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Abstract
While extensive-form games (EFGs) can be con-
verted into normal-form games (NFGs), doing so
comes at the cost of an exponential blowup of
the strategy space. So, progress on NFGs and
EFGs has historically followed separate tracks,
with the EFG community often having to catch up
with advances (e.g., last-iterate convergence and
predictive regret bounds) from the larger NFG
community. In this paper we show that the Opti-
mistic Multiplicative Weights Update (OMWU)
algorithm—the premier learning algorithm for
NFGs—can be simulated on the normal-form
equivalent of an EFG in linear time per iteration
in the game tree size using a kernel trick. The re-
sulting algorithm, Kernelized OMWU (KOMWU),
applies more broadly to all convex games whose
strategy space is a polytope with 0/1 integral ver-
tices, as long as the kernel can be evaluated effi-
ciently. In the particular case of EFGs, KOMWU
closes several standing gaps between NFG and
EFG learning, by enabling direct, black-box trans-
fer to EFGs of desirable properties of learning
dynamics that were so far known to be achievable
only in NFGs. Specifically, KOMWU gives the
first algorithm that guarantees at the same time
last-iterate convergence, lower dependence on the
size of the game tree than all prior algorithms, and
Õ(1) regret when followed by all players.

1. Introduction
Online learning in the context of normal-form games (NFGs)
has been studied extensively. A classic motivation for this
study is that when every player in an NFG learns from T
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rounds of repeated play using a no-regret learning algorithm
such as multiplicative weights update (MWU), the average
product distribution of play is a O(1/

√
T )-approximate

Nash equilibrium in two-player zero-sum games, and a
O(1/

√
T )-approximate coarse-correlated equilibrium in

multiplayer general-sum games. In the last decade, much
stronger results have been obtained when each player em-
ploys an optimistic no-regret learner such as the optimistic
MWU (OMWU) algorithm (Rakhlin & Sridharan, 2013a;b;
Syrgkanis et al., 2015). For example, in zero-sum NFGs
OMWU enables convergence to a Nash equilibrium at a rate
of O(1/T ) and various last-iterate guarantees (Daskalakis
& Panageas, 2019; Lei et al., 2021; Wei et al., 2021). For
general-sum NFGs, polylogarithmic regret bounds have
been shown when every player uses OMWU (Daskalakis
et al., 2021), implying convergence to a coarse-correlated
equilibrium at a Õ(1/T ) rate.

In this paper we study extensive-form games (EFGs), a much
richer class of games that explicitly model sequential (or
simultaneous) interaction, stochastic outcomes, and imper-
fect information. Because of their sequential nature, the
number of deterministic strategies in an EFG is exponential
in the size of the game, unlike for NFGs. Computing, or
approximating, Nash equilibria of large EFGs has been a
key component of recent AI milestones where AIs were
created that beat human poker players (Bowling et al., 2015;
Brown & Sandholm, 2019; 2017; Moravčı́k et al., 2017).
These results relied on online learning algorithms for the
decision sets of the players in an EFG, where each iteration
of the algorithm is performed in linear time in the game tree
size (which is crucial due to the large size of these games).

Online learning results for EFGs are generally somewhat
harder to come by, and have often lagged behind results for
NFGs. This is due to the more complicated combinatorial
structure of the decision spaces in EFGs. For example, the
following concepts were all developed later for EFGs than
for NFGs, and sometimes with weaker guarantees: good
distance measures (Hoda et al., 2010; Kroer et al., 2015;
2020; Farina et al., 2021a), optimistic regret-minimization
algorithms (Farina et al., 2019b;a), and last-iterate conver-
gence results (Wei et al., 2021; Lee et al., 2021). Very recent
NFG results such as the polylogarithmic regret bounds for
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Algorithm Per-player regret bound Last-iter. conv.†

CFR (regret matching / regret matching+) (Zinkevich et al., 2007) O(
√
A ‖Q‖1 T 1/2) no

CFR (MWU) (Zinkevich et al., 2007) O(
√

logA ‖Q‖1 T 1/2) no
FTRL / OMD (dilated entropy) (Kroer et al., 2020) O(

√
logA 2D/2 ‖Q‖1 T 1/2) no

FTRL / OMD (dilatable global entropy) (Farina et al., 2021a) O(
√

logA ‖Q‖1 T 1/2) no
Kernelized MWU (this paper) O(

√
logA

√
‖Q‖1 T 1/2) no

Optimistic FTRL / OMD (dilated entropy) (Kroer et al., 2020) O(
√
m log(A) 2D ‖Q‖21 T 1/4) yes∗

Optimistic FTRL / OMD (dilatable gl. ent.) (Farina et al., 2021a) O(
√
m log(A) ‖Q‖21 T 1/4) no

Kernelized OMWU (this paper) O(m log(A) ‖Q‖1 log4(T )) yes

Table 1. Properties of various no-regret algorithms for EFGs. All algorithms take linear time to perform an iteration. The first set of rows
are for non-optimistic algorithms. The second set of rows are for optimistic algorithms. The regret bounds are per player and apply to
multiplayer general-sum games. They depend on the maximum number of actions A available at any decision point, the maximum `1
norm ‖Q‖1 = maxq∈Q ‖q‖1 over the player’s decision polytope Q, the depth D of the decision polytope, and the number of players
m. Optimistic algorithms have better asymptotic regret, but worse dependence on the game constants m, A, and ‖Q‖1. Note that our
algorithms achieve better dependence on ‖Q‖1 compared to all existing algorithms. †Last-iterate convergence results are for two-player
zero-sum games, and some results rely on the assumption of a unique Nash equilibrium—see Section 5.3 for details. ∗Lee et al. (2021).

OMWU dynamics in general-sum NFGs (Daskalakis et al.,
2021) do not currently have an analogue for EFGs.

In principle, an EFG can be represented as a NFG where
each action in the NFG corresponds to an assignment of
decisions at each decision point in the EFG. One could
then run, e.g., OMWU on this normal-form representation,
and receive all the guarantees obtained for NFGs directly.
However, this reduction is exponentially-large in the size of
the EFG representation, and for this reason the normal-form
representation was viewed as impractical. This leads to
the necessity of developing the various more complicated
approaches mentioned in the previous paragraph.

We contradict popular belief and show that it is possible
to work with the normal form efficiently: we provide a
kernel-based reduction from EFGs to NFGs that allows us
to simulate MWU and OMWU on the normal-form rep-
resentation, using only linear (in the EFG size) time per
iteration. Our algorithm, Kernelized OMWU (KOMWU),
closes the gap between NFGs and EFGs; KOMWU achieves
all the guarantees provided by the various normal-form re-
sults mentioned previously, as well as any future results on
OMWU for NFGs. As an unexpected byproduct, KOMWU
obtains new state-of-the-art regret bounds among all on-
line learning algorithms for EFGs (see also Table 1); we
improve the dependence on the maximum `1 norm ‖Q‖1
over the sequence-form polytope Q from ‖Q‖21 to ‖Q‖1
(for the non-optimistic version we improve it from ‖Q‖1
to
√
‖Q‖1). Due to the connection between regret mini-

mization and convergence to Nash equilibrium, this also
improves the state-of-the-art bounds for converging to a
Nash equilibrium at either a rate of 1/

√
T or 1/T by the

same factor. Moreover, KOMWU achieves last-iterate con-
vergence, and as it is the first algorithm to achieve linear-rate
last-iterate convergence with a learning rate that does not

become impractically-small as the game grows large (albeit
under a restrictive uniqueness assumption).

More generally, we show that KOMWU can simulate
OMWU for 0/1-polyhedral sets (of which the decision sets
for EFGs are a special case): a decision set Ω ⊆ ℝd which
is convex and polyhedral, and whose vertices are all con-
tained in {0, 1}d. KOMWU reduces the problem of running
OMWU on the vertices of the polyhedral set to d+1 evalua-
tions of what we call the 0/1-polyhedral kernel. Thus, given
an efficient algorithm for performing these kernel evalua-
tions, KOMWU enables one to get all the benefits of running
MWU or OMWU on the simplex of vertices, while retaining
the crucial property that each iteration of OMWU can be per-
formed efficiently. In addition to EFGs, in the appendix we
show that the kernel can be computed efficiently for several
other settings including n-sets, unit cubes, flows on directed
acyclic graphs, and permutations. As with EFGs, this im-
mediately gives us an efficient algorithm with favorable
properties such as last-iterate convergence and polylogarith-
mic regret for games with 0/1-polyhedral strategy sets. In
particular, for n-sets, we show an improvement on the time
complexity per round compared with the dynamic program-
ming approach discussed in (Takimoto & Warmuth, 2003).
To the best of our knowledge, this is the state-of-the-art
bound for simulating MWU/OMWU on n-sets.

Related work There were several past works on special-
ized online learning methods for EFGs. One class of meth-
ods is based on specialized Bregman divergences that lead
to efficient iteration updates (Hoda et al., 2010; Kroer et al.,
2015; 2020; Farina et al., 2021a). Combined with optimistic
regret minimizers for general convex set, this yields stronger
regret bounds that take into account the variation in payoffs,
and combined with the connection between regret minimiza-
tion and Nash equilibrium computation, this yields 1/T -
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rate convergence for two-player zero-sum games (Rakhlin
& Sridharan, 2013b; Syrgkanis et al., 2015; Farina et al.,
2019b). The counterfactual regret minimization (CFR)
framework Zinkevich et al. (2007) also yields efficient it-
eration updates. This approach yields a worse

√
T regret

bound, but leads to the best practical performance in most
games (Kroer et al., 2018; 2020; Farina et al., 2021b). Fa-
rina et al. (2019a) show that it is possible to attain O(T 1/4)
regret within the CFR framework by using OMWU at each
decision point. However, the game-dependent constants in
their bound are much worse than the ones in Table 1.

