 0. The set X of arms is defined as follows:

X =

x ∈ {0, 1}d : ∀j ∈ JmK
d1:j∑

i=d1:j−1+1

x[i] = 1


For each round t, the loss function yt : JdK→ R is chosen by an adversary. In each round the agent
draw xt ∈ X and observe loss ⟨xt,yt⟩ ∈ [−1, 1]. The goal is to minimize the following regret:

Regret(T ) :=

T∑
t=1

⟨xt,yt⟩ −min
x∈X

T∑
t=1

⟨x,yt⟩
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We now reduce the problem to online shortest path on DAG. We first construct a DAG G as
follow: The vertex set and edge set are

V := {vi}mi=0 ∪ {v
j
i | i ∈ JmK, j ∈ JdiK}, E := {(vi−1, v

j
i ), (v

j
i , vi) | i ∈ JmK, j ∈ JdiK}

respectively. In graph G, vs = v0 is the source vertex, and vt = vm is the sink vertex.

v0

v1
1

v2
1

v
d1
1

... v1 . . . vm−1

v1
m

v2
m

vdm
m

... vm

Figure 4: Conversion of Multi-task MAB to DAG

Next, for any loss vector yt : JdK→ R, we define a weight function wt : E → R as follows:

wt(e) =

{
yt[d1:i−1 + j] if e = (vi−1, v

j
i ) for some i ∈ JmK, j ∈ JdiK

0 otherwise
.

We now apply our FTRL algorithm from Section 3.1 to the DAG G. At each round t, if the
FTRL algorithm selects a path Pt in G, we choose xt ∈ X such that for any i ∈ JmK and any
j ∈ JdiK, xt[d1:i−1 + j] = 1 if the edge (vi−1, v

j
i ) is part of the path Pt, and xt[d1:i−1 + j] = 0

otherwise. By the construction of wt, it follows that ⟨xt,yt⟩ = wt(Pt). Consequently, we provide
⟨xt,yt⟩ as the bandit feedback for the path Pt to the FTRL algorithm. The way we choose xt

induces a bijective mapping between the set of vectors in X and the set of paths in G, ensuring
correctness. Moreover, our algorithm is computationally efficient.

For our FTRL approach in Section 3.1, instead of equating all the coordinates of γ to the same
fixed value, we assign it differently. Then using our analysis in Appendix D.1, one can easily show
that the following holds with probability at least 1− δ:

RT (x) ≤ c1 · d⋆
√
T + c2 ·

(
T
∑
v∈V

γ[v] + T
∑
e∈E

γ[e] +
∑
v∈V

x[v] · log(d/δ)
γ[v]

+
∑
e∈E

x[e] · log(d/δ)
γ[e]

)

where d⋆ := maxx∈co(X )

∑
e∈E

√
x[e] +

∑
v∈V

√
x[vi]

We now assign values to each coordinate of γ as follows. For all i ∈ J0,mK, we have:

γ[vi] =

√
log(d/δ)

T
.

Next for all i ∈ JmK and all j ∈ JdiK, we have:

γ[vji ] = γ[(vi−1, v
j
i )] = γ[(vji , vi)] =

√
log(d/δ)

diT
.
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Having defined the vector γ, we now upper bound the second term in the regret above. First,
we have:

T

m∑
i=1

γ[vi] +

m∑
i=1

log(d/δ)

γ[vi]
≤ 2m

√
T log(d/δ) ≤ 2

m∑
i=1

√
diT log(d/δ)

where we get the inequality due to the fact that di ≥ 1 for all i ∈ JmK.
Next, we have

T

m∑
i=1

di∑
j=1

(
γ[vji ] + γ[(vi−1, v

j
i )] + γ[(vji , vi)]

)

+
m∑
i=1

di∑
j=1

(
x[vji ] · log(d/δ)

γ[vji ]
+

x[(vi−1, v
j
i )] · log(d/δ)

γ[(vi−1, v
j
i )]

+
x[(vji , vi)] · log(d/δ)

γ[(vji , vi)]

)

= T

m∑
i=1

di∑
j=1

(
γ[vji ] + γ[(vi−1, v

j
i )] + γ[(vji , vi)]

)

+
m∑
i=1

di∑
j=1

(
x[vji ] · log(d/δ)

γ[vji ]
+

x[vji ] · log(d/δ)
γ[(vi−1, v

j
i )]

+
x[vji ] · log(d/δ)

γ[(vji , vi)]

)
(as x[vji ] = x[(vi−1, v

j
i )] = x[(vji , vi)])

= 3T
m∑
i=1

di∑
j=1

√
log(d/δ)

diT
+ 3

m∑
i=1

√
diT log(d/δ)

= 6

m∑
i=1

√
diT log(d/δ)

where we get the second equality due to the fact that for any i ∈ JmK, there exists exactly one index
j ∈ JdiK such that x[vji ] = 1.

Hence, the second term of the regret above is upper bounded by 8
∑m

i=1

√
diT log(d/δ).

Next, we upper bound d⋆. Fix any flow x ∈ co(X ). First observe that x[vi] = 1 for all
i ∈ J0,mK. Due to the flow constraints, we also have

∑di
j=1 x[(vi−1, v

j
i )] = 1 for any i ∈ JmK.

