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Abstract

Blackwell approachability is a framework for reasoning about
repeated games with vector-valued payoffs. We introduce
predictive Blackwell approachability, where an estimate of
the next payoff vector is given, and the decision maker tries to
achieve better performance based on the accuracy of that es-
timator. In order to derive algorithms that achieve predictive
Blackwell approachability, we start by showing a powerful
connection between four well-known algorithms. Follow-the-
regularized-leader (FTRL) and online mirror descent (OMD)
are the most prevalent regret minimizers in online convex
optimization. In spite of this prevalence, the regret match-
ing (RM) and regret matching+ (RM+) algorithms have been
preferred in the practice of solving large-scale games (as the
local regret minimizers within the counterfactual regret min-
imization framework). We show that RM and RM+ are the
algorithms that result from running FTRL and OMD, respec-
tively, to select the halfspace to force at all times in the under-
lying Blackwell approachability game. By applying the pre-
dictive variants of FTRL or OMD to this connection, we ob-
tain predictive Blackwell approachability algorithms, as well
as predictive variants of RM and RM+. In experiments across
18 common zero-sum extensive-form benchmark games, we
show that predictive RM+ coupled with counterfactual regret
minimization converges vastly faster than the fastest prior al-
gorithms (CFR+, DCFR, LCFR) across all games but two of
the poker games, sometimes by two or more orders of mag-
nitude.

1 Introduction
Extensive-form games (EFGs) are the standard class of
games that can be used to model sequential interaction,
outcome uncertainty, and imperfect information. Opera-
tionalizing these models requires algorithms for comput-
ing game-theoretic equilibria. A recent success of EFGs is
the use of Nash equilibrium for several recent poker AI
milestones, such as essentially solving the game of limit
Texas hold’em (Bowling et al. 2015), and beating top hu-
man poker pros in no-limit Texas hold’em with the Libratus
AI (Brown and Sandholm 2017). A central component of all
recent poker AIs has been a fast iterative method for com-
puting approximate Nash equilibrium at scale. The leading
approach is the counterfactual regret minimization (CFR)
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framework, where the problem of minimizing regret over
a player’s strategy space of an EFG is decomposed into a
set of regret-minimization problems over probability sim-
plexes (Zinkevich et al. 2007; Farina, Kroer, and Sandholm
2019c). Each simplex represents the probability over actions
at a given decision point. The CFR setup can be combined
with any regret minimizer for the simplexes. If both players
in a zero-sum EFG repeatedly play each other using a CFR
algorithm, the average strategies converge to a Nash equilib-
rium. Initially regret matching (RM) was the prevalent sim-
plex regret minimizer used in CFR. Later, it was found that
by alternating strategy updates between the players, taking
linear averages of strategy iterates over time, and using a
variation of RM called regret-matching+ (RM+) (Tammelin
2014) leads to significantly faster convergence in practice.
This variation is called CFR+. Both CFR and CFR+ guar-
antee convergence to Nash equilibrium at a rate of T−1/2.
CFR+ has been used in every milestone in developing poker
AIs in the last decade (Bowling et al. 2015; Moravčík et al.
2017; Brown and Sandholm 2017, 2019b). This is in spite
of the fact that its theoretical rate of convergence is the same
as that of CFR with RM (Tammelin 2014; Farina, Kroer,
and Sandholm 2019a; Burch, Moravcik, and Schmid 2019),
and there exist algorithms which converge at a faster rate
of T−1 (Hoda et al. 2010; Kroer et al. 2020; Farina, Kroer,
and Sandholm 2019b). In spite of this theoretically-inferior
convergence rate, CFR+ has repeatedly performed favorably
against T−1 methods for EFGs (Kroer, Farina, and Sand-
holm 2018b; Kroer et al. 2020; Farina, Kroer, and Sand-
holm 2019b; Gao, Kroer, and Goldfarb 2021). Similarly, the
follow-the-regularized-leader (FTRL) and online mirror de-
scent (OMD) regret minimizers, the two most prominent al-
gorithms in online convex optimization, can be instantiated
to have a better dependence on dimensionality than RM+

and RM, yet RM+ has been found to be superior (Brown,
Kroer, and Sandholm 2017).

There has been some interest in connecting RM to the
more prevalent (and more general) online convex optimiza-
tion algorithms such as OMD and FTRL, as well as classi-
cal first-order methods. Waugh and Bagnell (2015) showed
that RM is equivalent to Nesterov’s dual averaging algorithm
(which is an offline version of FTRL), though this equiva-
lence requires specialized step sizes that are proven correct
by invoking the correctness of RM itself. Burch (2018) stud-



ies RM and RM+, and contrasts them with mirror descent
and other prox-based methods.

We show a strong connection between RM, RM+, and
FTRL, OMD. This connection arises via Blackwell ap-
proachability, a framework for playing games with vector-
valued payoffs, where the goal is to get the average pay-
off to approach some convex target set. Blackwell originally
showed that this can be achieved by repeatedly forcing the
payoffs to lie in a sequence of halfspaces containing the tar-
get set (Blackwell 1956). Our results are based on extend-
ing an equivalence between approachability and regret min-
imization (Abernethy, Bartlett, and Hazan 2011). We show
that RM and RM+ are the algorithms that result from run-
ning FTRL and OMD, respectively, to select the halfspace to
force at all times in the underlying Blackwell approachabil-
ity game. The equivalence holds for any constant step size.
Thus, RM and RM+, the two premier regret minimizers in
EFG solving, turn out to follow exactly from the two most
prevalent regret minimizers from online optimization theory.
This is surprising for several reasons:

• RM+ was originally discovered as a heuristic modifica-
tion of RM in order to avoid accumulating large nega-
tive regrets. In contrast, OMD and FTRL were developed
separately from each other.

• When applying FTRL and OMD directly to the strat-
egy space of each player, Farina, Kroer, and Sandholm
(2019b, 2020) found that FTRL seems to perform better
than OMD, even when using stochastic gradients. This
relationship is reversed here, as RM+ is vastly faster nu-
merically than RM.

• The dual averaging algorithm (whose simplest variant is
an offline version of FTRL), was originally developed
in order to have increasing weight put on more recent
gradients, as opposed to OMD which has constant or
decreasing weight (Nesterov 2009). Here this relation-
ship is reversed: OMD (which we show has a close link
to RM+) thresholds away old negative regrets, whereas
FTRL keeps them around. Thus OMD ends up being
more reactive to recent gradients in our setting.

• FTRL and OMD both have a step-size parameter that
needs to be set according to the magnitude of gradients,
while RM and RM+ are parameter free (which is a desir-
able feature from a practical perspective). To reconcile
this seeming contradiction, we show that the step-size
parameter does not affect which halfspaces are forced,
so any choice of step size leads to RM and RM+.

Leveraging our connection, we study the algorithms that
result from applying predictive variants of FTRL and OMD
to choosing which halfspace to force. By applying predic-
tive OMD we get the first predictive variant of RM+, that
is, one that has regret that depends on how good the se-
quence of predicted regret vectors is (as a side note of their
paper, Brown and Sandholm (2019a) also tried a heuris-
tic for optimism/predictiveness by counting the last regret
vector twice in RM+, but this does not yield a predic-
tive algorithm). We call our regret minimizer predictive re-
gret matching+ (PRM+). We go on to instantiate CFR with

PRM+ using the two standard techniques—alternation and
quadratic averaging—-and find that it often converges much
faster than CFR+ and every other prior CFR variant, some-
times by several orders of magnitude. We show this on a
large suite of common benchmark EFGs. However, we find
that on poker games (except shallow ones), discounted CFR
(DCFR) (Brown and Sandholm 2019a) is the fastest. We
conclude that our algorithm based on PRM+ yields the new
state-of-the-art convergence rate for the remaining games.
Our results also highlight the need to test on EFGs other
than poker, as our non-poker results invert the superiority of
prior algorithms as compared to recent results on poker.

2 Online Linear Optimization,
Regret Minimizers, and Predictions

At each time t, an oracle for the online linear optimization
(OLO) problem supports the following two operations, in
order: NEXTSTRATEGY returns a point xt ∈ D ⊆ Rn,
and OBSERVELOSS receives a loss vector `t that is meant
to evaluate the strategy xt that was last output. Specifically,
the oracle incurs a loss equal to 〈`t,xt〉. The loss vector `t
can depend on all past strategies that were output by the ora-
cle. The oracle operates online in the sense that each strategy
xt can depend only on the decision x1, . . . ,xt−1 output in
the past, as well as the loss vectors `1, . . . , `t−1 that were
observed in the past. No information about the future losses
`t, `t+1, . . . is available to the oracle at time t. The objective
of the oracle is to make sure the regret

RT (x̂) :=

T∑
t=1

〈`t,xt〉 −
T∑
t=1

〈`t, x̂〉 =

T∑
t=1

〈`t,xt − x̂〉,

which measures the difference between the total loss in-
curred up to time T compared to always using the fixed
strategy x̂, does not grow too fast as a function of time T .
Oracles that guarantee that RT (x̂) grow sublinearly in T
in the worst case for all x̂ ∈ D (no matter the sequence
of losses `1, . . . , `T observed) are called regret minimizers.
While most theory about regret minimizers is developed un-
der the assumption that the domain D is convex and com-
pact, in this paper we will need to consider sets D that are
convex and closed, but unbounded (hence, not compact).

Incorporating Predictions
A recent trend in online learning has been concerned with
constructing oracles that can incorporate predictions of the
next loss vector `t in the decision making (Chiang et al.
2012; Rakhlin and Sridharan 2013a,b). Specifically, a pre-
dictive oracle differs from a regular (that is, non-predictive)
oracle for OLO in that the NEXTSTRATEGY function re-
ceives a prediction mt ∈ Rn of the next loss `t at all times
t. Conceptually, a “good” predictive regret minimizer should
guarantee a superior regret bound than a non-predictive re-
gret minimizer if mt ≈ `t at all times t. Algorithms ex-
ist that can guarantee this. For instance, it is always pos-
sible to construct an oracle that guarantees that RT =

O(1+
∑T
t=1 ‖`t−mt‖2), which implies that the regret stays

constant when mt is clairvoyant. In fact, even stronger re-
gret bounds can be attained: for example, Syrgkanis et al.



Algorithm 1: (Predictive) FTRL
1 L0 ← 0 ∈ Rn

2 function NEXTSTRATEGY(mt)
. Setmt = 0 for non-predictive version

3 return arg min
x̂∈D

{
〈Lt−1 +mt, x̂〉+

1

η
ϕ(x̂)

}
4 function OBSERVELOSS(`t)

5 Lt ← Lt−1 + `t

Algorithm 2: (Predictive) OMD
1 z0 ∈ D such that∇ϕ(z0) = 0

2 function NEXTSTRATEGY(mt)
. Setmt = 0 for non-predictive version

3 return arg min
x̂∈D

{
〈mt, x̂〉+

1

η
Dϕ(x̂ ‖zt−1)

}
4 function OBSERVELOSS(`t)

5 zt ← arg min
ẑ∈D

{
〈`t, ẑ〉+

1

η
Dϕ(ẑ ‖zt−1)

}

(2015) show that the sharper Regret bounded by Variation in
Utilities (RVU) condition can be attained, while Farina et al.
(2019a) focus on stable-predictivity.