Regret minimization over 0/1 polyhedral sets, the frame-
work we consider, is closely related to online combinatorial
optimization problems (Audibert et al., 2014), where the de-
cision maker (randomly) selects a 0/1 vertex in each round
instead of a point in the convex hull of the set of vertices,
and the regret is measured in expectation. We review ap-
proaches related to the use of MWU here, and other less
closely related approaches in Appendix A. One approach
similar to our KOMWU is to perform MWU over vertices
(e.g., Cesa-Bianchi & Lugosi (2012)); the remaining prob-
lem is whether there is an efficient way to maintain and
sample from the weights. Such efficient implementations
have been shown in many instances such as paths (Takimoto
& Warmuth, 2003), spanning trees (Koo et al., 2007), and
m-set (Warmuth & Kuzmin, 2008). (Takimoto & Warmuth,
2003) is the closest to this paper, where they show how to
produce MWU iterates for paths in directed graphs. Our
kernelized method can be seen as a significant extension of
their approach to general 0/1 polyhedral games, unifying
many of the previous results listed above. This unification
not only results in important applications to EFGs, but also
leads to improvement to previously studied problems such
as n-sets.

2. Preliminaries
In this section we review some fundamental connections
between normal-form games and no-regret learners.

2.1. Online Learning and Multiplicative Weights
Update

Given a finite set of choices A, consider the following
abstract model of a repeated decision-making problem
between a decision maker and an unknown—potentially
adversarial—environment. At each time t = 1, 2, . . . , the
decision maker is given (or otherwise selects) a prediction
vector m(t) ∈ ℝA. Then, the decision maker must select
and output a probability distribution λ(t) over A, that is,
a vector λ(t) ∈ ∆(A) :=

{
λ ∈ ℝA≥0 :

∑
a∈A λ[a] = 1

}
.

Finally, the environment picks (possibly in an adversarial
way) a loss vector `(t) ∈ ℝA and shows it to the decision
maker, who then suffers a loss equal to 〈`(t),λ(t)〉. Given

any time T , a key quantity for the decision maker is its
cumulative regret (or simply regret) up to time T ,

RT :=

T∑
t=1

〈`(t),λ(t)〉 − min
λ̂∈∆(A)

T∑
t=1

〈`(t), λ̂〉. (1)

As we recall in the next subsection, decision-making algo-
rithms that guarantee sublinear regret (in T ) in the worst
case make for natural agents to learn equilibria in games.
The most well-studied decision-making algorithm with that
property is the optimistic multiplicative weights update
(OMWU) algorithm.1 Let `(0),m(0) := 0 ∈ ℝA and
λ(0) := 1

|A|1 ∈ ∆(A); then, at all times t ∈ ℕ>0, OMWU

updates the distribution λ(t−1) ∈ ∆(A) according to

λ(t)[a] :=
λ(t−1)[a] · e−η(t)w(t)[a]∑

a′∈A λ
(t−1)[a′] · e−η(t)w(t)[a′]

(�)

for all a ∈ A, where w(t) := `(t−1) −m(t−1) +m(t) and
η(t)>0 is a learning rate (full pseudocode is given in Ap-
pendix B). The nonpredictive version of OMWU, called mul-
tiplicative weights update (MWU), is obtained from OMWU
as the special case in whichm(t) = 0 at all t.

2.2. Normal-Form Games (NFGs)

Normal-form games (NFG) are simultaneous-move, nonse-
quential games in which each player picks an action from
a finite set, and receives a payoff that depends on the tuple
of actions played by the players. Formally, we represent a
normal form game as a tuple Γ = (m, {Ai}, {Ui}), where
the positive integerm ∈ ℕ>0 denotes the number of players,
each of which is assigned a unique player number in the set
[[m]] := {1, . . . ,m}; the finite set Ai specifies the actions
available to player i ∈ [[m]]; and Ui : A1 × · · · × Am →
[0, 1] is the payoff function for player i ∈ [[m]]. The game is
said to be zero-sum if

∑
i∈[[m]] Ui(a1, . . . , am) = 0 for all

(a1, . . . , am) ∈ A1 × · · · × Am.

A mixed strategy for any player i ∈ [[m]] is a probabil-
ity distribution λi ∈ ∆(Ai) over the player’s action set
Ai. When the players play according to mixed strategies
λ1, . . . ,λm, the expected utility Ūi of any player i ∈ [[m]]
is defined accordingly as the function Ūi : (λ1, . . . ,λm) 7→
Ea1∼λ1,...,am∼λm

[
Ui(a1, . . . , am)

]
. Because of the linear-

ity of expectation, the expected utility function Ūi of each
player i is a multilinear function of the strategies λ1, ...,λm.

Learning in NFGs We now describe a learning setup for
NFGs, which we will refer to as the canonical optimistic
learning setup (COLS). In the COLS, the NFG is played
repeatedly. At each time t ∈ ℕ>0, each player i ∈ [[m]]

1In the literature, OMWU is often given under the assumption
thatm(t) = `(t−1) at all times t. In this paper we present OMWU
in its general form, that is, with no assumptions onm(t).
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picks mixed strategies λ(t)
i ∈ ∆(Ai) according to a learn-

ing algorithm Ri, with the following choice of loss and
prediction vectors:

• The loss vector `(t)
i is the opposite of the gradient of

the expected utility of player i with respect of player i’s
strategy, in symbols `(t)

i := −∇λi
Ūi(λ

(t)
1 , . . . ,λ

(t)
m );

• The prediction vectorm(t)
i is defined as the previous loss

m
(t)
i := `

(t−1)
i if t ≥ 2, andm(1)

i := 0 otherwise.

This is the same setup that was used in landmark papers
such as (Syrgkanis et al., 2015) and (Daskalakis et al., 2021).
A key result in the theory of learning in games establishes a
deep connection between the COLS and coarse-correlated
equilibria (CCEs) of the game (which, in two-player zero-
sum games, are Nash equilibria).

Theorem 2.1. Under the COLS, the average product dis-
tribution of play µ̄ := 1

T

∑T
t=1 λ

(t)
1 ⊗ · · · ⊗ λ

(t)
m is an

O(maxi∈[[m]]R
T
i /T )-approximate CCE of the game, where

RTi is the regret for player i (see Eq. (1)).

When each player i learns under the COLS using OMWU
with the same, constant learning rate η(t)

i := η as their
learning algorithmRi, the following strong properties hold
for any NFG Γ = (m, {Ai}, {Ui}).

Property 2.2 (Near-optimal per-player regret). There exist
universal constants C,C ′ > 1 so that, for all T , if η ≤

1
Cm log4 T

, the regret of each player i ∈ [[m]] is bounded as

RTi ≤
log |Ai|

η + C ′ log T (Daskalakis et al., 2021).

Property 2.3 (Optimal regret sum). If η ≤ 1√
8(m−1)

, at
all times T ∈ ℕ>0 the sum of the players’ regrets satisfies∑m
i=1R

T
i ≤ m

η maxmi=1 log |Ai| (Syrgkanis et al., 2015).

When Γ is a two-player zero-sum game, the following also
holds when learning under the COLS using OMWU.

Property 2.4 (Last-iterate convergence). There exists a cer-
tain schedule of learning rates η(t)

i such that the players’
strategies (λ

(t)
1 ,λ

(t)
2 ) converge to a Nash equilibrium of

the game (Hsieh et al., 2021). Furthermore, if Γ has a
unique Nash equilibrium (λ∗1,λ

∗
2) and each player uses

any constant learning rate η(t)
i := η ≤ 1

8 , at all times t
the strategy profile (λ

(t)
1 ,λ

(t)
2 ) satisfies DKL(λ∗1 ‖λ

(t)
1 ) +

DKL(λ∗2 ‖λ
(t)
2 ) ≤ C(1+C ′)−t, where the constantsC, C ′

only depend on the game, and DKL(· ‖ ·) denotes the KL-
divergence between two distributions (Wei et al., 2021).

3. Multiplicative Weights in Polyhedral
Convex Games

A powerful generalization of normal-form games is poly-
hedral convex games, of which extensive-form games are
an example (Gordon et al., 2008). Unlike NFGs, in which

players select a mixed strategy from the probability simplex
spanned by the set of available action Ai, in a polyhedral
convex game the set of “randomized strategies” from which
each player i ∈ [[m]] can draw is a given convex polytope
Ωi ⊆ ℝdi . Analogously to NFGs, we represent a polyhedral
convex game as a tuple Γ = (m, {Ωi}, {Ūi}), where the
functions Ūi : Ω1 × · · · × Ωm → [0, 1] are the multilinear
utility functions for each player i ∈ [[m]].

The concepts of learning agents, equilibria, and COLS in-
troduced in Sections 2.1 and 2.2 can be directly extended
to polyhedral convex games without difficulty, by simply
replacing the set of mixed strategies ∆(Ai) of each player
with their convex polyhedral counterpart Ωi.