Next observe that for any i ∈ JmK and any j ∈ JdiK, x[(vi−1, v
j
i )] = x[vji ] = x[(vji , vi)]. Now we

have the following:

d⋆ = 3

m∑
i=1

di∑
j=1

√
x[(vi−1, v

j
i )] +m+ 1 ≤ 3

m∑
i=1

√
di +m+ 1 ≤ 5

m∑
i=1

√
di

where we get the first inequality due to Cauchy-Swartz and we get the second equality as m ≤∑m
i=1

√
di.

Hence, we obtain a high-probability regret upper bound of Õ(
∑m

i=1

√
diT ). In Appendix F.1,

we show that this bound is nearly tight by proving a lower bound of Ω(
∑m

i=1

√
diT ). Moreover,

this bound can be significantly better than the O(
√

dT log |X |) bound obtained using EXP3 with
Kiefer-Wolfowitz exploration. For instance, if di = 2 for all i ∈ Jm− 1K and dm = m2, our regret
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bound is Õ(
√
m2T ), whereas EXP3 with Kiefer-Wolfowitz exploration incurs a regret of at least

Ω(
√
m3T ). We refer the reader to Appendix F.2 for a detailed discussion of this lower bound for

EXP3 with Kiefer-Wolfowitz exploration.
In Appendix F.3, we present a much simpler approach to solving the multi-task MAB problem.

In Appendix F.4, we establish a minimax regret lower bound on DAGs using the reduction presented
in this section.

E.3. Extensive-form games under Bandit feedback

Extensive-form games under Bandit feedback can be modeled as follows. There is a set of decision
nodes X , a set of observation nodes Y , and a set of terminal nodes Z . Each decision node x ∈ X
is associated with a set of actions Ax, while each observation node y ∈ Y is associated with a set
of actions By. W.l.o.g let us assume that |Ax| > 1 for all x ∈ X and |By| > 1 for all y ∈ Y . The
non-terminal nodes are governed by injective transition functions: ρx : Ax → Y ∪ Z for decision
nodes, and ρy : By → X ∪ Z for observation nodes. For any two distinct nodes v1, v2, the ranges
of ρv1 and ρv2 have empty intersection.

At each round t, for every decision node x ∈ X , we select an action ax,t ∈ Ax. Similarly,
for every observation node y ∈ Y , an adversary selects an action by,t ∈ By. The adversary also
specifies a loss function yt : Z → [−1, 1] for the terminal nodes. Starting from the root node
xr ∈ X , the game proceeds as follows:

• If a decision node x is reached, the next node that is visited is ρx[ax,t].

• If an observation node y is reached, the next node that is visited is ρy[by,t].

• If a terminal node z is reached, the process terminates, and we incur a loss of yt[z].

Note that in an extensive-form game, no node is visited more than once.
Let at := {ax,t}x∈X and bt := {by,t}y∈Y represent the configurations of actions at decision and

observation nodes, respectively. Define z(at,bt) as the terminal node reached when transitioning
according to at and bt. As a decision maker, we observe only the loss yt[z(at,bt)] incurred at
the terminal node z(at,bt); the sequence of nodes visited during the process remains unobserved.
Let A denote the set of all possible configurations of actions at decision nodes. The objective is to
minimize the regret:

Regret(T ) := max
a∈A

T∑
t=1

(
yt[z(at,bt)]− yt[z(a,bt)]

)
.

One can reformulate this problem as an adversarial linear bandit problem and use EXP3 with
Kiefer-Wolfowitz exploration to get a regret upper bound ofO(

√
|Z|T log(N)) where N is defined

as follows. For each terminal node z we define n(z) := 1. For each decision node x, we define
n(x) =

∑
a∈Ax

n(ρx[a]), and for each observation node y, we define n(y) =
∏

a∈Ay
n(ρy[a]).

Now define N := n(xr) where xr is the root node. We refer the reader to Appendix G.1 for more
details. We now reduce extensive-form games to a problem on DAG and show that our approach
incurs a regret of Õ(

√
|Z|T log(N)).

We define a DAG G = (V,E) as follows. Let V = {us, ut : u ∈ X ∪Y∪Z}. For each terminal
node z ∈ Z , we add the edge (zs, zt) to E. Next for each decision node x ∈ X , we add the set of
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edges {(xs, us), (ut, xt) : u ∈ {ρx[a] : a ∈ Ax}} to E. Finally for each observation node y ∈ Y ,
let us index the nodes in {ρy[b] : b ∈ Bx} as {u(1), u(2), . . . , u(ℓ)}. We first add the set of edges
{(ys, u(1)s ), (u

(ℓ)
t , yt)} to E. If ℓ > 1, we then add the set of edges {(u(i)t , u

(i+1)
s ) : i ∈ Jℓ − 1K} to

E. It is easy to observe that xrs is the source node of G and xrt is the sink node of G. We refer the
reader to Figures 5 and 6 for two examples of this construction.

x0

y1

y2

x1

x2

x3

x4

z1

z2

z3

z4

z5

z6

z7

z8

⇒ x0
s x0

t

y1
s x1

s x1
t x2

s x2
t y1

t

y2
s x3

s x3
t x4

s x4
t y2

t

z1s z1t z3s z3t

z2s z2t z4s z4t

z5s z5t z7s z7t

z6s z6t z8s z8t

Figure 5: Example extensive-form game 1

x0

z1

z2

zm

...

y

x1

xn

...

z11

z12

zn1

zn2

⇒

x0
s x0

t

z1s z1t

z2s z2t

zms zmt

...
...

ys ytx1
s x1

t

z11s z11t

z12s z12t

. . . xn
s

zn1
s zn1

t

zn2
s zn2

t

xn
t

Figure 6: Example extensive-form game 2

Next, for any loss function yt : Z → [−1, 1] and configuration of actions bt, we define a
corresponding weight function wt : E → R for the edges of G as follows. For each edge e = (vs, vt)
such that ∃a ∈ A such that v = z(a,bt), we define wt(e) := yt[z(a,bt)]. For rest of the edges e,
we define wt(e) := 0.

