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Abstract
Equilibrium refinements are important in extensive-form (i.e.,
tree-form) games, where they amend weaknesses of the Nash
equilibrium concept by requiring sequential rationality and
other beneficial properties. One of the most attractive re-
finement concepts is quasi-perfect equilibrium. While quasi-
perfection has been studied in extensive-form games, it is
poorly understood in Stackelberg settings—that is, settings
where a leader can commit to a strategy—which are impor-
tant for modeling, for example, security games. In this pa-
per, we introduce the axiomatic definition of quasi-perfect
Stackelberg equilibrium. We develop a broad class of game
perturbation schemes that lead to them in the limit. Our
class of perturbation schemes strictly generalizes prior per-
turbation schemes introduced for the computation of (non-
Stackelberg) quasi-perfect equilibria. Based on our perturba-
tion schemes, we develop a branch-and-bound algorithm for
computing a quasi-perfect Stackelberg equilibrium. It lever-
ages a perturbed variant of the linear program for computing
a Stackelberg extensive-form correlated equilibrium. Experi-
ments show that our algorithm can be used to find an approx-
imate quasi-perfect Stackelberg equilibrium in games with
thousands of nodes.

1 Introduction
The main solution concept in game theory, Nash equilibrium
(NE), may prescribe non-credible strategies in extensive-
form (i.e., tree-form) games (EFGs). To solve that prob-
lem, equilibrium refinements have been proposed for such
games (Selten 1975). Among the plethora of NE refine-
ments (see van Damme (1987) for details), the quasi-perfect
equilibrium (QPE), proposed by Van Damme (1984), plays
a central role, and it is considered one of the most at-
tractive NE refinement concepts, as argued, for example,
by Mertens (1995). The rationale behind the QPE concept is
that every player, in every information set, plays her best re-
sponse to perturbed—that is, subject to trembles—strategies
of the opponents. Unlike the normal-form perfect equilib-
rium, the QPE guarantees that the strategies of the players
are sequentially rational, and furthermore, quasi-perfection
implies normal-form perfection. Unlike the extensive-form
perfect equilibrium (EFPE), in a QPE every player (reason-
ably) assumes that she will not make mistakes in the future,
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and this excludes some unreasonable strategies (Mertens
1995). Computation of NE refinements has received exten-
sive attention in the literature. In the two-player case, Mil-
tersen and Sørensen (2010) provide algorithms for finding a
QPE, while Farina and Gatti (2017) for finding an EFPE.
In particular, Miltersen and Sørensen (2010) show that a
strict subset of the QPEs can be found when the sequence
form is subject to a specific perturbation, while Farina and
Gatti (2017) do the same for the EFPE. Iterative algorithms
for such perturbed games in the zero-sum EFPE setting were
introduced by Kroer et al. (2017) and Farina et al. (2017).1

In Stackelberg games, a leader commits to a (possibly
mixed) strategy first, and then a follower best responds to
that strategy (von Stackelberg 1934). Stackelberg games
have received significant attention in recent years (Conitzer
and Sandholm 2006) due to their applications, for example,
in security domains (Tambe 2011).

Work on equilibrium refinements in the context of Stack-
elberg extensive-form games has only started recently. Akin
to usual extensive-form game refinements, Stackelberg equi-
librium (SE) refinements should guarantee both the optimal-
ity of the commitment off the equilibrium path and some
form of robustness against small trembles of the opponent.

To our knowledge, there is only one prior study of re-
finements for Stackelberg extensive-form games (Farina et
al. 2018b). They characterize a set of SE refinements based
on what solutions can be obtained by imposing a perturba-
tion scheme on the game—where players tremble onto sub-
optimal strategies with some small probabilities—and tak-
ing the limit as the trembling probability approaches zero.

1Normal-form proper equilibrium is a refinement of
QPE (Van Damme 1984), but it has drawbacks: (1) it requires
players to assume a very specific structure on trembles which is
not necessarily well-motivated, (2) the minimum tremble magni-
tudes depend on the action probabilities, which begets additional
computational challenges, and (3) it is unknown whether it can be
represented via perturbation schemes, even in the non-Stackelberg
setting. For the zero-sum case, Miltersen and Sørensen (2008)
show a polynomial-time approach using the sequence form, but it
is based on solving a large (possibly linear in game-size) number
of LPs, and thus may not be practical. For the general-sum case, it
is not even known whether the sequence form can be applied; the
only known approach relies on conversion to normal form—which
causes an exponential blow-up—and then applying a pivoting
algorithm (Sørensen 2012).



They prove that, for any perturbation scheme, all the limit
points of sequences of SEs in a perturbed game are SEs of
the original, unperturbed game. Interestingly, they prove that
when restricting attention to the common tie-breaking rules
for the follower (strong SE assumes the follower breaks ties
in the best way for the leader and weak SE assumes the fol-
lower breaks tie in the worst way for the leader), this is no
longer the case. Their approach does not start from a game-
theoretic, axiomatic definition of the refinement concept. As
we show in this paper, their approach captures only a strict
subset of the solutions that are consistent with our natural
game-theoretically defined refinement concept. One way to
view this is that their operational definition is deficient in
that it does not characterize all the solutions that are consis-
tent with the natural, axiomatic definition of the refinement
concept. Another view is that they have an operational defi-
nition and we provide a generalization.

In terms of complexity, they prove that finding any SE is
NP-hard. (Hardness had previously been proven for finding
a strong SE (Letchford and Conitzer 2010).) Therefore, find-
ing any SE refinement is also NP-hard.

Our contributions. In this paper, we formally define the
quasi-perfect Stackelberg equilibrium (QPSE) refinement
game theoretically in the same axiomatic fashion as QPE
was defined for non-Stackelberg games (Van Damme 1984).
As in the case of QPEs, our definition is based on a set
of properties of the players’ strategies, and it cannot be
directly used to search for a QPSE. Subsequently, we de-
fine a class of perturbation schemes for the sequence form
such that any limit point of a sequence of SEs in a per-
turbed game is a QPSE. This class of perturbation schemes
strictly includes those used to find a QPE by Miltersen and
Sørensen (2010). Then, we extend the algorithm by Cermak
et al. (2016) to the case of QPSE computation. We derive
the corresponding mathematical program for computing a
Stackelberg extensive-form correlated equilibrium (SEFCE)
when a perturbation scheme is introduced and we discuss
how the individual steps of the algorithm change. In par-
ticular, the implementation of our algorithm is much more
involved, requiring the combination of branch-and-bound
techniques with arbitrary-precision arithmetic to deal with
small perturbations. This does not allow a direct application
of off-the-shelf solvers. Finally, we experimentally evaluate
the scalability of our algorithm.