FTRL, OMD, and their Predictive Variants
Follow-the-regularized-leader (FTRL) (Shalev-Shwartz and
Singer 2007) and online mirror descent (OMD) are the two
best known oracles for the online linear optimization prob-
lem. Their predictive variants are relatively new and can be
traced back to the works by Rakhlin and Sridharan (2013a)
and Syrgkanis et al. (2015). Since the original FTRL and
OMD algorithms correspond to predictive FTRL and pre-
dictive OMD when the prediction mt is set to the 0 vector
at all t, the implementation of FTRL in Algorithm 1 and
OMD in Algorithm 2 captures both algorithms. In both al-
gorithm, η > 0 is an arbitrary step size parameter, D ⊆ Rn
is a convex and closed set, and ϕ : D → R≥0 is a 1-
strongly convex differentiable regularizer (with respect to
some norm ‖ · ‖). The symbol Dϕ( ‖ ) used in OMD de-
notes the Bregman divergence associated with ϕ, defined as
Dϕ(x ‖ c) := ϕ(x)−ϕ(c)−〈∇ϕ(c),x−c〉 for allx, c ∈ D.

We state regret guarantees for (predictive) FTRL and (pre-
dictive) OMD in Proposition 1. Our statements are slightly
more general than those by Syrgkanis et al. (2015), in that
we (i) do not assume that the domain is a simplex, and (ii) do
not use quantities that might be unbounded in non-compact
domains D. A proof of the regret bounds is in Appendix A
of the full version of the paper1 for FTRL and Appendix B
for OMD.
Proposition 1. At all times T , the regret cumulated by (pre-
dictive) FTRL (Algorithm 1) and (predictive) OMD (Algo-
rithm 2) compared to any strategy x̂ ∈ D is bounded as

RT (x̂) ≤ ϕ(x̂)

η
+η

T∑
t=1

‖`t−mt‖2∗−
1

cη

T−1∑
t=1

‖xt+1−xt‖2,

where c = 4 for FTRL and c = 8 for OMD, and where ‖ · ‖∗
denotes the dual of the norm ‖ · ‖ with respect to which ϕ is
1-strongly convex.

Proposition 1 implies that, by appropriately setting the
step size parameter (for example, η = T−1/2), (predictive)
FTRL and (predictive) OMD guarantee RT (x̂) = O(T 1/2)
for all x̂. Hence, (predictive) FTRL and (predictive) OMD
are regret minimizers.

1The full version of this paper is at arxiv.org/abs/2007.14358.

3 Blackwell Approachability
Blackwell approachability (Blackwell 1956) generalizes the
problem of playing a repeated two-player game to games
whose utilites are vectors instead of scalars. In a Blackwell
approachability game, at all times t, two players interact in
this order: first, Player 1 selects an action xt ∈ X ; then,
Player 2 selects an action yt ∈ Y; finally, Player 1 incurs the
vector-valued payoff u(xt,yt) ∈ Rd, where u is a biaffine
function. The sets X ,Y of player actions are assumed to be
compact convex sets. Player 1’s objective is to guarantee that
the average payoff converges to some desired closed convex
target set S ⊆ Rd. Formally, given target set S ⊆ Rd, Player
1’s goal is to pick actions x1,x2, . . . ∈ X such that no mat-
ter the actions y1,y2, . . . ∈ Y played by Player 2,

min
ŝ∈S

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

→ 0 as T →∞. (1)

A central concept in the theory of Blackwell approacha-
bility is the following.

Definition 1 (Approachable halfspace, forcing function).
Let (X ,Y,u(·, ·), S) be a Blackwell approachability game
as described above and let H ⊆ Rd be a halfspace, that
is, a set of the form H = {x ∈ Rd : a>x ≤ b} for some
a ∈ Rd, b ∈ R. The halfspace H is said to be forceable if
there exists a strategy of Player 1 that guarantees that the
payoff is in H no matter the actions played by Player 2. In
symbols, H is forceable if there exists x∗ ∈ X such that for
all y ∈ Y , u(x∗,y) ∈ H . When this is the case, we call
action x∗ a forcing action for H .

Blackwell’s approachability theorem (Blackwell 1956)
states that goal (1) can be attained if and only if all halfs-
pacesH ⊇ S are forceable. Blackwell approachability has a
number of applications and connections to other problems in
the online learning and game theory literature (e.g., (Black-
well 1954; Foster 1999; Hart and Mas-Colell 2000)).

In this paper we leverage the Blackwell approachabil-
ity formalism to draw new connections between FTRL and
OMD with RM and RM+, respectively. We also intro-
duce predictive Blackwell approachability, and show that it
can be used to develop new state-of-the-art algorithms for
simplex domains and imperfect-information extensive-form
zero-sum games.



Algorithm 3: From OLO to (predictive) approachability
Data: D ⊆ Rn convex and closed, s.t. K := C◦ ∩ Bn2 ⊆ D ⊆ C◦

L online linear optimization algorithm for domain D
1 function NEXTSTRATEGY(vt)

. Set vt = 0 for non-predictive version

2 θt ← L.NEXTSTRATEGY(−vt)
3 return xt forcing action for Ht := {x : 〈θt),x〉 ≤ 0}

4 function RECEIVEPAYOFF(u(xt,yt))
5 L.OBSERVELOSS(−u(xt,yt))

4 From Online Linear Optimization to
Blackwell Approachability

Abernethy, Bartlett, and Hazan (2011) showed that it is al-
ways possible to convert a regret minimizer into an algo-
rithm for a Blackwell approachability game (that is, an al-
gorithm that chooses actions xt at all times t in such a way
that goal (1) holds no matter the actions y1,y2, . . . played
by the opponent).2

In this section, we slightly extend their constructive proof
by allowing more flexibility in the choice of the domain of
the regret minimizer. This extra flexibility will be needed
to show that RM and RM+ can be obtained directly from
FTRL and OMD, respectively.

We start from the case where the target set in the Black-
well approachability game is a closed convex cone C ⊆ Rn.
As Proposition 2 shows, Algorithm 3 provides a way of
playing the Blackwell approachability game that guarantees
that (1) is satisfied (the proof is in Appendix C in the full
version of the paper). In broad strokes, Algorithm 3 works
as follows (see also Figure 1): the regret minimizer has as
its decision space the polar cone to C (or a subset thereof),
and its decision is used as the normal vector in choosing
a halfspace to force. At time t, the algorithm plays a forc-
ing action xt for the halfspace Ht induced by the last deci-
sion θt output by the OLO oracle L. Then, L incurs the loss
−u(xt,yt), where u is the payoff function of the Blackwell
approachability game.
Proposition 2. Let (X ,Y,u(·, ·), C) be an approachability
game, where C ⊆ Rn is a closed convex cone, such that
each halfspace H ⊇ C is approachable (Definition 1). Let
K := C◦∩Bn2 , whereC◦ = {x ∈ Rn : 〈x,y〉 ≤ 0 ∀y ∈ C}
denotes the polar cone to C and Bn2 := {x ∈ Rn : ‖x‖2 ≤
1} is the unit ball. Finally, let L be an oracle for the OLO
problem (for example, the FTRL or OMD algorithm) whose
domain of decisions is any closed convex set D, such that
K ⊆ D ⊆ C◦. Then, at all times T , the distance between
the average payoff cumulated by Algorithm 3 and the target
cone C is upper bounded as

min
ŝ∈C

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

≤ 1

T
max
x̂∈K

RTL(x̂),

2Gordon’s Lagrangian Hedging (Gordon 2005, 2007) partially
overlaps with the construction by Abernethy, Bartlett, and Hazan
(2011). We did not investigate to what extent the predictive point
of view we adopted in the paper could apply to Gordon’s result.

C

C◦

Kθt

Ht

Figure 1: Pictorial depiction of Algorithm 3’s inner working:
at all times t, the algorithm plays a forcing action for the
halfspace Ht induced by the last decision output by L.

whereRTL(x̂) is the regret cumulated byL up to time T com-
pared to always playing x̂ ∈ K.

As K is compact, by virtue of L being a regret minimizer,
1/T ·maxx̂∈KRT (x̂)→ 0 as T →∞, Algorithm 3 satisfies
the Blackwell approachability goal (1). The fact that Propo-
sition 2 applies only to conic target sets does not limit its
applicability. Indeed, Abernethy, Bartlett, and Hazan (2011)
showed that any Blackwell approachability game with a
non-conic target set can be efficiently transformed to another
one with a conic target set. In this paper, we only need to fo-
cus on conic target sets.

The construction by Abernethy, Bartlett, and Hazan
(2011) coincides with Proposition 2 in the special case
where the domain D is set to D = K. In the next section,
we will need our added flexibility in the choice of D: in or-
der to establish the connection between RM+ and OMD, it
is necessary to set D = C◦ 6= K.

5 Connecting FTRL, OMD with RM, RM+

Constructing a regret minimizer for a simplex domain
∆n := {x ∈ R≥0 : ‖x‖1 = 1} can be reduced to con-
structing an algorithm for a particular Blackwell approach-
ability game Γ := (∆n,Rn,u(·, ·),Rn≤0) that we now de-
scribe (Hart and Mas-Colell 2000). For all i ∈ {1, . . . , n},
the i-th component of the vector-valued payoff function u
measures the change in regret incurred at time t, compared
to always playing the i-th vertex ei of the simplex. Formally,
u : ∆n × Rn → Rn is defined as

u(xt, `t) = 〈`t,xt〉1− `t, (2)
where 1 is the n-dimensional vector whose components are
all 1. It is known that Γ is such that the halfspace Ha :=
{x ∈ Rn : 〈x,a〉 ≤ 0} ⊇ Rn≤0 is forceable (Definition 1)
for all a ∈ Rn≥0. A forcing action forHa is given by g(a) :=

a/‖a‖1 ∈ ∆n when a 6= 0; when a = 0, any x ∈ ∆n is a
forcing action. The following is known.

Lemma 1. The regretRT (x̂) = 1
T

∑T
t=1〈`t,xt− x̂〉 cumu-

lated up to any time T by the decisions x1, . . . ,xT ∈ ∆n

compared to any x̂ ∈ ∆n is related to the distance of the
average Blackwell payoff from the target cone Rn≤0 as

1

T
RT (x̂) ≤ min

ŝ∈Rn
≤0

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

. (3)



Algorithm 4: (Predictive) regret matching
1 r0 ← 0 ∈ Rn, x0 ← 1/n ∈ ∆n

2 function NEXTSTRATEGY(mt)
. Setmt = 0 for non-predictive version

3 θt ← [rt−1 + 〈mt,xt−1〉1−mt]+

4 if θt 6= 0 return xt ← θt / ‖θt‖1
5 else return xt ← arbitrary point in ∆n

6 function OBSERVELOSS(`t)
7 rt ← rt−1 + 〈`t,xt〉1− `t

Algorithm 5: (Predictive) regret matching+

1 z0 ← 0 ∈ Rn, x0 ← 1/n ∈ ∆n

2 function NEXTSTRATEGY(mt)
. Setmt = 0 for non-predictive version

3 θt ← [zt−1 + 〈mt,xt−1〉1−mt]+

4 if θt 6= 0 return xt ← θt / ‖θt‖1
5 else return xt ← arbitrary point in ∆n

6 function OBSERVELOSS(`t)
7 zt ← [zt−1 + 〈`t,xt〉1− `t]+

So, a strategy for the Blackwell approachability game Γ is a
regret-minimizing strategy for the simplex domain ∆n.