We now apply our FTRL algorithm from Section 3.3 to the DAG G. At each round t, if the FTRL
algorithm selects a path Pt in G, we choose at ∈ A as follows. For each x ∈ X , if (xs, us) ∈ Pt for
some u ∈ Y ∪ Z , we assign ax,t = ρ−1

x [u]; otherwise we arbitrarily choose ax,t as the node x will
not be reached in the current time-step by the decision process. By the construction of wt, it follows
that yt[z(at,bt)] = wt(Pt). Consequently, we provide yt[z(at,bt)] as the bandit feedback for the
path Pt to the FTRL algorithm. The way we choose at induces a bijective mapping between the set
of configurations in A and the set of paths in G, ensuring correctness. Moreover, our algorithm is
computationally efficient.
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It can be shown that the number of edges in G is O(|Z|) and number of paths from the source
node to sink node is N . We refer the reader to Appendix G.2 for the proof of this fact. Hence,
we incur a high-probability regret of Õ(

√
|Z|T log(N)) against an adaptive adversary. This is

the first efficient algorithm to match the regret of EXP3 with Kiefer-Wolfowitz exploration, upto
logarithmic factors. Our algorithm contributes to the long line of research on learning in extensive-
form games under bandit feedback. See Farina et al. (2021) for learning in this setting without
access to trajectory information (which matches our setting) and Fiegel et al. (2023) for learning
with additional trajectory information (which differs from our setting).

E.4. Shortest Walk in Directed Graphs

Finding the shortest simple path in directed graphs with cycles when edges can have negative
weights is NP-hard. This result extends to finding the shortest trail as well. Therefore in this section,
we focus on the online shortest walk in directed graphs. In a walk, repeated vertices or edges are
permitted. Given a weight function wt : E → R, the weight of a walk W = (v0, e1, v1, . . . , ek, vk)
is defined as the sum of the weights of its edges:

w(W ) :=
k∑

i=1

w(ei).

Let G = (V,E) be a directed graph with source vs and sink vt. In each round t, an agent selects
a walk Wt of length at most K ≤ |E| from vs to vt, and the environment simultaneously chooses
a weight function wt(·). The agent’s goal is to minimize cumulative regret relative to the optimal
path:

Regret(T ) :=

T∑
t=1

wt(Wt)− min
W∈W

T∑
t=1

wt(W ),

where W is the set of all walks from vs to vt of length at most K ≤ |E|. This problem was first
studied by Awerbuch and Kleinberg (2004) and can be represented as an adversarial linear bandit
problem in R|E|.

We solve the online shortest walk problem in directed graph, by reducing the problem to online
shortest path problem on DAG. Given the graph G = (V,E), we construct a layered DAG G† =
(V †, E†). The vertex set is defined as:

V † := {v(i) : v ∈ V, i ∈ J0,KK}.

The edge set is defined as:

E† :=
{
(u(i−1), v(i)) : (u, v) ∈ E ∪ {(vt, vt)}, i ∈ JKK

}
.

For the weight function wt : E → R, we construct a weight assignment w†
t : E

† → R as follow:

w†
t

(
(u(i−1), v(i))

)
:= 1[u ̸= v] · wt

(
(u, v)

)
for all (u, v) ∈ E ∪ {(vt, vt)} and i ∈ JKK.

We now consider the online shortest path problem in the DAG G†, where the set of paths consists
of those from the source node v

(0)
s to the sink node v

(K)
t . We apply our FTRL algorithm from
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Section 3.1 to G†, but first, we preprocess G† to discard redundant nodes and edges that will never
be part of any path from v

(0)
s to v

(K)
t .

At each round t, if the FTRL algorithm selects a path Pt in G†, we choose Wt ∈ W as follows:
for each edge (u(i), v(i+1)) ∈ Pt with u ̸= v, we add (u, v) as the i-th edge of the walk Wt. By
the construction of w†

t , it follows that wt[Wt] = w†
t [Pt]. Consequently, we provide wt[Wt] as the

bandit feedback for the path Pt to the FTRL algorithm. The way we choose Wt induces a bijective
mapping between the set of walks inW and the set of paths in G†, ensuring correctness. Moreover,
our algorithm is computationally efficient.

Observe that the number of edges in G† is O(K|E|) and length of any path from the source
v
(0)
s to sink v

(K)
t is K. Hence we incur a high-probability regret of at most Õ(

√
K2|E|T ) against

an adversary. This improves upon the best-known high-probability regret bound of Õ(|E|2
√
T )

achieved by Zimmert and Lattimore (2022).
An open question remains: is there an efficient algorithm that matches the high-probability

regret bound of Õ(
√
K|E|T ) achieved by EXP3 with Kiefer-Wolfowitz exploration?

