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Abstract

We focus on the problem of finding an opti-
mal strategy for a team of players that faces an
opponent in an imperfect-information zero-sum
extensive-form game. Team members are not al-
lowed to communicate during play but can co-
ordinate before the game. In this setting, it is
known that the best the team can do is sample a
profile of potentially randomized strategies (one
per player) from a joint (a.k.a. correlated) proba-
bility distribution at the beginning of the game. In
this paper, we first provide new modeling results
about computing such an optimal distribution by
drawing a connection to a different literature on
extensive-form correlation. Second, we provide
an algorithm that allows one for capping the num-
ber of profiles employed in the solution. This
begets an anytime algorithm by increasing the
cap. We find that often a handful of well-chosen
such profiles suffices to reach optimal utility for
the team. This enables team members to reach
coordination through a simple and understand-
able plan. Finally, inspired by this observation
and leveraging theoretical concepts that we intro-
duce, we develop an efficient column-generation
algorithm for finding an optimal distribution for
the team. We evaluate it on a suite of common
benchmark games. It is three orders of magnitude
faster than the prior state of the art on games that
the latter can solve and it can also solve several
games that were previously unsolvable.
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1. Introduction
Much of the computational game theory literature has fo-
cused on finding strong strategies for large two-player zero-
sum extensive-form games. In that setting, perfect game
playing corresponds to playing strategies that belong to a
Nash equilibrium, and such strategies can be found in poly-
nomial time in the size of the game. Recent landmark results,
such as superhuman agents for heads-up limit and no-limit
Texas hold’em poker (Bowling et al., 2015; Brown & Sand-
holm, 2019; Moravčı́k et al., 2017) show that the problem of
computing strong strategies in two-player zero-sum games
is well understood both in theory and in practice. The same
cannot be said for almost any type of strategic multi-player
interaction, where computing strong strategies is generally
hard in the worst case.

In this paper, we study adversarial team games, that is,
games in which a team of coordinating (colluding) players
faces an opponent. We will focus on a two-player team
coordinating against a third player. Team members can
plan jointly at will before the game, but are not allowed
to communicate during the game (other than through their
actions in the game). These games are a popular middle
ground between two-player zero-sum games and multiplayer
games (von Stengel & Koller, 1997; Celli & Gatti, 2018).
They can be used to model many strategic interactions of
practical relevance. For example, how should two players
colluding against a third at a poker table play? Or, how
would the two defenders in Bridge (who are prohibited
from communicating privately during the game) play opti-
mally against the declarer? Even though adversarial team
games are conceptually zero-sum interactions between two
entities—the team and the opponent—computing optimal
strategies is hard in this setting. Even finding a best-response
strategy for the team given a fixed strategy for the opponent
is hard (Celli & Gatti, 2018).

One might think that finding the optimal strategy for the
team simply amounts to finding an optimal profile of po-
tentially mixed (a.k.a. randomized) strategies, one strategy
per team members. A solution of this type that yields maxi-
mum expected sum of utilities for the team players against
a rational (that is, best-responding) opponent is known as a
team-maxmin equilibrium (TME) strategy (Basilico et al.,



2017; Zhang & An, 2020a;b).

In this paper, we are interested in a more powerful model.
Before the game starts, the team members are able to sam-
ple a profile from a joint (a.k.a. correlated) distribution.
This form of ex-ante coordination is known to be the best a
team can do and comes with two major advantages. First, it
offers the team larger (or equal) expected utility than TME—
sometimes with dramatic gains (Celli & Gatti, 2018). Sec-
ond, it makes the problem of computing the optimal team
strategy convex—and thus more amenable to the plethora
of convex optimization algorithms that have been developed
over the past 80 years—whereas the problem of computing
a TME strategy is not convex. In our model, an optimal
distribution for the team is known as a team-maxmin equi-
librium with coordination device (TMECor) strategy (Celli
& Gatti, 2018; Farina et al., 2018).

Our contributions. We introduce the notion of semi-
randomized correlation plan, and propose a natural formu-
lation for the problem of finding a TMECor strategy by
drawing connections with the extensive-form strategy poly-
tope defined by von Stengel & Forges (2008). Second, we
propose an algorithm for computing a TMECor strategy
when only a fixed number of pairs of semi-randomized cor-
relation plans is allowed. This begets an anytime algorithm
by increasing that fixed number. Surprisingly, we find that
often a handful of well-chosen semi-randomized correla-
tion plans is enough to reach optimal utility. This enables
team members to reach coordination through simple and
understandable strategies. Finally, by leveraging our new
representation, we develop a column-generation algorithm
for finding a TMECor strategy. The core of our algorithm is
a new best-response (BR) oracle for computing joint team
best-response strategies. We show that, in contrast with
the previous state-of-the-art BR oracles for that problem,
our oracle enables provably polynomial-time computation
of a TMECor in some notable classes of games including,
for example, Goofspiel. This result constitutes the first
example of efficient computation of optimal ex-ante coor-
dinated strategies in adversarial team games, and cannot
be achieved by employing previous BR oracles. We evalu-
ate our column-generation algorithm on a suite of common
benchmark games. It is three orders of magnitude faster
than the prior state of the art on games that the latter can
solve. It can also solve many games that were previously
unsolvable.

2. Preliminaries
Extensive-form games (EFGs) model games that are played
on a game tree, and can capture both sequential and si-
multaneous moves, as well as private information. In this
paper, we focus on three-player zero-sum games where two
players—T1 and T2—play as a team against the opponent

player, denoted by O.

Each node v in the game tree belongs to exactly one player
i ∈ {T1,T2,O} ∪ {C} whose turn is to move. Player
C is a special player, called the chance player. It models
exogenous stochasticity in the environment, such as drawing
a card from a deck or tossing a coin. The edges leaving
v represent the actions available at that node. Any node
without outgoing edges is called a leaf and represents an
end state of the game. We denote the set of such nodes by Z.
Each z ∈ Z is associated with a tuple of payoffs specifying
the payoff ui(z) of each player i ∈ {T1,T2,O} at z. The
product of the probabilities of all actions of C on the path
from the root of the game to leaf z is denoted by pC(z).

Private information is represented via information set (in-
foset). In particular, the set of nodes belonging to i ∈
{T1,T2,O} is partitioned into a collection Ii of non-empty
sets: each I ∈ Ii groups together nodes that Player i cannot
distinguish among, given what they have observed. Neces-
sarily, for any I ∈ Ii and v, w ∈ I , nodes v and w must
have the same set of available actions. Consequently, we de-
note the set of actions available at all nodes of I by AI . As
it is customary in the related literature, we assume perfect
recall, that is, no player forgets what he/she knew earlier
in the game. Finally, given players i and j, two infosets
Ii ∈ Ii, Ij ∈ Ij are connected, denoted by Ii 
 Ij , if there
exist v ∈ Ii and w ∈ Ij such that the path from the root to
v passes through w or vice versa.

Sequences. The set of sequences of Player i, denoted by
Σi, is defined as Σi := {(I, a) : I ∈ Ii, a ∈ AI} ∪ {∅},
where the special element ∅ is called the empty sequence
of Player i. The parent sequence of a node v of Player i,
denoted σ(v), is the last sequence (information set-action
pair) for Player i encountered on the path from the root of
the game to that node. Since the game has perfect recall, for
each I ∈ Ii, nodes belonging to I share the same parent
sequence. So, given I ∈ Ii, we denote by σ(I) ∈ Σi the
unique parent sequence of nodes in I . Additionally, we let
σ(I) = ∅ if Player i never acts before infoset I .

Relevant sequences. A pair of sequences σi ∈ Σi, σj ∈ Σj
is relevant if either one is the empty sequence, or if they
can be written as σi = (Ii, ai) and σj = (Ij , aj) with
Ii 
 Ij . We write σi ./ σj to denote that they form a
pair of relevant sequences. Given two players i and j, we
let Σi ./ Σj := {(σi, σj) : σi ∈ Σi, σj ∈ Σj , σi ./ σj}.
Similarly, given σi and Ij ∈ Ij , we say that (σi, Ij) forms a
relevant sequence-information set pair (σi ./ Ij), if σi = ∅
or if σi = (Ii, ai) and Ii 
 Ij .