When the approachability game Γ is solved by means of
the constructive proof of Blackwell’s approachability theo-
rem (Blackwell 1956), one recovers a particular regret mini-
mizer for the domain ∆n known as the regret matching (RM)
algorithm (Hart and Mas-Colell 2000). The same cannot
be said for the closely related RM+ algorithm (Tammelin
2014), which converges significantly faster in practice than
RM, as has been reported many times.

We now uncover deep and surprising connections be-
tween RM, RM+ and the OLO algorithms FTRL, OMD by
solving Γ using Algorithm 3. Let Lftrl

η be the FTRL algo-
rithm instantiated over the conic domain D = Rn≥0 with the
1-strongly convex regularizer ϕ(x) = 1/2 ‖x‖22 and an arbi-
trary step size parameter η. Similarly, let Lomd

η be the OMD
algorithm instantiated over the same domain D = Rn≥0

with the same convex regularizer ϕ(x) = 1/2 ‖x‖22. Since
Rn≥0 = (Rn≤0)◦, D satisfies the requirements of Proposi-
tion 2. So, Lftrl

η and Lomd
η can be plugged into Algorithm 3 to

compute a strategy for the Blackwell approachability game
Γ. When that is done, the following can be shown (all proofs
for this section are in Appendix D in the full version of the
paper).

Theorem 1 (FTRL reduces to RM). For all η > 0, when Al-
gorithm 3 is set up with D = Rn≥0 and regret minimizer Lftrl

η
to play Γ, it produces the same iterates as the RM algorithm.

Theorem 2 (OMD reduces to RM+). For all η > 0, when
Algorithm 3 is set up with D = Rn≥0 and regret minimizer
Lomd
η to play Γ, it produces the same iterates as the RM+

algorithm.

Pseudocode for RM and RM+ is given in Algorithms 4
and 5 (whenmt = 0). In hindsight, the equivalence between
RM and RM+ with FTRL and OMD is clear. The computa-
tion of θt on Line 3 in both PRM and PRM+ corresponds
to the closed-form solution for the minimization problems
of Line 4 in FTRL and Line 3 in OMD, respectively, in ac-
cordance with Line 2 of Algorithm 3. Next, Lines 4 and 5 in
both PRM and PRM+ compute the forcing action required
in Line 3 of Algorithm 3 using the function g defined above.
Finally, in accordance with Line 6 of Algorithm 3, Line 7 of
PRM corresponds to Line 6 of FTRL, and Line 7 of PRM+

to Line 5 of OMD.

6 Predictive Blackwell Approachability, and
Predictive RM and RM+

It is natural to wonder whether it is possible to devise an
algorithm for Blackwell approachability games that is able
to guarantee faster convergence to the target set when good
predictions of the next vector payoff are available. We call
this setup predictive Blackwell approachability. We answer
the question in the positive by leveraging Proposition 2.
Since the loss incurred by the regret minimizer is `t :=
−u(xt,yt) (Line 5 in Algorithm 3), any prediction vt of
the payoff u(xt,yt) is naturally a prediction about the next
loss incurred by the underlying regret minimizer L used in
Algorithm 3. Hence, as long as the prediction is propagated
as in Line 2 in Algorithm 3, Proposition 2 holds verbatim. In
particular, we prove the following. All proofs for this section
are in Appendix E in the full version of the paper.
Proposition 3. Let (X ,Y,u(·, ·), S) be a Blackwell ap-
proachability game, where every halfspace H ⊇ S is ap-
proachable (Definition 1). For all T , given predictions vt
of the payoff vectors, there exist algorithms for playing the
game (that is, pick xt ∈ X at all t) that guarantee

min
ŝ∈S

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

≤ 1√
T

(
1+

2

T

T∑
t=1

‖u(xt,yt)−vt‖22

)
.

We now focus on how predictive Blackwell approachabil-
ity ties into our discussion of RM and RM+. In Section 5 we
showed that when Algorithm 3 is used in conjunction with
FTRL and OMD on the Blackwell approachability game Γ
of Section 5, the iterates coincide with those of RM and
RM+, respectively. In the rest of this section we investi-
gate the use of predictive FTRL and predictive OMD in that
framework. Specifically, we use predictive FTRL and pred-
itictive OMD as the regret minimizers to solve the Blackwell
approachability game introduced in Section 5, and coin the
resulting predictive regret minimization algorithms for sim-
plex domains predictive regret matching (PRM) and predic-
tive regret matching+ (PRM+), respectively. Ideally, starting
from the prediction mt of the next loss, we would want the
prediction vt of the next utility in the equivalent Blackwell
game Γ (Section 5) to be vt = 〈mt,xt〉1−mt to maintain
symmetry with (2). However, vt is computed before xt is
computed, and xt depends on vt, so the previous expression
requires the computation of a fixed point. To sidestep this
issue, we let

vt := 〈mt,xt−1〉1−mt



instead. We give pseudocode for PRM and PRM+ as Algo-
rithms 4 and 5. In the rest of this section, we discuss formal
guarantees for PRM and PRM+.
Theorem 3 (Correctness of PRM, PRM+). Let Lftrl*

η and
Lomd*
η denote the predictive FTRL and predictive OMD algo-

rithms instantiated with the same choice of regularizer and
domain as in Section 5, and predictions vt as defined above
for the Blackwell approachability game Γ. For all η > 0,
when Algorithm 3 is set up with D = Rn≥0, the regret min-
imizer Lftrl*

η (resp., Lomd*
η ) to play Γ, it produces the same

iterates as the PRM (resp., PRM+) algorithm. Furthermore,
PRM and PRM+ are regret minimizer for the domain ∆n,
and at all times T satisfy the regret bound

RT (x̂) ≤
√

2

(
T∑
t=1

‖u(xt, `t)− vt‖22

)1/2
.

At a high level, the main insight behind the regret bound of
Theorem 3 is to combine Proposition 2 with the guarantees
of predictive FTRL and predictive OMD (Proposition 1). In
particular, combining (3) with Proposition 2, we find that the
regret RT cumulated by the strategies x1, . . . ,xT produced
up to time T by PRM and PRM+ satisfies

1

T
max
x̂∈∆n

RT (x̂) ≤ 1

T
max

x̂∈Rn
≥0
∩Bn

2

RTL(x̂), (4)

where L = Lftrl*
η for PRM and L = Lomd*

η for PRM+. Since
the domain of the maximization on the right hand side is a
subset of the domain D = Rn≥0 of L, the bound in Proposi-
tion 1 holds, and in particular

max
x̂∈∆n

RT (x̂)≤ max
x̂∈Rn

≥0
∩Bn

2

{
‖x̂‖22
2η

+η

T∑
t=1

‖u(xt, `t)−vt‖22

}

≤

(
1

2η
+ η

T∑
t=1

‖u(xt, `t)− vt‖22

)
, (5)

where in the first inequality we used the fact that ϕ(x̂) =
‖x̂‖22/2 by construction and in the second inequality we
used the definition of unit ball Bn2 . Finally, using the fact
that the iterates produced by PRM and PRM+ do not de-
pend on the chosen step size η > 0 (first part of Theorem 3),
we conclude that (5) must hold true for any η > 0, and so in
particular also the η > 0 that minimizes the right hand side:

max
x̂∈∆n

RT (x̂) ≤ inf
η>0

{
1

2η
+ η

T∑
t=1

‖u(xt, `t)− vt‖22

}

=
√

2

(
T∑
t=1

‖u(xt, `t)− v2‖22

)1/2
.

7 Experiments
We conduct experiments on solving two-player zero-sum
games. As mentioned previously, for EFGs the CFR frame-
work is used for decomposing regrets into local regret mini-
mization problems at each simplex corresponding to a de-
cision point in the game (Zinkevich et al. 2007; Farina,

Kroer, and Sandholm 2019a), and we do the same. How-
ever, as the regret minimizer for each local decision point,
we use PRM+ instead of RM. In addition, we apply two
heuristics that usually lead to better practical performance:
we use quadratic averaging of the strategy iterates, that is,
we average the sequence-form strategies x1, . . . ,xT using
the formula 6

T (T+1)(2T+1)

∑T
t=1 t

2xt, and we use the alter-
nating updates scheme. We call this algorithm PCFR+. We
compare PCFR+ to the prior state-of-the-art CFR variants:
CFR+ (Tammelin 2014), Discounted CFR (DCFR) with its
recommended parameters (Brown and Sandholm 2019a),
and Linear CFR (LCFR) (Brown and Sandholm 2019a).

We conduct the experiments on common benchmark
games. We show results on seven games in the main body of
the paper. An additional 11 games are shown in the appendix
of the full version of the paper. The experiments shown in
the main body are representative of those in the appendix.
A description of all the games is in Appendix G in the full
version of the paper, and the results are shown in Figure 2.
The x-axis shows the number of iterations of each algorithm.
Every algorithm pays almost exactly the same cost per itera-
tion, since the predictions require only one additional thresh-
olding step in PCFR+. For each game, the top plot shows on
the y-axis the Nash gap, while the bottom plot shows the
accuracy in our predictions of the regret vector, measured as
the average `2 norm of the difference between the actual loss
`t received and its prediction mt across all regret minimiz-
ers at all decision points in the game. For all non-predictive
algorithms (CFR+, LCFR, and DCFR), we let mt = 0. For
our predictive algorithm, we set mt = `t−1 at all times
t ≥ 2 and m1 = 0. Both y-axes are in log scale. On Bat-
tleship and Pursuit-evasion, PCFR+ is faster than the other
algorithms by 3-6 orders of magnitude already after 500 it-
erations, and around 10 orders of magnitude after 2000 it-
erations. On Goofspiel, PCFR+ is also significantly faster
than the other algorithms, by 0.5-1 order of magnitude. Fi-
nally, in the River endgame, our only poker experiment here,
PCFR+ is slightly faster than CFR+, but slower than DCFR.
Finally, PRM+ converges very rapidly on the smallmatrix
game, a 2-by-2 matrix game where CFR+ and other RM-
based methods converge at a rate slower than T−1 (Farina,
Kroer, and Sandholm 2019b). Across all non-poker games in
the appendix, we also find that PCFR+ beats the other algo-
rithms, often by several orders of magnitude. We conclude
that PCFR+ seems to be the fastest method for solving non-
poker EFGs. The only exception to the non-poker-game em-
pirical rule is Liar’s Dice (game [B]), where our predictive
method performs comparably to DCFR. In the appendix, we
also test CFR+ with quadratic averaging (as opposed to the
linear averaging that CFR+ normally uses). This does not
change any of our conclusions, except that for Liar’s Dice,
CFR+ performs comparably to DCFR and PCFR+ when us-
ing quadratic averaging (in fact, quadratic averaging hurts
CFR+ in every game except poker and Liar’s Dice).