E.5. Colonel Blotto game

In a Colonel Blotto game, two players, A and B, have N and M soldiers, respectively, which they
must allocate across K battlefields. In each round t, player A selects an allocation of N soldiers,
denoted as at = (at,1, . . . , at,K), where at,i ≥ 0 represents the number of soldiers assigned to
battlefield i, and the total allocation satisfies

∑K
i=1 at,i = N . Simultaneously, player B chooses an

allocation of M soldiers, given by bt = (bt,1, . . . , bt,K).
At each battlefield i, player A incurs a loss of yt,i[at,i, bt,i]. Our goal is to control player A and

minimize the following regret:

Regret(T ) := max
a∈A

T∑
t=1

K∑
i=1

(yt,i[at,i, bt,i]− yt,i[ai, bt,i]) ,

where A denotes the set of all possible allocations of N soldiers across the K battlefields by player
A. We assume that for any a = (a1, . . . , aK) ∈ A, the total loss satisfies

∑K
i=1 yt,i[ai, bt,i] ∈

[−1, 1], and player A observes only
∑K

i=1 yt,i[at,i, bt,i] as bandit feedback at the end of round t. It
is easy to see that this problem can be represented as a combinatorial bandit problem in {0, 1}KN .

This problem can be reduced to a problem on directed acyclic graphs (DAGs), as first shown by
Behnezhad et al. (2023). For completeness, we provide the reduction here.

We construct a DAG G = (V,E) as follows. Define the vertex set as:

V = {v00, vNK} ∪ {v
j
i | i ∈ JK − 1K, j ∈ J0, NK}.

Next, we add the following sets of edges to E:

• {(v00, v
j
1) | j ∈ J0, NK},

• {(vj0i−1, v
j1
i ) | i ∈ J1,K − 1K, j0 ∈ J0, NK, j1 ∈ Jj0, NK},

• {(vjK−1, v
N
K ) | j ∈ J0, NK}.
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3

Figure 7: Dag for Blotto game with N = 4 soldiers and K = 3 battlefields. The shaded path
corresponds to the allocation a = (0, 1, 3).

Observe that vs = v00 serves as the source node and vt = vNK as the sink node.
For any set of loss functions yt,i and allocation bt, we define a corresponding weight function

wt : E → R on the edges of G as follows. For any edge e = (vj0i−1, v
j1
i ), we set

wt(e) := yt,i[j1 − j0, bt,i].

We now apply our FTRL algorithm from Section 3.1 to the DAG G. At each round t, if the
FTRL algorithm selects a path Pt in G, we determine at ∈ A as follows. Fix an index i ∈ JKK
and consider the edge e = (vj0i−1, v

j1
i ) ∈ Pt. We then set at,i = j1 − j0. By the construction of

wt, it follows that
∑K

i=1 yt,i[at,i, bt,i] = wt(Pt). Thus, we provide
∑K

i=1 yt,i[at,i, bt,i] as the bandit
feedback for the path Pt to the FTRL algorithm. The way we choose at induces a bijective mapping
between the set of allocations in A and the set of paths in G, ensuring correctness. Moreover, our
algorithm is computationally efficient.

Observe that the number of edges in G is O(K2N), and the length of any path from the
source to the sink is K. Consequently, we incur a high-probability regret of at most Õ(

√
K3NT )

against an adaptive adversary. This improves upon the best-known high-probability regret bound of
Õ(K2N2

√
T ) achieved by Zimmert and Lattimore (2022).

An open question remains: is there an efficient algorithm that matches the high-probability
regret bound of Õ(

√
K2NT ) achieved by EXP3 with Kiefer-Wolfowitz exploration?

E.6. m-sets

An m-set is the set of vectors X := {x ∈ {0, 1}d : ∥x∥1 = m}. We construct a DAG G as follows.
The vertex set of G is

V = {vji : i ∈ J0, d−mK, j ∈ J0,mK}.

The edge set is defined as

E = {(vj−1
i , vji ) : i ∈ J0, d−mK, j ∈ JmK} ∪ {(vji−1, v

j
i ) : i ∈ Jd−mK, j ∈ J0,mK}.

Note that vs = v00 is the source node of G, and vt = vmd−m is the sink node.
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v2
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3

Figure 8: DAG for m-set with m = 2 and d = 5. The shaded path corresponds to the vector x such
that x[3] = x[5] = 1 and x[1] = x[2] = x[4] = 0.

Next, for any loss function yt : JdK→ R, we define a corresponding weight function wt : E →
R for the edges of G as follows. For an edge e = (vji , v

j
i+1), we set wt(e) := 0. For an edge

e = (vj−1
i , vji ), we define wt(e) := yt[i+ j].

We now apply our FTRL algorithm from Section 3.1 to the DAG G. At each round t, if the
FTRL algorithm selects a path Pt in G, we choose xt ∈ X such that for any k ∈ JdK, we set
xt[k] = 1 if there exists an edge (vj−1

i , vji ) ∈ Pt with k = i + j, and xt[k] = 0 otherwise. By
the construction of wt, it follows that ⟨xt,yt⟩ = wt(Pt). Consequently, we provide ⟨xt,yt⟩ as the
bandit feedback for the path Pt to the FTRL algorithm. The way we choose xt induces a bijective
mapping between the set of vectors in X and the set of paths in G, ensuring correctness. Moreover,
our algorithm is computationally efficient.