Reduced-normal-form plans. A reduced-normal-form
plan πi for Player i defines a choice of action for every
information set I ∈ Ii that is still reachable as a result of
the other choices in π itself. The set of reduced-normal-



form plans of Player i is denoted Πi. We denote by Πi(I)
the subset of reduced-normal-form plans that prescribe all
actions for Player i on the path from the root to informa-
tion set I ∈ Ii. Similarly, given σ = (I, a) ∈ Σi, let
Πi(σ) ⊆ Πi(I) be the set of reduced-normal-form plans be-
longing to Πi(I) where Player i plays action a at I , and let
Πi(∅) := Πi. Finally, given a leaf z ∈ Z, we denote with
Πi(z) ⊆ Πi the set of reduced-normal-form plans where
Player i plays so as to reach z.

Sequence-form strategies. A sequence-form strategy is a
compact strategy representation for perfect-recall players
in EFGs (Romanovskii, 1962; Koller et al., 1996). Given
a player i ∈ {T1,T2,O} and a normal-form strategy µ ∈
∆(Πi),1 the sequence-form strategy induced by µ is the
real vector y, indexed over σ ∈ Σi, defined as y[σ] :=∑
π∈Πi(σ) µ(π). The set of sequence-form strategies that

can be induced as µ varies over ∆(Πi) is denoted by Yi
and is known to be a convex polytope (called the sequence-
form polytope) defined by a number of constraints equal to
|Ii| (Koller et al., 1996).

TMECor as a Bilinear Saddle-Point Problem. A
TMECor strategy is a probability distribution µT over the
set of randomized strategy profiles YT1 × YT2 that guaran-
tees maximum expected utility for the team against the best-
responding opponent O. Since each player has perfect recall,
any randomized strategy for a player is equivalent to a dis-
tribution over reduced-normal-form pure strategies (Kuhn,
1953). Hence, any distribution over profiles of random-
ized strategies of the team members can be expressed in an
equivalent way as a distribution over deterministic strategy
profiles ΠT1×ΠT2. The benefit of this transformation is that
ΠT1 ×ΠT2 is a finite set, unlike YT1 ×YT2. For this reason,
TMECor is usually defined in the literature as a distribution
over ΠT1 ×ΠT2 without loss of generality. We will follow
the same approach in our characterization.

For each leaf z, let ûT(z) := (uT1(z) + uT2(z))pC(z). The
expected utility of the team can be written as the follow-
ing function of the distributions of play µT ∈ ∆(ΠT1 ×
ΠT2), µO ∈ ∆(ΠO):

uT(µT, µO) :=
∑
z∈Z

ûT(z)

∑
πT1∈ΠT1(z)
πT2∈ΠT2(z)

µT(πT1, πT2)


∑
π∈ΠO(z)

µO(π)

.
By definition, a team-maxmin equilibrium with coordination
device (TMECor) is a Nash equilibrium of the game where
the team plays according to the coordinated strategy µT ∈
∆(ΠT1 × ΠT2). In the zero-sum setting, this amounts to
finding a solution of the optimization problem

arg max
µT∈∆(ΠT1×ΠT2)

min
µO∈∆(ΠO)

uT(µT, µO). (1)

1∆(X) denotes the probability simplex over the finite set X .

The opponent’s strategy µO can be compactly represented
through its equivalent sequence-form representation. This is
not the case for µT, which cannot be represented concisely
through the sequence form as shown by Farina et al. (2018).

3. A New Formulation of TMECor Based on
Extensive-Form Correlation Plans

We propose using a different representation of the corre-
lated distribution of play µT, inspired by the growing body
of literature on extensive-form correlated equilibria. Like
the realization form by Farina et al. (2018), in our approach
we represent µT as a vector with only a polynomial number
of components. However, unlike the realization form, the
number of components scales as the product of the number
of sequences of the two players, which can be significantly
larger than the number of leaves. This downside is amply
outweighed by the following benefits. First, we show that
in practice our proposed representation of µT enables us
to compute best responses for the team significantly faster
than the prior representations. Second, in certain classes
of games, we even show that our proposed representation
enables the computation of a TMECor in polynomial time.
This is the case, for example, in Goofspiel, a popular bench-
mark game in computational game theory (Ross, 1971).

3.1. Extensive-Form Correlation Plans

Our representation is based on the concept of extensive-
form correlation plans, introduced by von Stengel & Forges
(2008) in their seminal paper on extensive-form correlation.
In particular, we map the correlated distribution of play µT
of the team to the vector ξT indexed over pairs of sequences
(σT1, σT2) ∈ ΣT1 ./ ΣT2, where each entry is defined as

ξT[(σT1, σT2)] :=
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT[(πT1, πT2)]. (2)

Here ξT is not indexed over all pairs of sequences
(σT1, σT2)—only relevant sequence pairs. While there are
games in which this distinction is meaningless (that is,
games in which all sequences pairs for the team members
are relevant), in practice the number of all sequence pairs
is usually significantly bigger than the number of relevant
sequence pairs, as shown in Table 1(b).

The set of extensive-form correlation plans ξT that can be
induced as µT varies over the set of all correlated distribu-
tions of play for the team members is a convex polytope.
We denote it as ΞT and call it the polytope of correlation
plans. We will recall existing results and provide new ones
about the structure of ΞT in Section 4.



Game instance Num. sequences Num. leaves |ΣT1 ./ ΣT2|
|Z|

|ΣT1 × ΣT2|
|ΣT1 ./ ΣT2|

Triangle-free?
|Σ1| |Σ2| |Σ3| |Z| O = 1 O = 2 O = 3

[A] Kuhn poker (3 ranks) 25 25 25 78 3.40 2.36 7 7 7
[B] Kuhn poker (4 ranks) 33 33 33 312 1.59 2.19 7 7 7
[C] Kuhn poker (12 ranks) 97 97 97 17 160 0.29 1.90 7 7 7

[D] Goofspiel (3 ranks, limited info) 934 934 934 1296 9.54 70.59 3 3 3
[E] Goofspiel (3 ranks) 1630 1630 1630 1296 15.54 131.96 3 3 3

[F] Liar’s dice (3 faces) 1021 1021 1021 13 797 5.27 14.43 7 7 7
[G] Liar’s dice (4 faces) 10 921 10 921 10 921 262 080 6.25 72.79 7 7 7

[H] Leduc poker (3 ranks, 1 raise) 457 457 457 6477 1.82 17.70 7 7 7
[I] Leduc poker (4 ranks, 1 raise) 801 801 801 20856 1.08 28.36 7 7 7
[J] Leduc poker (2 ranks, 2 raises) 1443 1443 1443 8762 3.14 75.59 7 7 7

(a) — Game instances and sizes (b) (c)

Table 1: (a) Size of the game instances used in our experiments, in terms of number of sequences |Σi| for each player i,
and number of leaves |Z|. (b) Ratio between the number of leaves |Z|, number of sequence pairs for the team members
|ΣT1 × ΣT2|, and number of relevant sequence pairs for the team members |ΣT1 ./ ΣT2| in various benchmark games. For
all games reported in the subtable, we chose the first two players to act as the team members. (c) The subtable reports
whether the interaction of the team members is triangle-free (Farina & Sandholm, 2020), given the opponent player O.

3.2. Computing a TMECor using Correlation Plans

Extensive-form correlation plans encode a superset of the
information encoded by realization plans. Indeed, for all
z, ξT[σT1(z), σT2(z)] = ρT[z]. Using the previous identity,
we can rewrite the problem of computing a TMECor of a
constant-sum game (1) as

arg max
ξT∈ΞT

min
yO∈YO

∑
z∈Z

ûT(z)ξT[σT1(z), σT2(z)]y[σO(z)].

By dualizing the inner linear minimization problem over yO,
we get the following proposition that shows that a TMECor
can be found as the solution to a linear program (LP) with
a polynomial number of variables. (All the proofs of this
paper can be found in the appendix.)

Proposition 1. An extensive-form correlation plan ξT is a
TMECor if and only if it is a solution to the LP

arg max
ξT

v∅, subject to:

1 vI −
∑
I′∈IO

σO(I′)=(I,a)

vI′ ≤
∑
z∈Z

σO(z)=(I,a)

ûT(z)ξT[σT1(z), σT2(z)]

∀ (I,a)∈ΣO\{∅}

2 v∅ −
∑
I′∈IO

σO(I′)=∅

vI′ ≤
∑
z∈Z

σO(z)=∅

ûT(z)ξT[σT1(z), σT2(z)]

3 v∅ free, vI free ∀ I ∈ IO

4 ξT ∈ ΞT.