Because the set of mixed strategies Ω of every player is a
polytope, the decision problem of picking a mixed strategy
x(t) ∈ Ω can be equivalently thought of as the decision
problem of picking a convex combination λ(t) ∈ ∆(VΩ)
over the finite set of vertices VΩ of Ω. Indeed, it is not hard
to show that a learning algorithm R for Ω ⊆ ℝd can be
constructed from any learning algorithm R̃ for the set of
vertices VΩ, as we describe next. Let V denote the matrix
whose columns are the vertices VΩ; then:

• wheneverR receives a predictionm(t) ∈ ℝd (resp., loss
`(t)), it computes the vector m̃(t) := V>m(t) ∈ ℝVΩ

(resp., ˜̀(t) := V>`(t)) and forwards it to R̃;
• whenever R̃ plays a new distribution λ(t) ∈

∆(VΩ), the convex combination of vertices x(t) :=∑
v∈VΩ

λ(t)[v]v = Vλ(t) is played byR.

It is immediate to verify that the regret cumulated by R
and R̃ is equal at all times T . So, as long as R̃ guaran-
tees sublinear regret, then so does R. In this paper we are
particularly interested in the algorithm obtained by using
the above construction for the specific choice of OMWU
as the algorithm R̃. We coin Vertex OMWU the resulting
learning algorithmR in that case, depicted in Figure 1. Let
`(0),m(0) := 0 ∈ ℝVΩ and λ(0) := 1

|VΩ|1 ∈ ∆(VΩ); then,
at all times t ∈ ℕ>0, Vertex OMWU updates the convex
combination of vertices λ(t−1)∈∆(VΩ) according to

λ(t)[v] :=
λ(t−1)[v] · e−η(t)〈w(t),v〉∑

v′∈VΩ
λ(t−1)[v′] · e−η(t)〈w(t),v′〉 , (♣)

where

w(t) := `(t−1) −m(t−1) +m(t) ∈ ℝd, (2)

and then outputs the iterate

Ω 3 x(t) :=
∑
v∈VΩ

λ(t)[v] · v = Vλ(t). (♠)

It is straightforward to show that Vertex OMWU satis-
fies Properties 2.2 to 2.4 with |Ai| replaced with |VΩi |,
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`(t)
m(t)

x(t) ∈ Ω

Vertex OMWU
(♣), (♠)

Γ̃
˜̀(t)

m̃(t)

λ(t) ∈ ∆(VΩ)

OMWU
(�)

m̃(t) = V>m(t)

˜̀(t) = V>`(t)

x(t) = Vλ(t)

Figure 1. Construction of the Vertex OMWU algorithm. The ma-
trix V has the (possibly exponentially-many) vertices VΩ of the
convex polytope Ω as columns.

by using a black-box reduction to NFGs. Indeed, let
Γ = (m, {Ωi}, {Ūi}) be a polyhedral convex game, and in-
troduce the NFG Γ̃ equivalent to Γ, defined as the NFG Γ̃ :=
(m, {VΩi

}, {Ui}) where the action set of each player is the
set of vertices VΩi

, and Ui(v1, . . . ,vm) := Ūi(v1, . . . ,vm)
for all (v1, . . . ,vm) ∈ VΩ1×· · ·×VΩm . Consider the losses
`

(t)
i , predictions m(t), and iterates x(t)

i ∈ Ωi produced
by agents learning (under the COLS) in Γ using Vertex
OMWU, and the losses ˜̀(t)

i , predictions m̃(t)
i , and iterates

λ
(t)
i ∈ ∆(Vi) produced by agents learning (again under

the COLS) in Γ̃ using OMWU. For all players i ∈ [[m]],
it is immediate to verify by induction that the relation-
ships (i) ˜̀(t)

i = V>i `
(t)
i , (ii) m̃(t)

i = V>i m
(t)
i , and (iii)

x
(t)
i = Viλ

(t)
i hold at all t, where Vi is the matrix whose

columns are the vertices VΩi
(see also Figure 1). The above

discussion shows that in a precise sense, Vertex OMWU and
OMWU are the same algorithm, just on different equivalent
representations of the game. Hence, the regret cumulated
by each player i in Γ matches the regret cumulated by the
same player in Γ̃, showing that Properties 2.2 and 2.3 hold
for Vertex OMWU. Furthermore, whenever λ(t)

i converges
in iterates, then clearly so does x(t)

i = Viλ
(t)
i , showing that

Property 2.4 applies to Vertex OMWU as well.

The main drawback of Vertex OMWU is that it is not clear
how to avoid a per-iteration complexity linear in the number
of vertices of Ω, which is typically exponential in d (this is
the case in extensive-form games). While different learning
algorithms that guarantee polynomial per-iteration complex-
ity in d exist, none of them is known to guarantee near-
optimal per-player regret (Property 2.2) or last-iterate con-
vergence (Property 2.4) enjoyed by Vertex OMWU, much
less all three Properties 2.2 to 2.4 at the same time. In the
rest of the paper we fill this gap, by showing that in several
cases of interest, Vertex OMWU can be implemented with
polynomial-time (in d) iterations using a kernel trick.

4. Kernelized Multiplicative Weights Update
In this section, we introduce Kernelized OMWU (KOMWU).
Kernelized OMWU gives a way of efficiently simulating the

Vertex OMWU algorithm described in Section 3 on poly-
hedral decision sets whose vertices have 0/1 integer coordi-
nates, as long as a specific polyhedral kernel function can
be evaluated efficiently. We will assume that we are given a
polytope Ω ⊆ ℝd with (possibly exponentially many) 0/1
integral vertices VΩ := {v1, . . . ,v|VΩ|} ⊆ {0, 1}d. Further-
more, given a vertex v ∈ VΩ, we will write k ∈ v as a
shorthand for v[k] = 1.

We define the 0/1-polyhedral feature map φΩ : ℝd → ℝVΩ

associated with Ω as the function such that

φΩ(x)[v] :=
∏
k∈v

x[k] ∀x ∈ ℝd,v ∈ VΩ. (3)

Correspondingly, the 0/1-polyhedral kernel KΩ associated
with Ω is defined as the function KΩ : ℝd ×ℝd → ℝ,

KΩ(x,y) := 〈φΩ(x), φΩ(y)〉 =
∑
v∈VΩ

∏
k∈v

x[k]y[k]. (4)

We show that Vertex OMWU can be simulated using d+ 1
evaluation of the kernel KΩ at every iteration. The key
observation is summarized in the next theorem, which shows
that the iterates λ(t) produced by Vertex OMWU are highly
structured, in the sense that they are always proportional to
the feature mapping φΩ(b(t)) for some b(t) ∈ ℝd.
Theorem 4.1. Consider the Vertex OMWU algorithm (♣),
(♠). At all times t ≥ 0, the vector b(t) ∈ ℝd defined as

b(t)[k] := exp

{
−

t∑
τ=1

η(τ)w(τ)[k]

}
(5)

for all k = 1, . . . , d, is such that

λ(t) =
φΩ(b(t))

KΩ(b(t),1)
. (6)

Proof. By induction.

• At time t = 0, the vector b(0) is b(0) = 1 ∈ ℝd. By
definition of the feature map (3), φΩ(1) = 1 ∈ ℝVΩ . So,
KΩ(b(0),1) =

∑
v∈VΩ

1 = |VΩ| and hence the right-
hand side of (6) is 1

|VΩ|1, which matches λ(0) produced
by Vertex OMWU, as we wanted to show.

• Assume the statement holds up to some time t− 1 ≥ 0.
We will show that it holds at time t as well. Since v has
integral 0/1 coordinates, we can write

exp{−η(t)〈w(t),v〉} = exp

{
−η(t)

∑
k∈v

w(t)[k]

}
=
∏
k∈v

exp{−η(t)w(t)[k]}. (7)

From the inductive hypothesis and (3), for all v ∈ VΩ,

λ(t−1)[v] =
φΩ(b(t−1))[v]

KΩ(b(t−1),1)
=

∏
k∈v b

(t−1)[k]

KΩ(b(t−1),1)
. (8)



Kernelized Multiplicative Weights for 0/1-Polyhedral Games

Plugging (7) and (8) into (♣), we have the inductive step

λ(t)[v] =

∏
k∈v b

(t−1)[k] exp{−η(t)w(t)[k]}∑
v∈VΩ

∏
k∈v b

(t−1)[k] exp{−η(t)w(t)[k]}

=
φΩ(b(t))[v]

KΩ(b(t),1)

for all v ∈ VΩ, where in the last step we used the fact
that b(t)[k] = b(t−1)[k] exp{−η(t)w(t)[k]} by (5).

The structure of λ(t) uncovered by Theorem 4.1 can be
leveraged to compute the iterate x(t) produced by Vertex
OMWU, i.e., the convex combination of the vertices (♠),
using d + 1 evaluations of the kernel KΩ. We do so by
extending an idea of Takimoto & Warmuth (2003, eq. 5.2).

Theorem 4.2. Let b(t) be as in Theorem 4.1. For each
h = 1, . . . , d, let ēh ∈ ℝd be defined as the indicator
vector

ēh[k] := 1k 6=h :=

{
0 if k = h

1 if k 6= h.
(9)

Then, at all t ≥ 1, the iterate x(t)∈Ω produced by Vertex
OMWU can be written as

x(t) =

(
1− KΩ(b(t), ē1)

KΩ(b(t),1)
, . . . , 1− KΩ(b(t), ēd)

KΩ(b(t),1)

)
. (10)

Proof. The proof crucially relies on the observation that for
all h = 1, . . . , d, the feature map φΩ(ēh) satisfies

φΩ(ēh)[v] =
∏
k∈v

ēh[k] =
∏
k∈v

1k 6=h = 1h/∈v, ∀v ∈ VΩ.

