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Abstract

In two-player zero-sum extensive-form games, Nash equilibrium prescribes optimal
strategies against perfectly rational opponents. However, it does not guarantee
rational play in parts of the game tree that can only be reached by the players
making mistakes. This can be problematic when operationalizing equilibria in
the real world among imperfect players. Trembling-hand refinements are a sound
remedy to this issue, and are subsets of Nash equilibria that are designed to handle
the possibility that any of the players may make mistakes. In this paper, we
initiate the study of equilibrium refinements for settings where one of the players
is perfectly rational (the “machine”) and the other may make mistakes. As we
show, this endeavor has many pitfalls: many intuitively appealing approaches to
refinement fail in various ways. On the positive side, we introduce a modification
of the classical quasi-perfect equilibrium (QPE) refinement, which we call the
one-sided quasi-perfect equilibrium. Unlike QPE, one-sided QPE only accounts
for mistakes from one player and assumes that no mistakes will be made by the
machine. We present experiments on standard benchmark games and an endgame
from the famous man-machine match where the AI Libratus was the first to beat
top human specialist professionals in heads-up no-limit Texas hold’em poker. We
show that one-sided QPE can be computed more efficiently than all known prior
refinements, paving the way to wider adoption of Nash equilibrium refinements in
settings with perfectly rational machines (or humans perfectly actuating machine-
generated strategies) that interact with players prone to mistakes. We also show
that one-sided QPE tends to play better than a Nash equilibrium strategy against
imperfect opponents.

1 Introduction

The Nash equilibrium solution concept prescribes optimal strategies against perfectly rational oppo-
nents. However, it is well known that it has serious shortcomings when used to prescribe strategies
to be deployed against imperfect opponents who may make mistakes. Even in two-player zero-sum
games, it does not guarantee rational play in parts of the game tree that can only be reached if the
players make mistakes. As a very simple perfect-information-game example, consider the game
in Figure 1 (Left). The bold lines show one of the Nash equilibria of the game. It does not matter
whether the white player acting at B chooses move l or move r because he never gets to move if the
black player acting at A plays rationally. So, in Nash equilibrium, the white player can choose move
l. However, if the black player makes a mistake and chooses move b, it would be better for the white
player to choose move r (thus getting a payoff of 5 instead of 0). So, in that part of the game where
the black player has made the mistake, the white player’s Nash equilibrium strategy is not rational.
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In game-theoretic terms, it is not sequentially rational. This is problematic when operationalizing
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Figure 1: Small extensive-form games in which a non-sequentially-rational Nash equilibrium is highlighted. The
first payoff of each outcome is assigned to the black player, the second to the white player.

equilibria in the real world among imperfect players. While in the particular example of Figure 1
(Left) the issue could be resolved by using an equilibrium refinement called subgame perfect Nash
equilibrium, that solution concept does not refine solutions much in imperfect-information games,
where few subgames (nodes of the game tree that are alone in their information set) exist. For
example, consider the example in Figure 1 (Center): the white player acting at information set B
does not have any subgame, and therefore the highlighted sequentially-irrational Nash equilibrium is
subgame perfect. Another refinement of Nash equilibrium is undominated Nash equilibrium (UNE),
that is, Nash equilibrium where the pure strategies in the support of the equilibrium do not include
strongly dominated strategies. UNE would remove the unreasonable Nash equilibria in the games of
Figure 1 (Left and Center), but there are other games where UNEs can be sequentially irrational [21].
In general, undomination and sequential rationality are incomparable in the sense that neither implies
the other [21].

For imperfect-information games, the main family of equilibrium refinements (for example against
sequential irrationality) is trembling-hand refinements, which are significantly more intricate than
subgame perfection [28, 24, 31]. Trembling-hand equilibria are a subset of Nash equilibria that are
designed to handle the possibility that any of the players may make mistakes. Roughly speaking,
each player is assumed to make every mistake with some small probability, and trembling-hand
equilibria are the limit points of the sequence that arises as that trembling (that is, mistake) probability
approaches zero. As we will summarize later, there are multiple trembling-hand refinements that
differ based on how the trembling constraints are set up.

In this paper, we initiate the study of equilibrium refinements for settings where one of the players is
perfectly rational (the “machine”) and only the other may make mistakes. We will conventionally
refer to the latter player as the “imperfect” player. This is a setting that is becoming increasingly
common in AI applications such as recreational games, military settings, and business [23, 1, 2, 4].
As we show, this endeavor has many pitfalls: intuitively appealing approaches to refinement fail
in various ways. On the positive side, we introduce a modification of the classical quasi-perfect
equilibrium (QPE) refinement, which we call the one-sided quasi-perfect equilibrium. Unlike QPE,
one-sided QPE only accounts for mistakes from the imperfect player and assumes that no mistakes
will be made by the machine. We present extensive experiments on standard benchmark games and
an endgame from the famous man-machine match where the AI Libratus was the first to beat top
human specialist professionals in heads-up no-limit Texas hold’em poker. We show that one-sided
QPE can be computed more efficiently than any prior trembling-hand refinements, paving the way
to wider adoption of Nash equilibrium refinements in settings with perfectly rational machines (or
humans perfectly actuating strategies) that interact with imperfect players prone to mistakes. We
also show that one-sided QPE tends to play better than a Nash equilibrium strategy against imperfect
opponents.