We tested on three poker games, the River endgame
shown here (which is a real endgame encountered by the Li-
bratus AI (Brown and Sandholm 2017) in the man-machine
“Brains vs. Artificial Intelligence: Upping the Ante” com-
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[G] Leduc poker (13 ranks) Dimension of the games

Decision
points Actions Leaves

[A] 4.4×106 5.3×106 1.7×106
[B] 2.5×104 4.9×104 1.5×105
[C] 1.1×106 3.2×106 3.5×106
[D] 4.4×104 1.3×105 5.4×107
[E] 1.2×104 6.9×104 1.2×105
[F] 2 4 4
[G] 5.1×103 1.2×104 9.9×104

PCFR+ CFR+

LCFR DCFR

Figure 2: Performance of PCFR+, CFR+, DCFR, and LCFR on five EFGs. In all plots, the x axis is the number of iterations of
each algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale), the bottom plot shows and
the average prediction error (on a log scale).

petition), as well as Kuhn and Leduc poker in the appendix.
On Kuhn poker, PCFR+ is extremely fast and the fastest of
the algorithms. That game is known to be significantly easier
than deeper EFGs for predictive algorithms (Farina, Kroer,
and Sandholm 2019b). On Leduc poker as well as the River
endgame, the predictions in PCFR+ do not seem to help as
much as in other games. On the River endgame, the perfor-
mance is essentially the same as that of CFR+. On Leduc
poker, it leads to a small speedup over CFR+. On both of
those games, DCFR is fastest. In contrast, DCFR actually
performs worse than CFR+ in our non-poker experiments,
though it is sometimes on par with CFR+. In the appendix,
where we try quadratic averaging in CFR+, we find that for
poker games this does speed up CFR+, and allows it to be
slightly faster than PCFR+ on the River endgame and Leduc
poker. We conclude that PCFR+ is much faster than CFR+

and DCFR on non-poker games, whereas on poker games
DCFR is the fastest.

The convergence rate of PCFR+ is closely related to
how good the predictions mt of `t are. On Battleship and
Pursuit-evasion, the predictions become extremely accurate
very rapidly, and PCFR+ converges at an extremely fast rate.
On Goofspiel, the predictions are fairly accurate (the error is
of the order 10−5) and PCFR+ is still significantly faster
than the other algorithms. On the River endgame, the aver-
age prediction error is of the order 10−3, and PCFR+ per-
forms on par with CFR+, and slower than DCFR. Similar

trends prevail in the experiments in the appendix. Additional
experimental insights are described in the appendix.

8 Conclusions and Future Research
We extended Abernethy, Bartlett, and Hazan (2011)’s re-
duction of Blackwell approachability to regret minimiza-
tion beyond the compact setting. This extended reduction al-
lowed us to show that FTRL applied to the decision of which
halfspace to force in Blackwell approachability is equiva-
lent to the regret matching algorithm. OMD applied to the
same problem turned out to be equivalent to RM+. Then, we
showed that the predictive variants of FTRL and OMD yield
predictive algorithms for Blackwell approachability, as well
as predictive variants of RM and RM+. Combining PRM+

with CFR, we introduced the PCFR+ algorithm for solving
EFGs. Experiments across many common benchmark games
showed that PCFR+ outperforms the prior state-of-the-art
algorithms on non-poker games by orders of magnitude.

This work also opens future directions. Can PRM+ guar-
antee T−1 convergence on matrix games like optimistic
FTRL and OMD, or do the less stable updates prevent
that? Can one develop a predictive variant of DCFR, which
is faster on poker domains? Can one combine DCFR and
PCFR+, so DCFR would be faster initially but PCFR+

would overtake? If the cross-over point could be approxi-
mated, this might yield a best-of-both-worlds algorithm.
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Additional Bibliographic Remarks
1. Gordon’s Lagrangian Hedging framework (Gordon 2005, 2007) partially overlaps with the construction by Abernethy,

Bartlett, and Hazan (2011) that we used in the paper. It appears that Abernethy et al. were not aware of Gordon’s results. We
did not investigate to what extent the predictive point of view we adopted in the paper could apply to Gordon’s result.

2. In his PhD thesis, Burch (2018) mentions an algorithm that he coins “optimistic RM+”. No theory is provided, and unfortu-
nately Burch never defined the algorithm formally, so it is not clear whether his algorithm is the same as PRM+ as defined
in Algorithm 5 in our paper. Brown, Kroer, and Sandholm (2017) gave an interpretation of optimistic RM+ by Burch that
would imply it is different from PRM+. We indend to check with Burch directly for the final version of this paper.

A Analysis of (Predictive) FTRL
In the proof of Proposition 5 we will use the following technical lemma (see, e.g, (Farina, Kroer, and Sandholm 2019b)).

Lemma 2. Let ϕ : D → R≥0 be a 1-strongly convex differentiable regularizer with respect to some norm ‖ · ‖, and let ‖ · ‖∗ be
the dual norm to ‖ · ‖. Finally, let ψ : Rn → D be the function

ψ : g 7→ arg min
x̂∈D

{
〈g, x̂〉+

1

η
ϕ(x̂)

}
.

Then, ψ is η-Lipschitz continuous with respect to the dual norm, in the sense that

‖ψ(g)−ψ(g′)‖ ≤ η ‖g − g′‖∗ ∀g, g′ ∈ Rn.

Proposition 4. Let ϕ : D → R≥0 be a 1-strongly regularizer with respect to some norm ‖ · ‖, and let ‖ · ‖∗ be the dual norm to
‖ · ‖. For all x̂ ∈ D, all η > 0, and all times T , the regret cumulated by (predictive) FTRL (Algorithm 1) compared to any fixed
strategy x̂ ∈ D is bounded as

RT (x̂) ≤ ϕ(x̂)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

4η

T−1∑
t=1

‖xt+1 − xt‖2. (6)

Proof. We combine several techniques and insights from the original works of Rakhlin and Sridharan (2013a) and Syrgkanis
et al. (2015). Let ψ : Rn → D be the function that maps

ψ : g 7→ arg min
x̂∈D

{
〈g, x̂〉+

1

η
ϕ(x̂)

}
.

With that notation, at all times t, predictive FTRL outputs the decision xt = ψ(Lt−1 +mt), where Lt−1 =
∑t−1
τ=1 `

τ . For the
purpose of this proof, we also introduce the sequence wt := ψ(Lt) for t = 1, 2, . . . . For any x̂ ∈ D,

RT (x̂) =

T∑
t=1

〈`t,xt − x̂〉 =

T∑
t=1

〈mt,xt −wt〉+ 〈`t,wt − x̂〉︸ ︷︷ ︸
A

+

T∑
t=1

〈`t −mt,xt −wt〉︸ ︷︷ ︸
B

We now bound each of the three terms on the right-hand side:
A A critical observation to bound A is the following. Since ψ(g) is a minimizer of 〈g, x̂〉 + 1

ηϕ(x̂), then by the fist-order
optimality conditions, 〈

g +
1

η
∇ϕ(ψ(g)), ξ −ψ(g)

〉
≥ 0 ∀g ∈ Rn, ξ ∈ D. (7)

Using the hypothesis on the 1-strongly convexity of ϕ and applying (7), for all ξ we obtain

1

η
ϕ(ξ) + 〈g, ξ〉 ≥ 1

η
ϕ(ψ(g)) + 〈g,ψ(g)〉+

〈
g +

1

η
∇ϕ(ψ(g)), ξ −ψ(g)

〉
+

1

2η
‖ξ −ψ(g)‖2

≥ 1

η
ϕ(ψ(g)) + 〈g,ψ(g)〉+

1

2η
‖ξ −ψ(g)‖2. (8)

By applying (8) to the two choices (g, ξ) = (Lt−1,xt), (Lt−1 +mt,wt), respectively, we have the two inequalities

1

η
ϕ(xt) + 〈Lt−1,xt〉 ≥ 1

η
ϕ(wt−1) + 〈Lt−1,wt−1〉+

1

2η
‖xt −wt−1‖2



1

η
ϕ(wt) + 〈Lt−1 +mt,wt〉 ≥ 1

η
ϕ(xt) + 〈Lt−1 +mt,xt〉+

1

2η
‖wt − xt‖2.

Summing the two above inequalities and rearranging terms yields

〈mt,xt −wt〉 ≤ 1

η
(ϕ(wt)− ϕ(wt−1)) + 〈Lt−1,wt −wt−1〉 − 1

2η

(
‖xt −wt−1‖2 + ‖wt − xt‖2

)
.

Summing over t = 1, . . . , T and simplifying telescopic terms,

T∑
t=1

〈mt,xt −wt〉 ≤ 1

η
(ϕ(wT )− ϕ(w0)) +

T∑
t=1

〈Lt−1,wt −wt−1〉 −
T∑
t=1

1

2η

(
‖xt −wt−1‖2 + ‖wt − xt‖2

)
≤ 1

η
(ϕ(wT )− ϕ(w0)) +

T∑
t=1

〈Lt−1,wt −wt−1〉 −
T−1∑
t=1

1

2η

(
‖xt+1 −wt‖2 + ‖wt − xt‖2

)
≤ 1

η
(ϕ(wT )− ϕ(w0)) +

T∑
t=1

〈Lt−1,wt −wt−1〉 −
T−1∑
t=1

1

4η
‖xt+1 − xt‖2,

where the second inequality follows by removing a term from the last parenthesis and rearranging, and the third from the
parallelogram inequality ‖a‖2 + ‖b‖2 ≥ 1

2‖a+ b‖2 valid for all choices of vectors a, b and norm ‖ · ‖.
In order to recognize A on the left-hand side, we add the quantity

∑T
t=1〈`t,wt − x̂〉 on both sides, and obtain

A ≤ 1

η
(ϕ(wT )− ϕ(w0)) +

T∑
t=1

(
〈`t,wt − x̂〉+ 〈Lt−1,wt −wt−1〉

)
− 1

4η

T−1∑
t=1

‖xt+1 − xt‖2

=
1

η
(ϕ(wT )− ϕ(w0)) +

T∑
t=1

(
〈Lt,wt〉 − 〈Lt−1,wt−1〉 − 〈`t, x̂〉

)
− 1

4η

T−1∑
t=1

‖xt+1 − xt‖2

=
1

η
(ϕ(wT )− ϕ(w0)) + 〈LT ,wT − x̂〉 − 1

4η

T−1∑
t=1

‖xt+1 − xt‖2, (9)

where we simplified the telescopic sum
∑T
t=1〈Lt,wt〉 − 〈Lt−1,wt−1〉 = 〈LT ,wT 〉 in the last step. Finally, using

Equation (8) with g = LT , ξ = x̂, we can write

1

η
ϕ(x̂) + 〈LT , x̂〉 ≥ 1

η
ϕ(wT ) + 〈LT ,wT 〉 =⇒ 1

η
ϕ(wT ) + 〈LT ,wT − x̂〉 ≤ 1

η
ϕ(x̂),

and substituting the last expression into (9), we obtain

A ≤ 1

η
(ϕ(x̂)− ϕ(w0))−

T−1∑
t=1

1

4η
‖xt+1 − xt‖2 ≤ ϕ(x̂)

η
− 1

4η

T−1∑
t=1

‖xt+1 − xt‖2. (10)

B By applying the generalized Cauchy-Schwarz inequality and Lemma 2,

〈`t −mt,xt −wt〉 ≤ ‖`t −mt‖∗ ‖xt −wt‖ ≤ η‖`t −mt‖2∗.