2 Preliminaries
Using standard notation (Shoham and Leyton-Brown 2008),
a Stackelberg extensive-form game (SEFG) of imperfect in-
formation is a tuple (N ,H,Z,A, ρ, χ, C, u, I).N = {`, f}
is the set of players, the leader and the follower. H =
Hc ∪ H` ∪ Hf is the set of nonterminal nodes, where Hc
is the set of chance nodes, while H` and Hf are the sets
of leader’s and follower’s decision nodes, respectively. Z
is the set of terminal nodes. A = Ac ∪ A` ∪ Af is the
set of actions, where Ac contains chance moves, while A`
and Af are the sets of leader’s and follower’s actions, re-
spectively. ρ : H → 2A is the action function that as-
signs to each nonterminal node a set of available actions.

χ : H × A → H ∪ Z is the successor function that de-
fines the node reached when an action is performed in a
nonterminal node. C : H ∪ Z → [0, 1] assigns each node
with its probability of being reached given chance moves.
u = {u`, uf}, where u`, uf : Z → R specify leader’s and
follower’s payoffs, respectively, in each terminal node. Fi-
nally, I = {I`, If}, where I` and If define partitions ofH`
andHf , respectively, into information sets, that is, groups of
nodes that are indistinguishable by the player. For every in-
formation set I ∈ Ii and nodes h, ĥ ∈ I , it must be the case
that ρ(h) = ρ(ĥ) = A(I), otherwise player i would be able
to distinguish the two nodes.

We focus on perfect-recall SEFGs in which no player for-
gets what she did or knew in the past, that is, for every i ∈ N
and I ∈ Ii, all nodes belonging to I share the same player
i’s moves on their paths from the root. Thus, we can restrict
the attention to behavioral strategies (Kuhn 1953), which
define, for every player i ∈ N and information set I ∈ Ii, a
probability distribution over the actionsA(I). For i ∈ N , let
πi ∈ Πi be a player i’s behavioral strategy, with πia denot-
ing the probability of playing action a ∈ Ai. Overloading
notation, we use ui as if it were defined over strategies in-
stead of terminal nodes. Specifically, ui(π`, πf ) is player i’s
expected utility when π` ∈ Π` and πf ∈ Πf are played.

Perfect-recall SEFGs admit an equivalent representation
called the sequence form (Von Stengel 1996; Romanovskii
1962). Every node h ∈ H ∪ Z defines a sequence σi(h) for
player i ∈ N , which is the ordered set of player i’s actions
on the path from the root to h. Let Σi be the set of player i’s
sequences. As usual, let σ∅ ∈ Σi be a fictitious element rep-
resenting the empty sequence. In perfect-recall games, given
an information set I ∈ Ii, for any pair of nodes h, ĥ ∈ I it
holds σi(h) = σi(ĥ) = σi(I). Given σi ∈ Σi and a ∈ A(I)
with I ∈ Ii : σi = σi(I), we denote as σia the extended
sequence obtained by appending a to σi. Moreover, for any
pair σi, σ̂i ∈ Σi, we write σ̂i v σi whenever σ̂i is a prefix
of σi, that is, σi can be obtained by extending σ̂i with a fi-
nite number of actions. Given σi ∈ Σi, we also let Ii(σi)
be the information set I ∈ Ii : σi = σi(I)a for some
a ∈ A(I). In the sequence form, a strategy, called a real-
ization plan, assigns each sequence with its probability of
being played. For i ∈ N , let ri ∈ Ri be a player i’s realiza-
tion plan. In order to be well-defined, a realization plan ri
must be such that ri(σ∅) = 1 and, for I ∈ Ii, ri(σi(I)) =∑
a∈A(I) ri(σi(I)a). Finally, letting Σ = Σ`×Σf be the set

of sequence pairs σ = (σ`, σf ), overloading notation, ui :
Σ → R is player i’s utility function in the sequence form,
with ui(σ) =

∑
h∈Z:σ`(h)=σ`∧σf (h)=σf

ui(h)C(h). More-
over, we also use ui as if it were defined over realization
plans. Formally, ui(r`, rf ) =

∑
σ∈Σ ui(σ)r`(σ`)rf (σf ).

The sequence form is usually expressed with matrix no-
tation as follows. Player i’s utility function is a |Σ`| × |Σf |
matrix Ui whose entries are the utilities ui(σ), for σ ∈ Σ.
Constraints defining ri ∈ Ri are expressed as Firi = fi,
where: Fi is a (|Ii| + 1) × |Σi| matrix, fi ∈ R|Ii|+1, and,
overloading notation, ri ∈ R|Σi| is a vector representing ri.
Specifically, introducing a fictitious information set I∅, the
entry of Fi indexed by (I∅, σ∅) is 1, and, for I ∈ Ii and



σi ∈ Σi, the entry indexed by (I, σi) is −1 if σi = σi(I),
while it is 1 if σi = σi(I)a for some a ∈ A(I). Fi is zero
everywhere else. Moreover, fTi = (1 0 · · · 0). Finally, given
r` ∈ R` and rf ∈ Rf , we can write ui(r`, rf ) = rT` Uirf .

In perfect-recall games, behavioral strategies and realiza-
tion plans are equally expressive. Given ri ∈ Ri, we ob-
tain an equivalent πi ∈ Πi by setting, for all I ∈ Ii and
a ∈ A(I), πia = ri(σi(I)a)

ri(σi(I))
when ri(σi(I)) > 0, while πia

can be any otherwise. Similarly, πi ∈ Πi has an equivalent
ri ∈ Ri with ri(σi) =

∏
a∈σi

πia for all σi ∈ Σi.2
The solution concept associated with SEFGs is the SE.

An SEFG may have many SEs, depending on the leader’s
assumption on how the follower breaks ties among multi-
ple best responses. A leader’s strategy is part of an SE if it
is optimal for some tie-breaking rule of the follower. Let-
ting BRΓ(π`) = arg maxπf∈Πf

uf (π`, πf ) be the set of fol-
lower’s best responses to π` ∈ Π` in an SEFG Γ, we have
the following formal definition of SE.3

Definition 1. Given an SEFG Γ, (π`, πf ) is an SE of Γ if
πf ∈ BRΓ(π`) and, for all π̂` ∈ Π`, there exists π̂f ∈
BRΓ(π̂`) such that u`(π`, πf ) ≥ u`(π̂`, π̂f ).

Many papers on SEs focus on strong SEs (SSEs), which
assume that the follower breaks ties in favor of the leader.

Definition 2. Given an SEFG Γ, (π`, πf ) is an SSE of Γ if
πf ∈ BRΓ(π`) and, for all π̂` ∈ Π` and π̂f ∈ BRΓ(π̂`), it
holds u`(π`, πf ) ≥ u`(π̂`, π̂f ).

Finally, SEs and SSEs can be defined analogously for SE-
FGs in sequence form (using the equivalence between be-
havioral strategies and realization plans).

3 Definition of Quasi-Perfect Stackelberg
Equilibrim

In this section, we introduce QPSEs, which refine SEs
in SEFGs using an approach resembling that adopted
by Van Damme (1984) for defining QPEs in EFGs.