2 Extensive-form games

In this section we review standard concepts in the theory of extensive-form (that is, tree-form) games.
We will focus on two-player games with perfect recall and (potentially) imperfect information. An
extensive-form game is a game played on a finite tree with payoffs at the leaves. Each node in the
tree belongs to exactly one of the two players (which we call as Player 1 and Player 2), or belongs
to a fictitious third player—called the nature player—whose actions are sampled from a known
distribution. We will sometimes denote the opponent of Player i ∈ {1, 2} with the symbol −i. The
set of nodes that belong to the same player i ∈ {1, 2} is split into a partition Ii, called the information
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partition of Player i. Each set I in the partition is called an information set: two nodes belong to the
same information set when the player cannot distinguish between them when he or she needs to act at
them. When all information sets for all players are singleton sets, the player has no uncertainty about
where in the game tree the are; in that case, the game is said to have perfect information. In this paper
we only consider perfect-recall games. This means that the information partition of both players is
such that any two nodes in the same information set share the same sequence of actions of that player
from the root to those nodes. Intuitively, this means that the players do not forget about their past
actions and observations in the game. Given two information sets I ′, I ∈ Ii for the same player i, we
say that I ′ is a successor of I , written I ′ � I , if the sequence of actions of Player i on the path from
the root to any node in I passes through some node in I ′. Let A(I) denote the set of actions available
at any of the nodes in the information set I ∈ Ii. The set of sequences for Player i is defined as the
set of all information set-action pairs σ ∈ {(I, a) : I ∈ Ii, a ∈ A(I)}. Each sequence σ = (I, a)
uniquely identifies a path from the root of the game tree down to action a and information set I . The
length |σ| is defined as the number of Player i’s actions on that path. Conceptually, a strategy in
an extensive form games specifies a probability distribution over the set of actions A(I) available
at each information set I ∈ Ii. We will represent strategies as vectors using the sequence-form
representation [15, 32, 26]. In that representation, the vector corresponding to a strategy has one
coordinate per each sequence of the player, indicating the product of the probabilities of the player’s
actions in that sequence. It is well-known that under that representation, the set of all well-formed
sequence-form strategies for the player is a convex polytope Fix = fi for a suitable pair of sparse
matrix and vector Fi,fi encoding probability-mass-conservation constraints (called sequence-form
constraints). A strategy πi for Player i is a best response to a given strategy π−i of the opponent if
no other strategy for Player i gives to Player i strictly greater expected utility against π−i.

3 Nash equilibrium and its refinements

Nash equilibrium is the most widely used solution concept in game theory. A pair of strategies
(x1,x2) for two players in a game is a Nash equilibrium if neither player is (strictly) better off by
deviating to any other strategy if the opponent does not deviate. In the special case of zero-sum games,
it is a celebrated result that the set of Nash equilibria (x1,x2) is the set of solutions to the bilinear
saddle point optimization problem

max
F1x1=f1

x1≥0

min
F2x2=f2

x2≥0

x>1A1x2.

In the rest of the paper we will focus on zero-sum games. There, any strategy that is part of a
Nash equilibrium is an optimal strategy against any Nash equilibrium strategy of the opponent, that
is, against any rational opponent. Furthermore, if the opponent plays any strategy other than an
equilibrium strategy, that can only increase our expected utility.

However, as we illustrated in Figure 1, Nash equilibrium suffers from the severe issue of being unable
to capitalize on opponent mistakes when the opponent is, in fact, not perfectly rational. This is true
already in the zero-sum game setting, which is the focus of this paper.1 While this issue is easy to
avoid in perfect-information games by restricting attention to subgame-perfect Nash equilibria, the
imperfect-information case has been significantly more nuanced historically. The introduction of
sequential rationality was a seminal step down that avenue [16].

We devote the rest of this section to the standard solution concepts that guarantee sequential ratio-
nality (thereby soundly remedying the shortcomings of Nash equilibrium), that is, trembling-hand
equilibrium refinements. The fundamental idea behind trembling-hand equilibria is to modify the
Nash equilibrium optimization problem by adding constraints that force lower bounds of some forms
on all action probabilities so as to force all parts of the game tree to be taken into consideration. A
trembling-hand equilibrium is then a limit point of those constrained Nash equilibria as the lower
bounds approach zero. Two different classes of trembling-hand refinements are known, and they differ
in the way they force the lower bounds. The extensive-form perfect equilibrium concept (Section 3.1)
enforces that each action be picked with at least some probability. That is, there is a uniform lower

1In non-zero-sum games, this issue is only exacerbated further. For example, non-credible threats can be
supported in Nash equilibrium. See also Section 4.3.
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bound on all action probabilities. The quasi-perfect equilibrium concept (Section 3.2) changes this
by requiring lower bounds on sequences of actions rather than individual actions.

3.1 Extensive-form perfect equilibrium. Given a game Γ, the idea behind extensive-form perfect
equilibria (EFPEs) is to introduce a parameter ε > 0 (the trembling magnitude), and consider the
perturbed game Γ(ε) in which each player can only play strategies that put probability mass ≥ ε on
every action. An EFPE is then any limit point of Nash equilibria for the games Γ(ε) as ε→ 0+ [28].
It is well-known (e.g., Kreps and Wilson [16]) that every game has at least one EFPE, and that EFPEs
are sequentially rational.

3.2 Quasi-perfect equilibrium. Quasi-perfection, introduced by van Damme [30], is significantly
more intricate to define than extensive-form perfection. Instead of giving an explicit lower bound
on the probability with which each action needs to be selected, the definition of a quasi-perfect
equilibrium (QPE) relies on a refined notion of best response. We now give one of the multiple
known equivalent definitions, and we present it for the special case of two-player games only. Several
equivalent definitions that apply to more general games can be found in the original work by van
Damme, as well as in the work by Miltersen and Sørensen [22] and Gatti et al. [11].
Definition 1 (I-local purification). Let i ∈ {1, 2} be a player, π be a strategy for Player i, and let
I ∈ Ii be an information set. We say that a strategy π′ for Player i is an I-local purification of π if
π′ is deterministic at any information set I ′ � I , and coincides with π at any other information set.
When π′ is an I-local purification of π, we further say that

• π′ is ε-consistent with π if, for all I ′ � I , π′ assigns probability 1 only to actions that have
probability ≥ ε in π;

• π′ is optimal against a given strategy of the opponent if no other I-local purification of π achieves
(strictly) higher expected utility against said strategy of the opponent.

Definition 2 (ε-quasi-perfect best response). A strategy πi is an ε-quasi-perfect best response to the
opponent strategy π−i if (i) π assigns strictly positive probability to all actions of Player i; and (ii)
for all information sets I ∈ Ii of Player i, every ε-consistent I-local purifications of πi (Definition 1)
is optimal for π−i. A strategy profile (π1,π2) where each strategy is an ε-quasi-perfect best response
to the opponent’s strategy is called an ε-quasi-perfect strategy profile.

Definition 3 (Quasi-perfect equilibrium). A quasi-perfect equilibrium is any limit point of ε-quasi-
perfect strategy profiles as ε→ 0+.