Using the fact that φΩ(1) = 1, we conclude that

φΩ(1)[v]− φΩ(ēh)[v] = 1h∈v, ∀h = 1, . . . , d. (11)

Therefore, for all k = 1, . . . , d, we obtain

x(t)[k]
(♠)
=
∑
v∈VΩ

λ(t)[v] · v[k] =
∑
v∈VΩ

λ(t)[v] · 1k∈v

=
∑
v∈VΩ

λ(t)[v] · (φΩ(1)[v]− φΩ(ēk)[v])

=
〈φΩ(b(t)), φΩ(1)〉 − 〈φΩ(b(t)), φΩ(ēk)〉

KΩ(b(t),1)

=
KΩ(b(t),1)−KΩ(b(t), ēk)

KΩ(b(t),1)
= 1−KΩ(b(t), ēk)

KΩ(b(t),1)
,

where the second equality follows from the integrality of
v ∈ VΩ, the third from (11), the fourth from Theorem 4.1,
and the fifth from the definition of KΩ (4).

Algorithm 1: Kernelized OMWU (KOMWU)

1 `(0), m(0), s(0) ← 0 ∈ ℝd [. Initialization]
2 for t = 1, 2, . . . do
3 receive predictionm(t) ∈ ℝd of next loss

[. setm(t) = 0 for non-predictive variant]
[. Compute b(t) according to Theorem 4.1]

4 w(t) ← `(t−1) −m(t−1) +m(t)

5 s(t) ← s(t−1) + η(t)w(t) [. s(t) =
∑
η(τ)w(τ)]

6 for k = 1, . . . , d do
7 b(t)[k]← exp{−s(t)[k]} [. see (5)]

[. Produce iterate x(t) according to Theorem 4.2]
8 x(t) ← 0 ∈ ℝd

9 α← KΩ(b(t),1) [. KΩ is defined in (4)]
10 for k = 1, . . . , d do
11 x(t)[k]← 1−KΩ(b(t), ēk) /α [. see (10)]

12 output x(t) ∈ Ω and receive loss vector
`(t) ∈ ℝd

Combined, Theorems 4.1 and 4.2 suggest that by keeping
track of the vectors b(t) instead of λ(t), updating them us-
ing Theorem 4.1 and reconstructing the iterates x(t) using
Theorem 4.2, Vertex OMWU can be simulated efficiently.
We call the resulting algorithm, given in Algorithm 1, Ker-
nelized OMWU (KOMWU). Similarly, we call Kernelized
MWU the non-optimistic version of KOMWU obtained as
the special case in which m(t) = 0 at all t. In light of the
preceding discussion, we have the following.

Theorem 4.3. Kernelized OMWU produces the same it-
erates x(t) as Vertex OMWU when it receives the same
sequence of predictionsm(t) and losses `(t) ∈ ℝd. Further-
more, each iteration of KOMWU runs in time proportional
to the time required to compute the d+ 1 kernel evaluations
{KΩ(b(t),1),KΩ(b(t), ē1), . . . ,KΩ(b(t), ēd)}.

5. KOMWU in Extensive-Form Games
In this section, we show how the general theory we devel-
oped in Section 5 applies to extensive-form game, i.e., tree-
form games that incorporate sequential and simultaneous
moves, and imperfect information. The central result of this
section, Theorem 5.4, shows that OMWU on the normal-
form representation of any EFG can be simulated in linear
time in the game tree size via KOMWU, contradicting the
popular wisdom that working with the normal form of an
extensive-form game is intractable.

5.1. Preliminaries on Extensive-Form Games

We now briefly recall standard concepts and notation about
extensive-form games which we use in the rest of the section.
More details and an example are available in Appendix C.
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In an m-player perfect-recall extensive-form game, each
player i ∈ [[m]] faces a tree-form sequential decision prob-
lem (TFSDP). In a TFSDP, the player interacts with the
environment in two ways: at decision points, the agent must
act by picking an action from a set of legal actions; at ob-
servation points, the agent observes a signal drawn from
a set of possible signals. We denote the set of decision
points of player i as Ji. The set of actions available at
decision point j ∈ Ji is denoted Aj . A pair (j, a) where
j ∈ Ji and a ∈ Aj is called a non-empty sequence. The
set of all non-empty sequences of player i is denoted as
Σ∗i := {(j, a) : j ∈ J , a ∈ Aj}. For notational conve-
nience, we will often denote an element (j, a) in Σ∗i as ja
without using parentheses. Given a decision point j ∈ Ji,
we denote by pj its parent sequence, defined as the last
sequence (that is, decision point-action pair) encountered
on the path from the root of the decision process to j. If the
agent does not act before j (that is, j is the root of the pro-
cess or only observation points are encountered on the path
from the root to j), we let pj be set to the special element ∅,
called the empty sequence. We let Σi := Σ∗i ∪ {∅}. Given
a σ ∈ Σi, we let Cσ := {j ∈ Ji : pj = σ}.

An m-player extensive-form game is a polyhedral convex
game (Section 3) Γ = (m, {Qi}, {Ui}), where the convex
polytope of mixed strategies Qi of each player i ∈ [[m]] is
called a sequence-form strategy space (Romanovskii, 1962;
von Stengel, 1996; Koller et al., 1996), and is defined as

Qi :=

{
x ∈ ℝΣi :

1 x[∅] = 1,

2 x[pj ] =
∑
a∈Aj

x[ja] ∀j ∈ Ji

}
.

It is known that the set of vertices ofQi are the deterministic
sequence-form strategies Πi := Qi ∩ {0, 1}Σi . We mention
the following result (see Appendix E).

Proposition 5.1. The number of vertices of Qi is upper
bounded byA‖Qi‖1 , whereA :=maxj∈Ji |Aj | is the largest
number of possible actions, and ‖Qi‖1 := maxq∈Qi

‖q‖1.

We will often need to describe strategies for subtrees of the
TFDSM faced by each player i. We use the notation j′ � j
to denote the fact that j′ ∈ Ji is a descendant of j ∈ Ji, and
j′ � j to denote a strict descendant (i.e., j′ � j ∧ j′ 6= j).
For any j ∈ Ji we let Σ∗i,j := {j′a′ : j′ � j, a′ ∈ Aj′}
denote the set of non-empty sequences in the subtree rooted
at j. The set of sequence-form strategies for that subtree j
is defined as the convex polytope

Qi,j :=

{
x ∈ ℝΣ∗i,j :

1
∑
a∈Aj

x[ja] = 1,

2 x[pj′ ]=
∑
a∈Aj′

x[j′a] ∀j′ � j

}
.

Correspondingly, we let Πi,j := Qi,j ∩ {0, 1}Σ
∗
i,j denote

the set of vertices of Qi,j , each of which is a deterministic
sequence-form strategy for the subtree rooted at j.

5.2. Linear-time Implementation of KOMWU

For any player i, the 0/1-polyhedral kernel KQi associated
with the player’s sequence-form strategy space Qi can be
evaluated in linear time in the number of sequences |Σi| of
that player. To do so, we introduce a partial kernel function
Kj : ℝΣi ×ℝΣi → ℝ for every decision point j ∈ Ji,

Kj(x,y) :=
∑
π∈Πi,j

∏
σ∈π

x[σ]y[σ]. (12)

Theorem 5.2. For any vectors x,y ∈ ℝΣi , the two follow-
ing recursive relationships hold:

KQi
(x,y) = x[∅]y[∅]

∏
j∈C∅

Kj(x,y), (13)

and, for all decision points j ∈ Ji,

Kj(x,y) =
∑
a∈Aj

x[ja]y[ja]
∏

j′∈Cja

Kj′(x,y)

. (14)

In particular, Equations (13) and (14) give a recursive al-
gorithm to evaluate the polyhedral kernel KQi

associated
with the sequence-form strategy space of any player i in an
EFG in linear time in the number of sequences |Σi|.

Theorem 5.2 shows that the kernel KQi
can be evaluated

in linear time (in |Σi|) at any (x,y). So, the KOMWU
algorithm (Algorithm 1) can be trivially implemented for
Ω = Qi in quadratic O(|Σi|2) time per iteration by directly
evaluating the |Σi|+ 1 kernel evaluations {KQi(b

(t),1)}∪
{KQi

(b(t), ēσ) : σ ∈ Σi} needed at each iteration, where
ēσ ∈ ℝΣi , defined in (9) for the general case, is the vector
whose components are ēσ[σ′] := 1σ 6=σ′ for all σ, σ′ ∈ Σi.
We refine that result by showing that an implementation
of KOMWU with linear-time (i.e., O(|Σi|)) per-iteration
complexity exists, by exploiting the structure of the partic-
ular set of kernel evaluations needed at every iteration. In
particular, we rely on the following observation.

Proposition 5.3. For any player i ∈ [[m]], vector x ∈ ℝΣi
>0,

and sequence ja ∈ Σ∗i ,

1−KQi(x, ēja)/KQi(x,1)

1−KQi
(x, ēpj )/KQi

(x,1)
=
x[ja]

∏
j′∈CjaKj′(x,1)

Kj(x,1)
.

In order to compute {KQi
(b(t), ēσ) : σ ∈ Σi} in cumula-

tive O(|Σi|) time, we then do the following.

1. We compute the values Kj(b
(t),1) for all j ∈ Ji in

cumulative O(|Σi|) time by using (14).
2. We compute the ratio KQi

(b(t), ē∅)/KQi
(b(t),1) by

evaluating the two kernel separately using Theorem 5.2,
spending O(|Σi|) time.
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3. We repeatedly use Proposition 5.3 in a top-down fash-
ion along the tree-form decision problem of player i
to compute the ratio KQi(b

(t), ēja)/KQi(b
(t),1) for

each sequence ja ∈ Σ∗i given the value of the parent
ratio KQi

(b(t), ēpj )/KQi
(b(t),1) and the partial ker-

nel evaluations {Kj(b
(t),1) : j ∈ Ji} from Step 1.

