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Abstract
While Nash equilibrium in extensive-form games is well understood, very little is known about
the properties of extensive-form correlated equilibrium (EFCE), both from a behavioral and from
a computational point of view. In this setting, the strategic behavior of players is complemented by
an external device that privately recommends moves to agents as the game progresses; players are
free to deviate at any time, but will then not receive future recommendations. Our contributions
are threefold. First, we show that an EFCE can be formulated as the solution to a bilinear saddle-
point problem. To showcase how this novel formulation can inspire new algorithms to compute
EFCEs, we propose a simple subgradient descent method which exploits this formulation and
structural properties of EFCEs. Our method has better scalability than the prior approach based on
linear programming. Second, we propose two benchmark games, which we hope will serve as the
basis for future evaluation of EFCE solvers. These games were chosen so as to cover two natural
application domains for EFCE: conflict resolution via a mediator, and bargaining and negotiation.
Third, we document the qualitative behavior of EFCE in our proposed games. We show that the
social-welfare-maximizing equilibria in these games are highly nontrivial and exhibit surprisingly
subtle sequential behavior that so far has not received attention in the literature.

1. Introduction
Nash equilibrium (NE) (Nash, 1950), the most seminal concept in non-cooperative game theory, captures a
multi-agent setting where each agent is selfishly motivated to maximize their own payoff. The assumption
underpinning NE is that the interaction is completely decentralized: the behavior of each agent is not
regulated by any external orchestrator. Contrasted with the other—often utopian—extreme of a fully
managed interaction, where an external dictator controls the behavior of each agent so that the whole system
moves to a desired state, the social welfare that can be achieved by NE is generally lower, sometimes
dramatically so (Koutsoupias & Papadimitriou, 1999; Roughgarden & Tardos, 2002). Yet, in many
∗This paper was accepted for publication at NeurIPS 2019.
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realistic interactions, some intermediate form of centralized control can be achieved. In particular, in his
landmark paper, Aumann (1974) proposed the concept of correlated equilibrium (CE), where a mediator
(the correlation device) can recommend behavior, but not enforce it. In a CE, the correlation device is
constructed so that the agents—which are still modeled as fully rational and selfish just like in an NE—have
no incentive to deviate from the private recommendation. Allowing correlation of actions while ensuring
selfishness makes CE a good candidate solution concept in multi-agent and semi-competitive settings such
as traffic control, load balancing (Ashlagi et al., 2008), and carbon abatement (Ray & Gupta, 2009), and it
can lead to win-win outcomes.

In this paper, we study the natural extension of correlated equilibrium in extensive-form (i.e., sequential)
games, known as extensive-form correlated equilibrium (EFCE) (von Stengel & Forges, 2008). Like CE,
EFCE assumes that the strategic interaction is complemented by an external mediator; however, in an
EFCE the mediator only privately reveals the recommended next move to each acting player, instead of
revealing the whole plan of action throughout the game (i.e., recommended move at all decision points)
for each player at the beginning of the game. Furthermore, while each agent is free to defect from the
recommendation at any time, this comes at the cost of future recommendations.

While the properties of correlation in normal-form games are well-studied, they do not automatically transfer
to the richer world of sequential interactions. It is known in the study of NE that sequential interactions can
pose different challenges, especially in settings where the agents retain private information. Conceptually,
the players can strategically adjust to dynamic observations about the environment and their opponents as the
game progresses. Despite tremendous interest and progress in recent years for computing NE in sequential
interactions with private information, with significant milestones achieved in poker games (Bowling et al.,
2015; Brown & Sandholm, 2017; Moravčík et al., 2017; Brown & Sandholm, 2019b) and other large,
real-world domains, not much has been done to increase our understanding of (extensive-form) correlated
equilibria in these settings.

Contributions Our primary objective with this paper is to spark more interest in the community towards
a deeper understanding of the behavioral and computational aspects of EFCE.

• In Section 3 we show that an EFCE in a two-player general-sum game is the solution to a bilinear
saddle-point problem (BSPP). This conceptual reformulation complements the EFCE construction by von
Stengel & Forges (2008), and allows for the development of new and efficient algorithms. As a proof
of concept, by using our reformulation we devise a variant of projected subgradient descent which
outperforms linear-programming(LP)-based algorithms proposed by von Stengel & Forges (2008) in
large game instances.
• In Section 5 we propose two benchmark games; each game is parametric, so that these games can scale

in size as desired. The first game is a general-sum variant of the classic war game Battleship. The second
game is a simplified version of the Sheriff of Nottingham board game. These games were chosen so as to
cover two natural application domains for EFCE: conflict resolution via a mediator, and bargaining and
negotiation.
• By analyzing EFCE in our proposed benchmark games, we show that even if the mediator cannot enforce