It is known since the work by Miltersen and Sørensen [22] that some QPEs (we call them Miltersen-
Sorensen QPEs) can be computed in any two-player game as the limit point of Nash equilibria of
perturbed games Γ(ε), akin to EFPE. The subtlety is that while in EFPE each perturbed game Γ(ε)
mandates a lower bound of ε on the probability of playing each action, in the case of a Miltersen-
Sorensen QPE the lower bounds are given on the probability of each sequence of actions. Specifically,
for any ε > 0 and for each player i ∈ {1, 2}, let `i : ε→ R|Σi|

>0 denote the vector parametrized on ε
and indexed on the sequences Σi of Player i, whose entries are defined as

`i(ε)[σ] = ε|σ| ∀σ ∈ Σi, (1)

where |σ| denotes the number of actions for Player i in the sequence σ. Miltersen and Sørensen [22]
prove that any limit point of the solution to the perturbed optimization problem

max
F1x1=f1

x1≥`1(ε)

min
F2x2=f2

x2≥`2(ε)

x>1A1x2. (2)

is a (Miltersen-Sorensen) QPE.2

3.3 A word of caution: Not all natural vanishing perturbations lead to sequential rationality

We found a potential pitfall when introducing lower bounds on sequence probabilities with the hope
of computing a trembling-hand refinement. Not all vanishing perturbations `1(ε), `2(ε) in the QPE
formulation (2) lead to a sequentially-rational equilibrium. For example, it is natural to wonder

2Recently, Gatti et al. [11] took this construction further, and showed that any QPE can be expressed as a
limit point of solutions to (2), as long as more general vectors of polynomials `1, `2 are used than in (1). In this
paper we will focus on Miltersen-Sorensen-style perturbation as defined in (1).
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whether it is really necessary to consider lower bounds of the form ε|σ| instead of, for example, the
uniform lower bound ε for all sequences. After all, surely a uniform lower bound of ε would still force
the whole game to be explored, wouldn’t it? While appealing on the surface, such a uniform lower
bound might result in a solution that is not even subgame perfect, much less sequentially rational! In
particular, consider the perfect-recall game in Figure 2. We prove in the appendix that for any choice
of ε ∈ [0, 1/4], the only Nash equilibrium of the perturbed game assigns probability 1− ε to action r
of Player 2, and probability 1/2 to actions c and d of Player 1. So, as ε→ 0+, any limit point sees
Player 2 pick action r with probability 1 and Player 1 randomizing uniformly between actions c and
d, despite action d being strictly dominated. Thus, both players will act irrationally (with Player 1 not
even playing a best response in the subtree rooted at C) should Player 1 make the mistake of picking
action b instead of a at the root A. The resulting equilibrium is not subgame perfect, and consequently
it cannot be sequentially rational [16, Proposition 3].
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a b

c d p q

r s
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C D
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r 1− ε
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Figure 2: Small perfect-information game that illustrates that uniform ε lower bounds can induce irrational
behavior. Black nodes belong to Player 1, the white node belongs to Player 2.

4 One-sided quasi-perfect equilibrium

All of the trembling-hand equilibrium refinements summarized in Section 3 are two sided, in the
sense that both players are trembling. That two-sidedness comes at a computational cost: both the
domain of the maximization and minimization problem in the saddle point formulations (for example,
Equation (2) in the case of QPE) of the refinements are perturbed, making the computation of a limit
point computationally expensive. Yet, in many strategic interactions of interest, a player might be
concerned about being able to capitalize on the opponent’s mistakes, but not about making mistakes
of her own. After all, in the age of machines, that player might well be a bot interacting strategically
(for example, playing a poker tournament) against imperfect opponents. In that situation, the player in
question might therefore seek, in the interest of lowering the computational requirement of computing
a robust strategy, to find equilibrium points that are robust to perturbations of the opponent’s strategy
only, thereby breaking the two-sidedness of all known trembling-hand equilibrium refinements.

In this paper, we introduce the first one-sided trembling-hand refinement, which we coin one-sided
quasi-perfect equilibrium. Because of the asymmetric role of the players, from now on we stop
referring to the players as Player 1 and 2, and adopt the terms machine player and imperfect player
to highlight their asymmetric role. The machine player is assumed to never make mistakes: lower
bounds on the probability of play (the “trembling hands”) are only introduced for the imperfect
player. Accordingly, from now on we will drop subscripts 1 and 2 to denote quantities that belong to
the players, and will use m and h for quantities belonging to the machine and the imperfect player,
respectively.

4.1 Definition and preliminary considerations. In order to formally define the one-sided quasi-
perfect equilibrium solution concept, we start by removing some of the symmetry between the two
players in Definition 2. In particular, we introduce the following notion.

Definition 4 (One-sided quasi-perfect equilibrium). We call a strategy profile (πm,πh) a one-sided
ε-quasi-perfect strategy profile if πh is an ε-quasi-perfect best response (Definition 2) to πm, and
πm is a best response to πh. We say that (πm,πh) is an one-sided quasi-perfect equilibrium if it is
the limit point of one-sided ε-quasi-perfect strategy profiles, as ε→ 0+.

One-sided quasi-perfect equilibria do indeed form a refinement of the Nash equilibrium, as we
establish in the next theorem (see the appendix for a proof).

Theorem 1. Every one-sided quasi-perfect equilibrium is a Nash equilibrium.

5



At this stage it is still technically unclear whether one-sided quasi-perfect equilibria exist at all. To
show existence, as a first step we slightly extend the result by Miltersen and Sørensen [22] that we
mentioned in Section 3.2, and show that one-sided ε-quasi-perfect strategies exist, and that one can
be computed as the solution to a bilinear saddle point problem.

Lemma 1. Consider the bilinear saddle point problem

max
Fmxm=fm

xm≥0

min
Fhxh=fh

xh≥`h(ε)

x>mAmxh (3)

where `h(ε) is as in Equation (1). Then, for any ε > 0 for which the domain of the minimization
problem is nonempty, any solution to (3) is a one-sided ε-quasi-perfect strategy profile.

From here, the existence of one-sided quasi-perfect equilibria can be established with a straightforward
compactness argument. The domain of the minimization problem of (3) becomes nonempty for small
enough values of the trembling magnitude ε > 0. Therefore, for small enough ε the domains of the
maximization and minimization problem in (3) are compact and nonempty. That, combined with
the fact that the objective function is bilinear, immediately guarantees that (3) admits a solution for
any small enough ε > 0. Furthermore, such a solution belongs to the Cartesian product of the two
players’ sequence-form polytopes—a compact set—thereby guaranteeing that a limit point as ε→ 0+

exists as a valid strategy profile. So, Lemma 1 immediately implies the following corollary.

Corollary 1. Every two-player zero-sum extensive-form game with perfect recall has at least one
one-sided quasi-perfect equilibrium.