First, we provide needed additional notation. We say that
πi ∈ Πi is completely mixed if πia > 0 for all a ∈ Ai. Given
two information sets I, Î ∈ Ii, we write I � Î whenever Î
follows I , i.e., there exists a path from h ∈ I to ĥ ∈ Î . We
assume I∅ � Î for all Î ∈ Ii such that there is no I 6=
Î ∈ Ii : I � Î . In perfect-recall games, � is a partial
order over Ii ∪ {I∅}. Given πi, π̂i ∈ Πi and I ∈ Ii ∪ {I∅},
πi
/
I
π̂i is equal to π̂i at all Î ∈ Ii : I � Î , while it is

equal to πi everywhere else. Moreover, for I ∈ Ii, we write
πi =I π̂i if πia = π̂ia for all a ∈ A(I). Finally, given
completely mixed strategies π` ∈ Π`, πf ∈ Πf and I ∈ Ii,
ui,I(π`, πf ) denotes player i’s expected utility given that I
has been reached and strategies π` and πf are played.

Next, we introduce a fundamental building block: the idea
of follower’s best response at an information set I ∈ If .
Intuitively, πf is an I-best response to π` whenever playing

2Here, the equivalence is in terms of probabilities that the strate-
gies induce on terminal nodes, i.e., it is realization equivalence.

3In this paper, we define SEs following a characterization intro-
duced by Farina et al. (2018b) (Lemma 2 in their paper).

as prescribed by πf at the information set I is part of some
follower’s best response to π` in the game following I , given
that I has been reached during play. Formally:
Definition 3. Given an SEFG Γ, a completely mixed π` ∈
Π`, and I ∈ If , we say that πf ∈ Πf is an I-best response
to π`, written πf ∈ BRI(π`), if the following holds:

max
π̂f∈Πf :
πf=I π̂f

uf,I
(
π`, πf

/
I
π̂f
)

= max
π̂f∈Πf

uf,I
(
π`, πf

/
I
π̂f
)
.

For i ∈ N and πi ∈ Πi, let {πi,k}k∈N be a sequence
of completely mixed player i’s strategies with πi as a limit
point. We are now ready to define the refinement concept.
In words, in a QPSE, the leader selects an optimal strategy
to commit to in all information sets, given that the follower
best responds to it at every information set, following some
tie-breaking rule. Specifically, point (ii) in Definition 4 en-
sures that the leader’s commitment is optimal also in those
information sets that are unreachable in absence of players’
errors. Notice that the leader only accounts for follower’s fu-
ture errors, while the follower assumes that only the leader
can make mistakes in future. This is in line with the idea
underlying QPEs in EFGs (Van Damme 1984).4

Definition 4. Given an SEFG Γ, (π`, πf ) is a quasi-perfect
Stackelberg equilibrium (QPSE) of Γ if there exist sequences
{πi,k}k∈N, defined for every i ∈ N and πi ∈ Πi, such that:

(i) πf ∈ BRI(π`,k) for all I ∈ If ;
(ii) for all I ∈ I` ∪ {I∅} and π̂` ∈ Π`, there exists π̂f ∈

Πf : π̂f ∈ BRÎ(π`,k
/
I
π̂`,k) for all Î ∈ If , with:

u`
(
π`,k

/
I
π`, πf,k

)
≥ u`

(
π`,k

/
I
π̂`, π̂f,k

)
. (1)

As with SEs, we introduce the strong version of QPSEs.5

Definition 5. Given an SEFG Γ, (π`, πf ) is a quasi-perfect
strong Stackelberg equilibrium (QPSSE) of Γ if there exist
{πi,k}k∈N, defined for every i ∈ N and πi ∈ Πi, such that:

(i) πf ∈ BRI(π`,k) for all I ∈ If ;
(ii) for all I ∈ I` ∪ {I∅}, π̂` ∈ Π`, and π̂f ∈ Πf : π̂f ∈

BRÎ(π`,k
/
I
π̂`,k) for all Î ∈ If , Equation (1) holds.

As we will show in Section 4, QPSEs are refinements of
SEs, that is, any QPSE is also an SE.

4 Family of Perturbation Schemes for QPSE
We now introduce a family of perturbation schemes for SE-
FGs in sequence form that satisfies the following fundamen-
tal property: limits of SEs in perturbed sequence-form SE-
FGs are QPSEs of the original unperturbed SEFGs as the
magnitude of the perturbation goes to zero. In addition to
being theoretically relevant, this result enables us to design
an algorithm for computing QPSEs in SEFGs (Section 7).

4Van Damme (1984) defines a QPE of an n-player extensive-
form game as a strategy profile (πi)i∈N obtained as a limit point of
a sequence of completely mixed strategy profiles {(πi,k)i∈N }k∈N
such that πi ∈ BRI((πj,k)j 6=i∈N ) for all i ∈ N and I ∈ Ii.

5Since Equation (1) must hold for every π̂` ∈ Π` and π̂f ∈
Πf : π̂f ∈ BRÎ(π`,k

/
I
π̂`,k) for all Î ∈ If , Definition 5 assumes

that the follower breaks ties in favor of the leader.



Definition 6 (ξ-perturbation scheme). Given an SEFG Γ
and i ∈ N , let ξi : (0, 1] × Qi → R+ be a function that
maps a perturbation magnitude ε ∈ (0, 1] and a sequence
σi ∈ Σi to a positive lower-bound ξi(ε, σi) on the probabil-
ity of playing σi such that:

(i) ξi(ε, σi) is a polynomial in ε, for all σi ∈ Σi;
(ii) limε→0+ ξi(ε, σi) = 0, for all σi ∈ Σi \ {σ∅};

(iii) limε→0+
ξi(ε,σi(I)a)
ξi(ε,σi(I))

= 0, for all I ∈ Ii, a ∈ A(I).

Then, a ξi-perturbation scheme for Ri is a function ε 7→
Ri(ε) defined over ε ∈ (0, 1] in which Ri(ε) is the set of all
ri ∈ Ri such that ri(σi) ≥ ξi(ε, σi) for all σi ∈ Σi.

In words, the lower-bounds on sequence probabilities en-
joy the following properties: (i) they are polynomials in the
variable ε; (ii) they approach zero as ε goes to zero; and (iii)
ξi(ε, σi(I)a) approaches zero faster than ξi(ε, σi(I)).

We denote by (Γ, ξ`, ξf ) a ξ-perturbed SEFG with ξi-
perturbation schemes. We let Γ(ε) be a particular sequence-
form ξ-perturbed game instance obtained from Γ by re-
stricting each set of realization plans Ri to be Ri(ε). We
denote by ri(ε) any realization plan in Ri(ε), and we let
ξi(ε) ∈ R|Qi| be a vector whose components are the lower-
bounds ξi(ε, σi). We denote by r̃i(ε) = ri(ε) − ξi(ε) the
residual of ri(ε), which represents the part of player i’s strat-
egy that is not fixed by the perturbation.6

Next, we state our main result about sequences of SEs in
ξ-perturbed games. We postpone the proof to Section 6.

Theorem 1. Given a ξ-perturbed SEFG (Γ, ξ`, ξf ), let
{εk}k∈N → 0 and let {(r`(εk), rf (εk))}k∈N be a sequence
of SEs in Γ(εk). Then, any limit point (π`, πf ) of the se-
quence {(π`,k, πf,k)}k∈N is a QPSE of Γ, where (π`,k, πf,k)
are equivalent to (r`(εk), rf (εk)) for all k ∈ N.