behavior, it can induce significantly higher social welfare than NE and successfully deter players from
deviating in at least two (often connected) ways: (1) using certain sequences of actions as ‘passcodes’ to
verify that a player has not deviated: defecting leads to incomplete or wrong passcodes which indicate
deviation, and (2) inducing opponents to play punitive actions against players that have deviated from
the recommendation, if such a deviation is detected. Crucially, both deterrents are unique to sequential
interactions and do not apply to non-sequential games. This corroborates the idea that the mediation of
sequential interactions is a qualitatively different problem than that of non-sequential games and further
justifies the study of EFCE as an interesting direction for the community. To our knowledge, these are
the first experimental results and observations on EFCE in the literature.

The source code for our game generators and subgradient method is published online2.

2https://github.com/Sandholm-Lab/game-generators https://github.com/Sandholm-Lab/efce-subgradient
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2. Preliminaries
Extensive-form games (EFGs) are sequential games that are played over a rooted game tree. Each node
in the tree belongs to a player and corresponds to a decision point for that player. Outgoing edges from
a node v correspond to actions that can be taken by the player to which v belongs. Each terminal node
in the game tree is associated with a tuple of payoffs that the players receive should the game end in that
state. To capture imperfect information, the set of vertices of each player is partitioned into information
sets. The vertices in a same information set are indistinguishable to the player that owns those vertices.
For example, in a game of Poker, a player cannot distinguish between certain states that only differ in
opponent’s private hand. As a result, the strategy of the player (specifying which action to take) is defined
on the information sets instead of the vertices. For the purpose of this paper, we only consider perfect-recall
EFGs. This property means that each player does not forget any of their previous action, nor any private or
public observation that the player has made. The perfect-recall property can be formalized by requiring that
for any two vertices in a same information set, the paths from those vertices to the root of the game tree
contain the exact same sequence of actions for the acting player at the information set.

A pure normal-form strategy for Player i defines a choice of action for every information set that belongs
to i. A player can play a mixed strategy, i.e., sample from a distribution over their pure normal-form
strategies. However, this representation contains redundancies: some information sets for Player i may
become unreachable reachable after the player makes certain decisions higher up in the tree. Omitting these
redundancies leads to the notion of reduced-normal-form strategies, which are known to be strategically
equivalent to normal-form strategies (e.g., (Shoham & Leyton-Brown, 2009) for more details). Both the
normal-form and the reduced-normal-form representation are exponentially large in the size of the game
tree.

Here, we fix some notations. Let Z be the set of terminal states (or equivalently, outcomes) in the game
and ui(z) be the utility obtained by player i if the game terminates at z ∈ Z. Let Πi be the set of pure
reduced-normal-form strategies for Player i. We define Πi(I), Πi(I, a) and Πi(z) to be the set of reduced-
normal-form strategies that (a) can lead to information set I , (b) can lead to I and prescribes action a
at information set I , and (c) can lead to the terminal state z, respectively. We denote by Σi the set of
information set-action pairs (I, a) (also referred to as sequences), where I is an information set for Player i
and a is an action at set I . For a given terminal state z let σi(z) be the last (I, a) pair belonging to Player i
encountered in the path from the root of the tree to z.

Extensive-Form Correlated Equilibrium Extensive-form correlated equilibrium (EFCE) is a solution
concept for extensive-form games introduced by von Stengel & Forges (2008).3 Like in the traditional
correlated equilibrium (CE), introduced by Aumann (1974), a correlation device selects private signals
for the players before the game starts. These signals are sampled from a correlated distribution µ—a joint
probability distribution over Π1 ×Π2—and represent recommended player strategies. However, while in a
CE the recommended moves for the whole game tree are privately revealed to the players when the game
starts, in an EFCE the recommendations are revealed incrementally as the players progress in the game tree.
In particular, a recommended move is only revealed when the player reaches the decision point in the game
for which the recommendation is relevant. Moreover, if a player ever deviates from the recommended move,
they will stop receiving recommendations. To concretely implement an EFCE, one places recommendations
into ‘sealed envelopes’ which may only be opened at its respective information set. Sealed envelopes may
implemented using cryptographic techniques (see (Dodis et al., 2000) for one such example).