4.2 One-sided QPEs as trembling linear programs. In this subsection, we show that the problem
of computing a one-sided quasi-perfect equilibrium strategy xm for the machine player can be cast
to a linear program parameterized by the trembling magnitude ε. We call such a linear program a
trembling linear program, in concordance with nomenclature in the prior work by Farina et al. [7].
Specifically, the following result, which follows by linear programming duality, will be central in our
discussion. An elementary proof is offered in the appendix.

Proposition 1. Any limit point of solutions to the trembling linear program

P(ε) :=


arg max

xm

(Am`h(ε))>xm + (fh − Fh`h(ε))>v

s.t. 1 A>mxm − Fhv ≥ 0

2 Fmxm = fm

3 xm ≥ 0, v free.

as the trembling magnitude ε→ 0+ is a one-sided quasi-perfect equilibrium strategy for the machine
player.

4.3 A second word of caution: One-sided QPE is inappropriate for general-sum games. Se-
quential irrationality occurs in both zero-sum and general-sum games because the Nash equilibrium
concept does not consider mistakes by the players. In general-sum games, sequential irrationality is
exacerbated further by the presence of non-credible threats (which cannot occur in zero-sum games
because there are no actions that hurt both players). For example, consider the highlighted Nash
equilibrium in the small general-sum game of Figure 1 (Right). If the black player acting at A were
to actually play b, it would be irrational for the white player to play l, which hurts both players.
Effectively, the white player is “threatening” to play l instead of r to force the black player’s hand
and push the black player to settle for an inferior payoff of 0. By forcing all players to account for
mistakes, even their own, trembling-hand equilibria are able to prevent the irrationality stemming
from non-credible threats. Indeed, when action b is played with probability at least ε > 0, no Nash
equilibrium would support action l for the white player. Hence, the equilibrium in Figure 1 (Right)
cannot be an EFPE or a QPE, which are limit points of Nash equilibria of perturbed games. However,
because in one-sided QPEs only trembles from one player are considered, the one-sided QPE concept
is generally unable to prevent non-credible threats. Specifically, if the black player were the machine
player, and the white player the imperfect player, the highlighted equilibrium in Figure 1 (Right)
would be a one-sided QPE. This should serve as a cautionary tale against using one-sided QPE in
general-sum settings.
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5 Computation of one-sided QPEs

While QPEs and EFPEs can in theory be computed in polynomial time (in the size of the game)
in two-player zero-sum games [22, 6], their computation is fraught with difficulties that have his-
torically slowed down their adoption. First, trembling-hand refinements are limit points, and not
just the solution to a numeric optimization problem. Second, finding a Nash equilibrium subject to
trembling constraints (i.e., constraints that enforce actions are played with given lower bounds on
probability) becomes numerically unstable when ε is small. In this section we show that while the
computation of one-sided QPEs is still a nontrivial task, one-sided QPEs have a nice property that
makes their computation comparatively easier and more numerically stable than QPEs and EFPEs.
Specifically, the trembling linear program Proposition 1 defined in Section 4.2 has the convenient,
differentiating property that ε only appears in the objective function and not in the constraints.

Equilibrium Depends on ε?
LHS RHS Obj

EFPE 3 7 7
QPE 7 3 3
One-sided QPE 7 7 3

As summarized in the table, neither EFPEs nor (two-sided)
QPEs enjoy this property. Indeed, the trembling LP formula-
tion of EFPE needs to express the constraint that each action is
picked with probability ≥ ε. That is expressed by constraints
of the form xh[(I, a)] ≥ ε · xh[σh(I)] for all information sets
I and actions a ∈ AI , and for that reason the known trembling
LP formulations of EFPE have ε appear in the left-hand side
(LHS) of the constraint matrix [6, 7]. On the other hand, the trembling LP formulation of regular,
two-sided (Miltersen-Sorensen) QPE has a component-wise lower bound on the vector xm, i.e.,
constraints of the form xm ≥ `m(ε). So, in QPE ε appears also in the right-hand side (RHS) of the
constraints [22]. Part of the high complexity in practice associated with the computation of EFPE
and QPE is related to where ε appears. As a rule of thumb, having ε terms in the constraint (left-hand
side) matrix makes the problem the hardest, as those terms impact the numerical stability of the basis
matrix, which needs to be inverted (more precisely, factorized) after every pivoting step of the simplex
algorithm. That is avoided in the somewhat easier case where ε only appears on the right-hand size of
the constraints, though that case is still hard, given that the feasible set still depends on ε, thereby
making the task of maintaining feasibility as ε→ 0+ nontrivial. One-sided QPE avoids both of these
issues, by only having a dependence on ε in the objective function: the feasible set of P(ε) is constant,
and only the coefficients of the objective function change (continuously) as ε→ 0+.

Currently, the only known algorithm for finding limit solutions to trembling linear programs (of
which QPEs, one-sided QPEs, and EFPEs are examples) is via the algorithm of Farina et al. [7].3 That
algorithm computes a limit point of solutions of any trembling linear program, such as P(ε) given in
Section 4.2. At a high level it operates as follows. First, a value for ε∗ > 0 is chosen arbitrarily. Then,
the linear program (LP) P(ε∗) is solved numerically to optimality by using the simplex method, and
an optimal basis for the LP is computed. A basis-stability oracle is then run, to check whether the
basis that was computed numerically is stable, that is, whether it would remain optimal as ε→ 0+: if
so, the algorithm terminates, otherwise the value of ε∗ is reduced (typically by a multiplicative factor).
The procedure is repeated for the new value of ε∗, and so on. The loop continues until stability of
the basis is established. While the details of the basis stability oracle are complex and beyond the
scope of this paper, in the rest of the section we point out a few computational shortcuts that are
enabled by the fact—discussed above—that the trembling linear program for one-sided QPE exhibits
a dependence on ε only in the objective function. In the discussion, we assume some familiarity with
the simplex algorithm and the concept of basic and non-basic columns.

• The feasible set in the trembling linear program for one-sided QPEs is independent of ε. Hence,
the optimal basis computed for the numeric perturbation value ε∗ remains feasible even after the ε∗
is reduced. So, at each iteration of the algorithm by Farina et al. [7], we can very effectively warm
start the simplex method with the basis computed in the previous iteration, cutting through the first
phase of the simplex algorithm (computation of a feasible basic solution), and jumping straight to
pivoting until a new optimal basis is found. This shortcut is not possible in QPEs and EFPEs.