Finally, observe that each path in G has a length of d and the number of edges in G is O(md).
Thus, we incur a high-probability regret of Õ(

√
md2T ) against an adaptive adversary. This im-

proves upon the best-known high-probability regret bound of Õ(d2
√
T ) achieved by Zimmert and

Lattimore (2022).
An open question remains: is there an efficient algorithm that matches the high-probability

regret bound of Õ(
√
mdT ) achieved by EXP3 with Kiefer-Wolfowitz exploration?

Appendix F. Multi-Task MAB: Additional Details

F.1. Multi-Task MAB Lower Bound

Consider the Multi-task MAB instance where the set of arms X is defined as follows:

X =

x ∈ {0, 1}d : ∀j ∈ JmK
d1:j∑

i=d1:j−1+1

x[i] = 1


where di ≥ 2, d =

∑m
i=1 di, d1:j =

∑j
i=1 di and d1:0 = 0 for all j ∈ JmK.

Let us fix one regret minimizing algorithm, say A and assume that A is deterministic. Now we
show that algorithm A incurs a regret of Ω(

∑m
i=1

√
diT ). We later extend the result to randomized

algorithms using Yao’s lemma. For all j ∈ JmK, let εj > 0 be a parameter that we fix later in the
proof.

Let X̃ =
{
x ∈ {0, 1}d : ∀j ∈ JmK

∑d1:j
i=d1:j−1+1 x[i] ≤ 1

}
. First we describe an instance Ix̃,

where x̃ ∈ X̃ . In this instance, in each round t, we choose a loss function yt : JdK → [−1, 1]
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as follows. First we choose an index j ∈ JmK uniformly at random. Now we define yt[i] = 0 if
i /∈ Jd1:j−1 +1, d1:jK. Next for all i ∈ JdjK, we sample vi ∼ Ber(12 − εj ·1[x̃[d1:j−1 + i] = 1]) and
assign yt[d1:j−1 + i] = vi. Now observe that expected loss of any arm x ∈ X under the instance Ix̃

is 1
m

m∑
j=1

d1:j∑
i=d1:j−1+1

(12 − εj · 1[x[i] = x̃[i] = 1]). For x ∈ X , x is the best arm for the instance Ix

and its reward is µ∗ := 1
2 −

1
m

m∑
j=1

εj .

In each round t, if A chooses an arm xt ∈ X , then the regret RT (x) on an instance Ix, where
x ∈ X , is equal to:

RT (x) = EIx

[
T∑
t=1

⟨xt,yt⟩

]
− T · µ∗ =

1

m

m∑
j=1

εjT −
εj
m

T∑
t=1

m∑
j=1

d1:j∑
i=d1:j−1+1

PIx [xt[i] = x[i] = 1]

where PIx is probability law under the instance Ix.

Now for any instance Ix such that x ∈ X , the regret can be broken down as RT (x) =∑m
j=1R

(j)
T (x) where

R
(j)
T (x) :=

εjT

m
− εj

m

T∑
t=1

d1:j∑
i=d1:j−1+1

PIx [xt[i] = 1,x[i] = 1]

Let I =
⋃

x∈X Ix. Fix an index j ∈ JmK. We now show that EIx′∼Unif(I)[R
(j)
T (x′)] ≥ c

√
djT

where c is some absolute constant. Let

X (j) :=

{
x ∈ {0, 1}d : ∀i ∈ JmK \ {j}

d1:i∑
s=d1:i−1+1

x[s] = 1,

d1:j∑
s=d1:j−1+1

x[s] = 0

}
.

For any x ∈ X (j), let x(i) be the vector in X such that x(i)[s] = x[s] for all s /∈ Jd1:j−1 + 1, d1:jK
and x(i)[d1:j−1 + i] = 1.

First, we consider the case where dj ≥ 48. Let us fix x ∈ X (j). Now we claim that there is a
set Sx ⊆ JdjK with at least dj/3 indices such that for each i ∈ Sx, we have R

(j)
T (x(i)) ≥ c0

√
djT

where c0 is some absolute constant.
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Before we prove our claim, we first show that if our claim holds true, then we have that
EIx′∼Unif(I)[R

(j)
T (x′)] ≥ c ·

√
djT where c is some absolute constant. Now we have the following:

EIx′∼Unif(I)[R
(j)
T (x′)] =

1∏m
s=1 ds

∑
x∈X (j)

dj∑
i=1

R
(j)
T (x(i))

≥ 1∏m
s=1 ds

∑
x∈X (j)

∑
i∈Sx

R
(j)
T (x(i))

≥ c0∏m
s=1 ds

∑
x∈X (j)

∑
i∈Sx

√
djT

≥ c0∏m
s=1 ds

∑
x∈X (j)

dj
3
·
√
djT

=
c0∏m
s=1 ds

·
∏
s ̸=j

ds ·
dj
3
·
√
djT

=
c
√
djT

3

Now we prove our claim. We use the following version of the chain rule in our analysis.

Lemma 30 (Chain Rule) Let f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) be two joint PMFs for a
tuple of random variables (Xi)i∈[n]. Let the sample space be Ω = {0, 1}n. Then we have the
following:

KL(f, g) =
∑
ω∈Ω

f(ω)

(
KL(f(X1), g(X1)) +

n∑
i=2

KL(f(Xi|X−i = ω−i), g(Xi|X−i = ω−i))

)

where X−i = (X1, . . . , Xi−1), ω−i = (ω1, . . . , ωi−1).