Hence,

B =

T∑
t=1

〈`t −mt,xt −wt〉 ≤ η
T∑
t=1

‖`t −mt‖2∗. (11)

Finally, summing the bounds for A (10) and for B (11), we obtain the statement.

B Analysis of (Predictive) OMD
In the proof of Proposition 5 we will use the two following technical lemmas.

Lemma 3. For any a, b ∈ Rn and ρ > 0, it holds that 〈a, b〉 ≤ ρ

2
‖a‖2∗ +

1

2ρ
‖b‖2.



Proof. By the arithmetic mean-geometric mean inequality, we have

ρ

2
‖a‖2∗ +

1

2ρ
‖b‖2 =

1

2

(
ρ‖a‖2∗ +

1

ρ
‖b‖2

)
≥
√
‖a‖2∗ · ‖b‖2 = ‖a‖∗ · ‖b‖ ≥ 〈a, b〉,

where we used the generalized Cauchy-Schwarz inequality in the last step.

Lemma 4. Let D ⊆ Rd be closed and convex, let g ∈ Rn, c ∈ D, and let ϕ : D → R≥0 be a 1-strongly convex differentiable
regularizer with respect to some norm ‖ · ‖, and let ‖ · ‖∗ be the dual norm to ‖ · ‖. Then,

a∗ := arg min
â∈D

{
〈g, â〉+

1

η
Dϕ(â ‖ c)

}
is well defined (that is, the minimizer exists and is unique), and for all â ∈ D satisfies the inequality

〈g,a∗ − â〉 ≤ 1

η

(
Dϕ(â ‖ c)−Dϕ(â ‖a∗)−Dϕ(a∗ ‖ c)

)
.

Proof. The necessary first-order optimality conditions for the argmin problem in the statement is〈
∇a
[
〈g,a〉+

1

η
Dϕ(a ‖ c)

]
(a∗), â− a∗

〉
≥ 0 ∀ â ∈ D.

Expanding the gradient, we have that for all â ∈ D〈
g +

1

η

(
∇ϕ(a∗)−∇ϕ(c)

)
, â− a∗

〉
≥ 0 ⇐⇒ 〈g,a∗ − â〉 ≤ 1

η

〈
∇ϕ(a∗)−∇ϕ(c), â− a∗

〉
.

Finally, noting that 〈
∇ϕ(a∗)−∇ϕ(c), â− a∗

〉
=
(
ϕ(â)− ϕ(c)− 〈∇ϕ(c), â− c〉

)
−
(
ϕ(â)− ϕ(a∗)− 〈∇ϕ(a∗), â− a∗〉

)
−
(
ϕ(a∗)− ϕ(c)− 〈∇ϕ(c),a∗ − c〉

)
= Dϕ(â ‖ c)−Dϕ(â ‖a∗)−Dϕ(a∗ ‖ c),

yields the statement.

Proposition 5. Let ϕ : D → R≥0 be a 1-strongly convex differentiable regularizer with respect to some norm ‖ ·‖, and let ‖ ·‖∗
be the dual norm to ‖ · ‖. For all x̂ ∈ D, all η > 0, and all times T , the regret cumulated by (predictive) OMD (Algorithm 2)
compared to any fixed strategy x̂ ∈ D is bounded as

RT (x̂) ≤ Dϕ(x̂ ‖ z0)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

8η

T−1∑
t=1

‖xt+1 − xt‖2. (12)

Proof. We combine several techniques and insights from the original works of Rakhlin and Sridharan (2013a) and Syrgkanis
et al. (2015). For any x̂ ∈ D,

RT (x̂) =

T∑
t=1

〈`t,xt − x̂〉 =

T∑
t=1

(
〈`t −mt,xt − zt〉︸ ︷︷ ︸

A

+ 〈mt,xt − zt〉︸ ︷︷ ︸
B

+ 〈`t, zt − x̂〉︸ ︷︷ ︸
C

)

We now bound each of the three terms on the right-hand side:
A We use Lemma 3 with ρ = 2η to bound the first term:

〈`t −mt,xt − zt〉 ≤ η‖`t −mt‖2∗ +
1

4η
‖xt − zt‖2.

B C In order to bound these terms, we use Lemma 4:

〈mt,xt − zt〉 ≤ 1

η

(
Dϕ(zt ‖ zt−1)−Dϕ(zt ‖xt)−Dϕ(xt ‖ zt−1)

)
〈`t, zt − x̂〉 ≤ 1

η

(
Dϕ(x̂ ‖ zt−1)−Dϕ(x̂ ‖ zt)−Dϕ(zt ‖ zt−1)

)



Hence, combining all bounds, we have that for any x̂ ∈ D,

RT (x̂) ≤
T∑
t=1

(
η‖`t −mt‖2∗ +

1

4η
‖xt − zt‖2

+
1

η

(
Dϕ(x̂ ‖ zt−1)−Dϕ(x̂ ‖ zt)−Dϕ(zt ‖xt)−Dϕ(xt ‖ zt−1)

))
≤

T∑
t=1

(
η‖`t −mt‖2∗ +

1

4η
‖xt − zt‖2 +

1

η

(
Dϕ(x̂ ‖ zt−1)−Dϕ(x̂ ‖ zt)

)
− 1

2η

(
‖xt − zt‖2 + ‖xt − zt−1‖2

))
=

T∑
t=1

(
η‖`t −mt‖2∗ −

1

4η
‖xt − zt‖2 − 1

2η
‖xt − zt−1‖2 +

1

η

(
Dϕ(x̂ ‖ zt−1)−Dϕ(x̂ ‖ zt)

))

≤
T∑
t=1

(
η‖`t −mt‖2∗ −

1

4η
‖xt − zt‖2 − 1

4η
‖xt − zt−1‖2 +

1

η

(
Dϕ(x̂ ‖ zt−1)−Dϕ(x̂ ‖ zt)

))

where we used the fact that Dϕ(a ‖ b) ≥ 1
2‖a − b‖

2 for all a, b ∈ D (because ϕ is 1-strongly convex by hypothesis) in the
second inequality. Since the differences of divergences on the right-hand side are telescopic, we further obtain

RT (x̂) ≤ Dϕ(x̂ ‖ z0)−Dϕ(x̂ ‖ zt)
η

+ η

T∑
t=1

‖`t −mt‖2∗ −
1

4η

T∑
t=1

‖xt − zt‖2 − 1

4η

T∑
t=1

‖xt − zt−1‖2

≤ Dϕ(x̂ ‖ z0)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

4η

T∑
t=1

‖xt − zt‖2 − 1

4η

T∑
t=1

‖xt − zt−1‖2

=
Dϕ(x̂ ‖ z0)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

4η

T∑
t=1

‖xt − zt‖2 − 1

4η

T−1∑
t=0

‖xt+1 − zt‖2

≤ Dϕ(x̂ ‖ z0)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

4η

T−1∑
t=1

‖xt − zt‖2 − 1

4η

T−1∑
t=1

‖xt+1 − zt‖2

=
Dϕ(x̂ ‖ z0)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

4η

T−1∑
t=1

(
‖xt − zt‖2 + ‖xt+1 − zt‖2

)
,

where we used the nonnegativity of divergences in the second inequality, and some trivial manipulation of summation indices
in the later steps. Finally, we use the triangle inequality for the norm ‖ · ‖ to conclude that at all t = 1, . . . , T − 1

‖xt − zt‖2 + ‖xt+1 − zt‖2 ≥ 1

2
‖xt+1 − xt‖2,

and hence for all x̂ ∈ D

RT (x̂) ≤ Dϕ(x̂ ‖ z0)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

8η

T−1∑
t=1

‖xt+1 − xt‖2.

When∇ϕ(z0) = 0 as in Line 1 in Algorithm 2, Dϕ(x̂ ‖ z0) ≤ ϕ(x̂) and so Proposition 5 becomes

Corollary 1. For all x̂ ∈ D, all η > 0, and all times T , the regret cumulated by (predictive) OMD (Algorithm 2) compared to
any fixed strategy x̂ ∈ D is bounded as

RT (x̂) ≤ ϕ(x̂)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

8η

T−1∑
t=1

‖xt+1 − xt‖2. (13)



C Online Linear Optimization to Approachability
Proposition 2. Let (X ,Y,u(·, ·), C) be an approachability game, where C ⊆ Rn is a closed convex cone, such that each
halfspace H ⊇ C is approachable (Definition 1). Let K := C◦ ∩ Bn2 , where C◦ = {x ∈ Rn : 〈x,y〉 ≤ 0 ∀y ∈ C} denotes
the polar cone to C and Bn2 := {x ∈ Rn : ‖x‖2 ≤ 1} is the unit ball. Finally, let L be an oracle for the OLO problem (for
example, the FTRL or OMD algorithm) whose domain of decisions is any closed convex set D, such that K ⊆ D ⊆ C◦. Then,
at all times T , the distance between the average payoff cumulated by Algorithm 3 and the target cone C is upper bounded as

min
ŝ∈C

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

≤ 1

T
max
x̂∈K

RTL(x̂),

where RTL(x̂) is the regret cumulated by L up to time T compared to always playing x̂ ∈ K.

Proof. Let K := C◦ ∩ Bn2 . As proved by Abernethy, Bartlett, and Hazan (2011), the distance from the generic point z to the
convex cone C can be computed as

min
ŝ∈C
‖ŝ− z‖2 = max

θ̂∈K
〈θ̂, z〉.

Hence,

min
ŝ∈C

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

= max
θ̂∈K

〈
θ̂,

1

T

T∑
t=1

u(xt,yt)

〉

= − 1

T

T∑
t=1

〈θt, `t〉+
1

T
max
θ̂∈K

{
T∑
t=1

〈`t,θt − θ̂〉

}
(14)

= − 1

T

T∑
t=1

〈θt, `t〉+
1

T
max
θ̂∈K

R(θ̂) (15)

where the second step uses `t = −u(xt,yt). Since θt ∈ D ⊆ C◦, the halfspace Ht := {z : 〈θt, z〉 ≤ 0} contains C at all
times t. Furthermore, by construction xt forces Ht, and so 〈θt, `t〉 = −〈θt,u(xt,yt)〉 ≥ 0, and therefore

− 1

T

T∑
t=1

〈θt, `t〉 ≤ 0. (16)

Plugging (16) into (15) yields the statement.

D Connections between FTRL, OMD and RM, RM+

Lemma 1. The regretRT (x̂) = 1
T

∑T
t=1〈`t,xt− x̂〉 cumulated up to any time T by the decisions x1, . . . ,xT ∈ ∆n compared

to any x̂ ∈ ∆n is related to the distance of the average Blackwell payoff from the target cone Rn≤0 as

1

T
RT (x̂) ≤ min

ŝ∈Rn
≤0

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

. (3)

So, a strategy for the Blackwell approachability game Γ is a regret-minimizing strategy for the simplex domain ∆n.