• Similarly, when evaluating whether a computed basis remains optimal when the limit is taken, we
can soundly skip verifying feasibility in the limit: since the computed basis is optimal for a given

3Other algorithms provide approximate solutions to approximate solution concepts. For example, Farina et al.
[8] and Kroer et al. [17] propose methods based on regret minimization and the excessive-gap technique [25], re-
spectively, to approximate solutions to games subject to trembling constraints for a specific trembling magnitude.
They do not provide any guarantee of actually finding (or even approximating) actual QPEs or EFPEs.
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numeric value of ε∗, it must be feasible. Because the feasible set does not change as ε goes to 0,
the basis must remain feasible in the limit. The same cannot be said for QPEs and EFPEs, for
which instead it is necessary to investigate feasibility of the basis in the limit at every iteration.

• A consequence of the previous point is that only the reduced costs of the nonbasic columns matter
when evaluating whether a given basis is optimal in the limit. Because ε does not appear in
the constraint matrix that defines the trembling linear program for QPE and one-sided QPE, the
reduced cost of every nonbasic column is a polynomial function of ε, as opposed to a rational
function like in the more general case. This greatly simplifies the implementation of the basis
stability oracle for one-sided QPEs. Specifically, none of the discussion in the original paper by
Farina et al. [7] about handling singular basis matrices and rational-function reduced costs using
Laurent series applies to one-sided QPE. The same property applies to QPEs, but not to EFPEs. In
the latter case, the stability oracle need to be implemented by taking into account the dependence
of the constraint matrix on ε.

In the experiments (Section 6), we implemented the algorithm by Farina et al. [7] by taking advantage
of the computational shortcuts we just described. As we show empirically, the three considerations
above translate into a reduced computational burden when computing one-sided QPEs compared to
(regular, two-sided) QPEs and EFPEs.

6 Experimental evaluation

We compare one-sided QPEs against EFPE and (Miltersen-Sorensen) QPE, along two metrics: 1)
the time required to compute the refinement, and 2) how the refinement fares against imperfect
opponents, when compared to an exact but potentially unrefined Nash equilibrium computed by
the two state-of-the-art linear programming solvers CPLEX and Gurobi. We implemented from
scratch the algorithm by Farina et al. [7] to solve the trembling linear programs corresponding to the
three equilibrium refinements. Our implementation takes the computational shortcuts described in
Section 5 for one-sided QPEs (and for QPEs as well where applicable, that is, the third bullet point of
that section). The algorithm is single-threaded, was implemented in C++, and was run on a machine
with 32GB of RAM and an Intel processor running at a nominal speed of 2.4GHz per core.

As mentioned in Section 5, the algorithm computes, as an intermediate step at every iteration, an
optimal basis of each trembling linear program where the perturbation magnitude ε has been set to a
numerical value ε∗. We start from the value ε∗ = 10−6 and use Gurobi to solve the linear program.
After the first iteration, if the basis is not stable, we re-solve the linear program, again for ε∗ = 10−6

using Google’s open-source linear programming solver (GLOP), which we modified so as to use
1000-digit precision floating point numbers via GNU’s MPFR library. From there onward, after
every unsuccessful iteration of the algorithm (that is, where the basis is not stable), the value of ε∗
is decreased by a factor 1000 and solved again with our modified version of GLOP, until a stable
basis is found. Unlike the original paper by Farina et al. [7], we do not employ a rational-precision
implementation (that is, one that represents all numbers as ratios of integers to achieve an exact
“infinite-precision” solution) of the simplex algorithm. Instead, we found our 1000-digit precision
modified GLOP solver to be drastically faster, and we use it across the board in place of the rational
simplex. The basis stability oracle is implemented using rational precision, as described in the original
paper [7]. We use the GNU’s GMP library to implement rational arithmetic. Therefore, our answer is
exact (i.e., infinite-precision) even though the intermediate steps are not.

6.1 Computation time. We compare the compute time required to find a one-sided QPE strategy,
(two-sided) QPE strategy, and EFPE strategy in six standard benchmark games: three instances
of Leduc poker [29] of increasing size, one relatively large Goofspiel game [27], Liar’s Dice, and
one real river endgame from the “Brains vs AI” competition that was played by the Libratus AI. A
description of each game is available in the appendix. To scale computation to the river endgame
tractable, we solved the endgame using a coarser betting abstraction than the one used by Libratus.
To our knowledge, it is the first time that sequentially-rational equilibria are investigated in real
poker endgames. The dimensions of each game are listed in Table 1 (Left). Runtimes for each of
the solution concepts are given in Table 1 (Right). We observe that one-sided QPE can be computed
consistently faster (roughly by a factor 4-5x) than two-sided QPE, and the latter is usually twice as fast
as EFPE. This is consistent with our discussion in Section 5. In the river endgame we implemented the
sparsification technique described in Zhang and Sandholm [33] to bring down the number of nonzeros
of the payoff matrix from 21 million to roughly 167 thousand combined nonzeros in the sparsification
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when solving the linear program at each iteration (see the appendix for more details). In the river
endgame, only one-sided QPE could be computed for both players. A (two-sided) QPE strategy could
only be computed for Player 2, as Gurobi terminated abnormally due to numeric instability when
solving for Player 1. None of the EFPE strategies could be computed, due to numerical instability in
GLOP, which terminated with an error due to the basis being singular to working precision. With its
21 million terminal states, a one-sided QPE in the river endgame represents the upper limit of what
equilibrium refinement technology can handle today. The numerical instability witnessed in QPE and
EFPE for that benchmark game is well consistent with our discussion in Section 5.

Game instance Information Sequences Leaves Player One-sided QPE EFPEsets QPE

Leduc poker (5 ranks) 780 1822 5500
Player 1 222ms 915ms 1.70s
Player 2 387ms 593ms 1.11s

Leduc poker (9 ranks) 2484 5798 32 724
Player 1 1.58s 5.81s 12.70s
Player 2 2.65s 6.73s 14.95s

Leduc poker (13 ranks) 5148 12 014 98 956
Player 1 8.37s 42.69s 1m 36s
Player 2 17.35s 38.94s 1m 42s

Goofspiel (4 ranks) 17 423 21 298 13 824
Player 1 5.50s 25.68s 55.67s
Player 2 5.58s 27.29s 53.97s

Liar’s dice 24 576 49 142 147 420
Player 1 26.86s 2m 18s 11m 02s
Player 2 28.36s 2m 00s 10m 25s

River endgame 17 700 49 478 21 599 932
Player 1 19m 36s failure failure
Player 2 10m 14s 11m 52s failure

Table 1: (Left) Game instances we experiment on, and their size. (Right) Compute time necessary to find optimal
strategies according to different solution concepts.