As a direct consequence of Proposition 1, a TMECor can be
found in polynomial time whenever ΞT can be represented
as the intersection of a set of polynomially many linear
constraints. In Section 4, we recall when that is the case.

4. Semi-Randomized Correlation Plans and
the Structure of ΞT

Even though ΞT is a convex polytope, the set of (potentially
exponentially many) linear constraints that define it is not
known in general. So, alternative characterizations of the set
ΞT are needed before the LP in Proposition 1 can be solved.
In this section, we recall two known results about the struc-
ture of ΞT, and propose a new one (Proposition 3). We will
use our result to arrive at two different approaches to tackle
the LP of Proposition 1 in Sections 5 and 6, respectively.

4.1. Containment in the von Stengel-Forges Polytope

The first result about the structure of ΞT has to do with a
particular polytope that was introduced by von Stengel &
Forges (2008).
Definition 1. The von Stengel-Forges polytope of the team,
denoted VT, is the polytope of all vectors ξ ∈ R|ΣT1./ΣT2|

≥0 in-
dexed over relevant sequence pairs that satisfy the following
polynomially-sized set of linear constraints.

1 ξ[∅,∅] = 1

2
∑

aT1∈AIT1

ξ[(IT1, aT1), σT2] = ξ[σ(IT1), σT2] ∀IT1 ./σT2

3
∑

aT2∈AIT2

ξ[σT1, (IT2, aT2)] = ξ[σT1, σ(IT2)] ∀σT1 ./IT2.

These can be interpreted as “probability mass conservation”
constraints. They are interlaced sequence-form constraints.

The following result by von Stengel & Forges (2008) is
immediate from the definition of ξT in (2).
Proposition 2 (von Stengel & Forges (2008)). The set
of extensive-form correlation plans is a subset of the von
Stengel-Forges polytope. Formally, ΞT ⊆ VT.



4.2. Triangle-Freeness and Polynomial-Time
Computation of TMECor

Proposition 2 shows that ΞT is a subset of the von Stengel-
Forges polytope. There are games where the reverse inclu-
sion does not hold. Farina & Sandholm (2020) gave a suffi-
cient condition—called triangle-freeness—for the reverse
inclusion to hold. We state the condition for our setting.

Definition 2 (Farina & Sandholm (2020)). The interac-
tion of the team members T1 and T2 is triangle-free if, for
any choice of distinct information sets I1, I2 ∈ IT1 with
σT1(I1) = σT1(I2) and any choice of distinct information
sets J1, J2 ∈ IT2 with σT2(J1) = σT2(J2), it is never the
case that (I1 
 J1) ∧ (I2 
 J2) ∧ (I1 
 J2).

The above condition can be easily checked in polynomial-
time by iterating over all possible quadruplets of informa-
tion sets I1, I2, J1, J2 and checking whether the condition
(which itself can be checked by performing a standard traver-
sal of the input game tree) holds. Farina & Sandholm (2020)
show that when the information structure of correlating
players (in our case, the team members) is triangle-free,
then ΞT = VT. So, when the interaction of the team is
triangle-free, a TMECor can be found in polynomial time
by substituting constraint 4 in the LP in Proposition 1 with
the von Stengel-Forges constraints of Definition 1. As far as
we are aware, this positive complexity result has not been
noted before in the literature. We show in Table 1(c) that
Goofspiel is triangle free, since all chance outcomes are pub-
lic (and that none of the other common benchmark games
that we consider are).

4.3. Semi-Randomized Correlation Plans

We now give a third result about the structure of ΞT, which
will enable us to replace Constraint 4 of Proposition 1
with something more practical. First, we introduce semi-
randomized correlation plans, which are elements of a sub-
set of the von Stengel-Forges polytope of the team, as we
formalize shortly. A semi-randomized correlation plan rep-
resents a strategy profile in which one of the players plays
a deterministic strategy, while the other player in the team
independently plays a randomized strategy. Formally, we
define the set of semi-randomized correlation plans for T1
and T2 as

Ξ∗T1 = {ξ ∈ VT : ξ[∅, σT2] ∈ {0, 1} ∀ σT2 ∈ ΣT2},
Ξ∗T2 = {ξ ∈ VT : ξ[σT1,∅] ∈ {0, 1} ∀ σT1 ∈ ΣT1},

respectively. Crucially, a point ξ ∈ Ξ∗i for i ∈ {T1,T2}
can be expressed using real and binary variables, in addition
to the linear constraints the define V (Definition 1).

With that, we can show the following structural result for
the polytope of extensive-form correlation plans ΞT.

Proposition 3. In every game, ΞT is the convex hull of the

set Ξ∗T1, or equivalently of the set Ξ∗T2. Formally, ΞT =
co Ξ∗T1 = co Ξ∗T2 = co(Ξ∗T1 ∪ Ξ∗T2).

Our notion of semi-randomized correlation plans is remi-
niscent of the auxiliary game construction of Farina et al.
(2018), in which only one of the team members (the pivot
player) is required to play a deterministic strategy. Our
setting is very different, however, since we have a different
representation of team strategies with many more variables
and stronger combinatorial structure.

5. Computing TMECor with a Small Support
of Semi-Randomized Plans of Fixed Size

From Proposition 3, it is known that ΞT is the convex hull
of Ξ∗T1 and Ξ∗T2. Furthermore, the polytopes Ξ∗T1 and Ξ∗T2
can be described via a number of linear constraints that is
quadratic in the game size and a number of integer variables
that is linear in the game size. So, we can replace Constraint
4 in Proposition 1 with the constraint that ξT be a convex

combination of elements from Ξ∗T1 and Ξ∗T2. We introduce
variables ξ(1)

T , . . . , ξ
(n)
T ∈ Ξ∗T1 ∪Ξ∗T2 and the corresponding

convex combination coefficients λ(1), . . . , λ(n), and replace
Constraint 4 with the linear constraint ξT =

∑n
i=1 λ

(i)ξ
(i)
T .

Here, n is a parameter with which we can cap the number
of semi-randomized correlation plans that can be included
in the strategy. This gives the following mixed integer LP.

arg max
ξ
(1)
T ,...,ξ

(n)
T ,λ(1),...,λ(n)

v∅, subject to:

constraints 1 2 3 as in Proposition 1

4 ξT =
∑n
i=1 λ

(i)ξ
(i)
T

5 ξ
(1)
T ∈ Ξ∗T1, ξ

(2)
T ∈ Ξ∗T2, ξ

(3)
T ∈ Ξ∗T1, ξ

(4)
T ∈ Ξ∗T2, . . .

‡

6
∑n
i=1 λ

(i) = 1, λ(i) ≥ 0 ∀i ∈ {1, . . . , n}.

The larger n is, the higher the solution value obtained, but
the slower the program. We can make this into an anytime
algorithm by solving the integer program for increasing val-
ues of n. By Caratheodory’s theorem, this program already
yields an optimal solution to the LP in Proposition 1 when
n ≥ |Σ1 ./ Σ2| + 1. As we show in detail in Section 7,
in practice we found that near-optimal coordination can
be achieved through strategies with a significantly smaller
value of n. Hence, oftentimes the team does not need a large
number of complex profiles of randomized strategies to play
optimally: a handful (often one or two) of carefully selected
simple strategies often result in optimal coordination. That

‡In Constraint 5 we alternate the set of semi-randomized
correlation plans (i.e., we alternate which player’s turn it is to play
a deterministic strategy). Empirically, this increases the diversity
of the strategies of ΞT that can be represented with small values of
n and leads to higher utilities for the team.