Proof. The regret RT (x̂) cumulated by PRM and PRM+ satisfies

1

T
RT (x̂) =

1

T

T∑
t=1

(
〈`t,xt〉 − 〈`t, x̂〉

)
=

T∑
t=1

(
〈`t,xt〉〈1, x̂〉 − 〈`t, x̂〉

)
=

〈
1

T

T∑
t=1

〈`t,xt〉1− `t, x̂

〉
=

〈
1

T

T∑
t=1

u(xt, `t), x̂

〉

= min
ŝ∈Rn

≤0

〈
−ŝ+

1

T

T∑
t=1

u(xt, `t), x̂

〉
, (17)



where we used the fact that x̂ ∈ ∆n in the second equality, and the fact that minŝ∈Rn
≤0
〈−ŝ, x̂〉 = 0 since x̂ ≥ 0. Applying the

Cauchy-Schwarz inequality to the right-hand side of (22), we obtain

1

T
RT (x̂) ≤ min

ŝ∈Rn
≤0

∥∥∥∥∥−ŝ+
1

T

T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

‖x̂‖2.

So, using the fact that ‖x̂‖2 ≤ 1 for any x̂ ∈ ∆n

1

T
RT (x̂) ≤ min

ŝ∈Rn
≤0

∥∥∥∥∥−ŝ+
1

T

T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

as we wanted to show.

Theorem 1 (FTRL reduces to RM). For all η > 0, when Algorithm 3 is set up with D = Rn≥0 and regret minimizer Lftrl
η to play

Γ, it produces the same iterates as the RM algorithm.

Proof. Given the definition of Γ and Algorithm 3, at all times t,Lftrl
η observes loss−u(xt, `t), whereu(xt, `t) := 〈`t,xt〉1−`t

is the vector-valued payoff in Γ and measures the increase of regret at time t relative to each vertex of the simplex. For the
specific choice of domain D = Rn≥0 and regularizer ϕ(x) = 1

2‖x‖
2
2, the computation of the next iterate (Line 3 in non-

predictive FTRL, Algorithm 1) reduces to

θt = arg min
x̂∈Rn

≥0

{〈
−

T∑
t=1

u(xt, `t), x̂

〉
+

1

2η
‖x̂‖22

}

= arg min
x̂∈Rn

≥0

{〈
−2η

T∑
t=1

u(xt, `t), x̂

〉
+ ‖x̂‖22

}

= arg min
x̂∈Rn

≥0

∥∥∥∥∥x̂− η
T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

2

=

[
η

T∑
t=1

u(xt, `t)

]+

= η

[
T∑
t=1

u(xt, `t)

]+

.

Now, the value of η > 0 does not affect the forcing action that needs to be played on Line 3 of Algorithm 3. Indeed, whenever
θt 6= 0, g(θt) = θt/‖θt‖1, so η cancels out in the fraction and at all t,

xt =

[∑T
t=1 u(xt, `t)

]+∥∥∥∥[∑T
t=1 u(xt, `t)

]+∥∥∥∥
1

.

This is exactly the strategy output by RM.

Theorem 2 (OMD reduces to RM+). For all η > 0, when Algorithm 3 is set up with D= Rn≥0 and regret minimizer Lomd
η to

play Γ, it produces the same iterates as the RM+ algorithm.

Proof. Given the definition of Γ and Algorithm 3, at all times t, Lomd
η observes loss−u(xt, `t), where u(xt, `t) := 〈`t,xt〉1−

`t is the vector-valued payoff in Γ and measures the increase of regret at time t relative to each vertex of the simplex. In
the non-predictive version of OMD mt = 0, Line 3 in Algorithm 2 is equivalent to arg minDϕ(x̂ ‖ zt−1) = zt−1. Hence,
for the specific choice of domain D = Rn≥0 and regularizer ϕ(x) = 1

2‖x‖
2
2, the computation of the next iterate (Line 5 in

non-predictive OMD, Algorithm 2) reduces to

θt = zt−1 = arg min
ẑ∈Rn

≥0

{〈
− u(xt−1, `t−1), ẑ

〉
+

1

η
Dϕ(ẑ ‖ zt−2)

}
= arg min

ẑ∈Rn
≥0

{〈
− u(xt−1, `t−1), ẑ

〉
+

1

2η
‖ẑ − zt−2‖22

}
= arg min

ẑ∈Rn
≥0

∥∥∥ẑ − zt−2 − ηu(xt−1, `t−1)
∥∥∥2

2
=
[
zt−2 + ηu(xt−1, `t−1)

]+
=
[
θt−1 + ηu(xt−1, `t−1)

]+
. (18)

Since θ1 = z0 = 0, the only effect of the step size η is a rescaling of all iterates {θt} by a constant. However, the forcing
action g(θt) = θt/‖θt‖1 is invariant to positive rescaling of θt. For this reason, all choices of η > 0 result in the same iterates
being output by the algorithm. So, in particular we can assume without loss of generality that η = 1 in (18), which corresponds
exactly to the update step in RM+.



E Predictive Blackwell Approachability and Predictive RM, RM+

Proposition 3. Let (X ,Y,u(·, ·), S) be a Blackwell approachability game, where every halfspace H ⊇ S is approachable
(Definition 1). For all T , given predictions vt of the payoff vectors, there exist algorithms for playing the game (that is, pick
xt ∈ X at all t) that guarantee

min
ŝ∈S

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

≤ 1√
T

(
1+

2

T

T∑
t=1

‖u(xt,yt)−vt‖22

)
.

Proof. As shown by Abernethy, Bartlett, and Hazan (2011), a Blackwell approachability game with a non-conic target set
can be converted to a conic target set at the cost of a factor 2 in the distance bound. Hence, we assume that S is a closed
convex cone, and use the construction of Algorithm 3 instantiated with the FTRL algorithm with domain D = S◦, regularizer
ϕ(x) = 1

2‖x‖
2
2, and step size parameter η > 0. Proposition 2, along with the aforementioned factor 2 reduction from generic

convex target set to conic target set, implies that

min
ŝ∈C

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

≤ 2

T
max

x̂∈S◦∩Bn
2

RT (x̂)

≤ 2

T
max

x̂∈S◦∩Bn
2

(
‖x̂‖22
2η

+ η

T∑
t=1

‖u(xt,yt)− vt‖22

)

≤ 2

T

(
1

2η
+ η

T∑
t=1

‖u(xt,yt)− vt‖22

)
where the second inequality follows from expanding the regret bound for FTRL (Proposition 4), and the third inequality follows
from the fact that x̂ ∈ Bn2 . Setting η = 1√

T
yields the result.

Theorem 3 (Correctness of PRM, PRM+). Let Lftrl*
η and Lomd*

η denote the predictive FTRL and predictive OMD algorithms
instantiated with the same choice of regularizer and domain as in Section 5, and predictions vt as defined above for the
Blackwell approachability game Γ. For all η > 0, when Algorithm 3 is set up with D = Rn≥0, the regret minimizer Lftrl*

η (resp.,
Lomd*
η ) to play Γ, it produces the same iterates as the PRM (resp., PRM+) algorithm. Furthermore, PRM and PRM+ are regret

minimizer for the domain ∆n, and at all times T satisfy the regret bound

RT (x̂) ≤
√

2

(
T∑
t=1

‖u(xt, `t)− vt‖22

)1/2
.

Proof. Given the definition of Γ and Algorithm 3, at all times t, Lftrl*
η and Lomd*

η observe loss −u(xt, `t), where u(xt, `t) :=

〈`t,xt〉1 − `t is the vector-valued payoff in Γ and measures the increase of regret at time t relative to each vertex of the
simplex. Furthermore, at all t the prediction given to Lftrl*

η and Lomd*
η is −vt (Line 2, Algorithm 3). We now break up the

analysis according to the OLO oracle used.

Lftrl*
η corresponds to Predictive RM For the specific choice of domain D = Rn≥0 and regularizer ϕ = ‖ · ‖22, Line 3 in

Algorithm 1 has the closed-form solution

θt =

[
−η

(
−

T∑
t=1

u(xt, `t)− vt
)]+

= η

[
T∑
t=1

u(xt, `t) + vt

]+

.

Since the forcing action g(θt) = θt/‖θt‖1 is invariant to positive constants, we see that the action xt picked by Algorithm 3
(Line 3) is the same for all values of η > 0 and is computed as

xt =

[∑T
t=1 u(xt, `t) + vt

]+∥∥∥∥[∑T
t=1 u(xt, `t) + vt

]+∥∥∥∥
1

. (19)

provided θt 6= 0, and is an arbitrary vector xt ∈ ∆n otherwise, in accordance with the analysis of the approachability of
halfspaces in Γ (Section 5). By using the definition of u(xt, `t) := 〈`t,xt〉1− `t and vt := 〈mt,xt−1〉1−mt, we see that at
all times t the iterates produced by Line 4 in Algorithm 4 are exactly as in (19).



Lomd*
η corresponds to Predictive RM+ For the specific choice of domain D = Rn≥0 and regularizer ϕ = ‖ · ‖22, as already

note in the proof of Theorem 2, Line 5 in Predictive OMD (Algorithm 2) has the closed-form solution

zt =
[
zt−1 + ηu(xt, `t)

]+
(20)

at all t. Similarly, Line 3 in Predictive OMD (Algorithm 2) has the closed-form solution

θt =
[
zt−1 + ηvt

]+
. (21)

Since both (20) and (21) are homogeneous in η > 0 (that is, the only effect of η is to rescale all θt and zt by the same constant)
and the forcing action g(θt) = θt/‖θt‖1 for Γ is invariant to positive rescaling of θt, we see that Algorithm 3 outputs the same
iterates no matter the choice of step size parameter η > 0. In particular, we can assume without loss of generality that η = 1. In
that case, Equation (20) corresponds exactly to Line 7 in PRM+ (Algorithm 5), and line Equation (21) corresponds exactly to
Line 4.

Regret analysis The regret RT (x̂) cumulated by PRM and PRM+ satisfies

1

T
RT (x̂) =

1

T

T∑
t=1

(
〈`t,xt〉 − 〈`t, x̂〉

)
=

T∑
t=1

(
〈`t,xt〉〈1, x̂〉 − 〈`t, x̂〉

)
=

〈
1

T

T∑
t=1

〈`t,xt〉1− `t, x̂

〉
=

〈
1

T

T∑
t=1

u(xt, `t), x̂

〉

= min
ŝ∈Rn

≤0

〈
−ŝ+

1

T

T∑
t=1

u(xt, `t), x̂

〉
, (22)

where we used the fact that x̂ ∈ ∆n in the second equality, and the fact that minŝ∈Rn
≤0
〈−ŝ, x̂〉 = 0 since x̂ ≥ 0. Applying the

Cauchy-Schwarz inequality to the right-hand side of (22), we obtain

1

T
RT (x̂) ≤ min

ŝ∈Rn
≤0

∥∥∥∥∥−ŝ+
1

T

T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

‖x̂‖2.