For an instance Ix(i) , let fi(ℓ1, . . . , ℓT ) denote the joint PMF for the tuple of loss values observed
byA in each round under the probability law PI

x(i)
. Observe that our sample space is Ω = {0, 1}T .

This is a valid sample space as A is deterministic and the probability of it seeing a loss value of
1 in round t only depends on the loss values it observed in the previous rounds. Similarly for the
alternate instance Ix, let f0(ℓ1, . . . , ℓT ) denote the joint PMF for the tuple of loss values observed
by A in each round under the probability law PIx .

First observe that the instances Ix(i) and Ix only differ at index d1:j−1 + i. For each ω ∈ Ω,
let x1,ω,x2,ω, . . . ,xT,ω be the sequence of arms chosen by A on ω. Conditioning on a set of
outcomes X1 = ω1, X2 = ω2, . . . , Xt−1 = ωt−1, we have Xt ∼ Ber(µi) for the instance Ix(i) and
Xt ∼ Ber(µ0) for the instance Ix where µ0−µi =

εj
m ·xt,ω[d1:j−1+i]. Let Ti =

∑T
t=1 xt[d1:j−1+i].

For each ω ∈ Ω, let Ti,ω =
∑T

t=1 xt,ω[d1:j−1 + i]. Note that Ti is a random variable and Ti,ω is a
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fixed value. Now we have the following:

KL(f0, fi) =
∑
ω∈Ω

f0(ω)

(
KL(f0(X1), fi(X1)) +

T∑
t=2

KL(f0(Xt|X−t = ω−t), fi(Xt|X−t = ω−t))

)

≤
4ε2j
m2

∑
ω∈Ω

f0(ω)

T∑
t=1

xt,ω[d1:j−1 + i]

=
4ε2j
m2

∑
ω∈Ω

f0(ω)Ti,ω

=
4ε2j
m2
· EIx [Ti]

Now observe that
∑dj

i=1 EIx [Ti] = T . Hence, there exists a set Sx ⊆ JdjK with at least dj/3

indices such that for each i ∈ Sx, we have EIx [Ti] ≤ 3T
dj

. Fix εj =
m·d1/2j

10T 1/2 . Now for each i ∈ Sx,

we have KL(f0, fi) ≤
12ε2jT

m2dj
= 3

25 .

Fix i ∈ Sx. Let Ai be the event that Ti ≤ 12T
dj

. Due to Markov’s inequality, we have PIx(Ai) ≥
3
4 . Now due to Pinsker’s inequality we have the following:

PI
x(i)

(Ai) ≥ PIx(Ai)−
√

KL(f0, fj)
2

≥ 3

4
−
√

3

50

>
1

2

Using the above the inequality, we get EI
x(i)

[Ti] ≤ T · PI
x(i)

(Ac
i ) +

12T
dj
≤ 3T

4 when dj ≥ 48.
Now we have the following:

R
(j)
T (x(i)) =

εjT

m
− εj

m

T∑
t=1

PI
x(i)

[xt[d1:j−1 + i] = 1]

=
εjT

m
− εj

m
EI

x(i)

[
T∑
t=1

xt[d1:j−1 + i]

]

=
εjT

m
− εj

m
EI

x(i)
[Ti]

≥ εjT

m
− 3εjT

4m

=

√
djT

40

Next we look at the case when dj ≤ 48. For simplicity of presentation, let us assume that
dj = 2. Our analysis can be easily extended to any constant between 2 and 48.

For any i ∈ {1, 2} and t ∈ [T ], let Ai,t be the event that x[d1:j−1+i] = 1. Note that A1,t = Ac
2,t.

Fix x ∈ X (j). Now we claim that there an index i ∈ {1, 2} such that PI
x(i)

(Ai,t) < 3
4 . For
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the sake of contradiction, let us assume that PI
x(i)

(Ai,t) ≥ 3
4 for all i ∈ {1, 2}. Then we have

PI
x(1)

(A1,t)− PI
x(2)

(A1,t) >
1
2 .

For an instance Ix(i) , let fi(ℓ1, . . . , ℓT ) denote the joint PMF for the tuple of loss values observed
by A in each round under the probability law PI

x(i)
. Our sample space is Ω = {0, 1}T .

First observe that the instances Ix(1) and Ix(2) only differ at the indices d1:j−1+1 and d1:j−1+2.
For each ω ∈ Ω, let x1,ω,x2,ω, . . . ,xT,ω be the sequence of arms chosen by A on ω. Conditioning
on a set of outcomes X1 = ω1, X2 = ω2, . . . , Xt−1 = ωt−1, we have Xt ∼ Ber(µ1) for the
instance Ix(1) and Xt ∼ Ber(µ2) for the instance Ix(2) where |µ1 − µ2| = εj

m . Now we have the
following:

KL(f1, f2) =
∑
ω∈Ω

f1(ω)

(
KL(f1(X1), f2(X1)) +

T∑
t=2

KL(f1(Xt|X−t = ω−t), f2(Xt|X−t = ω−t))

)

≤
4ε2jT

m2

∑
ω∈Ω

f1(ω)

=
4ε2jT

m2

Fix εj =
m

4
√
T

. Due to Pinsker’s inequality we arrive at the following contradiction:

PI
x(1)

(A1,t)− PI
x(2)

(A1,t) ≤
√

KL(f1, f2)
2

≤

√
2ε2jT

m2

<
1

2

Now we have the following:

R
(j)
T (x(1)) +R

(j)
T (x(2)) =

2εjT

m
− εj

m

T∑
t=1

PI
x(1)

[
xt[d1:j−1 + 1] = 1

]
+ PI

x(2)

[
xt[d1:j−1 + 2] = 1

]
=

2εjT

m
− εj

m

T∑
t=1

PI
x(1)

[A1,t] + PI
x(2)

[A2,T ]

>
2εjT

m
− 7εj

4m
(PI

x(1)
[A1,t] + PI

x(2)
[A2,T ] <

7
4 )

=
εjT

4m

=

√
T

16
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Now we have the following:

EIx′∼Unif(I)[R
(j)
T (x′)] =

1∏m
s=1 ds

∑
x∈X (j)

∑
i∈{1,2}

R
(j)
T (x(i))

≥ 1

16
∏m

s=1 ds

∑
x∈X (j)

√
T

=
1

16
∏m

s=1 ds
·
∏
s ̸=j

ds ·
√
T

=

√
T

32

Hence, our claim holds and therefore we have

EIx′∼Unif(I)[RT (x
′)] =

m∑
j=1

EIx′∼Unif(I)[R
(j)
T (x′)] ≥ c′

m∑
j=1

√
djT

where c′ is some absolute constant. Due to Yao’s lemma we have that any randomized algorithm
should also have a regret of at least c′′

∑m
j=1

√
djT where c′′ is some absolute constant.

F.2. Lower Bound for EXP3 with Kiefer-Wolfowitz Exploration

For any set of arms X ⊆ {0, 1}d such that the dimension X is Θ(d), EXP3 with Kiefer-Wolfowitz

exploration plays a fixed distribution π over the set of arms with probability at least
√

d log |X |
cT where

c is an absolute constant.
Consider the Multi-task MAB instance with set of arms X where di = 2 for all i ∈ Jm − 1K

and dm = m2 where m ≥ 2. Recall that d =
∑m

j=1 dj and d1:i =
∑i

j=1 dj . There exists
an index i⋆ ∈ Jd1:m−1 + 1, dmK, such that

∑
x∈X π[x[i⋆]] ≤ 1

2 . For all t ∈ JT K, we choose a
loss function yt : JdK → [−1, 1] such that yt[i] = −1 if i = i⋆ and yt[i] = 0 otherwise. It is
easy to observe that EXP3 with Kiefer-Wolfowitz exploration incurs an expected regret of at least√

d log |X |
cT · 12 in each round. Hence, EXP3 with Kiefer-Wolfowitz exploration incurs a regret of at

least Ω(
√
dT log |X |) = Ω(

√
m3T ).

F.3. A Simple, Efficient Algorithm for Multi-task MAB

Recall that in the Multi-task MAB problem, we are given a set of m multi-armed bandit (MAB)
problems, where the i-th MAB problem has di arms. In each round, we simultaneously choose
one arm from each MAB problem and receive the sum of the losses of the chosen arms as the loss
feedback. The objective is to minimize regret with respect to the best arm in each MAB problem in
hindsight.

Consider the following algorithm. For each i ∈ JmK, we independently execute EXP3-IX (Neu,
2015) on the i-th MAB problem. Note that for any MAB problem with K arms and losses in
[−1, 1], the version of EXP3-IX under consideration incurs a regret of at most c

√
KT log(K/δ′)

with probability at least 1− δ′, where c is an absolute constant.
Let yt,i : JdiK → R be the loss function for the arms in the i-th MAB. For each i ∈ JmK, let

It,i be the arm selected by the EXP3-IX algorithm for the i-th MAB in round t. We choose these
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recommended arms and observe the total loss ℓt =
∑m

i=1 yt,i[It,i], which satisfies ℓt ∈ [−1, 1]. We
then provide ℓt as the loss feedback to each EXP3-IX algorithm.

If we set δ′ = δ/m, then with probability at least 1 − δ, the regret incurred in the multi-task
MAB problem is upper-bounded as follows:

Regret(T ) = max
(j1,j2,...,jm)∈[d1]×[d2]×...×[dm]

T∑
t=1

m∑
i=1

yt,i[It,i]−
T∑
t=1

m∑
i=1

yt,i[ji]

=
m∑
i=1

max
ji∈[di]

T∑
t=1

yt,i[It,i]−
T∑
t=1

yt,i[ji]

≤ c ·
m∑
i=1

√
diT log(mdi/δ)

We obtain the last inequality because the EXP3-IX algorithm running on the i-th MAB ef-
fectively operates on a bandit instance where the loss of the j-th arm is adaptively chosen as
yt,i[j] +

∑
i′ ̸=i yt,i′ [It,i′ ] ∈ [−1, 1]. Consequently, with probability at least 1− δ/m, we have:

max
ji∈[di]

T∑
t=1

yt,i[It,i]−
T∑
t=1

yt,i[ji]

= max
ji∈[di]

T∑
t=1

yt,i[It,i] +
∑
i′ ̸=i

yt,i′ [It,i′ ]

− T∑
t=1

yt,i[ji] +
∑
i′ ̸=i

yt,i′ [It,i′ ]


≤ c ·

√
diT log(mdi/δ).