Game Opponent player O = 1 Opponent player O = 2 Opponent player O = 3
n = 1 n = 2 n = 3 n =∞ n = 1 n = 2 n = 3 n =∞ n = 1 n = 2 n = 3 n =∞

Kuhn
poker

[A] 0 F F 0 0 F F 0 0 F F 0
[B] 0.0208 0.0379 F 0.0379 0.0018 0.0246 0.0265 0.0265 −0.0417 F F −0.0417
[C] 0.0470 0.0655 0.0663 0.0664 0.0128 0.0367 0.0376 0.0380 −0.0227 −0.0153 −0.0141 −0.0140

Goofspiel [D] 0.2389 0.2524 F 0.2524 0.2389 0.2524 F 0.2524 0.2389 0.2524 F 0.2524
[E] 0.2389 0.2534 F 0.2534 0.2389 0.2534 F 0.2534 0.2389 0.2534 F 0.2534

Liar’s
dice

[F] 0 F F 0 0.2099 0.2554 0.2562 0.2562 0.2716 0.2840 F 0.2840
[G] 0.0625 F F 0.0625 0.2500 0.2656 0.2656 — 0.2656 — — —

Leduc
poker

[H] 0.0326 0.1934 0.1987 0.1987 0.1333 0.1899 — 0.2530 0.1461 0.1672 0.1910 0.2148
[I] — — — 0.1859 0.0841 — — 0.1826 −0.0532 — — 0.1073
[J] 0.2609 0.3767 — 0.5493 0.3125 0.5660 0.6274 0.6284 0.2609 0.3682 0.4703 0.5155

Table 2: Expected utility of the team for varying support sizes (n). All values for n ∈ {1, 2, 3} were computed using
the MIP of Section 5, while the values corresponding to n = ∞ were computed using our column generation approach
(Section 6). ‘F‘: A provably optimal utility has already been obtained with a lower value of the support size n. ‘—‘: We
were unable to compute the exact value, because the corresponding algorithm hits the time limit.

empirical observation complements the theoretical state-
ment by Celli & Gatti (2018, Proposition 3), who proved
that an optimal TMECor with support of size at most ΣO al-
ways exist. This sections shows that the theoretical bound of
Celli & Gatti (2018) is way too pessimistic in practice: for
example, in the Goofspiel game [E], the theoretical bound
would predict that a support of size at most n = 1630 is
necessary to guarantee optimality, but in Table 2 we find
that n = 2 is already enough.

6. A Fast Column Generation Approach
In this section, we present a scalable approach to solving
the LP in Proposition 1—using column generation (Ford
& Fulkerson, 1958). First, we proceed with a seeding
phase. We pick a set S containing one or more points
ξ

(1)
T , ξ

(2)
T , . . . , ξ

(m)
T that are known to belong to ΞT. Then,

the main loop starts. First, for i ∈ {1, . . . , |S|}, let

β(i)(σO) :=
∑
z∈Z

σO(z)=σO

ûT(z)ξ
(i)
T [σT1(z), σT2(z)] ∀ σO ∈ ΣO.

Then we solve the LP of Proposition 1 where Constraint 4

has been substituted with ξT ∈ coS:

(∗) :



arg max
λ(1),..., λ(|S|)

v∅, subject to:

1 vI −
∑
I′∈IO

σO(I′)=σO

vI′ −
|S|∑
i=1

β(i)(σO)λ(i) ≤ 0

∀σO∈ΣO\{∅}

2 v∅ −
∑
I′∈IO

σO(I′)=∅

vI′ −
|S|∑
i=1

β(i)(∅)λ(i) ≤ 0

3
∑|S|
i=1 λ

(i) = 1

4 λ(i) ≥ 0 ∀ i ∈ {1, . . . , |S|}
5 v∅ free, vI free ∀ I ∈ IO.

This is called the master LP.2

Given the solution to the master LP, a pricing problem is
created. The goal of the pricing problem is to generate a
new element ξ|S|+1

T to be added to S so as to increase the
team utility in the next iteration, that is, the next solve of
the master LP that then has an additional variable. This
main loop of solving the larger and larger master LP keeps
repeating until termination (discussed later).

6.1. The Pricing Problem

The pricing problem consist of finding a correlation plan
ξ̂T ∈ ΞT which, if included in the convex combination com-
puted by (∗), would lead to the maximum gradient of the
objective (that is, the maximum reduced cost). By exploiting
the theory of linear programming duality, such a correlation
plan can be computed starting from the solution of the dual
of (∗). In particular, let γ be the |ΣO|-dimensional vector of
dual variables corresponding to Constraints 1 and 2 of (∗),
and γ′ ∈ R be the dual variable corresponding to Constraint
3 . Then, the reduced cost of any candidate ξ̂T is

c(ξ̂T) := −γ′ +
∑
z∈Z

ûT(z)ξ̂T[σT1(z), σT2(z)]γ[σO(z)].

Now comes our crucial observation. Since c(ξ̂T) is a linear
function, and since from Proposition 3 we know that ΞT =
co Ξ∗T1, by convexity

max
ξ̂T∈ΞT

c(ξ̂T) = max
ξ̂T∈Ξ∗T1

c(ξ̂T).

We want to solve the LP on the left hand side, but—as
discussed in Section 4—the constraints defining ΞT are not

2In (∗) the convex combination is among given correlation
plans, while in the MIP of Section 5, the elements to combine are
themselves variables.



known. The above equality enables us to solve the problem
because the right hand side is a well-defined mixed integer
LP (MIP). We can use a commercial solver such as Gurobi
to solve it. When the objective value of the pricing problem
is non-positive, there is no variable that can be added to the
master LP which would increase its value. Thus, the optimal
solution to the master LP is guaranteed to be optimal for the
LP in Proposition 1 and the main loop terminates.

6.2. Implementation Details

We further speed up the solution of the pricing problem in
our implementation by the following techniques.

Seeding phase. To avoid having to go through many itera-
tions of the main loop, each of which requires solving the
pricing problem, we want to seed the master LP up front
with a set of good candidate variables. While any seed-
ing maintains optimality of the overall algorithm, seeding
it with variables that are likely to be part of the optimal
solution increases speed the most. We initialize the set
of correlation plans S by running m iterations of a self-
play no-external-regret algorithm. Specifically, we let each
player run CFR+ (Tammelin et al., 2015; Bowling et al.,
2015) and, at each iteration of that algorithm, we sample a
pair of pure normal-form plans for the two team members
according to the current strategies of the two players. At
each iteration of that no-regret method, we set the utility
of each team member to uT1 + uT2. Finally, for each pair
(πT1, πT2) ∈ ΠT1 ×ΠT2 of normal-form plans generated by
that no-regret algorithm, we compute and add to S the cor-
relation plan corresponding to the distribution µ that assigns
probability 1 to (πT1, πT2) using Eq. (2). While self-play no-
regret methods guarantee convergence to Nash equilibrium
in two-player zero-sum game, no guarantee is available in
our setting. However, we empirically find that this seeding
strategy leads to a strong initial set of correlation plans.

Linear relaxation. Before solving the MIP formulation of
the pricing problem, we first try to solve its linear relaxation
arg maxξ̂T∈VT

c(ξ̂T). We found that in many cases it out-
puts semi-randomized correlation plans, thus avoiding the
overhead of having to solve a MIP.

Solution pools. Modern commercial MIP solvers such as
Gurobi keep track of additional suboptimal feasible solu-
tions (in addition to the optimal one) that were found during
the process of solving a MIP. Since accessing those ad-
ditional solutions is essentially free computationally, we
add to S all the solutions (even suboptimal ones) that were
produced in the process of solving the MIP. This can be
viewed as a form of dynamic seeding and does not affect
the optimality of the overall algorithm.

Termination. Because fast integer and LP solvers work with
real-valued variables, near the end of the column-generation

loop the new variables that are generated in the pricing prob-
lem have reduced costs that are very close to zero. It is not
clear whether they are actually positive or zero. Therefore,
we set the numeric tolerance so that we stop the column-
generation loop if the value of the pricing problem solution
is less than 10−6.

Dual values. To obtain the dual values used in the pricing
problem, we do not need to formulate and solve a dual LP
as modern LP solvers already keep track of dual values.

7. Experimental Evaluation
We computationally evaluate the algorithms proposed in
Section 5 and Section 6. We test on the common parametric
games shown in Table 1. Appendix B provides additional
detail about the games. We ran the experiments on a ma-
chine with a 16-core 2.80GHz CPU, and allow a maximum
of four threads and 32GB of RAM to each experiment. We
used Gurobi 9.1.1 to solve LPs and MIPs.

7.1. Small-Supported TMECor in Practice

Table 2 describes the maximum expected utility that the
team can obtain by limiting the support of its distribution to
n ∈ {1, 2, 3} semi-randomized correlation plans. Columns
denoted by n =∞ show the optimal expected utility of the
team at the TMECor (without any limit on the support size).
We ran experiments with the opponent as the first (O = 1),
second (O = 2), and third player (O = 3) of each game. In
all the games, distributions with as few as two or three semi-
randomized coordination plans gave the team near-optimal
expected utility. Moreover, in several games, one or two
carefully selected semi-randomized coordination plans are
enough to reach an optimal solution.