Theorem 1 also allows us to conclude the following, as a
consequence of Theorem 1 of Farina et al. (2018b).

Corollary 1. Any QPSE of an SEFG Γ is an SE of Γ.

Reuirements (ii)-(iii) in Definition 6 cannot be removed:

Observation 1. There are ξ-perturbed SEFGs (Γ, ξ`, ξf )
with ξi-perturbation schemes that violate point (ii) or (iii)
in Definition 6 for which Theorem 1 does not hold.

Proof. Consider the SEFG in Figure 1b with ξ`(ε, a
1
`) =

ξ`(ε, a
2
`) = ε and ξ`(ε, a2

`a
3
`) = ξ`(ε, a

2
`a

4
`) = ε

3 , which
violates requirement (iii) in Definition 6. Clearly, any SE of
Γ(ε) requires r`(ε, a1

`) = 1− ε, r`(ε, a2
`) = ε, r`(ε, a2

`a
3
`) =

ε
3 , and r`(ε, a2

`a
4
`) = 2ε

3 . Thus, any limit point of a sequence
of SEs has π`(a3

`) = 1
3 and π`(a4

`) = 2
3 , which cannot be the

case in a QPSE of Γ, as the leader’s optimal strategy at `.2
is to play a4

` . As for requirement (ii), we can build a similar
example by setting ξ`(ε, a2

`) = 1
3 .

Miltersen and Sørensen (2010) introduced the idea of per-
turbing sequence-form EFGs in order to find a QPE. Our
perturbation scheme generalizes theirs, where ξi(ε, σi) =

6We assume without loss of generality that Γ(ε) is well-defined,
that is, each set Ri(ε) is non-empty for every ε ∈ (0, 1].

`.1

`.2

2, 0

a3`

1, 1

a1f

0, 0

a2f

a4`

a1`

0, 0

a1f

1, 1

a2f

a2`
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0, 0
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a4`

a2`
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Figure 1: Examples SEFGs.

ε|σi| for all σi ∈ Σi\{σ∅}, with |σi| being the number of ac-
tions in σi. There are games where our perturbation captures
QPSEs that are not obtainable with theirs. For instance, in
the SEFG in Figure 1a, (π`, πf ), with π`(a1

`) = π`(a
3
`) = 1,

π`(a
2
`) = π`(a

4
`) = 0, and πf (a1

f ) = πf (a2
f ) = 1

2 ,
is a QPSE that cannot be obtained with their perturbation
scheme while it is reachable by setting ξ`(ε, a2

`) = ε2. We
observe that (π`, πf ) is also a QPE when we look at the
game as an EFG without commitment; this shows that our
perturbation scheme generalizes theirs also for QPEs.

Finally, when restricting the attention to SSEs, we can
state the following: limits of SSEs are QPSSEs. We make
this formal in Theorem 4 in the Appendix.

5 Best Responses in ξ-Perturbed Games
We now study properties of the follower’s best responses to
the leader’s strategy in ξ-perturbed games. These properties
will be useful for proving our results later in the paper.

In the following, letting Σi(a) = {σi ∈ Σi | a ∈ σi}
for all a ∈ Ai, Σi(I) =

⋃
a∈A(I) Σi(a) denotes player

i’s sequences that pass through information set I ∈ Ii.
For ease of presentation, given I ∈ Ii, gi,I(r`, rf ) =∑
σ∈Σ:σi∈Σi(I)

ui(σ)r`(σ`)rf (σf ) denotes player i’s ex-
pected utility contribution from terminal nodes reachable
from I . Finally, for I ∈ Ii, let Ri(I) ⊆ Ri be the set
of ri ∈ Ri : ri(σi(I)) = 1, while, for a ∈ A(I),
Ri(a) ⊆ Ri(I) is the set of ri ∈ Ri : ri(σi(I)a) = 1.

Let BRΓ(ε)(r`(ε)) = arg maxrf (ε)∈Rf (ε) uf (r`(ε), rf (ε))
be the set of follower’s best responses to r`(ε) ∈ R`(ε) in
Γ(ε). The next lemma gives a mathematical programming
formulation of the follower’s best-response problem in Γ(ε).

Lemma 1. For every r`(ε) ∈ R`(ε), rf (ε) ∈ BRΓ(ε)(r`(ε))
if and only if r̃f (ε) is optimal for Problem P(ε) below.

P(ε) :

{
max
r̃f

r`(ε)
TUf r̃f

s.t. Ff r̃f = ff − Ffξf (ε), r̃f ≥ 0.

All omitted proofs are in the Appendix.
The dual of Problem P(ε) above is as follows.

Proposition 1. For r`(ε) ∈ R`(ε), Problem D(ε) below is
the dual of Problem P(ε), where vf ∈ R|If |+1 is the vector
of dual variables.

D(ε) :

{
min
vf

(ff − Ffξf (ε))
T
vf

s.t. FTf vf ≥ UTf r`(ε).
(2a)

(2b)



Remark 1. Constraints (2b) in ProblemD(ε) defined above
ensure that, for every I ∈ If and a ∈ A(I), we have

vf,I ≥
∑

σ∈Σ:σf=σf (I)a

uf (σ)r`(ε, σ`) +
∑

Î∈If :σf (Î)=σf (I)a

vf,Î . (3)

The optimal solutions to Problem D(ε) enjoy important
properties that are stated in the following lemmas. The first
one says that, in an optimal solution, each variable vf,I must
equal the maximum possible expected utility the follower
can achieve following information set I ∈ If . The sec-
ond lemma says that if an optimal solution to Problem D(ε)
satisfies Constraint (3) with equality for an information set
I ∈ If and an action a ∈ A(I), then playing a at I is opti-
mal in the game following I .
Lemma 2. For every r`(ε) ∈ R`(ε), if v∗f ∈ R|If |+1 is
optimal for Problem D(ε), then for every I ∈ If :

v∗f,I = max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ). (4)

Lemma 3. For every r`(ε) ∈ R`(ε), I ∈ If , and a ∈ A(I),
if Constraint (3) holds with equality in an optimal solution
to Problem D(ε), then

max
r̂f∈Rf (a)

gf,I(r`(ε), r̂f ) = max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ). (5)

Now we are ready to prove a fundamental property of
the follower’s best responses in ξ-perturbed game instances
Γ(ε). Intuitively, in a perturbed game instance, the follower
best responds playing sequence σ(If )a with probability
strictly greater than its lower-bound ξf (ε, σf (I)a) only if
playing a is optimal in the game following I . Theorem 2 for-
mally expresses the idea that, in a perturbed game instance
Γ(ε), when the follower decides how to best respond to a
leader’s commitment in a given information set, she does not
take into account her future trembles, but only opponents’
ones.
Theorem 2. Given r`(ε) ∈ R`(ε), rf (ε) ∈ BRΓ(ε)(r`(ε)),
I ∈ If , and a ∈ A(I), if rf (ε, σf (I)a) > ξf (ε, σf (I)a),
then

max
r̂f∈Rf (a)

gf,I(r`(ε), r̂f ) = max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ).