6.2 Game-theoretic performance. We compare the game-theoretic performance of the (refined)
one-sided QPE strategies computed in Section 6.1, against the (unrefined) Nash equilibrium strategies
computed by Gurobi and CPLEX, the two leading linear programming solvers. To do so, we generated
a sequence of imperfect opponents by collecting the strategies output by CFR [34], a popular self-play
algorithm that converges to Nash equilibrium in extensive-form games. We ran CFR for 10000
iterations. Then, we let our one-sided QPE strategies and the two unrefined Nash strategies (one
from Gurobi and one from CPLEX) play against each of the imperfect opponents, and measured the
difference in expected utility achieved by the strategies, normalized by the absolute value of the game.
Results for the four largest games are shown in Figure 3 (plots for the two remaining games are in the
appendix). For each game, the top plot shows the difference in expected utility (normalized by the
absolute value of the game) obtained by our refined one-sided QPE strategy for machine Player 1
when compared to the Nash equilibrium strategy for Player 1 computed by Gurobi (solid blue line)
and CPLEX (dashed orange line). The bottom plot shows the same, in the case where the machine
player is set to Player 2 instead. The x-axis in each plot measures the exploitability of the imperfect
player, normalized by the absolute value of the game. In the river endgame, the strategies computed
by CPLEX are dual-infeasible (likely due to numeric instability), which explains why the curves do
not pass through the origin. Our preliminary analysis suggests that refined strategies might indeed
offer benefits over non-refined Nash equilibrium strategies. However, we point out that sometimes
Gurobi and CPLEX happened to compute a strategy that was more exploitative than one-sided QPE
for the specific irrationality of the CFR agents at that level of exploitability (for instance, in Liar’s
dice for exploitability up to ≈ 3). This is consistent with the theory: nothing prevents Gurobi or
CPLEX to terminate on a sequentially-rational strategies despite no constraints in that direction being
imposed. As the experiments overall show, such an occurrence appears to be rare.

7 Conclusions, discussion, and future research

In this paper, we introduced a refined solution concept—the one-sided quasi-perfect equilibrium—
suitable for zero-sum games where a “machine” player is not concerned by the possibility of making
mistakes, but wants to make sure to account for the possible mistakes of an imperfect opponent.
Along the way, we gave several fundamental results, and warned against common pitfalls. We showed
that our refinement can be computed more effectively than the known existing alternatives in practice,
and provided evidence that refined strategies might indeed outperform unrefined strategies, even
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Figure 3: Increase in expected utility achieved by (refined) one-sided QPE strategies compared to the (unrefined)
Nash equilibrium strategy for the game computed by Gurobi (solid blue line) and CPLEX (dashed orange line).

in benchmark games of interest including—for the first time—a real poker endgame. However,
significantly more work needs to be done before refinements can be regarded as an appealing drop-in
replacement of Nash equilibrium as a prescriptive tool. More work certainly remains to be done
to enable computation of refined Nash equilibrium strategies remains a challenging problem (in
our experiments, the computation of refined strategies was 1-2 orders of magnitude slower than the
computation of unrefined strategies using commercial solvers).

Some readers might be wondering why we opted to only consider the one-sided version of quasi-
perfect equilibrium, and not, say, also the one-sided version of extensive-form perfect equilibrium.
The first reason stems from computational considerations: QPEs have the advantage over EFPEs that
the trembling magnitude ε does not appear in the constraint matrix of the trembling linear program
(see also Section 5), and that property carries over to their one-sided versions. The second reason is
that there is consensus in the literature that QPEs are superior refinements than EFPEs [20, 13, 12]:
(i) an EFPE may prescribe the players to play weakly dominated strategies, while a QPE never
does; and (ii) in two-player games, a QPE is also a perfect equilibrium of the normal form, whereas
EFPE is not. This led Mertens [20] to write: “Observe that the "quasi-perfect" equilibria [..] are
still sequential–and sequential equilibria have all backward-induction properties (e.g., Kohlberg and
Mertens [14])–but are at the same time normal form perfect–which can be viewed as the strong version
of undominated. (And every proper equilibrium is quasi-perfect.) Thus, by some irony of terminology,
the “quasi”-concept seems in fact far superior to the original unqualified perfection itself.”. We leave
the task of defining and exploring the theoretical and practical aspects of one-sided EFPEs and other
one-sided equilibrium refinements as future research.

We remark that our one-sided QPE notion does not satisfy the traditional notion of sequential
rationality, which is two-sided. In future work it might be interesting to define one-sided notions of
sequential rationality and prove that our solution concept satisfies them. We observe that it is also
possible to straightforwardly define one-sided notions of undominated Nash equilibrium. Among
two-sided concepts, it has been shown experimentally that undominated equilibrium performs better
than unrefined Nash equilibrium in reasonably-sized poker games [9], and even as well as trembling-
hand refinements [5], at a fraction of the computational cost. However, the analysis was performed on
small games only due to the scalability limitations of trembling-hand equilibrium finding at the time.
The solution concept and algorithms introduced in this paper open the door for comparing one-sided
QPE against one- and two-sided undominated Nash equilibrium at significantly larger scale.

Finally, we mention that empirically studying how much the theoretical benefit of trembling-hand
solution concepts translates into practical performance against humans would be interesting. However,
an appropriate analysis would require setting up human experiments, which is notoriously a complex
undertaking. We leave that as a possible direction for future research. The analysis in our paper can
be viewed as a first smoke test (in fact, the first of its kind, and on games significantly larger than
anything prior refinement technology could scale to), but should not be taken as proof that refinements
bring significant advantages compared to unrefined Nash strategies against human opponents. Our
primary goal with this paper was to help scale up refinement computation technology to even start to
enable those further experiments and investigations on such an important topic.
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A Equilibrium refinements and opponent exploitation

As mentioned in the introduction, Nash equilibrium refinements are designed to capitalize on opponent
mistakes. They are a passive form of opponent exploitation. Active forms of opponent exploitation
have been proposed (e.g., Ganzfried and Sandholm [10] and references therein), where typically the
player is able to quantify the amount of value that the opponent is losing (compared to the value of
the game, that is, the value obtained by fully rational players) due to mistakes, and use that as budget
to more aggressively model and exploit the opponent. In other words, active opponent exploitation
enables a learning agent to safely push themselves beyond a Nash equilibrium strategy to instead play
an exploitative (but, in turn, exploitable—therefore, non-Nash) strategy against the opponent. That
type of active exploitation is not possible with equilibrium refinements, which are Nash equilibria.
However, one could imagine the two techniques working together: equilibrium refinements are
a “free” avenue to capitalize on opponent mistakes, while guaranteeing no exploitability. Those
opponent mistakes can than be used to control the risk exposure of active opponent exploitation
techniques. This is another avenue of research that to our knowledge has not been explored so far.