7.2. Column-Generation in Practice

We evaluate our column-generation algorithm against the
two prior state-of-the art algorithms for computing a
TMECor: the column-generation technique by Celli & Gatti
(2018) (henceforth CG-18), and the fictitious-team-play al-
gorithm by Farina et al. (2018) (denoted FTP). Like our algo-
rithm, CG-18 uses a column generation approach that lets O
play sequence-form strategies, while the team’s strategy is
directly represented as a distribution over joint normal-form
plans ΠT1 ×ΠT2. FTP is based on the bilinear saddle-point
formulation of the problem and is essentially a variation of
fictitious play (Brown, 1951). FTP operates on the bilinear
formulation of TMECor (1): the team and the opponent
are treated as two entities that converge to equilibrium in
self-play. FTP only guarantees convergence in the limit to a
TMECor, while our algorithm certifies optimality. So, the
run-time comparison between our algorithm to FTP must
be done with care, as the latter never stops, whereas our



Game Ours Fictitious Team Play (FTP) CG-18 Pricers Team utility after seeding TMECor
Seeded Not seed. ε = 50% ε = 10% ε = 1% Relax. MIP m = 0 100 1000 value

[A] 1ms 2ms 2s† 10s† 1m 08s† 175ms 1 0 −0.556 0 0 0
[B] 1ms 14ms 3m 52s 37m 51s > 6h 26.81s 2 0 −0.406 −0.042 −0.042 −0.042
[C] 4.96s 13.40s 4h 42m > 6h > 6h > 6h 4 22 −0.343 −0.030 −0.021 −0.014

[D] 325ms 517ms 50s 9m 21s > 6h 3m 09s 18 0 −1.000 0.247 0.252 0.252
[E] 1.18s 1.48s 4m 51s 2h 02m > 6h 29m 38s 45 0 −2.933 0.239 0.248 0.253

[F] 1m 12s 4m 03s > 6h > 6h > 6h > 6h 40 8 0.000 0.276 0.284 0.284
[G] > 6h > 6h > 6h > 6h > 6h > 6h — — −0.688 0.277 oom —

[H] 2m 23s 3m 23s > 6h > 6h > 6h > 6h 20 171 −1.783 0.065 0.151 0.215
[I] 1h 07m 1h 19m > 6h > 6h > 6h > 6h 7 610 −1.216 −0.149 0.019 0.107
[J] 3m 29s 1m 50s > 6h > 6h > 6h > 6h 1346 18 −6.000 −0.222 0.387 0.516

(a) — Comparison of run times (b) (c)

Table 3: (a) Runtime comparison between our column generation algorithm, FTP, and CG-18. The seeded version of
our algorithm runs m = 1000 iterations of CFR+ (Section 6.2), while the non seeded version runs m = 0. ‘†’: since the
TMECor value for the game is exactly zero, we measure how long it took the algorithm to find a distribution with expected
value at least −ε/10 for the team. (b) Number of times the pricing problem for our column-generation algorithm was solved
to optimality by the linear relaxation (‘Relax’) and by the MIP solver (‘MIP’) when using our column-generation algorithm.
(c) Quality of the initial strategy of the team obtained for varying sizes of S compared to the expected utility of the team at
the TMECor. ‘oom’: out of memory.

algorithm and CG-18 terminate after a finite number of it-
erations with an exact optimal strategy. We report the run
time of FTP reaching solution quality that is ε = 50%, 10%,
and 1% off the optimal value (determined by the other two
algorithms). Finally, the concurrent work by Zhang et al.
(2020) proposes an alternative approach for computing a
TMECor. According to the run times reported in their pa-
per, our algorithm is significantly faster. In particular, our
algorithm takes about 2m 00s to solve game [H], while their
algorithm takes about 1h 21m, even though they conducted
their experiments on a more powerful machine.3

We set a time limit of 6 hours, a memory limit of 32GB, and
a cap of four threads for each algorithm. Table 3 shows the
results with the opponent playing as the third player. Ac-
cording to Table 2, this is almost always the hardest setting.
The results for the other two settings are in Appendix C.

Our column-generation algorithm dramatically outperforms
FTP and CG-18. For example, in Liar’s dice instance [F],
our algorithm finds an optimal TMECor in a few seconds
while the prior algorithms exceed six hours. The last column
of Table 3(c) shows the final team utility. Even when the
opponent is playing as the third player, the team is able to
reach positive expected utility. Finally, we identify Liar’s
dice instance [G] as the current boundary of problem that

3The machine which they used has a 3.6GHz CPU, 32GB of
memory, and they dedicated 12 threads to the algorithm. Moreover,
we observe that the number of terminal nodes reported for 3L3 in
their paper is inconsistent with the description of the game, which
corresponds to our game [H]; in particular, their paper reports that
the game has a larger number of terminal nodes than it actually has.
This was confirmed by the authors in private communications.

just cannot be handled with current TMECor technology: it
does not complete within six hours.

Using the linear relaxation of the pricing problem (“imple-
mentation details” in Section 6.2) often obviated the need to
run the slower MIP pricing (see Table 3(b)). In all Goofspiel
instances (games [D] and [E]) and in small Kuhn poker
instances, the MIP pricing is never invoked.

Regret-based seeding further improves the performance of
the algorithm. In the Liar’s dice instance [F], it reduced run
time by roughly a factor of ten. The objective value of the
master solution immediately after seeding (that is, before
the first column generation step) increases significantly with
the number of iterations of the no-regret algorithm that is
used for seeding.

8. Conclusions
We studied finding an optimal strategy for a team with two
members facing an opponent in an imperfect-information,
zero-sum, extensive-form game. We focused on the setting
where the team members cannot communicate during play
but can coordinate before the game. We provided modeling
results by drawing a connection to prior results on extensive-
form correlation. Then, we developed an algorithm that
computes an optimal joint distribution by just using profiles
where only one of the team members gets to randomize in
each profile. We can cap the number of such profiles we
allow in the solution. This begets an anytime algorithm
by increasing the cap. Moreover, we showed that often a
handful of well-chosen such profiles suffice to reach optimal
utility for the team. Inspired by this observation and lever-



aging theoretical concepts that we introduced, we developed
an efficient column-generation algorithm for finding an op-
timal strategy for the team. We tested our algorithm on a
suite of standard games, showing that it is three order of
magnitudes faster than the prior state of the art and also
solves many games that were previously unsolvable.
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A. Theoretical Details
A.1. Representing Distributions of Play via

Extensive-Form Correlation Plans

As mentioned in the body, every distribution over random-
ized stratregy profiles for the team members is equivalent
to a different distribution over deterministic strategy pro-
files by means of Kuhn’s theorem (Kuhn, 1953), one of
the most fundamental results about extensive-form game
playing. Specifically, given two independent mixed strate-
gies yT1 ∈ YT1 and yT2 ∈ YT2 for the team members, let
µT1 and µT2 be the distributions over normal-form plans
ΠT1,ΠT2 equivalent to yT1 and yT2, respectively. Then,
the distribution over reandomized strategy profiles that as-
signes probability 1 to (yT1,yT2) is equivalent to the prod-
uct distribution of µT1 and µT2, that is, the distirbution over
ΠT1×ΠT2 that picks a generic profile (πT1, πT2) with prob-
ability πT1(πT1) × πT2(πT2). The reverse is also true: a
product distribution over ΠT1 ×ΠT2 is equivalent to a dis-
tribution over randomized profiles that picks exactly one
profile with probability 1.

We now show that a similar result holds when the distribu-
tion over normal-form plans is represented as an extensive-
form correlation plan. First, we introduce the notion of
product correlation plan.

Definition 3. Let ξT ∈ V be a vector in the von Stengel-
Forges polytope. We say that ξT is a product correlation
plan if

ξT[σT1, σT2] = ξT[σT1,∅] · ξT[∅, σT2]

for all (σT1, σT2) ∈ ΣT1 ./ ΣT2.

Lemma 1. A product correlation plan is always an element
of ΞT.