For each ja ∈ Σ∗i , Proposition 5.3 gives a formula
whose runtime is linear in the number of children
decision points |Cja| at that sequence. Therefore,
the cumulative runtime required to compute all ratios
KQi

(b(t), ēja)/KQi
(b(t),1) is O(|Σi|).

4. By multiplying the ratios computed in Step 3 by the
value of KQi

(b(t),1) computed in Step 2, we can easily
recover each KQi(b

(t), ēσ) for every σ ∈ Σ∗i .

Hence, we have just proved the following.
Theorem 5.4. For each player i in a perfect-recall
extensive-form game, the Kernelized OMWU algorithm can
be implemented exactly, with a per-iteration complexity lin-
ear in the number of sequences |Σi| of that player.

5.3. KOMWU Regret Bounds and Convergence

If the players in an EFG run KOMWU, then we can combine
Theorem 4.3 with standard OMWU regret bounds, Propo-
sition 5.1 and Properties 2.2 to 2.4 to get the following:

Theorem 5.5. In an EFG, after T rounds of learning under
the COLS, KOMWU satisfies

1. A player i using KOMWU with η(t) := η =√
8 log(A)‖Qi‖1/

√
T is guaranteed to incur regret at

most RTi = O(
√
‖Qi‖1 log(A)T ).

2. There exist C,C ′ > 0 such that if all m players learn
using KOMWU with constant learning rate η(t) := η ≤
1/(Cm log4 T ), then each player is guaranteed to incur
regret at most log(Ai)‖Qi‖1

η + C ′ log T .
3. If all m player learn using KOMWU with η(t) :=
η ≤ 1/

√
8(m − 1), then the sum of regrets is at most∑m

i=1R
T
i = O(maxmi=1{‖Qi‖1 logAi}mη ).

4. For two-player zero-sum EFGs, if both players learn
using KOMWU, then there exists a schedule of learning-
rates η(t) such that the iterates converge to a Nash equi-
librium. Furthermore, if the NFG representation of the
EFG has a unique Nash equilibrium and both players
use learning rates η(t) = η ≤ 1/8, then the iterates con-
verge to a Nash equilibrium at a linear rate C(1+C ′)−t,
where C,C ′ are constants that depend on the game.

Prior to our result, the strongest regret bound for methods
that take linear time per iteration was based on instantiating
e.g. follow the regularized leader (FTRL) or its optimistic
variant with the dilatable global entropy regularizer of Farina
et al. (2021a). For FTRL this yields a regret bound of the
formO(

√
log(A) ‖Q‖21T ). For optimistic FTRL this yields

a regret bound of the formO(log(A) ‖Q‖21
√
mT 1/4), when

every player in an m-player game uses that algorithm and
appropriate learning rates.

Our algorithm improves the state-of-the-art rate in two ways.
First, we improve the dependence on game constants by
almost a square root factor, because our dependence on
‖Q‖1 is smaller by a square root, compared to prior results.
Secondly, in the multi-player general-sum setting, every
other method achieves regret that is on the order of T 1/4,
whereas our method achieves regret on the order of log4(T ).
In the context of two-player zero-sum EFGs, the bound on
the sum of regrets in Theorem 5.5 guarantees convergence
to a Nash equilibrium at a rate ofO(maxi ‖Qi‖1 logAi/T ).
This similarly improves the prior state of the art.

Lee et al. (2021) showed the first last-iterate results for EFGs
using algorithms that require linear time per iteration. In
particular, they show that the dilated entropy DGF combined
with optimistic online mirror descent leads to last-iterate
convergence at a linear rate. However, their result requires
learning rates η ≤ 1/(8|Σi|). This learning rate is impracti-
cally small in practice. In contrast, our last-iterate linear-rate
result for KOMWU allows learning rates of size 1/8. That
said, our result is not directly comparable to theirs. The
existence of a unique Nash equilibrium in the EFG represen-
tation is a necessary condition for uniqueness in the NFG
representation. However, it is possible that the NFG has
additional equilibria even when the EFG does not. Wei et al.
(2021) conjecture that linear-rate convergence holds even
without the assumption of a unique Nash equilibrium. If this
conjecture turns out to be true for NFGs, then Theorem 4.3
would immediately imply that KOMWU also has last-iterate
linear-rate convergence without the uniqueness assumption.

5.4. Experimental Evaluation

We numerically investigate agents learning under the COLS
in Kuhn and Leduc poker (Kuhn, 1950; Southey et al., 2005).
We compare the maximum per-player regret cumulated by
KOMWU for four different choices of constant learning
rate, against that cumulated by two standard algorithms
from the extensive-form game solving literature (CFR and
CFR(RM+)). More details about the games and the algo-
rithms are given in Appendix D. Results are shown in Fig-
ure 2. We observe that the per-player regret cumulated by
KOMWU plateaus and remains constants, unlike the CFR
variants. This behavior is consistent with the near-optimal
per-player regret guarantees of KOMWU (Theorem 5.5).

6. Conclusions
We introduce the Kernelized OMWU algorithm for sim-
ulating OMWU on the vertices of a 0/1-polyhedral set.
KOMWU can be implemented via black-box access to ker-
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Figure 2. Maximum per-player regret cumulated by KOWMU com-
pared to two variants of the CFR algorithm.

nel evaluations, and these evaluations can be performed in
linear time for EFGs. This leads to new state-of-the-art
regret bounds and other properties for no-regret learning
on EFGs that were previously only obtained for NFGs. In
the appendix, we show that KOMWU can be implemented
efficiently for several other domains: n-sets, which are 0/1-
polydral sets of the form π ∈ {0, 1}d : ‖π‖1 = n, the unit
hypercube, flows in directed acyclic graphs, permutations,
and Cartesian products of sets with efficient kernel evalua-
tions. For n-sets we obtain an improved cost-per-iteration
compared to existing methods for simulating OMWU.
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A. Additional Related Work
A.1. More Results for Optimistic Algorithms in Games

For individual regret in multi-player general-sum NFGs, Syrgkanis et al. (2015) first show O(T 1/4) regret for general
optimistic OMD and FTRL algorithms. The result is improved to O(T 1/6) by (Chen & Peng, 2020), but only for OMWU in
two-player NFGs. Daskalakis et al. (2021) show that OMWU enjoys O(log4 T ) regret in multi-player general-sum NFGs.

As for last-iterate convergence in two-player zero-sum games, Daskalakis & Panageas (2019) show an asymptotic result for
OMWU under the unique Nash equilibrium assumption. Wei et al. (2021) further show a linear convergence rate while
allowing larger learning rates under the same assumption. Hsieh et al. (2021) show another asymptomatic convergence
result without the assumption. It is also worth noting that OGDA, another popular optimistic algorithm, has been shown its
last-iterate convergence in general polyhedron games (Wei et al., 2021).

A.2. Approaches in Online Combinatorial Optimization

Besides performing MWU/OMWU over vertices, we review two additional approaches in online combinatorial optimization:

OMD over the Convex Hull This approach is running Online Mirror Descent (OMD) over the convex hull (Koolen et al.,
2010; Audibert et al., 2014). It is well known that OMD with the negative entropy regularizer results in a (dimension-wise)
multiplicative weight update. For the case that the set of vertices is a standard basis, this algorithm coincides with the MWU
over the probability simplex. However, for general cases, it requires to project back to the convex hull and the procedure may
not be efficient. Helmbold & Warmuth (2009) first used this approach for permutations, and Koolen et al. (2010) generally
studied it for arbitrary 0/1 polyhedral sets and show its efficiency for more cases.

FTPL Another approach is called Follow the Perturbed Leader (Kalai & Vempala, 2005). This approach adds a random
perturbation to the cumulative loss vector, and greedily selects the vertex with minimal perturbed loss. The latter procedure
corresponds to linear optimization over the set of vertices, which can be solved efficiently for most cases of interest. We are
not aware of any previous work using this approach for EFGs though.

B. Pseudocode
Below we show pseudocode for OMWU and Vertex OMWU (Section 3).

Algorithm 2: OMWU

Data: Finite set of choices A, learning rates η(t) > 0

1 `(0), m(0) ← 0 ∈ ℝA; λ(0) ← 1
|A|1 ∈ ∆(A)

2 for t = 1, 2, . . . do
3 receive predictionm(t) ∈ ℝA of next loss

[. setm(t) = 0 for non-predictive variant]
4 w(t) ← `(t−1) −m(t−1) +m(t)

5 for a ∈ A do

6 λ(t)[a]← λ(t−1)[a] · e−η(t)w(t)[a]∑
a′∈A λ

(t−1)[a′] · e−η(t)w(t)[a′]

7 output λ(t) ∈ ∆(A)

8 receive loss vector `(t) ∈ ℝA

Algorithm 3: Vertex OMWU

Data: Polytope Ω⊆ℝd with vertices {v1,...,vk}=:VΩ,
learning rates η(t) > 0

1 `(0), m(0) ← 0 ∈ ℝd; λ(0) ← 1
|VΩ|1 ∈ ∆(VΩ)

2 for t = 1, 2, . . . do
3 receive predictionm(t) ∈ ℝd of next loss

[. setm(t) = 0 for non-predictive variant]
4 w(t) ← `(t−1) −m(t−1) +m(t)

[. Run the OMWU update on λ using A = VΩ]
5 for v ∈ VΩ do

6 λ(t)[v]← λ(t−1)[v] · e−η(t) 〈w(t),v〉∑
v′∈VΩ

λ(t−1)[v′] · e−η(t)〈w(t),v′〉

[. Compute new convex combination of vertices]
7 x(t) ←

∑
v∈VΩ

λ(t)[v] · v
8 output x(t) ∈ Ω

9 receive loss vector `(t) ∈ ℝd
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C. Extensive-Form Games
In a tree-form sequential decision process (TFSDP) problem the agent interacts with the environment in two ways: at
decision points, the agent must act by picking an action from a set of legal actions; at observation points, the agent observes
a signal drawn from a set of possible signals. Different decision points can have different sets of legal actions, and different
observation points can have different sets of possible signals. Decision and observation points are structured as a tree: under
the standard assumption that the agent is not forgetful, so, it is not possible for the agent to cycle back to a previously
encountered decision or observation point by following the structure of the decision problem.