We then obtain the high-probability regret guarantee by applying the union bound.
Remark: Prior to our work, Zimmert et al. (2019) used a similar approach for Hypercube.

F.4. Minimax Lower Bound for DAGs

We prove the following theorem in this section.

Theorem 31 Consider integers d,N ≥ 4 satisfying d ≤ N ≤ 2d/2. There exists a DAG G with at
most d edges and at most N paths from the source to the sink such that the regret is lower bounded
by Ω

(√
dT log(N)/ log(d)

)
.

Proof. Consider the instance of the multi-task MAB problem where m = log(N)/ log(d) and
di =

d
2m . For simplicity, we assume that both m and d

2m are integers. As shown in Appendix F.1,

this instance has a regret lower bound of Ω
(∑m

i=1

√
diT
)
= Ω

(√
dT log(N)/ log(d)

)
.

Next, consider the reduction of this multi-task MAB problem to a directed acyclic graph (DAG)
G, which is described in Appendix E.2. First, note that for the graph G, the regret lower bound
remains Ω

(√
dT log(N)/ log(d)

)
. Furthermore, the graph G contains d edges and has at most(

d
2m

)m ≤ N paths from the source to the sink. This follows from the fact that m log
(

d
2m

)
≤

m log(d) = log(N). Hence, DAG G is the required graph.
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Appendix G. Extensive-Form Games: Additional Details

G.1. Linear Bandit Formulation of Extensive-Form Games

First, we prove the following lemma.

Lemma 32 Consider a tree such that each non-leaf node has at least 2 children. Then the number
of leaf nodes in the tree at least the number of non-leaf nodes in the tree.

Proof. Let L1 be the number of leaf nodes in the tree and L2 be the number of non-leaf nodes in
the tree. Let E be the total number of edges in the tree. Then we have E = L1 + L2 − 1. Also,
we have E ≥ 2L2 as each non-leaf node contributes to at least two edges as they have at least 2
children each. Hence, we have L1 + L2 − 1 ≥ 2L2 which implies that L1 ≥ L2 + 1.

Now we describe the linear bandit formulation of Extensive-form games. For a configuration
a = {ax}x∈X of actions at the decision nodes, we describe a vector sa ∈ {0, 1}|X |+|Y|+|Z| indexed
by the nodes in the game as follows:

sa[xr] = 1

sa[x] = sa[ρx[ax]] ∀x ∈ X
sa[ρx[a]] = 0 ∀x ∈ X , ∀a ∈ Ax \ {ax}
sa[y] = sa[ρy[by]] ∀y ∈ Y,∀by ∈ By

Let Sx be the set of all such vectors sa corresponding to all possible configurations a of actions at
the decision nodes. Sx now is the set of arms in our linear bandit formulation. Recall the definition
of N . It is easy to observe that |Sx| = N .

Next for a configuration b = {by}y∈Y of actions at the decision nodes, we describe a vector
sb ∈ {0, 1}|X |+|Y|+|Z| indexed by the nodes in the game as follows:

sb[xr] = 1

sb[y] = sb[ρy[by]] ∀y ∈ Y
sb[ρy[b]] = 0 ∀y ∈ Y,∀b ∈ By \ {by}
sb[x] = sb[ρx[ax]] ∀x ∈ X , ∀ax ∈ Ax

Next, for a loss function yt : Z → [−1, 1] over the terminal nodes and a configuration bt :=
{by,t}y∈Y of actions at the observation nodes, we describe a loss function ŷt : X ∪Y ∪Z → [−1, 1]
as follows. For all v ∈ X ∪Y , we have ŷt[v] := 0. For all z ∈ Z , we have ŷt[z] = yt[z] ·1[sbt [z] =
1]. It is easy to observe that yt[z(at,bt)] = ⟨sat , ŷt⟩.

Let T = (V, E) be the extensive-form game tree where V = X ∪Y ∪Z and E = {(x, ρx[ax]) :
x ∈ X , ax ∈ Ax} ∪ {(y, ρy[by]) : y ∈ Y, by ∈ By}. Due to Lemma 32, we have |X |+ |Y| ≤ |Z|.
Hence, by using the EXP3 algorithm, we get an upper bound of O(

√
|Z|T log(N)).
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G.2. Additional Details on Reduction to DAG

In this section, we show that the DAG G = (V,E) that we constructed during the reduction from
extensive-form games has O(|Z|) nodes. Let T = (V, E) be the extensive-form game tree where
V = X ∪ Y ∪ Z and E = {(x, ρx[ax]) : x ∈ X , ax ∈ Ax} ∪ {(y, ρy[by]) : y ∈ Y, by ∈ By}. Due
to Theorem 32, we have |X |+ |Y| ≤ |Z|. Hence, there are O(|Z|) edges in T .

Recall the construction of G. Each terminal node z is associated with the edge (zs, zt). Next
each edge of the type (x, ρx[a]) is associated with the edges (xs, us) and (ut, xt). Similarly, each
edge of the type (y, u(i)) is associated with the edges (v1, u

(i)
s ) and (u

(i)
s , v2), where u(i) = ρy[b]

for some b ∈ By, v1 is either ys or u(i−1)
s , and v2 is either yt or u(i+1)

s . Hence, G has O(|Z|) edges.
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