Proof. Let ξT be a product correlation plan. Since by defi-
nition, ξT ∈ V , the vectors yT1,yT2 indexed over ΣT1 and
ΣT2, repsectively, and defined as

y[σT1] = ξT[σT1,∅], y[σT2] = ξT[∅, σT2]

are sequence-form strategies. By Kuhn’s theorem, there
exist distributions µT1, µT2 over ΠT1 and ΠT2, respectively,
such that

y[σT1] =
∑

πT1∈ΠT1(σT1)

µT1[πT1] ∀σT1 ∈ ΣT1, (3)

y[σT2] =
∑

πT2∈ΠT2(σT2)

µT2[πT2] ∀σT2 ∈ ΣT2. (4)

Consider the distribution µT over ΠT1 ×ΠT2 defined as the
product distribution µT1 ⊗ µT2, that is,

µT[σT1, σT2] := µT1[πT1] · µT2[πT2]

for all (πT1, πT2) ∈ ΠT1 × ΠT2. We will show that is the
extensive-form correlation plan corresponding to µT accord-
ing to (2), that is,

ξT[σT1, σT2] :=
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT[πT1, πT2]

for all (σT1, σT2) ∈ ΣT1 ./ ΣT2. Indeed, using the fact that
ξT is a product correlation plan together with (3) and (4):

ξT[σT1, σT2] = ξT[σT1,∅] · ξT[∅, σT2]

= yT1[σT1] · yT2[σT2]

=

 ∑
πT1∈ΠT1(σT1)

µT1[πT1]

 ∑
πT2∈ΠT2(σT2)

µT2[πT2]


=

∑
πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT1[πT1] · µT2[πT2]

=
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT[πT1, πT2].

This concludes the proof.

Lemma 2. An extensive-form correlation plan is equivalent
to a distribution of play for the team that picks one profile of
randomized strategies (yT1,yT2) ∈ YT1×YT2 if and only if
ξT is a product correlation plan. Furthermore, when that is
the case, yT1[σT1] = ξT[σT1,∅], yT2[σT2] = ξT[∅, σT2] for
all σT1 ∈ ΣT1, σT2 ∈ ΣT2.

Proof. The proof of Lemma 1 already shows that when ξT is
a product correlation plan, it is equivalent to playing accord-
ing to the distribution of play for the team with singleton sup-
port (yT1,yT2), where yT1[σT1] = ξT[σT1,∅], yT2[σT2] =
ξT[∅, σT2] for all σT1 ∈ ΣT1, σT2 ∈ ΣT2. So, the only
statement that remains to prove is that distributions µT over
randomized strategy profiles for the team members with a
singleton support are mapped (Eq. (2)) to product correla-
tion plans.

Let {(yT1,yT2)} ⊆ YT1 × YT2 be the (singleton) support
of µT, and let µT1, µT2 be distributions over ΠT1 and ΠT2,
respectively, equivalent to yT1 and yT2. Then,

y[σT1] =
∑

πT1∈ΠT1(σT1)

µT1[πT1] ∀σT1 ∈ ΣT1, (5)

y[σT2] =
∑

πT2∈ΠT2(σT2)

µT2[πT2] ∀σT2 ∈ ΣT2. (6)

Since by assumption the two team members sample strate-
gies independently, their equivalent distribution of play over
determinitic strategies is the product distribution µT :=



µT1 ⊗ µT2. Using (2), µT has a representation as extensive-
form correlation plan given by

ξT[σT1, σT2] =
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT[πT1, πT2]

=
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT1[πT1] · µT2[πT2]

=

 ∑
πT1∈ΠT1(σT1)

µT1[πT1]

 ∑
πT2∈ΠT2(σT2)

µT2[πT2]


= yT1[σT1] · yT2[σT2] (7)

for all (σT1, σT2) ∈ ΣT1 × ΣT2. In particular, choosing
σT2 = ∅ in (7), and using the fact that yT2[∅] = 1, we
obtain

ξT[σT1,∅] = yT1[σT1] ∀ σT1 ∈ ΣT1.

Similarly,

ξT[∅, σT2] = yT2[σT2] ∀ σT2 ∈ ΣT2.

Substituting the last two equalities into (7) we can write

ξT[σT1, σT2] = ξT[σT1,∅] · ξT[∅, σT2]

for all (σT1, σT2) ∈ ΣT1 × ΣT2. That, together with the
inclusion ΞT ⊆ V , shows that ξT is a product correlation
plan.

Semi-randomized correlation plans are product plans
In the body we mentioned that semi-randomized correlation
plans correspond to a distribution of play where one team
member plays a deterministic strategy and the other team
member plays a randomized strategy. We now give more
formal grounding that that assertion.

Lemma 3. Let ξT ∈ Ξ∗T1 ∪ Ξ∗T2 be a semi-randomized plan.
Then, ξT is a product plan.

We reuse some ideas that already appeared in Farina &
Sandholm (2020) to prove Lemma 3. In particular, in the
proof we will make use of the following lemma.

Lemma 4 (Farina & Sandholm (2020, Lemma 6)). Let
ξT ∈ V . For all σT1 ∈ ΣT1 such that ξT[σT1,∅] = 0,
ξT[σT1, σT2] = 0 for all σT2 ∈ ΣT2 : σT1 ./ σT2. Similarly,
for all σT2 ∈ ΣT2 such that ξT[∅, σT2] = 0, ξT[σT1, σT2] =
0 for all σT1 ∈ ΣT1 : σT1 ./ σT2.

Proof of Lemma 3. We will only show the proof for the case
ξT ∈ Ξ∗T1. The other case (ξT ∈ Ξ∗T2) is symmetric.

To show that

ξT[σT1, σT2] = ξT[σT1,∅] · ξT[∅, σT2]

for all (σT1, σT2) ∈ ΣT1 ./ ΣT2, we perform induction on
the depth of the sequence σT2. The depth depth(σT2) of a
generic sequence σT2 = (J, b) ∈ ΣT2 of Player i is defined
as the number of actions that Player T2 plays on the path
from the root of the tree down to action b at information set
J , included. Conventionally, we let the depth of the empty
sequence be 0.

The base case for the induction proof corresponds to the
case where σT2 has depth 0, that is, σT2 = ∅. In that case,
the theorem is clearly true, because ξT[∅,∅] = 1 as part of
the von Stengel-Forges constraints (Definition 1).

Now, suppose that the statement holds as long as
depth(σT2) ≤ d. We will show that the statement will hold
for any (σT1, σT2) ∈ ΣT1 ./ ΣT2 such that depth(σT2) ≤
d+ 1. Indeed, consider (σT1, σT2) ∈ ΣT1 ./ ΣT2 such that
σT2 = (J, b) with depth(σT2) = d+ 1.

There are only two possible cases:

• Case 1: ξT[∅, σT2] = 0. From Lemma 4,
ξT[σT1, σT2] = 0 and the statement holds.

• Case 2: ξT[∅, σT2] = 1. From the von Stengel-Forges
constraints, ξT[∅, σ(J)] =

∑
b′∈AJ

ξT[∅, (J, b′)] =
1 +

∑
b′∈AJ ,b′ 6=b ξT[∅, (J, b′)] ≥ 1. Hence, because

all entries of ξT[∅, σ2] are in {0, 1} by definition of
Ξ∗T1, it must be ξT[∅, σ(J)] = 1 and ξT[∅, (J, b′)] = 0
for all b′ ∈ AJ , b′ 6= b.

Using the inductive hypothesis, we have that

ξT[σT1, σ(J)] = ξT[σT1,∅]·ξT[∅, σ(J)] = ξT[σT1,∅]
(8)

for all σT1 ∈ ΣT1, σT1 ./ σ(J). On the other hand,
since ξT[∅, (J, b′)] = 0 for all b′ ∈ AJ , b′ 6= b, from
Lemma 4 we have that

ξT[σT1, (J, b
′)] = 0 ∀σT1 ./ J, b

′ 6= b. (9)

Hence, summing over all b′ ∈ AJ and using the von
Stengel-Forges constraints, we get

ξT[σT1,∅] · ξT[∅, σT2] = ξT[σT1, σ(J)]

=
∑
b′∈AJ

ξT[σT1, (J, b
′)]

= ξT[σT1, (J, b)] = ξT[σT1, σT2]

for all σT1 ./ (J, b). This concludes the proof by
induction.