As an example, consider the simplified game of Kuhn poker (Kuhn, 1950), depicted in Figure 3. Kuhn poker is a standard
benchmark in the EFG-solving community. In Kuhn poker, each player puts an ante worth 1 into the pot. Each player is then
privately dealt one card from a deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then
occurs, with the following dynamics. First, Player 1 decides to either check or bet 1. Then,

• If Player 1 checks Player 2 can check or raise 1.
– If Player 2 checks a showdown occurs; if Player 2 raises Player 1 can fold or call.

* If Player 1 folds Player 2 takes the pot; if Player 1 calls a showdown occurs.
• If Player 1 raises Player 2 can fold or call.

– If Player 2 folds Player 1 takes the pot; if Player 2 calls a showdown occurs.

When a showdown occurs, the player with the higher card wins the pot and the game immediately ends.

k1

j1 j2 j3

k2 k3 k4

j4 j5 j6

fold call fold call fold call

check raise check raise check raise

jack queen king

check raise check raise check raise

Figure 3. Tree-form sequential decision making process of the first acting player in the game of Kuhn poker.

As soon as the game starts, the agent observes a private card that has been dealt to them; this is observation point k1, whose
set of possible signals is Sk1

:= {jack, queen, king}. Should the agent observe the ‘jack’ signal, the decision problem
transitions to the decision point j1, where the agent must pick one action from the set Aj1 := {check, raise}. If the agent
picks ‘raise’, the decision process terminates; otherwise, if ‘check’ is chosen, the process transitions to observation point k2,
where the agent will observe whether the opponent checks (at which point the interaction terminates) or raises. In the latter
case, the process transitions to decision point j4, where the agent picks one action from the set Aj4 := {fold, call}. In either
case, after the action has been selected, the interaction terminates.

D. Experimental Evaluation
Game instances We numerically investigate agents learning under the COLS in Kuhn and Leduc poker (Kuhn, 1950;
Southey et al., 2005), standard benchmark games from the extensive-form games literature.

Kuhn poker The two-player variant of Kuhn poker first appeared in (Kuhn, 1950). In this paper, we use the multiplayer
variant, as described by Farina et al. (2018). In a multiplayer Kuhn poker game with r ranks, a deck with r unique
cards is used. At the beginning of the game, each player pays one chip to the pot (ante), and is dealt a single private
card (their hand). The first player to act can check or bet, i.e., put an additional chip in the pot. Then, the second player
can check or bet after a first player’s check, or fold/call the first player’s bet. If no bet was previously made, the third
player can either check or bet, and so on in turn. If a bet is made by a player, each subsequent player needs to decide
whether to fold or call the bet. The betting round if all players check, or if every player has had an opportunity to either
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fold or call the bet that was made. The player with the highest card who has not folded wins all the chips in the pot.

Leduc poker We use a multiplayer version of the classical Leduc hold’em poker introduced by Southey et al. (2005). We
employ game instances of rank 3. The deck consists of three suits with 3 cards each. Our instances are parametric in
the maximum number of bets, which in limit hold’em is not necessarily tied to the number of players. As in Kuhn
poker, we set a cap on the number of raises to one bet. As the game starts, players pay one chip to the pot. Then, two
betting rounds follow. In the first one, a single private card is dealt to each player while in the second round a single
board card is revealed. The raise amount is set to 2 and 4 in the first and second round, respectively.

For each game, we consider a 3-player and a 4-player variant. The 3-player Kuhn variant uses a deck with r = 12 ranks.
The 4-player variant uses a deck with a reduced number of ranks equal to r = 5 to avoid excessive memory usage.

CFR and CFR(RM+) Modern variants of counterfactual regret minimization (CFR) are the current practical state-of-the-
art in two-player zero-sum extensive-form game solving. We implemented both the original CFR algorithm by Zinkevich
et al. (2007), and a more modern variant (which we denote ‘CFR(RM+)’) using the Regret Matching Plus regret minimization
algorithm at each decision point (Tammelin et al., 2015).

Discussion of results We compare the maximum per-player regret cumulated by KOMWU for four different choices of
constant learning rate η(t) = η ∈ {0.1, 1, 5, 10}, against that cumulated by CFR and CFR(RM+).

We remark that the payoff ranges of these games are not [0, 1] (i.e., the games have not been normalized). The payoff range
of Kuhn poker is 6 for the 3-player variant and 8 for the 4-player variant. The payoff range of Leduc poker is 21 for the
3-player variant and 28 for the 4-player variant. So, a learning rate value of η = 0.1 corresponds to a significantly smaller
learning rate in the normalized game where the payoffs have been shifted and rescaled to lie within [0, 1] as required in the
statements of Properties 2.2 to 2.4.

Results are shown in Figure 4. In all games, we observe that the maximum per-player regret cumulated by KOMWU
plateaus and remains constants, unlike the CFR variants. This behavior is consistent with the near-optimal per-player regret
guarantees of KOMWU (Theorem 5.5). In the 3-player variant of Leduc poker, we observe that the largest learning rate we
use, η = 10, leads to divergent behavior of the learning dynamics.
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Figure 4. Maximum per-player regret cumulated by KOMWU for four different choices of constant learning rate η(t) = η ∈
{0.1, 1, 5, 10}, compared to that cumulated by CFR and CFR(RM+) in two multiplayer poker games.
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E. Proofs
Theorem 5.2. For any vectors x,y ∈ ℝΣi , the two following recursive relationships hold:

KQi
(x,y) = x[∅]y[∅]

∏
j∈C∅

Kj(x,y), (13)

and, for all decision points j ∈ Ji,

Kj(x,y) =
∑
a∈Aj

x[ja]y[ja]
∏

j′∈Cja

Kj′(x,y)

. (14)

In particular, Equations (13) and (14) give a recursive algorithm to evaluate the polyhedral kernel KQi
associated with the

sequence-form strategy space of any player i in an EFG in linear time in the number of sequences |Σi|.

Proof. In the proof of this result, we will make use of the following additional notation. Given any x ∈ ℝΣi and a j ∈ Ji,
we let x(j) ∈ ℝΣ∗i,j denote the subvector obtained from x by only considering sequences σ ∈ Σ∗i,j , that is, the vector whose
entries are defined as x(j)[σ] = x[σ] for all σ ∈ Σ∗i,j .

Proof of (13) Direct inspection of the definitions of Πi and Πi,j (given in Section 5.1), together with the observation that
the {Σ∗i,j : j ∈ C∅} form a partition of Σ∗i , reveals that

Πi =

{
π ∈ {0, 1}Σi :

1 π[∅] = 1

2 π(j) ∈ Πi,j ∀ j ∈ C∅

}
(15)

The observation above can be summarized informally into the statement that “Πi is equal, up to permutation of indices, to
the Cartesian product×j∈C∅ Πi,j”. The idea for the proof is then to use that Cartesian product structure in the definition of
0/1-polyhedral kernel (4), as follows

KQi(x,y) =
∑
π∈Πi

∏
σ∈π

x[σ]y[σ]

=
∑
π∈Πi

x[∅]y[∅]
∏
j′∈C∅

∏
σ∈π(j′)

x[σ]y[σ]


=

∑
π(j)∈Πi,j ∀ j∈C∅

x[∅]y[∅]
∏
j′∈C∅

∏
σ∈π(j′)

x[σ]y[σ]


= x[∅]y[∅]

∑
π(j)∈Πi,j ∀ j∈C∅

 ∏
j′∈C∅

∏
σ∈π(j′)

x[σ]y[σ]


= x[∅]y[∅]

∏
j∈C∅

∑
π(j)∈Πi,j

∏
σ∈π(j)

x[σ]y[σ]

= x[∅]y[∅]
∏
j∈C∅

Kj(x,y),

where the second equality follows from the fact that {∅} ∪ {Σi,j : j ∈ C∅} form a partition of Σi, the third equality follows
from (15), the fifth equality from the fact that each πj ∈ Πi,j can be chosen independently, and the last equality from the
definition of partial kernel function (12).