Proof. By Lemma 1, rf (ε) ∈ BRΓ(ε)(r`(ε)) if and only if
r̃f (ε) = rf (ε) − ξf (ε) is optimal for Problem P(ε). By
applying the complementarity slackness theorem to Prob-
lems P(ε) andD(ε) we have that, if r̃f (ε) and v∗f ∈ R|If |+1

are optimal, then, whenever r̃f (ε, σf (I)a) > 0, that is,
rf (ε, σf (I)a) > ξf (ε, σf (I)a), Constraint (3) for informa-
tion set I and action a must hold with equality, which, by
Lemma 3, yields Equation (5).

6 Limits of SEs in ξ-Perturbed Games are
QPSEs of the Unperturbed Games

Here, we prove Theorem 1. First, we introduce two lemmas.
The first provides a characterization of I-best responses

in terms of sequence form. Intuitively, a follower’s strategy
πf is an I-best response to π` if and only if it places positive
probability only on actions a ∈ A(I) that are part of some
best response of the follower below information set I .

Lemma 4. Given an SEFG Γ, a completely mixed π` ∈ Π`

and I ∈ If , πf ∈ BRI(π`) if for every a ∈ A(I):

πia > 0 =⇒ max
r̂f∈Rf (a)

gf,I(r`, r̂f ) = max
r̂f∈Rf (I)

gf,I(r`, r̂f ),

where r` ∈ R` is equivalent to π`.

The next lemma shows that any limit point of a sequence
of follower’s best responses in ξ-perturbed games is a fol-
lower’s best response at every information set in Γ.

Lemma 5. Given a ξ-perturbed SEFG (Γ, ξ`, ξf ), let
{εk}k∈N → 0 and let {(r`(εk), rf (εk))}k∈N be a sequence
of realization plans in Γ(εk) with rf (εk) ∈ BRΓ(εk)(r`(εk)).
Then, any limit point (π`, πf ) of {(π`,k, πf,k)}k∈N is such
that, eventually, πf ∈ BRIf (π`,k) for all I ∈ If , where
(π`,k, πf,k) are equivalent to (r`(εk), rf (εk)) for all k ∈ N.

Finally, we can prove Theorem 1.

Proof of Theorem 1. First, since rf (εk) ∈ BRΓ(εk)(r`(εk))
for all k ∈ N, Lemma 5 allows us to conclude that re-
quirement (i) in Definition 4 holds. Therefore, in order to
prove Theorem 1, we need to show that requirement (ii)
holds as well. For contradiction, suppose that point (ii)
does not hold, that is, no matter how we choose sequences
{πi,k}k∈N, for i ∈ N and πi ∈ Πi, there is an informa-
tion set I ∈ I` ∪ {I∅} and a leader’s strategy π̂` ∈ Π` such
that, for every π̂f ∈ Πf : π̂f ∈ BRÎ(π`,k

/
I
π̂`,k) for all

Î ∈ If , we have u`(π`,k
/
I
π`, πf,k) < u`(π`,k

/
I
π̂`, π̂f,k).

By continuity, there must exist k̄ ∈ N such that, for all
k ∈ N : k ≥ k̄, u`(π`,k

/
I
π`,k, πf,k) = u`(π`,k, πf,k) <

u`(π`,k
/
I
π̂`,k, π̂f,k). Let sequence {π̂`,k}k∈N be such that

r̂`(εk) ∈ R`(εk) for all k ∈ N, where each realization
plan r̂`(εk) is equivalent to the strategy π`,k

/
I
π̂`,k. This

is always possible since requirement (iii) in Definition 6
is satisfied. Consider a sequence {(r̂`(εk), r̂f (εk)}k∈N with
r̂f (εk) ∈ BRΓ(εk)(r̂`(εk)), and let {(π`,k

/
I
π̂`,k, π̂f,k)}k∈N

be a sequence such that each strategy π̂f,k is equivalent
to r̂f (εk). By Lemma 5, any limit point (π`

/
I
π̂`, π̂f ) of

{(π`,k
/
I
π̂`,k, π̂f,k)}k∈N satisfies π̂f ∈ BRÎ(π`,k

/
I
π̂`,k) for

all Î ∈ If . Thus, using the equivalence between strategies
and realization plans, for k ∈ N : k ≥ k̄ we have that
u`(r`(εk), rf (εk)) < u`(r̂`(εk), r̂f (εk)), no matter how we
choose r̂f (εk) ∈ BRΓ(εk)(r̂`(εk)). This contradicts the fact
that (r`(εk), rf (εk)) is an SE of Γ(εk).

7 Algorithm
One can use our perturbation scheme to compute an (approx-
imate) QPSE. We do this by developing an LP for comput-
ing an SEFCE in a given ξ-perturbed game instance, where
we maximize the leader’s value. We then conduct a branch-
and-bound search on this SEFCE LP. It branches on which
actions to force be recommended to the follower (by the cor-
relation device of the SEFCE). The idea is that, as long as we
only recommend a single action to the follower at any given
information set, we get an SE of the perturbed game (specif-
ically an SSE, and an SSE has maximum value among all



SEs), and, thus, according to Theorem 1, a QPSE (specifi-
cally QPSSE) if we take the limit point of the perturbations.
As in prior papers on EFCE computation in general-sum
games, we focus on games without chance nodes (von Sten-
gel and Forges 2008; Cermak et al. 2016).

For computing an SEFCE we need to specify joint prob-
abilities over sequence pairs (σ`, σf ) ∈ Σ. However, not
all pairs need to specify probabilities, only pairs such that
choosing σf is affected by the probability put on σ` (we do
not need to care about the converse of this, as only the fol-
lower needs to be induced to follow the recommended strat-
egy). Intuitively, the set of the leader’s sequences relevant to
a given σf ∈ Σf is made of those sequences that affect the
expected value of σf or any alternative sequence σ̂f ∈ Σf
whose last action is available at If (σf ).
Definition 7 (Relevant sequences). A pair (σ`, σf ) ∈ Σ is
relevant if either σ` = σ∅ or there exists h, ĥ ∈ H s.t. ĥ
precedes h, h ∈ If (σf ), and ĥ ∈ I`(σ`), or if the condition
holds with the roles of σ` and σf reversed.

For every information set I ∈ Ii, we let rel(I) be the
set of sequences relevant to each child sequence σi(I)a for
a ∈ A(I). We let p(σ`, σf ) be the probability that we recom-
mend that the leader plays sequence σ`, and that the follower
sends her residual (i.e., the probability that is not fixed by
the perturbation) to σf . Moreover, we let η(σf ) be the max-
imum probability that the follower can put on a sequence
σf ∈ Σf given the ξf -perturbation scheme.