So, from Lemma 2 it follows that semi-randomized plans
correspond to distributions of play over randomized profiles
with the singleton support (yT1,yT2) ∈ YT1 × YT2. Fur-
thermore, because of the second part of Lemma 2, when
ξT ∈ Ξ∗T1, yT2[σT2] ∈ {0, 1} for all σT2 ∈ ΣT2, which
means that yT2 is a deterministic strategy for Player T2 (a
similar statement holds for ξT ∈ Ξ∗T2).



Convex combinations of product plans Both of the al-
gorithms we presented in the paper ultimately produce an
extensive-form correlation plan ξT that is a convex combi-
nation of semi-randomized plans ξ(1)

T , . . . , ξ
(n)
T , that is, of

the form
ξT = λ(1)ξ

(1)
T + ·+ λ(n)ξ

(n)
T

for λ(i) ≥ 0 such that λ(1) + · · · + λ(n) = 1. Since
semi-randomized correlation plans are product correlation
plans (Lemma 3), from Lemma 2 each ξ(i)

T is equivalent to
the team playing a single profile of randomized strategies
(y

(i)
T1 ,y

(i)
T2 ) ∈ YT1 × YT2 with probability 1. By linearity,

it is immediate to show that ξT is equivalent to playing ac-
cording to the distribution over randomized strategies for
the team that picks (y

(i)
T1 ,y

(i)
T2 ) with probability λ(i).

A.2. TMECor Formulation Based on Extensive-Form
Correlation Plans

Proposition 1. An extensive-form correlation plan ξT is a
TMECor if and only if it is a solution to the LP

arg max
ξT

v∅, subject to:

1 vI −
∑
I′∈IO

σO(I′)=(I,a)

vI′ ≤
∑
z∈Z

σO(z)=(I,a)

ûT(z)ξT[σT1(z), σT2(z)]

∀ (I,a)∈ΣO\{∅}

2 v∅ −
∑
I′∈IO

σO(I′)=∅

vI′ ≤
∑
z∈Z

σO(z)=∅

ûT(z)ξT[σT1(z), σT2(z)]

3 v∅ free, vI free ∀ I ∈ IO

4 ξT ∈ ΞT.

Proof. We follow the steps mentioned in the body, starting
from the bilinear saddle point problem formulation of the
problem of computing a TMECor strategy for the team:

arg max
ξT∈ΞT

min
yO∈YO

∑
z∈Z

ûT(z)ξT[σT1(z), σT2(z)]y[σO(z)].

Expanding the constraint yO ∈ YO using the sequence-form
constraints (Koller et al., 1996; von Stengel, 1996), the inner
minimization problem is

(P ) :



min
yO

∑
z∈Z

ûT(z)ξT[σT1(z), σT2(z)]y[σO(z)]

1 − y[σ(I)] +
∑
a∈AI

yO[(I, a)] = 0 ∀I ∈ IO

2 yO[∅] = 1

3 yO[σO] ≥ 0 ∀ σO ∈ ΣO.

Introducing the free dual variables {vI : I ∈ IO} for Con-
straint 1 , and the free dual variable v∅ for Constraint 2 ,

we obtain the dual linear program

(D) :



max
vI ,v∅

v∅, subject to:

1 vI −
∑
I′∈IO

σO(I′)=(I,a)

vI′

≤
∑
z∈Z

σO(z)=(I,a)

ûT(z)ξT[σT1(z), σT2(z)]

∀ (I,a)∈ΣO\{∅}

2 v∅ −
∑
I′∈IO

σO(I′)=∅

vI′ ≤
∑
z∈Z

σO(z)=∅

ûT(z)ξT[σT1(z), σT2(z)]

3 v∅ free, vI free ∀ I ∈ IO.

So, ξT is a TMECor if and only if it is a solution of
arg maxξT∈ΞT

(D), which is exactly the statement.

A.3. Semi-Randomized Correlation Plans

Proposition 3. In every game, ΞT is the convex hull of the
set Ξ∗T1, or equivalently of the set Ξ∗T2. Formally, ΞT =
co Ξ∗T1 = co Ξ∗T2 = co(Ξ∗T1 ∪ Ξ∗T2).

Proof. We will show that ΞT = co Ξ∗T1. The proof that
ΞT = co Ξ∗T2 is symmetric.

We will break the proof of ΞT = co Ξ∗T1 into two parts:

(⊆) In the first part of the proof, we argue that Ξ∗T1 ⊆ ΞT.
This is straightforward: from Lemma 3 we know
that all elements of Ξ∗T1 are product correlation plans
(Definition 3), which implies that Ξ∗T1 ⊆ ΞT by
Lemma 1. Since convex hulls preserve inclusions,
we have

co Ξ∗T1 ⊆ co ΞT,

which is exactly the statement Ξ∗T1 ⊆ ΞT upon using
the known fact that ΞT is a convex polytope and
therefore co ΞT = ΞT.

(⊇) To complete the proof, we now argue that the re-
verse inclusion, namely ΞT ⊆ co Ξ∗T1, also holds.
Let f : µT 7→ ξT be the mapping from the distri-
bution of play µT ∈ ∆(ΠT1 × ΠT2) to its corre-
sponding extensive-form correlation plan defined in
Eq. (2). By definition, ΞT = f(∆(ΠT1 ×ΠT2)). Let
1(πT1,πT2) denote the distribution of play with sin-
gleton support (πT1, πT2), that is, the distribution of
play that assigns the deterministic strategy profile
(πT1, πT2) for the team with probability 1. Since f is
linear, and since

∆(ΠT1 ×ΠT2)

= co{1(πT1,πT2) : πT1 ∈ ΠT1, πT2 ∈ ΠT2},



we have

ΞT = co{f(1(πT1,πT2)) : πT1 ∈ ΠT1, πT2 ∈ ΠT2}.

Hence, to conclude the proof of this part, it will be
enough to show that for each πT1 ∈ ΠT1, πT2 ∈ ΠT2,
it holds that f(1(πT1,πT2)) ∈ Ξ∗T1. Since 1(πT1,πT2)

assigns probability 1 to one profile and 0 to all other
profiles, f(1(πT1,πT2)) is an extensive-form correla-
tion plan whose entris are all in {0, 1}. So, in partic-
ular, f(1(πT1,πT2)) ∈ Ξ∗T1. This concludes the proof
of the inclusion ΞT ⊆ co Ξ∗T1.

Together, the two statements that we just prove show that
ΞT = co Ξ∗T1.

Finally, using the fact that unions and convex hulls commute,
we have

co(Ξ∗T1 ∪ Ξ∗T2) = (co Ξ∗T1) ∪ (co Ξ∗T2) = ΞT ∪ ΞT = ΞT,

thereby concluding the proof.

B. Game Instances
The size of the parametric instances we use as benchmark is
described in Table 1. In the following, we provide a detailed
explanation of the rules of each game.

Kuhn poker Two-player Kuhn poker was originally pro-
posed by Kuhn (1950). We employ the three-player vari-
ation described in Farina et al. (2018). In a three-player
Kuhn poker game with rank r there are r possible cards. At
the beginning of the game, each player pays one chip to the
pot, and each player is dealt a single private card. The first
player can check or bet, i.e., putting an additional chip in
the pot. Then, the second player can check or bet after a first
player’s check, or fold/call the first player’s bet. If no bet
was previously made, the third player can either check or
bet. Otherwise, the player has to fold or call. After a bet of
the second player (resp., third player), the first player (resp.,
the first and the second players) still has to decide whether
to fold or to call the bet. At the showdown, the player with
the highest card who has not folded wins all the chips in the
pot.

Goofspiel This bidding game was originally introduced
by Ross (1971). We use a 3-rank variant, that is, each player
has a hand of cards with values {−1, 0, 1}. A third stack
of cards with values {−1, 0, 1} is shuffled and placed on
the table. At each turn, a prize card is revealed, and each
player privately chooses one of his/her cards to bid, with the
highest card winning the current prize. In case of a tie, the
prize is split evenly among the winners. After 3 turns, all
the prizes have been dealt out and the payoff of each player

is computed as follows: each prize card’s value is equal to
its face value and the players’ scores are computed as the
sum of the values of the prize cards they have won.

Goofspiel with limited information This is a variant of
Goofspiel introduced by Lanctot et al. (2009). In this varia-
tion, in each turn the players do not reveal the cards that they
have played. Rather, they show their cards to a fair umpire,
which determines which player has played the highest card
and should therefore received the prize card. In case of tie,
the umpire directs the players to split the prize evenly among
the winners, just like in the Goofspiel game. This makes
the game strategically more challenging as players have less
information regarding previous opponents’ actions.