Proof of (14) Similarly to what we did for (13), we start by giving an inductive characterization of Πi,j as a function of
the children Πi,j′ for j′ ∈ ∪a∈Aj

Cja. Specifically, direct inspection of the definitions of Πi,j , together with the observation
that the {Σ∗i,j′ : j′ ∈ ∪a∈Aj

Cja} form a partition of Σ∗i,j , reveals that

Πi,j =

{
π ∈ {0, 1}Σ

∗
i,j :

1
∑
a∈Aj

π[ja] = 1

2 π(j′) ∈ π[ja] ·Πi,j′ ∀ a ∈ Aj , j′ ∈ Cja

}
. (16)
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From constraint 1 together with the fact that π[ja] ∈ {0, 1} for all a ∈ Aj , we conclude that exactly one a∗ ∈ Aj is such
that π[ja∗] = 1, while π[ja] = 0 for all other a ∈ Aj , a 6= a∗. So, we can rewrite (16) as

Πi,j =
⋃

a∗∈Aj

π ∈ {0, 1}Σ
∗
i,j :

1 π[ja∗] = 1
2 π[ja] = 0 ∀ a ∈ Aj , a 6= a∗

3 π(j′) ∈ Πi,j′ ∀ j′ ∈ Cja∗
4 π(j′) = 0 ∀ j′ ∈ ∪a∈Aj ,a 6=a∗Cja

, (17)

where the union is clearly disjoint. The above equality can be summarized informally into the statement that “Πi,j is equal,
up to permutation of indices, to a disjoint union over actions a∗ ∈ Aj of Cartesian products×j∈Cja∗

Πi,j”. We can then
use the same set of manipulations we already used in the proof of (13) to obtain

Kj(x,y) =
∑
π∈Πi,j

∏
σ∈π

x[σ]y[σ]

=
∑
π∈Πi,j

x[ja∗]y[ja∗]
∏

j′∈Cja∗

∏
σ∈π(j′)

x[σ]y[σ]


=
∑
a∗∈Aj

∑
πj′∈Πi,j′ ∀ j′∈Cja∗

x[ja∗]y[ja∗]
∏

j′∈Cja∗

∏
σ∈π(j′)

x[σ]y[σ]


=
∑
a∗∈Aj

x[ja∗]y[ja∗]
∏

j′∈Cja∗

∑
π(j′)∈Πi,j′

∏
σ∈π(j′)

x[σ]y[σ]


=
∑
a∈Aj

x[ja]y[ja]
∏

j′∈Cja

Kj′(x,y)

,
where the second equality follows from the fact that the {Σ∗i,j′ : j′ ∈ ∪a∈Aj

Cja} form a partition of Σ∗i,j , third equality
follows from (17), the fourth equality from the fact that each πj′ ∈ Πi,j′ can be picked independently, and the last equality
from the definition of partial kernel function (12) as well as renaming a∗ into a.

Proposition 5.3. For any player i ∈ [[m]], vector x ∈ ℝΣi
>0, and sequence ja ∈ Σ∗i ,

1−KQi
(x, ēja)/KQi

(x,1)

1−KQi
(x, ēpj )/KQi

(x,1)
=
x[ja]

∏
j′∈CjaKj′(x,1)

Kj(x,1)
.

Proof. Note that since x > 0, clearly KQi
(x,1),Kj(x, 1) > 0. Furthermore, from (11) we have that for all σ ∈ Σi

KQi
(x,1)−KQi

(x, ēσ) = 〈φQi
(1)− φQi

(ēσ), φQi
(x)〉

=
∑
π∈Πi

π[σ]=1

∏
σ′∈π

x[σ′] (18)

> 0.

The above inequality immediately implies that 0 < KQi(x, ēpj )/KQi(x,1) < 1 and therefore all denominators in the
statement are nonzero, making the statement well-formed.
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In light of (18), we further have

1−KQi
(x, ēja)/KQi

(x,1)

1−KQi(x, ēpj )/KQi(x,1)
=
x[ja]

∏
j′∈Cja Kj′(x,1)

Kj(x,1)

⇐⇒ KQi(x,1)−KQi(x, ēja)

KQi
(x,1)−KQi

(x, ēpj )
=
x[ja]

∏
j′∈Cja Kj′(x,1)

Kj(x,1)

⇐⇒
∑
π∈Πi,π[ja]=1

∏
σ∈π x[σ]∑

π∈Πi,π[pj ]=1

∏
σ∈π x[σ]

=
x[ja]

∏
j′∈Cja Kj′(x,1)

Kj(x,1)
(19)

We now prove (19). Let

A := {π ∈ Πi : π[ja] = 1}, B := {π ∈ Πi : π[pj ] = 1}

be the domains of the summations. From the definition of Πi (specifically, constraints 2 in the definition of Qi, of which
Πi is a subset; see Section 5.1), it is clear that A ⊆ B. Furthermore, it is straightforward to check, using the definitions of
Πi,j , Πi, and B, that

π(j) ∈ Πi,j ∀π ∈ B (20)

We now introduce the function ((· | ·)) : B ×Πi,j → B defined as follows. Given any π ∈ B and π′ ∈ Πi,j , ((π |π′)) is the
vector obtained from π by replacing all sequences at or below decision point j with what is prescribed by π′; formally,

((π |π′))[σ] :=

{
π′[σ] if σ ∈ Σ∗i,j
π[σ] otherwise.

∀π ∈ B,π′ ∈ Πi,j (21)

It is immediate to check that ((π |π′)) is indeed an element of B. We now introduce the following result.

Lemma E.1. There exists a set P ⊆ B such that every π′′ ∈ B can be uniquely written as π′′ = ((π |π′)) for some π ∈ P
and π′ ∈ Πi,j . Vice versa, given any π ∈ P and π′ ∈ Πi,j , then ((π |π′)) ∈ B.

Proof. The second part of the statement is straightforward. We now prove the first part.

Fix any π∗ ∈ Πi,j and let P := {((π |π∗)) : π ∈ B}. It is straightforward to verify that for any π′′ ∈ B, the choices
π := ((π′′ |π∗)) ∈ P and π′ := π(j) ∈ Πi,j satisfy the equality ((π |π′)) = π′′. So, every π′′ ∈ B can be expressed in
at least one way as π′′ = ((π |π′)) for some π ∈ P and π′ ∈ Πi,j . We now show that the choice above is in fact the
unique choice. First, it is clear from the definition of ((· | ·)) that π′ must satisfy π′ = π′′(j), and so it is uniquely determined.
Suppose now that there exist π, π̃ ∈ P such that ((π |π′)) = ((π̃ |π′)). Then, π and π̃ must coincide on all σ ∈ Σi \ Σ∗i,j .
However, since all elements of P are of the form ((b |π∗)) for some b ∈ B, then π and π̃ must also coincide on all σ ∈ Σ∗i,j .
So, π and π̃ coincide on all coordinates σ ∈ Σi, and the statement follows.

Lemma E.1 exposes a convenient combinatorial structure of the set B. In particular, it enables us to rewrite the denominator
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on the left-hand side of (19) as follows∑
π∈B

∏
σ∈π

x[σ] =
∑
π′∈P

∑
π′′∈Πi,j

∏
σ∈((π′ |π′′))

x[σ]

=
∑
π′∈P

∑
π′′∈Πi,j

 ∏
σ∈((π′ |π′′))
σ∈Σi,j

x[σ]


 ∏
σ∈((π′ |π′′))
σ 6∈Σi,j

x[σ]



=
∑
π′∈P

∑
π′′∈Πi,j

( ∏
σ∈π′′

x[σ]

) ∏
σ∈π′
σ 6∈Σi,j

x[σ]



=

 ∑
π′′∈Πi,j

∏
σ∈π′′

x[σ]


∑
π′∈P

∏
σ∈π′
σ 6∈Σi,j

x[σ]



= Kj(x,1) ·

∑
π′∈P

∏
σ∈π′
σ 6∈Σi,j

x[σ]

, (22)

where we used (21) in the third equality.

We can use a similar technique to express the numerator of the left-hand side of (19). Let

Πi,ja := {π ∈ Πi,j : π[ja] = 1}.

Using the constraints that define Πi and the definition of A, it follows immediately that for any π ∈ A, π(j) ∈ Πi,ja.
Furthermore, a direct consequence of Lemma E.1 is the following:

Corollary E.2. The same set P ⊆ B introduced in Lemma E.1 is such that every π′′ ∈ A can be uniquely written as
π′′ = ((π |π′)) for some π ∈ P and π′ ∈ Πi,ja.

Using Corollary E.2 and following the same steps that led to (22), we express the numerator of the left-hand side of (19) as∑
π∈A

∏
σ∈π

x[σ] =
∑
π′∈P

∑
π′′∈Πi,ja

∏
σ∈((π′ |π′′))

x[σ]

=
∑
π′∈P

∑
π′′∈Πi,ja

 ∏
σ∈((π′ |π′′))
σ∈Σi,j

x[σ]


 ∏
σ∈((π′ |π′′))
σ 6∈Σi,j

x[σ]



=
∑
π′∈P

∑
π′′∈Πi,ja

( ∏
σ∈π′′

x[σ]

) ∏
σ∈π′
σ 6∈Σi,j

x[σ]



=

 ∑
π′′∈Πi,ja

∏
σ∈π′′

x[σ]


∑
π′∈P

∏
σ∈π′
σ 6∈Σi,j

x[σ]

. (23)

The statement then follows immediately if we can prove that∑
π∈Πi,ja

∏
σ∈π

x[σ] = x[ja]
∏

j′∈Cja

Kj′(x,1).
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To do so, we use the same approach as in the proof of Theorem 5.2. In fact, we can directly use the inductive characterization
of Πi,j obtained in (17) to write

Πi,ja =

π ∈ {0, 1}Σ
∗
i,j :

1 π[ja] = 1
2 π[ja′] = 0 ∀ a′ ∈ Aj , a′ 6= a
3 π(j′) ∈ Πi,j′ ∀ j′ ∈ Cja
4 π(j′) = 0 ∀ j′ ∈ ∪a′∈Aj ,a′ 6=aCja′

,
which fundamentally uncovers the Cartesian-product structure of Πi,ja. Using the same technique as Theorem 5.2, we then
have

∑
π∈Πi,ja

∏
σ∈π

x[σ] =
∑

π(j′)∈Πi,j′ ∀ j′∈Cja

x[ja]
∏

j′∈Cja

∏
σ∈π(j′)

x[σ]


=

x[ja]
∏

j′∈Cja

∑
π(j′)∈Πi,j′

∏
σ∈π(j′)

x[σ]


=

x[ja]
∏

j′∈Cja

Kj′(x,1)

,
and the statement is proven.