First, we introduce a new value function representing the
value to the leader of the sequence pair (σ`, σf ) ∈ Σ given
that σf represents an assignment of residual probability:

uε`(σ`, σf ) =
∑

h∈Z:σ`(h)=σ`∧σf (h)=σf

η(σf )u`(h) +
∑
σ̂f∈Σf

ξf (ε, σ̂f )u`(σ`, σ̂f ).

The following LP finds an SEFCE in a ξ-perturbed SEFG.

max
p,v

∑
(σ`,σf )∈Σ

p(σ`, σf )uε`(σ`, σf ) s.t. (6a)

p(∅, ∅) = 1, p(σ`, σf ) ≥ 0 ∀(σ`, σf ) ∈ Σ (6b)∑
σf∈rel(σ`)

p(σ`, σf ) ≥ ξ`(ε, σ`) ∀σ` ∈ Σ` (6c)

p(σ`(I), σf ) =
∑

a∈A(I)

p(σ`(I)a, σf ) ∀I ∈ I`, σf ∈ rel(I) (6d)

p(σ`, σf (I)) =
∑

a∈A(I)

p(σ`, σf (I)a) ∀I ∈ If , σ` ∈ rel(I) (6e)

v(σf ) = η(σf )
∑

σ`∈rel(σf )

p(σ`, σf )uf (σ`, σf ) (6f)

+
∑

I∈If :σf (I)=σf

∑
a∈A(I)

v(σfa) ∀σf ∈ Σf

v(I, σf ) ≥ η(σf (I)a)
∑

σ`∈rel(σf )

p(σ`, σf )uf (σ`, σf (I)a) (6g)

+
∑

Î∈If ;σf (Î)=σf (I)a

v(Î, σf ) ∀I ∈ If , a ∈ A(I), σf ∈ prec(I)

v(σf (I)a) = v(I, σf (I)a) ∀I ∈ If , a ∈ A(I). (6h)

In (6g) of this LP, prec(I), where I ∈ If , is the set of fol-
lower’s sequences σf that precede I in the sense that there

is Î ∈ If with σf (Î) v σf (I) and σf = σf (Î)a for some
a ∈ A(Î). This LP is a modification of the SEFCE LP given
by Cermak et al. (2016). The new LP has two modifica-
tions to allow perturbation. First, it has constraints (6c) to
ensure that the sum of recommendation probabilities on any
leader’s sequence is at least ξ`(ε, σ`). Second, because we
are now recommending where to send residual probability
for the follower, we must modify the objective in order to
give the correct expected value for the leader.7

We can branch-and-bound on recommendations to the fol-
lower in a way that ensures that the final outcome is an SSE.
That is guaranteed by the following theorem, which shows
that we can add and remove constraints on which follower
actions to recommend in a way that guarantees an SSE of
the perturbed game as long as the follower is recommended
a “pure” strategy with respect to the residual probabilities.

Theorem 3. If a solution to LP (6) is such that for all I ∈ If
there exists a ∈ A(I) such that p(σ`, σf (I)â) = 0 for all
â ∈ A(I), σ` ∈ rel(σf (I)a) with â 6= a, then a strategy
profile can be extracted in polynomial time such that it is an
SSE of the perturbed game instance.

Now it is obvious that the LP (6) upper bounds the value
of any SSE since the SSE is a feasible solution to the LP.

Theorem 3 shows that one way to find an SSE is to find a
solution to LP (6) where the follower is recommended a pure
strategy with respect to the residual probabilities. Since any
SSE represents such a solution, we can branch on which ac-
tions we make pure at each information set, and use branch-
and-bound to prune the space of possible solutions. This ap-
proach was proposed by Cermak et al. (2016) for computing
SSEs in unperturbed games, where they showed that it per-
forms better than a single MIP. Because our LP for perturbed
games uses residual probabilities for the follower, we can
apply the branching methodology of Cermak et al. (2016).
At each node in the search we choose some information set
I where more than one action is recommended. We then
branch on which action in A(I) to recommend. Forcing a
given action is accomplished by requiring all other action
probabilities be zero. Our branch-and-bound chooses infor-
mation sets according to depth, always branching on the
shallowest one with at least two recommended action. We
explore actions in descending order of mass, where the mass
on a ∈ A(I) (with sequence σf ) is

∑
σ`∈rel(σf ) p(σ`, σf ).

The algorithm finds an SSE of the perturbed game. In
the limit as the perturbation approaches zero, this yields a
QPSE. No algorithm is currently known for computing such
an exact limit. In practice, we pick a small perturbation and
solve the branch-and-bound using that value. This immedi-
ately leads to an approximate notion of QPSE (akin to ap-
proximate refinement notions in non-Stackelberg EFGs (Fa-
rina et al. 2017; Kroer et al. 2017)). Another approach is to
use our algorithm as an anytime algorithm where one runs it
repeatedly with smaller and smaller perturbation values.

7We use the definition of relevant sequences and the LP from
von Stengel and Forges (2008) rather than those of Cermak et
al. (2016). The latter are not well defined for (6d) and (6e).



8 Experiments
We conducted experiments with our algorithm on two com-
mon benchmark EFGs. The first is a search game played on
the graph shown in Figure 2. It is a simultaneous-move game
(which can be modeled as a turn-taking EFG with appro-
priately chosen information sets). The leader controls two
patrols that can each move within their respective shaded
areas (labeled P1 and P2), and at each time step the con-
troller chooses a move for both patrols. The follower is al-
ways at a single node on the graph, initially the leftmost
node labeled S and can move freely to any adjacent node
(except at patrolled nodes, the follower cannot move from a
patrolled node to another patrolled node). The follower can
also choose to wait in place for a time step in order to clean
up their traces. If a patrol visits a node that was previously
visited by the follower, and the follower did not wait to clean
up their traces, they can see that the follower was there. If the
follower reaches any of the rightmost nodes they received
the respective payoff at the node (5 and 10, respectively).
If the follower and any patrol are on the same node at any
time step, the follower is captured, which leads to a payoff
of 0 for the follower and a payoff of 1 for the leader. Finally,
the game times out after k simultaneous moves, in which
case the leader receives payoff 0 and the follower receives
−∞ (because we are interested in games where the follower
attempts to reach an end node). This is the game considered
by Kroer et al. (2018) except with the bottom layer removed,
and is similar to games considered by Bosansky et al. (2014)
and Bošanskỳ and Cermak (2015).

P1 P2

S

5

10

Figure 2: The graph on which the search game is played.

The second game is a variant on Goofspiel (Ross 1971),
a bidding game where each player has a hand of cards num-
bered 1 to 3. There are 3 prizes worth 1, . . . , 3. In each turn,
the prize is the smallest among the remaining prizes. Within
the turn, the each of two players simultaneously chooses
some private card to play. The player with the larger card
wins the prize. In case of a tie, the prize is discarded, so this
is not a constant-sum game. The cards that were played get
discarded. Once all cards have been played, a player’s score
is the sum of the prizes that she has won.