B The example of Figure 2

Figure 2 is reproduced below for convenience. Let 0 ≤ ε ≤ 1/4. Action a strictly dominates b, since
all payoffs for the black player (Player 1) are strictly lower in the subtree rooted at b. Hence, the black
player must minimize the probability mass put on the sequences that contain action b, compatibly
with lower bounds. Because we are using uniform lower bounds ε on the probability of each sequence,
the black player will need to put at least probability ε on the four sequences bc, bd, bp, bq. This can be
achieved when c, d, p, q are each selected with probability 1/2 and action b with probability 4ε. From
the point of view of the white player (Player 2), information set C guarantees an expected utility of
−1 · 1/2 + 2 · 1/2 = 1/2, while information set D guarantees and expected utility of 0. So, it is rational
for the white player to put as much probability mass as allowed by the lower bounds to action r. This
is achieved when action r is selected with probability 1− ε, and action s with probability ε.

(2,−2)

(1,−1) (−2, 2) (0, 0) (0, 0)

a b

c d p q

r s

A

B

C D

Action Probability
a 1− 4ε
b 4ε

c, d, p, q 1/2
r 1− ε
s ε

Figure 4: Small perfect-information game that illustrates that uniform ε lower bounds can induce irrational
behavior. Black nodes belong to Player 1, the white node belongs to Player 2.

C One-sided QPE and trembling linear program formulation

We report the definition of one-sided ε-quasi-perfect strategy profiles and equilibrium below for
convenience.

Definition 4 (One-sided quasi-perfect equilibrium). We call a strategy profile (πm,πh) a one-sided
ε-quasi-perfect strategy profile if πh is an ε-quasi-perfect best response (Definition 2) to πm, and
πm is a best response to πh. We say that (πm,πh) is an one-sided quasi-perfect equilibrium if it is
the limit point of one-sided ε-quasi-perfect strategy profiles, as ε→ 0+.

Theorem 1. Every one-sided quasi-perfect equilibrium is a Nash equilibrium.

Proof. The proof is based on a simple continuity argument. Let (x∗m,x
∗
h) be a one-sided QPE. By

definition, there exists a sequence (xtm,x
t
h) of one-sided εt-quasi-perfect strategy profiles, such that

εt → 0+ and xtm → x∗m,x
t
h → x∗h. Because the expected utility of either player is a continuous

function of the strategies, it is trivial to show that x∗m is a best response to x∗h. Indeed, suppose
not for the sake of contradiction. Then, there exists x̃m such that (x∗m)>Amx

∗
h < x̃

>
mAmx

∗
h. But

since xtm → x∗m and xth → x∗h, the inequality must hold when x∗m and x∗h are substituted with
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xtm and xth, respectively, provided t is large enough. So, eventually (xtm)>Amx
t
h < x̃>mAmx

t
h,

contradicting the hypothesis that xtm is a best response to xth for all t. So, we are only left with the
task of showing that x∗h is a best response to x∗m as well. The idea of the proof is similar, but made
only slightly more difficult due to the presence of purifications. Suppose once again for the sake of
contradiction that x∗h is not a best response to x∗m. Then, there must exist an information set I ∈ Ih
reached with positive probability where a strictly suboptimal action a is selected, say with probability
2δ > 0. By continuity, for t large enough I is still reached with positive probability, and action a is
still strictly suboptimal and selected with probability at least δ > 0. But then, when t is large enough
that εt < δ, one can extract an I-local purification that is εt-consistent with xth and contains the
strictly suboptimal action a. Such a purification cannot be optimal, contradicting the hypothesis that
xth is an ε-quasi-perfect best response to xtm at all t.

Lemma 1. Consider the bilinear saddle point problem
max

Fmxm=fm

xm≥0

min
Fhxh=fh

xh≥`h(ε)

x>mAmxh (3)

where `h(ε) is as in Equation (1). Then, for any ε > 0 for which the domain of the minimization
problem is nonempty, any solution to (3) is a one-sided ε-quasi-perfect strategy profile.

Proof. Let (xm,xh) be a solution to (3). It is evident that xm is a best response to xh. So, the
difficulty in the proof is in showing that xh is an ε-quasi-perfect best response to xm. We do so
by only minimally adapting the argument in the proof of Lemma 1 in the original work on QPE by
Miltersen and Sørensen [22]. We report the argument with our notation for convenience, striving to
maintain a 1 : 1 relationship with the original proof whenever possible. Let (xm,xh) be the solution
to (3). Let I ∈ Ih be arbitrary, let x′h be an I-local purification of xh, ε-consistent with xh, and let
x∗h be an arbitrary I-local purification of xh. We will show that x′h is an optimal I-local purification
by showing that x>mAmx

∗
h ≥ x>mAmx

′
h (note that the payoff matrix is for the machine player, and

therefore the human player is minimizing the objective, not maximizing).

We claim that there exists a scalar δ > 0 such that x̃h := xh + δ(x∗h − x′h) is a valid sequence
form strategy, and that it satisfies x̃h ≥ `h(ε) (that is, x̃h is feasible for the internal minimization
problem of (3)). Clearly, Fhx̃h = fh is satisfied (by linearity), so x̃h satisfies the sequence-form
constraints, and we only have to worry about showing that x̃h ≥ `h(ε). We will check that condition
component-wise, that is, sequence by sequence. Note that by definition of I-local purification, the
strategies x∗h and x′h are identical on all sequences, except potentially on sequences that pass through
an action at I , so we only have to check these. Furthermore, among these, we only have to worry
about the ones to which x′h assigns non-zero weight. But since x′h is ε-consistent with xh, a trivial
induction reveals that the realization weight given by xh to each of these sequences is strictly bigger
than ε|σ|. Hence, the claim follows for some sufficiently small δ > 0. Fix such a δ. Then,

x>mAx̃h = x>mAm

(
xh + δ(x∗h − x′h)

)
= x>mAmxh + δ

(
x>mAmx

∗
h − x>mAmx

′
h

)
. (4)

Now, since x̃h is a feasible point for the minimization domain of (3), and since (xm,xh is optimal for
(3), it must be x>mAmxh ≤ x>mAmx̃h. Plugging the previous inequality into (4) yields x>mAmx

∗
h ≥

x>mAmx
′
h as we wanted to show.