So, using the fact that ‖x̂‖2 ≤ 1 for any x̂ ∈ ∆n, and applying Proposition 2,

1

T
RT (x̂) ≤ min

ŝ∈Rn
≤0

∥∥∥∥∥−ŝ+
1

T

T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

≤ 1

T
max

x̂′∈Rn
≥0
∩Bn

2

RTL(x̂′), (23)

where RTL is the regret cumulated by the OLO oracle used in Algorithm 3—in our case, Lftrl*
η for PRM and Lomd*

η for PRM+. In
either case (L = Lftrl*

η or L = Lomd*
η ), Proposition 1 offers a bound on RTL(x̂) that holds for all x̂ ∈ D = Rn≥0. So, in particular

the bound holds for all points in K = Rn≥0 ∩ Bn2 ⊆ D. Consequently,

max
x̂′∈Rn

≥0
∩Bn

2

RTL(x̂′) ≤ max
x̂′∈Rn

≥0
∩Bn

2

{
‖x̂′‖22

2η
+ η

T∑
t=1

‖u(xt, `t)− vt‖22

}
≤ 1

2η
+ η

T∑
t=1

‖u(xt, `t)− vt‖22, (24)

where we used the fact that x̂′ ∈ Bn2 in the last step. Substituting (24) into (23), we have

RT (x̂) ≤ 1

2η
+ η

T∑
t=1

‖u(xt, `t)− vt‖22.

Since we have shown above that the iterates produced by the algorithm are independent of η > 0, we can minimize the
right-hand side over η > 0, obtaining the bound

RT (x̂) ≤
√

2

(
T∑
t=1

‖u(xt, `t)− vt‖22

)1/2

.

Finally, expanding the definition of u(xt, `t) := 〈`t,xt〉1− `t and vt := 〈mt,xt−1〉1−mt, we obtain the statement.



F Extensive-Form Games and Counterfactual Regret Minimization
An extensive-form game is a game played on a game tree. Each player in an extensive-form game faces a sequential decision
process. A sequential decision process is a tree consisting of two types of nodes: decision nodes and observation nodes. We
denote the set of decision nodes as J , and the set of observation nodes with K. At each decision node j ∈ J , the agent picks
an action according to a distribution xj ∈ ∆nj over the set Aj of nj = |Aj | actions available at that decision node, and the
process moves to the observation node that is reached by following the edge corresponding to the selected action at j, if any.
At each observation point k ∈ K, the agent receives one out of nk possible signals; the set of signals that the agent can observe
is denoted as Sk. After the signal is received, the process moves to the decision node that is reached by following the edge
corresponding to the signal at k.

The observation node that is reached by the agent after picking action a ∈ Aj at decision point j ∈ J is denoted by ρ(j, a).
Likewise, the decision node reached by the agent after observing signal s ∈ Sk at observation point k ∈ K is denoted by
ρ(k, s). The set of all observation points reachable from j ∈ J is denoted as Cj := {ρ(j, a) : a ∈ Aj}. Similarly, the set of all
decision points reachable from k ∈ K is denoted as Ck := {ρ(k, s) : s ∈ Sk}. To ease the notation, sometimes we will use the
notation Cja to mean Cρ(j,a).

Pairs z = (j, a) with j ∈ J , a ∈ Aj for which ρ(j, a) = ∅ are called terminal sequences and have an associated payoff
vector (u(z),−u(z)) (that is, we assume the game is zero sum). We denote the set of all terminal sequences (also called leaves)
with Z.

Sequence Form for Sequential Decision Processes Given a strategy {xj}j∈J for the player, its sequence-form representa-
tion (von Stengel 1996), denoted µ(x) is defined as the vector indexed over {(j, a) : j ∈ J , a ∈ Aj}whose entry corresponding
to a generic pair (j, a) is the product of the probability of all actions on the path from the root of the decision process to (j, a).
We denote the range of µ, that is the set of all possible sequence-form strategies as the xj vary arbitrarily over ∆|Aj | as Q. We
call Q the sequence-form strategy space of the player.

It is well-known that a Nash equilibrium in a two-player zero-sum extensive form game can be expressed as a bilinear saddle
point problem

min
q1∈Q1

max
q2∈Q2

q>1Aq2,

where Q1 and Q2 are the sequence-form strategy spaces of Player 1 and 2, respectively, and A is a suitable game-dependent
matrix. It is also common knowledge that by letting regret minimizers for Q1 and Q2 play against each other, we can sole the
bilinear saddle point above (e.g., Farina, Kroer, and Sandholm (2019a)). So, we now focus on the task of constructing a regret
minimizer for a sequence-form strategy space.

Counterfactual Regret Minimization
The counterfactual regret minimization framework (Zinkevich et al. 2007) provides a way of constructing a regret minimization
for the sequence-form strategy space of a player by combining independent regret minimizers local to each of the player’s
decision points j ∈ J . At each j ∈ J , the corresponding regret minimizer—denoted Rj—is responsible for selecting the
strategy xtj at all times t.

CFR achieves its goal by setting the losses observed by the local regret minimizers in a specific way. In particular, let `t be
the loss at time t relative to the whole sequence-form strategy space Q of the player. Then, for each decision point j ∈ J , the
regret minimizerRj local at j is fed the loss vector `tj ∈ R|Aj |, whose entries are defined as

`tj [a] := `t[(j, a)] +
∑
j′∈Cja

V tj′ (25)

for each a ∈ Aj , where

V tj :=
∑
a∈Aj

xtj [a]

`t[(j, a)] +
∑
j′∈Cja

V tj′

 ∀j ∈ J . (26)

Theorem 4 (Laminar regret decomposition, (Farina, Kroer, and Sandholm 2019a)). At all times T , the regret RT cumulated by
the CFR algorithm can be bounded as

max
x̂∈Q

RT (x̂) ≤ max
x̂∈Q

∑
j∈J

x̂[σ(j)] ·RTj (x̂j)

where RTj denotes the regret cumulated by the local regret minimizerRj at decision point j.

Theorem 4 in particular implies that if all local regret minimizers Rj (j ∈ J ) guarantee O(T 1/2) regret, then so does the
overall algorithm, that is RT (x̂) = O(T 1/2) for all x̂ ∈ Q.



Counterfactual Loss Predictions
We now describe the construction of the counterfactual loss predictions, starting from a generic predictionmt for `t relative to
the whole sequence-form strategy space Q of the player. In order to maintain symmetry with Equation (25) and Equation (26),
for each decision point j ∈ J , the regret minimizer Rj local at j is fed the loss prediction vector mt

j ∈ R|Aj |, whose entries
are defined as

mt
j [a] := mt[(j, a)] +

∑
j′∈Cja

W t
j′

for each a ∈ Aj , where

W t
j :=

∑
a∈Aj

xtj [a]

mt[(j, a)] +
∑
j′∈Cja

W t
j′

 ∀j ∈ J .

It important to observe that the counterfactual loss predictionmt
j depends on the decisions produced at time t in the subtree

rooted at j. In other words, in order to construct the prediction for what loss Rj will observe after producing the decision xtj ,
we use the “future” decisions from the subtrees under j.

In our experiments, we always setmt = `t−1. This is a common choice, that in other algorithms (not ours) is known to lead
to asymptotically lower regret than O(T 1/2) (Syrgkanis et al. 2015; Farina, Kroer, and Sandholm 2019b,b).

G Description of the Game Instances
Kuhn poker (Games [H] and [I]) is a standard benchmark in the EFG-solving community (Kuhn 1950). In Kuhn poker, each

player puts an ante worth 1 into the pot. Each player is then privately dealt one card from a deck that contains R unique
cards. Then, a single round of betting then occurs, with the following dynamics. First, Player 1 decides to either check or bet
1. Then,
• If Player 1 checks Player 2 can check or raise 1.
– If Player 2 checks a showdown occurs; if Player 2 raises Player 1 can fold or call.
* If Player 1 folds Player 2 takes the pot; if Player 1 calls a showdown occurs.

• If Player 1 raises Player 2 can fold or call.
– If Player 2 folds Player 1 takes the pot; if Player 2 calls a showdown occurs.

When a showdown occurs, the player with the higher card wins the pot and the game immediately ends.
We used R = 3 in Game [H] (this corresponds to the original game as introduced by Kuhn (1950)), while in Game [I] we
used R = 13.

Leduc poker (Games [G] and [O] to [Q]) is another standard benchmark in the EFG-solving community (Southey et al. 2005).
The game is played with a deck of R unique cards, each of which appears exactly twice in the deck. The game is composed
of two rounds. In the first round, each player places an ante of 1 in the pot and is dealt a single private card. A round of
betting then takes place, with Player 1 acting first. At most two bets are allowed per player. Then, a card is is revealed face
up and another round of betting takes place, with the same dynamics described above. After the two betting round, if one of
the players has a pair with the public card, that player wins the pot. Otherwise, the player with the higher card wins the pot.
All bets in the first round are worth 1, while all bets in the second round are 2.
We set R = 3 in Game [O], R = 5 in Game [P], R = 9 in Game [Q], and R = 13 in Game [G].

Small matrix (Game [F]) is a small 2× 2 matrix game. Given a mixed strategy x = (x1, x2) ∈ ∆2 for Player 1 and a mixed
strategy y = (y1, y2) ∈ ∆2 for Player 2, the payoff function for player 1 is defined as

u(x,y) := 5x1y1 − x1y2 + x2y2.

This game was found by (Farina, Kroer, and Sandholm 2019b) to be a hard instance for the CFR+ game.

Goofspiel (Games [A] and [L]) This is another popular benchmark game, originally proposed by Ross (1971). It is a two-
player card game, employing three identical decks of k cards each whose values range from 1 to k. At the beginning of the
game, each player gets dealt a full deck as their hand, and the third deck (the “prize” deck) is shuffled and put face down on
the board. In each turn, the topmost card from the prize deck is revealed. Then, each player privately picks a card from their
hand. This card acts as a bid to win the card that was just revealed from the prize deck. The selected cards are simultaneously
revealed, and the highest one wins the prize card. If the players’ played cards are equal, the prize card is split. The players’
score are computed as the sum of the values of the prize cards they have won. In Game [L] the value of k is k = 4, while in
Game [A] k = 5.

Limited-information Goofspiel (Games [M] and [N]) This is a variant of the Goofspiel game used by Lanctot et al. (2009). In
this variant, in each turn the players do not reveal their cards. Rather, they show their cards to a fair umpire, which determines
which player has played the highest card and should therefore received the prize card. In case of tie, the umpire directs the



players to discard the prize card just like in the Goofspiel game. In Game [M] the number of cards in each deck is k = 4,
while in Game [N] k = 5.

Pursuit-evasion (Games [E], [J], and [K]) is a security-inspired pursuit-evasion game played on the graph shown in Figure 3. It
is a zero-sum variant of the one used by Kroer, Farina, and Sandholm (2018a), and a similar search game has been considered
by Bošanskỳ et al. (2014) and Bošanskỳ and Čermák (2015).

P1 P2

S

5

10

3

Figure 3: The graph on which the search game is played.

In each turn, the attacker and the defender act simultaneously. The defender controls two patrols, one per each respective
patrol areas labeled P1 and P2. Each patrol can move by one step along the grey dashed lines, or stay in place. The attacker
starts from the leftmost node (labeled S) and at each turn can move to any node adjacent to its current position by following
the black directed edges. The attacker can also choose to wait in place for a time step in order to hide all their traces. If a
patrol visits a node that was previously visited by the attacker, and the attacker did not wait to clean up their traces, they will
see that the attacker was there. The goal of the attacker is to reach any of the rightmost nodes, whose corresponding payoffs
are 5, 10, or 3, respectively, as indicated in Figure 3. If at any time the attacker and any patrol meet at the same node, the
attacker is loses the game, which leads to a payoff of −1 for the attacker and of 1 for the defender. The game times out after
m simultaneous moves, in which case both players defender receive payoffs 0. In Game [J] we set m = 4, in Game [K] we
set m = 5 and in Game [E] we set m = 6.