Leduc poker We use a three-player version of the clas-
sical Leduc hold’em poker introduced by Southey et al.
(2005). We employ game instances of rank 3, in which the
deck consists of three suits with 3 cards each. Our instances
are parametric in the maximum number of bets, which in
limit hold’em is not necessarely tied to the number of play-
ers. The maximum number of raise per betting round can
be either 1, 2 or 3. As the game starts players pay one chip
to the pot. There are two betting rounds. In the first one a
single private card is dealt to each player while in the second
round a single board card is revealed. The raise amount is
set to 2 and 4 in the first and second round, respectively.

Liar’s dice Liar’s dice is another standard benchmark
introduced by Lisỳ et al. (2015). In our three-player imple-
mentation, at the beginning of the game each of the three
players privately rolls an unbiased k-face die. Then, the
three players alternate in making (potentially false) claims
about their toss. The first player begins bidding, announcing
any face value up to k and the minimum number of dice
that the player believes are showing that value among the
dice of all the players. Then, each player has two choices
during their turn: to make a higher bid, or to challenge the
previous bid by declaring the previous bidder a ”liar”. A
bid is higher than the previous one if either the face value
is higher, or the number of dice is higher. If the current
player challenges the previous bid, all dice are revealed. If
the bid is valid, the last bidder wins and obtains a reward
of +1 while the challenger obtains a negative payoff of -1.
Otherwise, the challenger wins and gets reward +1, and the
last bidder obtains reward of -1. All the other players obtain
reward 0. We test our algorithms on Liar’s dice instances
with k = 3 and k = 4.

C. Additional Experimental Results
All experiments were run 10 times, and the experimental
tables show average run times. We always use the same
random seed to sample no-regret strategies for the team



members in the seeding phase of our column-generation
algorithm. The seed was never changed, and we don’t treat
it as a hyperparameter. So, all algorithms are deterministic,
and the only source of randomness in the run time is due
to system load. Consequently, we observed small standard
deviations in the run times, less than 10% in all cases.

We used the same time limit for FTP that was found to
be beneficial by the original authors (Farina et al., 2018),
namely 15 seconds. For FTP and CG-18, we used the origi-
nal implementations, with permission from the authors. In
all algorithms, we observed that the majority of time is spent
within Gurobi.

Table 4 and Table 5 show the comparison between our
column-generation algorithm, FTP, and CG-18 when the
opponent plays as the first and as the second player, respec-
tively.

Comparison between the Algorithm of Section 5 and the
Prior State of the Art

Depending on the cap n on the number or semi-randomized
correlation plans, the algorithm we describe in Section 5
might not reach the optimal TMECor value for the team
(although, as we argue in Section 7, a very small n already
guarantees a large fraction of the optimal value empirically).

For completeness, we report the run time of the algorithm
for a sample instance. We employ instance [H] with O = 3
as it is has a good trade-off between dimensions and man-
ageability. When n = 1 the algorithm reaches an optimal
solution in 9.21s. The optimal solution with n = 1 achieves
15% of the optimal utility with no restrictions on the num-
ber of plans. With n = 2 the run time is 12m 05s and the
solution reaches 90% of the optimal value. With n = 3 the
run time is 1h 53m and the solution guarantees 92% of the
optimal value.

The column-generation algorithm has better run time perfor-
mances and guarantees to reach an optimal solution without
having to pick the right support size. However, we observe
that the algorithm of Section 5 already outperforms FTP
and CG-18. Specifically, FTP cannot reach a strategy guar-
anteeing 50% of the optimal utility within the time limit,
while our algorithm guarantees 90% of the optimal value
within roughly 10 minutes. On the other hand, CG-18 can-
not complete even a single iteration within the time limit.
This confirms the our pricing formulation is significantly
tighter than previous formulations.



Game Ours Fictitious Team Play (FTP) CG-18 Pricers Team utility after seeding TMECor
Seeded Not seed. ε = 50% ε = 10% ε = 1% Relax. MIP m = 0 100 1000 value

[A] 2ms 2ms 0ms† 15.00s† 2m 35s† 66ms 5 0 −0.481 −0.133 −0.133 0
[B] 17ms 27ms 0ms 16m 39s > 6h 1.01s 0 3 −0.307 0.037 0.037 0.038
[C] 4.67s 6.86s 7m 36s > 6h > 6h > 6h 7 38 −0.381 0.055 0.058 0.066

[D] 302ms 654ms 2ms > 6h > 6h 1m 56s 17 0 −1.000 0.239 0.251 0.252
[E] 821ms 1.52s 6ms > 6h > 6h 23m 17s 31 0 −1.110 0.242 0.249 0.253

[F] 5.73s 15.34s 19m 25s > 6h > 6h > 6h 1 0 −0.926 0 0 0
[G] 8.08s 1h 09m > 6h > 6h > 6h > 6h 0 2 −0.696 0.039 0.063 0.063

[H] 32.12s 40.16s 2h 49m > 6h > 6h > 6h 1 90 −2.000 0.001 0.173 0.199
[I] 14m 51s 15m 12s > 6h > 6h > 6h > 6h 0 232 −2.000 −0.020 0.105 0.186
[J] 11m 23s 8m 24s > 6h > 6h > 6h > 6h 1042 123 −2.000 −0.433 0.395 0.549

(a) — Comparison of run times (b) (c)

Table 4: Results for O = 1. (a) Runtime comparison between our column generation algorithm, FTP, and CG-18. The
seeded version of our algorithm runs m = 1000 iterations of CFR+ (Section 6.2), while the non seeded version runs m = 0.
‘†’: since the TMECor value for the game is exactly zero, we measure how long it took the algorithm to find a distribution
with expected value at least −ε/10 for the team. (b) Number of times the pricing problem for our column-generation
algorithm was solved to optimality by the linear relaxation (‘Relax’) and by the MIP solver (‘MIP’) when using our
column-generation algorithm (seeded version with m = 1000). (c) Quality of the initial strategy of the team obtained for
varying sizes of S compared to the expected utility of the team at the TMECor.

Game Ours Fictitious Team Play (FTP) CG-18 Pricers Team utility after seeding TMECor
Seeded Not seed. ε = 50% ε = 10% ε = 1% Relax. MIP m = 0 100 1000 value

[A] 0ms 3ms 0ms† 19s† 3m 09s† 147ms 1 0 −0.667 0 0 0
[B] 0ms 12ms 1m 39s > 6h > 6h 7.53s 1 0 −0.281 0.027 0.027 0.027
[C] 4.01s 4.22s 48m 08s > 6h > 6h > 6h 6 26 −0.636 0.018 0.027 0.038

[D] 221ms 696ms 1ms > 6h > 6h 1m 46s 13 0 −1.000 0.247 0.252 0.252
[E] 1.11s 1.37s 1.39s > 6h > 6h 12m 30s 42 0 −1.110 0.241 0.252 0.253

[F] 20.72s 1m 03s 1h 30m > 6h > 6h > 6h 38 2 −0.778 0.246 0.256 0.256
[G] 5h 48m 5h 44m > 6h > 6h > 6h > 6h 140 17 −0.969 0.260 0.264 —

[H] 2m 02s 2m 44s > 6h > 6h > 6h > 6h 24 168 −1.679 0.061 0.164 0.253
[I] 27m 17s 27m 50s > 6h > 6h > 6h > 6h 6 553 −1.911 −0.011 0.076 0.183
[J] 28m 05s 11m 21s > 6h > 6h > 6h > 6h 4600 254 −2.000 0.190 0.392 0.628

(a) — Comparison of run times (b) (c)

Table 5: Results for O = 2. (a) Runtime comparison between our column generation algorithm, FTP, and CG-18. The
seeded version of our algorithm runs m = 1000 iterations of CFR+ (Section 6.2), while the non seeded version runs m = 0.
‘†’: since the TMECor value for the game is exactly zero, we measure how long it took the algorithm to find a distribution
with expected value at least −ε/10 for the team. (b) Number of times the pricing problem for our column-generation
algorithm was solved to optimality by the linear relaxation (‘Relax’) and by the MIP solver (‘MIP’) when using our
column-generation algorithm (seeded version with m = 1000). (c) Quality of the initial strategy of the team obtained for
varying sizes of S compared to the expected utility of the team at the TMECor. ‘oom’: out of memory.