Proposition 1. Any limit point of solutions to the trembling linear program

P(ε) :=


arg max

xm

(Am`h(ε))>xm + (fh − Fh`h(ε))>v

s.t. 1 A>mxm − Fhv ≥ 0

2 Fmxm = fm

3 xm ≥ 0, v free.

as the trembling magnitude ε→ 0+ is a one-sided quasi-perfect equilibrium strategy for the machine
player.

Proof. We start by dualizing the minimization problem inside of (3), and obtain

min
Fhxh=fh

xh≥`h(ε)

x>mAmxh =


max f>h xh + `h(ε)>w

s.t. 1 F>h v + w = A>mxm

2 w ≥ 0, v free.
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Next, we eliminate the constraint 1 by replacing all occurrences of w with A>mxm − F>h v, thus
obtaining the equivalent optimization problem

min
Fhxh=fh

xh≥`h(ε)

x>mAmxh =


max (Am`h(ε))>xm + (fh − Fh`h(ε))>v

s.t. 1 A>mxm − F>h v ≥ 0

2 v free.

Finally, we plug the dualized inner minimization problem back into the outer maximization problem
of (3), obtaining the statement.

D Additional details about the experiments

D.1 Description of game instances

Leduc poker is a standard benchmark in the extensive-form game-solving community [29]. The
game is played with a deck of R unique cards (number of ranks), each of which appears
exactly twice in the deck. The game is composed of two rounds. In the first round, each
player places an ante of 1 in the pot and is dealt a single private card. A round of betting
then takes place, with Player 1 acting first. At most two bets are allowed per player. Then, a
card is is revealed face up and another round of betting takes place, with the same dynamics
described above. After the two betting round, if one of the players has a pair with the public
card, that player wins the pot. Otherwise, the player with the higher card wins the pot. All
bets in the first round are worth 1, while all bets in the second round are 2.

Goofspiel is another popular benchmark game, originally proposed by Ross [27]. It is a two-player
card game, employing three identical decks of k cards each whose values range from 1 to
k (in our experiments, k = 4). At the beginning of the game, each player gets dealt a full
deck as their hand, and the third deck (the “prize” deck) is shuffled and put face down on
the board. In each turn, the topmost card from the prize deck is revealed. Then, each player
privately picks a card from their hand. This card acts as a bid to win the card that was
just revealed from the prize deck. The selected cards are simultaneously revealed, and the
highest one wins the prize card. If the players’ played cards are equal, the prize card is split.
In the experiments, we use the imperfect-information variant of Goofspiel, which has been
used multiple times in the literature (e.g., [18]): the players are only informed of who wins
each prize, but not of the bid of the opponent.

River Endgame The river endgame is structured and parameterized as follows. The game is param-
eterized by the conditional distribution over hands for each player, current pot size, board
state (5 cards dealt to the board), and a betting abstraction. First, Chance deals out hands to
the two players according to the conditional hand distribution. We align with Brown and
Sandholm [3], and used a simple action abstraction: initial bets are half-pot, full-pot, and
all-in, and subsequent raises are full-pot and all-in. The game ends whenever a player folds
(the other player wins all money in the pot), calls (a showdown occurs), or both players
check as their first action of the game (a showdown occurs). In a showdown the player with
the better hands wins the pot. The pot is split in case of a tie.

Liar’s dice is another standard benchmark in the EFG-solving community [19]. In our instantiation,
each of the two players initially privately rolls an unbiased 6-face die. The first player begins
bidding, announcing any face value up to 6 and the minimum number of dice that the player
believes are showing that value among the dice of both players. Then, each player has two
choices during their turn: to make a higher bid, or to challenge the previous bid by declaring
the previous bidder a “liar”. A bid is higher than the previous one if either the face value is
higher, or the number of dice is higher. If the current player challenges the previous bid, all
dice are revealed. If the bid is valid, the last bidder wins and obtains a reward of +1 while
the challenger obtains a negative payoff of −1. Otherwise, the challenger wins and gets
reward +1, and the last bidder obtains reward of −1.
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D.2 One-sided QPEs in games with sparsified payoff matrices

As we discuss in Section 5, a key step in our algorithm for computing a one-sided quasi-perfect
equilibrium relies is to be able to solve the linear program P(ε) defined in Proposition 1 for different
numerical instantiations of the value of ε > 0. Since the solution of the linear programs is the
bottleneck of our algorithm, generally speaking the sparsest the formulation of the linear programs
P(ε), the better. The use of sparsified payoff matrices was recently shown to help speed up the
solution of linear programs representing Nash equilibrium computations [33]. A sparsification of
the payoff matrixAm of the machine player is a decomposition of the formAm = Âm +UmV

>
m ,

such that the combined number of nonzeros in Âm,Um, and Vm is significantly smaller than the
number of nonzeros inAm. We now show that any such sparsification can be used in the context of
Proposition 1 to improve the sparsity of the constraint matrix. Specifically, we have the following
immediate corollary of Proposition 1.
Proposition 2. Let the payoff matrixAm of the machine player be expressed in sparsified form as

Am = Âm +UmV
>
m

for some matrices Âm,Um,Vm. Then, any limit point of solutions to the trembling linear program

Ps(ε) :=



arg max
xm

(Am`h(ε))>xm + (fh − Fh`h(ε))>v

s.t. 1 Umxm − ym = 0

2 Â>mxm + Vmym − Fhv ≥ 0

3 Fmxm = fm

4 xm ≥ 0, ym free, v free.

as the trembling magnitude ε→ 0+ is a one-sided quasi-perfect strategy for the machine player.

When Âm = Am (that is, no sparsification is computed), constraint 1 and variable vector ym are
both empty, thereby reducing Ps to P .

All remarks in Section 5 about which exhibit a dependence on the trembling magnitude ε, apply
without changes to the sparsified case as well.

We use the sparsification technique of Zhang and Sandholm [33] to be able to scale to the river
endgame.

D.3 Additional experimental results

Figure 5 shows the game-theoretic performance of our refined one-sided QPE strategies compared to
unrefined strategies computed by Gurobi and CPLEX in the two smallest games used in Section 6,
which we had to omit from the body of the paper for space reasons. It complements Figure 3. The
empirical observations are in line with what was noted in Figure 3.
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Figure 5: Increase in expected utility achieved by (refined) one-sided QPE strategies compared to the (unrefined)
Nash equilibrium strategy for the game computed by Gurobi (solid blue line) and CPLEX (dashed orange line).
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