Battleship (Games [C] and [R]) is a parametric version of a classic board game, where two competing fleets take turns shooting
at each other (Farina et al. 2019b). At the beginning of the game, the players take turns at secretly placing a set of ships on
separate grids (one for each player) of size 3 × 2. Each ship has size 2 (measured in terms of contiguous grid cells) and a
value of 4, and must be placed so that all the cells that make up the ship are fully contained within each player’s grids and do
not overlap with any other ship that the player has already positioned on the grid. After all ships have been placed. the players
take turns at firing at their opponent. Ships that have been hit at all their cells are considered sunk. The game continues until
either one player has sunk all of the opponent’s ships, or each player has completed R shots. At the end of the game, each
player’s payoff is calculated as the sum of the values of the opponent’s ships that were sunk, minus the sum of the values of
ships which that player has lost.
In Game [R] we set R = 3, while in Game [C] we set R = 4.

River Endgame (Game [D]) The river endgame is structured and parameterized as follows. The game is parameterized by the
conditional distribution over hands for each player, current pot size, board state (5 cards dealt to the board), and a betting
abstraction. First, Chance deals out hands to the two players according to the conditional hand distribution. Then, Libratus
has the choice of folding, checking, or betting by a number of multipliers of the pot size: 0.25x, 0.5x, 1x, 2x, 4x, 8x, and
all-in. If Libratus checks and the other player bets then Libratus has the choice of folding, calling (i.e. matching the bet and
ending the betting), or raising by pot multipliers 0.4x, 0.7x, 1.1x, 2x, and all-in. If Libratus bets and the other player raises
Libratus can fold, call, or raise by 0.4x, 0.7x, 2x, and all-in. Finally when facing subsequent raises Libratus can fold, call, or
raise by 0.7x and all-in. When faced with an initial check, the opponent can fold, check, or raise by 0.5x, 0.75x, 1x, and all-in.
When faced with an initial bet the opponent can fold, call, or raise by 0.7x, 1.1x, and all-in. When faced with subsequent
raises the opponent can fold, call, or raise by 0.7x and all-in. The game ends whenever a player folds (the other player wins
all money in the pot), calls (a showdown occurs), or both players check as their first action of the game (a showdown occurs).
In a showdown the player with the better hands wins the pot. The pot is split in case of a tie. The specific endgame we use is
subgame 4 from the set of open-sourced Libratus subgames at https://github.com/Sandholm-Lab/LibratusEndgames.

Liar’s dice (Game [B]) is another standard benchmark in the EFG-solving community (Lisỳ, Lanctot, and Bowling 2015).
In our instantiation, each of the two players initially privately rolls an unbiased 6-face die. The first player begins bidding,
announcing any face value up to 6 and the minimum number of dice that the player believes are showing that value among the
dice of both players. Then, each player has two choices during their turn: to make a higher bid, or to challenge the previous
bid by declaring the previous bidder a “liar”. A bid is higher than the previous one if either the face value is higher, or the
number of dice is higher. If the current player challenges the previous bid, all dice are revealed. If the bid is valid, the last



bidder wins and obtains a reward of +1 while the challenger obtains a negative payoff of−1. Otherwise, the challenger wins
and gets reward +1, and the last bidder obtains reward of −1.

H Additional Experimental Results
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[N] Goofspiel 5 (lim. info.) Dimension of the games

Decision
points Actions Leaves

[H] 12 24 30

[I] 52 106 780

[J] 3.8×102 2.1×103 1.6×104

[K] 2.1×103 1.2×104 6.1×104

[L] 3.5×104 4.3×104 1.4×104

[M] 1.7×104 2.1×104 1.4×104

[N] 1.2×106 1.4×106 1.7×106

Legend: PCFR+ CFR+ LCFR DCFR

Figure 4: Performance of PCFR+, CFR+, DCFR, and LCFR on EFGs. In all plots, the x axis is the number of iterations of each
algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale), the bottom plot shows and the
average prediction error (on a log scale).

In all games but Leduc 13 (Game [G]), PCFR+ significantly outperforms all other algorithms, by 2-8 orders of magnitude. In
Leduc 13, PCFR+ outperforms CFR+ but not the DCFR algorithm. CFR+ is equivalent or slightly superior to DCFR, except in
Leduc 13, where it outperforms CFR+ by slightly less of one order of magnitude. This is in line with the experimental results
presented in the body of this paper, where we found that DCFR performs significantly better than CFR+ in poker games but
not other domains.

CFR+, LCFR, and DCFR perform similarly in the Small matrix game (Game [F]), and in particular all exhibit slower than
T−1 convergence. This is not the case for our predictive algorithm PCFR+. This confirms that Small matrix is a hard instance
for non-predictive methods but not for predictive methods, as already observed by Farina, Kroer, and Sandholm (2019b).

In all game instances, we empirically find that the prediction error decreases quickly to extremely small values. This suggests
that PCFR+ might enjoy stability guarantees similar to predictive FTRL and OMD (Syrgkanis et al. 2015). Exploring such
properties is an interesting future research direction.

Correlation between game structure and PCFR+ performance The empirical investigation of PCFR+ shows that in most
classes of games PCFR+ performs significantly better than CFR+ and DCFR, while in other games (such as the poker games
and Liar’s Dice) predictivity seems to be less useful or even detrimental. It is natural to wonder what game structures can benefit
from the use of predictive methods and what do not. While we do not currently have a good answer to that question, we have
collected here some thoughts and observations.
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Figure 5: Performance of PCFR+, CFR+, DCFR, and LCFR on EFGs. In all plots, the x axis is the number of iterations of each
algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale), the bottom plot shows and the
average prediction error (on a log scale).

• Size. Some predictive methods proposed in the past were found to only produce a speedup in small games, and perform
worse than the state of the art in large games (Farina, Kroer, and Sandholm 2019b). This is not the case for PCFR+: the river
endgame and Liar’s Dice are not the largest games in our dataset. So, size does not seem to be a good predictor for whether
predictive CFR+ is beneficial over CFR+ and DCFR.

• Number of terminal states. The river endgame and Liar’s Dice both have a large ratio between the number of terminal
states (leaves) and number of decision points. On the other hand, the pursuit-evasion game with 5 turns (Game [K]) has a
significantly larger ratio than Liar’s Dice but unlike in Liar’s Dice, predictivity yields a speedup of more than 6 orders of
magnitude on the Nash gap.

• Private information. Poker games and Liar’s Dice have a strong private information structure: a chance node distributes
independent private initial states for the two players, and each player has no information about the opponent’s state. This is
in contrast with, for example, the Battleship games, where each player is not handed a random configuration for their ships
by the chance player, but rather privately picks one configuration. This shows that the “amount of private information” alone
is not a good discriminator for when predictivity can be useful.

• Private information induced by chance nodes. From the discussion in the previous bullet, we conjecture that the way the
private information arises (for example, through "dealing out cards" like in Poker games or "rolling a die" as in Liar’s Dice)
might affect whether predictivity helps or hurts convergence to Nash equilibrium. We leave pursuing this direction open. It
is not immediately clear how one could formalize that metric.

Comparison between Linear and Quadratic Averaging in PCFR+ and CFR+

We also investigated the performance of CFR+ with quadratic averaging in all games, as well as the performance of PCFR+

with linear averaging. The experimental results are shown in Figures 6 and 8. Since only the averaging that is used when
computing the (approximate) Nash equilibrium varies, but not the iterates themselves, the prediction errors are independent of
the averaging variant used. Therefore, in the prediction error plots we only report one curve for each of the two algorithms.

CFR+ with quadratic averaging of iterates performs similarly to CFR+ with linear averaging. PCFR+ with linear averaging



performs similarly or slightly better than PCFR+ with quadratic averaging in two games. It performs better than CFR+ with
either linear or quadratic averaging in 11 games, and worse than both in two games (no-limit Texas hold’em river endgame and
Leduc poker). We conclude that the speedup of PCFR+ is mostly due to the use of loss predictions, rather than the particular
averaging of iterates.
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Figure 6: Performance of PCFR+ and CFR+ with linear and quadratic averaging on EFGs. In all plots, the x axis is the number
of iterations of each algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale), the bottom
plot shows and the average prediction error (on a log scale).
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Figure 7: (continued) Performance of PCFR+ and CFR+ with linear and quadratic averaging on EFGs. In all plots, the x axis is
the number of iterations of each algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale),
the bottom plot shows and the average prediction error (on a log scale).
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Figure 8: (continued) Performance of PCFR+ and CFR+ with linear and quadratic averaging on EFGs. In all plots, the x axis is
the number of iterations of each algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale),
the bottom plot shows and the average prediction error (on a log scale).

Predictive Discounted CFR and Quadratic-Average Loss Prediction

DCFR is the regret minimizer that results from applying the counterfactual regret minimization framework (Appendix F) using
the discounted regret matching regret minimizer at each decision point. We experimentally evaluated a predictive-in-spirit3
variant of discounted regret matching shown in Algorithm 6.

Algorithm 6: Predictive discounted regret matching
1 z0 ← 0 ∈ Rn, x0 ← 1/n ∈ ∆n

2 α← 1.5, β ← 0

3 function NEXTSTRATEGY(mt)
. Setmt = 0 for non-predictive version

4 θt ← tα

1 + tα
[zt−1]+ +

tβ

1 + tβ
[zt−1]− + 〈mt,xt〉1−mt

5 if θt 6= 0 return xt ← θt / ‖θt‖1
6 else return xt ← arbitrary point in ∆n

7 function OBSERVELOSS(`t)

8 zt ← tα

1 + tα
[zt−1]+ +

tβ

1 + tβ
[zt−1]− + 〈`t,xt〉1− `t

To maintain symmetry with predictive CFR and predictive CFR+, we coin predictive DCFR the algorithm resulting from
applying the counterfactual regret minimization framework (Appendix F) using the predictive discounted regret matching regret
minimizer at each decision point of the game.

We also investigate the use of the quadratic average of past loss vectors,

mt =
6

t(t− 1)(2t− 1)

t−1∑
τ=1

τ2`τ ,

as the prediction for the next loss `t. We call this loss prediction the “quadratic-average loss prediction”.
We compare predictive DCFR (with and without quadratic-average loss prediction), PCFR+ (with and without quadratic-

average loss prediction), CFR+, and DCFR in Figures 9 and 10.

3In fact, we do not have a proof that our variant is predictive in the formal sense described in the body of the paper. However, the variant
we describe follows the natural pattern of predictive RM and predictive RM+.
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Figure 9: Comparison between of discounted CFR and CFR+, with and without quadratic-average loss prediction. In all plots,
the x axis is the number of iterations of each algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a
log scale), the bottom plot shows and the average prediction error (on a log scale).
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Figure 10: (continued) Comparison between of discounted CFR and CFR+, with and without quadratic-average loss prediction.
In all plots, the x axis is the number of iterations of each algorithm. For each game, the top plot shows that the Nash gap on the
y axis (on a log scale), the bottom plot shows and the average prediction error (on a log scale).