Proposition 5.1. The number of vertices of Qi is upper bounded by A‖Qi‖1 , where A :=maxj∈Ji
|Aj | is the largest number

of possible actions, and ‖Qi‖1 := maxq∈Qi
‖q‖1.

Proof. The proof is by induction. As the base case consider a single decision point ∆b with b ≤ A actions. Then the number
of vertices is b ≤ A = A‖∆

b‖1 .

For the induction step we consider two cases. First, consider a polytope Q whose root is a decision point with b ≤ A actions,
with each action a leading to a polytope Qa whose number of vertices va satisfies the inductive assumption (if some action
a is a terminal action then we overload notation and let va = 1 and ‖Qa‖1 = 0). Then, the number of vertices of Q is

b∑
a=1

va ≤
b∑

a=1

A‖Qa‖1

≤ b ·Amaxa∈[[b]] ‖Qa‖1

≤ A ·Amaxa∈[[b]] ‖Qa‖1

= A‖Q‖1 .

Second, consider a polytope Q whose root is an observation point with b observations, with each observation o leading to a
polytope Qo with vo vertices, such that the inductive assumption holds. Then, the number of vertices of Q is

v =

b∏
o=1

vo ≤
b∏
o=1

A‖Qo‖1 ≤ A
∑b

o=1 ‖Qo‖1 = A‖Q‖1 .

F. Further Applications
In this appendix, we illustrate additional 0/1-polyhedral domains in which our polyhedral kernel can be computed efficiently.
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F.1. n-sets

We start from n-sets, that is, the 0/1-polydral set Ωdn := co{π ∈ {0, 1}d : ‖π‖1 = n}. Learning over n-sets is a classic
problem first considered by Warmuth & Kuzmin (2008) with an application to online Principal Component Analysis.
They proposed an Online Mirror Descent algorithm operating over the convex hull Ωdn, with per-iteration complexity of
O(d2). The Follow-the-Perturbed-Leader approach (Kalai & Vempala, 2005) is even faster with per-iteration complexity of
O(d log d), but it often leads to sub-optimal regret bounds (see discussions in (Koolen et al., 2010)). Simulating MWU over
the vertices of Ωdn has been considered in for example (Cesa-Bianchi & Lugosi, 2012), where they proposed to use the general
approach of (Takimoto & Warmuth, 2003) to implement this algorithm, leading to per-iteration complexity of O(d2n).
Below, we show that our kernelized approach admits an even faster per-iteration complexity of O(dmin{n, d− n}).

F.1.1. POLYNOMIAL, O(dmin{n, d− n})-TIME KERNEL EVALUATION

Let x,y ∈ ℝd, and assume for now n ≤ d− n. Introduce the polynomial px,y(z) of z, defined as

px,y(z) := (x[1]y[1] z + 1) · · · (x[d]y[d] z + 1).

It is immediate to see that the coefficient of zn in the expansion of px,y(z) is exactly KΩd
n
(x,y). Such coefficient can be

computed by directly carrying out the multiplication of the binomial terms, keeping track of the term of degree 0, . . . , n. So,
each evaluation of KΩd

n
(x,y) can be carried out in O(nd) time under the assumption that n < d− n.

If on the other hand n < d−n, we can repeat the whole argument above for the polynomial qx,y(z) := (z+x[1]y[1]) · · · (z+
x[d]y[d]) instead. In that case, we are interested in the coefficients of zd−n, which can be computed in O(d(d− n)) using
the same procedure described above.

Putting together the two cases, we conclude that the computation of KΩd
n
(x,y) requires O(dmin{n, d− n}) time.

F.1.2. IMPLEMENTING KOMWU WITH O(dmin{n, d− n}) PER-ITERATION COMPLEXITY

The result described in the previous paragraph immediately implies that KOMWU can be implemented withO(d2 min{n, d−
n})-time iterations. In this subsection we refine the that result by showing that it is possible to compute the d kernel
evaluations {KΩd

n
(x, ēk) : k = 1, . . . , d} required at every iteration by KOMWU so that they take cumulative O(d ·

min{n, d− n}) time.

To do so, we build on the technique described in the previous subsection. Assume again that n ≤ d − n. The key
insight is that the coefficient of zn of the polynomial px,1(z)/(x[j] z + 1) is exactly KΩd

n
(x, ēj). So, to compute all

{KΩd
n
(x, ēk) : k = 1, . . . , d} we can do the following:

1. First, for all k = 0, . . . , d and h = 0, . . . , n, we compute the coefficient A[k, h] of the zh in the expansion of
(x[1] z + 1) . . . (x[k] z + 1)
We can compute all such values in O(dn) time by using dynamic programming. In particular, we have

A[k, h] =


1 if h = 0

0 if k = 0 ∧ h 6= 0

A[k − 1, h] + x[k] ·A[k − 1, h− 1] otherwise.

2. Then, for all k = 1, . . . , d + 1 and h = 0, . . . , n, we compute the coeffience B[k, h] of zh in the expansion of
(x[k] z + 1) · · · (x[d] z + 1)
Again, we can do that in O(dn) time by using dynamic programming. Specifically,

B[k, h] =


1 if h = 0

0 if k = d+ 1 ∧ h 6= 0

B[k + 1, h] + x[k] ·B[k + 1, h− 1] otherwise.

3. (Note that at this point, KΩd
n
(x,1) is simply A[d, n].)

4. For each k = 1, . . . , d, KΩd
n
(x, ēj) can be computed as

KΩd
n
(x, ēk) =

n∑
h=0

A[k − 1, h] ·B[k + 1, n− h].
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The above formula takes O(n) time to be computed (we need to iterate over h = 0, . . . , n), and we need to evaluate it d
times (once per each k = 1, . . . , d). So, computing all {KΩd

n
(x, ēk) : k = 1, . . . , d} takes cumulative O(dn) time, as

we wanted to show.

As in the previous subsection, the case n > d− n is symmetric. In that case, the set of values {KΩd
n
(x, ēk) : k = 1, . . . , d}

can be computed in cumulative O(d(d− n)) time.

F.2. Unit Hypercube

Consider the hypercube [0, 1]d, whose vertices are all the vectors in {0, 1}d. In this case, the polyhedral kernel is simply

K[0,1]d(x,y) = (x[1] · y[1] + 1) · · · (x[d] · y[d] + 1),

which can be clearly evaluated in O(d) time. Similarly to n-sets (Appendix F.1), we can avoid paying an extra d factor in
the per-iteration complexity of KOMWU by using the following procedure:

1. For each k = 0, . . . , d define A[k] := (x[1] · y[1] + 1) · · · (x[k] · y[k] + 1). Clearly, the A[k] values can be computed
in O(d) cumulative time.

2. For each k = 1, . . . , d+1, defineB[k] := (x[k] ·y[k]+1) · · · (x[d] ·y[d]+1). Again, allB[k] values can be computed
in O(d) cumulative time.

3. For each k = 1, . . . , d, we have that K[0,1]d(x, ēk) = A[k − 1] ·B[k + 1]. Hence, we can compute {K[0,1]d(x, ēk) :
k = 1, . . . , d} in cumulative O(d) time.

F.3. Flows in Directed Acyclic Graphs

The polytope F of flows in a generic directed acyclic graphs (DAGs) has vertices with 0/1 integer coordinates, corresponding
to paths in the DAG. The 0/1-polyhedral kernel KF corresponding to the set of flows in a DAG coincides with the kernel
function introduced by Takimoto & Warmuth (2003), which was shown to be computable in polynomial-time in the size of
the DAG. Consequently, KF admits polynomial-time (in the size of the DAG) evaluation.

F.4. Permutations

When P is the convex hull of the set of all d × d permutation matrices, it is believed that KP cannot be evaluated in
polynomial time in O(d), since the computation of the permanent of a matrix A can be expressed as KΩ(A,1). However,
an ε-approximate computation of KP can be performed in O(poly(d, log(1/ε))) for any ε > 0 by using a landmark result
by Jerrum et al. (2004). We refer the interested reader to the paper by Cesa-Bianchi & Lugosi (2012, Section 5.3).

F.5. Cartesian Product

Finally, we remark that when two 0/1-polyhedral sets have efficiently-computable 0/1-polyhedral kernels, then so does
their Cartesian product. Specifically, let Ω ⊆ ℝd,Ω′ ⊆ ℝd

′
be 0/1-polyhedral sets, and let KΩ,KΩ′ be their corresponding

0/1-polyhedral kernels. Then, it follows immediately from the definition that the polyhedral kernel of Ω× Ω′ satisfies

KΩ×Ω′

((
x
x′

)
,

(
y
y′

))
= KΩ(x,y) ·KΩ′(x

′,y′) ∀
(
x
y

)
,

(
x′

y′

)
∈ ℝd ×ℝd

′
.