The LP solver we used is GLPK 4.63 (GLPK 2017). We
had to make the following changes to GLPK. First, we had to
expose some internal routines so that we could input to the
solver rational numbers rather than double-precision num-
bers. Second, we fixed a glitch in GLPK’s rational LP solver
in its pivoting step (it was not correct when the rational num-
bers were too small). Our code and GLPK use the GNU
GMP library to provide arbitrary-precision arithmetic. The
code, written in the C++14 language, was compiled with the
g++ 7.2.0 compiler. It was run on a single thread on a 2.3
GHz Intel Xeon processor. The results are shown in Figure 3.
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Figure 3: Experiments. Dashed lines show compute time.
Solid lines show the loss in the leader’s utility compared to
the SSE value in the unperturbed game.

9 Conclusions and Future Research
Quasi-perfect equilibrium has been studied in extensive-
form games, but was poorly understood in Stackelberg set-
tings.We provided a game-theoretic, axiomatic definition of
quasi-perfect Stackelberg equilibrium (QPSE). We devel-
oped a family of game perturbation schemes that lead to a
QPSE in the limit. Our family generalizes prior perturba-
tion schemes introduced for finding (even non-Stackelberg)
quasi-perfect equilibria. Using our perturbation schemes, we
developed a branch-and-bound algorithm for QPSE. It lever-
ages a perturbed variant of the linear program for computing
a Stackelberg extensive-form correlated equilibrium. Exper-
iments show that our algorithm can be used to find an ap-
proximate QPSE in games with thousands of nodes.

We showed that some perturbation schemes outside our
family do not lead to QPSEs in some games. It remains an
open question whether our perturbation family fully charac-
terizes the whole set of QPSEs. As to requirement (i) in Defi-
nition 6, can all QPSEs be captured by perturbation schemes
that only use polynomial lower bounds on trembles?

It was recently shown that in non-Stackelberg extensive-
form games, there exists a perturbation size that is small
enough (while still strictly positive) that an exact refined
(e.g., quasi-perfect) equilibrium can be found by solving a
mathematical program with that perturbation size (Miltersen
and Sørensen 2010; Farina and Gatti 2017; Farina et al.
2018a), and Farina et al. (2018a) provide an algorithm for
checking whether a given guess of perturbation size is small
enough. That obviates the need to try to explicitly compute
a limit of a sequence. It would be interesting to see whether
such theory can also be developed for Stackelberg extensive-
form games—and for our perturbation family in particular.
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Appendix
Omitted Proofs
Lemma 1. For every r`(ε) ∈ R`(ε), rf (ε) ∈ BRΓ(ε)(r`(ε))
if and only if r̃f (ε) is optimal for Problem P(ε) below.

P(ε) :

{
max
r̃f

r`(ε)
TUf r̃f

s.t. Ff r̃f = ff − Ffξf (ε), r̃f ≥ 0.

Proof. Since, rf (ε) ∈ BRΓ(ε)(r`(ε)) if and only if rf (ε) ∈
arg maxrf :Ffrf=ff ,rf≥ξf (ε) r`(ε)

TUfrf , introducing vari-
ables r̃f = rf − ξf (ε) and dropping the constant term
r`(ε)

TUiξf (ε) from the objective, we obtain that rf (ε) must
be an optimal solution to Problem P(ε).

Lemma 2. For every r`(ε) ∈ R`(ε), if v∗f ∈ R|If |+1 is
optimal for Problem D(ε), then for every I ∈ If :

v∗f,I = max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ). (4)

Proof. Let us consider Problem D(ε). First, observe that,
for every information set I ∈ If , the objective function
coefficient for the variable vf,I is equal to ξf (ε, σf (I)) −∑
a∈A(I) ξf (ε, σf (I)a). Assuming Γ(ε) is well-defined,

such coefficients are positive for every vf,I . Then, in an op-
timal solution v∗f ∈ R|If |+1 to Problem D(ε), each vari-
able vf,I is set to its minimum given Constraints (3). We
prove Equation (4) using a simple inductive argument. The
base case of the induction is when there is no information
set Î 6= I ∈ If with I � Î . For every action a ∈ A(I),
vf,I ≥

∑
σ∈Σ:σf=σf (I)a uf (σ)r`(ε, σ`), which, using the

fact that v∗f,I must be set to its minimum possible value given
the constraints, implies the following:

v∗f,I = max
a∈A(I)

∑
σ∈Σ:σf=σf (I)a

uf (σ)r`(ε, σ`) =

= max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ),

where the last equality holds since
∑
a∈A(I) r̂f (σf (I)a) =

r̂f (σf (I)) = 1, for the definition of realization plan. As for
the inductive step, let us consider an information set I ∈ If
and assume, by induction, that Equation (4) holds for every
information set Î 6= I ∈ If with I � Î . We can write:

v∗f,I = max
a∈A(I)

∑
σ∈Σ:σf=σf (I)a

uf (σ)r`(ε, σ`) +
∑

Î∈If :σf (Î)=σf (I)a

v∗
f,Î

=

= max
a∈A(I)

∑
σ∈Σ:σf=σf (I)a

uf (σ)r`(ε, σ`) +

+
∑

Î∈If :σf (Î)=σf (I)a

max
r̂f∈Rf (Î)

gf,Î(r`(ε), r̂f ) =

= max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ),

where the first equality directly follows from the op-
timality of v∗f , the second one from the inductive hy-
pothesis, while the last equality holds since we have∑
a∈A(I) r̂f (σf (I)a) = r̂f (σf (I)) = 1.

Lemma 3. For every r`(ε) ∈ R`(ε), I ∈ If , and a ∈ A(I),
if Constraint (3) holds with equality in an optimal solution
to Problem D(ε), then

max
r̂f∈Rf (a)

gf,I(r`(ε), r̂f ) = max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ). (5)

Proof. Let v∗ ∈ R|Ii|+1 be an optimal solution to Prob-
lem D(ε) that satisfies Constraint (3), for I ∈ If and
a ∈ A(I), with equality. We can write:

v∗f,I =
∑

σ∈Σ:σf=σf (I)a

uf (σ)r`(ε, σ`) +
∑

Îf∈If :σf (Î)=σf (I)a

v∗
f,Î

=

= max
r̂f∈Rf (a)

gf,I(r`(ε), r̂f ) = max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ),

where the second equality holds for the optimality of v∗f and
the last one for Lemma 2.

Lemma 4. Given an SEFG Γ, a completely mixed π` ∈ Π`

and I ∈ If , πf ∈ BRI(π`) if for every a ∈ A(I):

πia > 0 =⇒ max
r̂f∈Rf (a)

gf,I(r`, r̂f ) = max
r̂f∈Rf (I)

gf,I(r`, r̂f ),

where r` ∈ R` is equivalent to π`.

Proof. First, let us notice that, for every I ∈ If and a ∈
A(I), the following relation holds:

max
r̂f∈Rf (a)

gf,I(r`, r̂f ) = max
r̂f∈Rf (I)

gf,I(r`, r̂f ) =⇒ (7)

max
π̂f∈Πf :π̂fa=1

uf,I
(
π`, πf

/
I
π̂f
)

= max
π̂f∈Πf

uf,I
(
π`, πf

/
I
π̂f
)

In order to see this, for I ∈ If , let Z(I) ⊆ Z be
the set of terminal nodes that are potentially reach-
able from I , and, for h ∈ Z(I) and π̂f ∈ Πf , let
Uf,h(π`, π̂f ) = uf (h)

∏
a∈σ`(h) π`a

∏
a∈σf (h)\σf (I) π̂fa.

Given the realization equivalence of r` and π`, and
the fact that r̂f (σf (I)) = 1, the left-hand side
in the first line of Equation (7) is equivalent to
maxπ̂f∈Πf :π̂fa=1

∑
h∈Z(I) Uf,h(π`, π̂f ), while the right-

hand side is the same as maxπ̂f∈Πf

∑
h∈Z(I) Uf,h(π`, π̂f ).

Then, by dividing both sides of the equality in the first line
of Equation (7) by

∑
h∈Z(I)

∏
a∈σf (h) πfa, by definition

of uf,I(π`, πf
/
I
π̂f ) we get the second line. Now, say that

the condition of the lemma holds for every a ∈ A(I).
Clearly, we have maxπ̂f∈Πf :πf=I π̂f

uf,I(π`, πf
/
I
π̂f ) =∑

a∈A(I) πfa maxπ̂f∈Πf :π̂fa=1 uf,I(π`, πf
/
I
π̂f ), and,

since πfa > 0 only if maxr̂f∈Rf (a) gf,I(r`, r̂f ) =
maxr̂f∈Rf (I) gf,I(r`, r̂f ), Eq. (7) proves the result.

Lemma 5. Given a ξ-perturbed SEFG (Γ, ξ`, ξf ), let
{εk}k∈N → 0 and let {(r`(εk), rf (εk))}k∈N be a sequence
of realization plans in Γ(εk) with rf (εk) ∈ BRΓ(εk)(r`(εk)).
Then, any limit point (π`, πf ) of {(π`,k, πf,k)}k∈N is such
that, eventually, πf ∈ BRIf (π`,k) for all I ∈ If , where
(π`,k, πf,k) are equivalent to (r`(εk), rf (εk)) for all k ∈ N.



Proof. First, notice that there must exist k̄ ∈ N such that,
for all k ∈ N : k ≥ k̄, and for every follower’s informa-
tion set I ∈ If and action a ∈ A(I), if πfa > 0, then
rf (εk, σf (I)a) > ξf (εk, σf (I)a). Otherwise, by conditions
(ii)-(iii) in Definition 6, it would be πfa = 0. Let us fix
I ∈ If and a ∈ A(I). Suppose that πfa > 0. For all k ∈
N : k ≥ k̄, we have that rf (εk, σf (I)a) > ξf (εk, σf (I)a),
which, by Theorem 2, implies the following:

max
r̂f∈Rf (a)

gf,I(r`(εk), r̂f ) = max
r̂f∈Rf (I)

gf,I(r`(εk), r̂f ).

Thus, Lemma 4 allows us to conclude that πf ∈ BRI(π`,k)
for all k ∈ N : k ≥ k̄, which proves the result.

Theorem 3. If a solution to LP (6) is such that for all I ∈ If
there exists a ∈ A(I) such that p(σ`, σf (I)â) = 0 for all
â ∈ A(I), σ` ∈ rel(σf (I)a) with â 6= a, then a strategy
profile can be extracted in polynomial time such that it is an
SSE of the perturbed game instance.

Proof. First, we check that the leader strategy is valid. The
argument is identical to that of Cermak et al. (2016). For
the leader strategy at a given information set I we pick an
arbitrary σf ∈ rel(σ`(I)) that is played with positive prob-
ability and use the value p(σ`(I)a, σf ) for all a ∈ I . All
σf ∈ rel(σ`(I)) recommend identical probability on σ`(I)a
due to (6d) and the fact that we allow only a single follower
action to be recommended at every follower information set.
The incentive constraints (6f) - (6h) are identical to the orig-
inal constraints given by von Stengel and Forges (2008), so
we only need to argue that we correctly represent the value
of sending the residual along each sequence. But the value
of sending the residual on σf is simply the original value∑
σ`∈rel(σf ) p(σ`, σf )uf (σ`, σf ), except that we can send at

most η(σf ) probability on σf , plus the value of whichever
choice we make for sending residual along descendants of
σf . This is exactly the value that we encode in our con-
straints. It is easy to see that any SSE is a feasible solution to
the LP: since the follower plays a pure strategy we can assign
them their pure strategy, and assign the leader SSE strategy
the same way across all follower recommendations.

Limits of SSEs are QPSSEs
Here, we show that limits of SSEs of perturbed SEFGs are
QPSSEs of the original, unperturbed SEFGs, as the magni-
tude of the perturbation vanishes.
Theorem 4. Given a perturbed SEFG (Γ, ξ`, ξf ), let
{εk}k∈N → 0 and let {(r`(εk), rf (εk))}k∈N be a se-
quence of SSEs in Γ(εk). Then, any limit point (π`, πf )
of the sequence {(π`,k, πf,k)}k∈N is a QPSSE of Γ, where
(π`,k, πf,k) are equivalent to (r`(εk), rf (εk)) for all k ∈ N.

Proof. First, as for Theorem 1, Lemma 5 allows us to con-
clude that point (i) in Definition 5 holds. Let us prove
point (ii). By contradiction, suppose that it does not hold,
i.e., no matter how we choose sequences {πi,k}k∈N, for
i ∈ N and πi ∈ Πi, there are I ∈ I` ∪ {I∅}, π̂` ∈
Π`, and π̂f ∈ Πf : π̂f ∈ BRÎ(π`,k

/
I
π̂`,k) for all

Î ∈ If , with u`(π`,k
/
I
π`, πf,k) < u`(π`,k

/
I
π̂`, π̂f,k).

By continuity, there exists k̄ ∈ N such that, for all k ∈
N : k ≥ k̄, u`(π`,k

/
I
π`,k, πf,k) = u`(π`,k, πf,k) <

u`(π`,k
/
I
π̂`,k, π̂f,k). Let sequence {π̂`,k}k∈N be such that

r̂`(εk) ∈ R`(εk) for all k ∈ N, where each realiza-
tion plan r̂`(εk) is equivalent to the strategy π`,k

/
I
π̂`,k.

Similarly, let sequence {π̂f,k}k∈N be such that r̂f (εk) ∈
Rf (εk) for all k ∈ N, where each r̂f (εk) is equivalent
to π̂f,k. Notice that we can always choose the two se-
quences as described above, since we enforced point (iii)
in Definition 6. Clearly, r̂f (εk) ∈ BRΓ(εk)(r̂`(εk)), oth-
erwise π̂f /∈ BRÎ(π`,k

/
I
π̂`,k) for some Î ∈ If , a con-

tradiction. Using the equivalence between strategies and
realization plans, for k ∈ N : k ≥ k̄ we have that
u`(r`(εk), rf (εk)) < u`(r̂`(εk), r̂f (εk)), which contradicts
the fact that (r`(εk), rf (εk)) is an SSE of Γ(εk).