In an EFCE, the players know less about the set of recommendations that were sampled by the correlation
device. The benefits are twofold. First, the players can be more easily induced to play strategies that
hurt them (but benefit the overall social welfare), as long as “on average” the players are indifferent as
to whether or not to follow the recommendations: the set of EFCEs is a superset of that of CEs. Second,
since the players observe less, the set of probability distributions for the correlation device for which no

3Other CE-related solution concepts in sequential games include the agent-form correlated equilibrium (AFCE),
where agents continue to receive recommendations even upon defection, and normal-form coarse CE (NFCCE). NFCCE
does not allow for defections during the game, in fact, before the game starts, players must decide to commit to
following all recommendations upfront (before receiving them), or elect to receive none.
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player has an incentive to deviate can be described succinctly in certain classes of games: von Stengel &
Forges (2008, Theorem 1.1) show that in two-player, perfect-recall extensive-form games with no chance
moves, the set of EFCEs can be described by a system of linear equations and inequalities of polynomial
size in the game description. On the other hand, the same result cannot hold in more general settings: von
Stengel & Forges (2008, Section 3.7) also show that in games with more than two players and/or chance
moves, deciding the existence of an EFCE with social welfare greater than a given value is NP-hard. It is
important to note that this last result only implies that the characterization of the set of all EFCEs cannot be
of polynomial size in general (unless P = NP). However, the problem of finding one EFCE can be solved in
polynomial time: Huang (2011) and Huang & von Stengel (2008) show how to adapt the Ellipsoid Against
Hope algorithm (Papadimitriou & Roughgarden, 2008; Jiang & Leyton-Brown, 2015) to compute an EFCE
in polynomial time in games with more than two players and/or with chance moves. Unfortunately, that
algorithm is only theoretical, and known to not scale beyond extremely small instances (Leyton-Brown,
2019).

3. Extensive-Form Correlated Equilibria as Bilinear Saddle-Point Problems
Our objective for this section is to cast the problem of finding an EFCE in a two-player game as a bilinear
saddle-point problem, that is a problem of the form minx∈X maxy∈Y x>Ay, where X and Y are compact
convex sets. In the case of EFCE, X and Y are convex polytopes that belong to a space whose dimension is
polynomial in the game tree size. This reformulation is meaningful:

• From a conceptual angle, it brings the problem of computing an EFCE closer to several other solution
concepts in game theory that are known to be expressible as BSPP. In particular, the BSPP formulation
shows that an EFCE can be viewed as a NE in a two-player zero-sum game between a deviator, who is
trying to decide how to best defect from recommendations, and a mediator, who is trying to come up
with an incentive-compatible set of recommendations.
• From a geometric point of view, the BSPP formulation better captures the combinatorial structure

of the problem: X and Y have a well-defined meaning in terms of the input game tree. This has
algorithmic implications: for example, because of the structure of Y (which will be detailed later), the
inner maximization problem can be solved via a single bottom-up game-tree traversal.
• From a computational standpoint, it opens the way to the plethora of optimization algorithms (both

general-purpose and those specific to game theory) that have been developed to solve BSPPs. Examples
include Nesterov’s excessive gap technique (Nesterov, 2005), Nemirovski’s mirror prox algorithm (Ne-
mirovski, 2004) and regret-methods based methods such as mirror descent, follow-the-regularized-leader
(e.g., (Hazan, 2016)), and CFR and its variants (Zinkevich et al., 2007; Farina et al., 2019; Brown &
Sandholm, 2019a).

Furthermore, it is easy to show that by dualizing the inner maximization problem in the BSPP formulation,
one recovers the linear program introduced by von Stengel & Forges (2008) (we show this in Appendix A).
In this sense, our formulation subsumes the existing one.

Triggers and Deviations One effective way to reason about extensive-form correlated equilibria is via
the notion of trigger agents, which was introduced (albeit used in a different context) in Gordon et al. (2008)
and Dudik & Gordon (2009):

Definition 1. Let σ̂ := (Î , â) ∈ Σi be a sequence for Player i, and let µ̂ be a distribution over Πi(Î). A
(σ̂, µ̂)-trigger agent for Player i is a player that follows all recommendations given by the mediator unless
they get recommended â at Î; in that case, the player ‘gets triggered’, stops following the recommendations
and instead plays based on a pure strategy sampled from µ̂ until the game ends.

A correlated distribution µ is an EFCE if and only if any trigger agent for Player i can get utility at most
equal to the utility that Player i earns by following the recommendations of the mediator at all decision
points. In order to express the utility of the trigger agent, it is necessary to compute the probability of the
game ending in each of the terminal states. As we show in Appendix B, this can be done concisely by
partitioning the set of terminal nodes in the game tree into three different sets. In particular, let ZÎ,â be the
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set of terminal nodes whose path from the root of the tree contains taking action â at Î and let ZÎ be the set
of terminal nodes whose path from the root passes through Î and are not in ZÎ,â. We have

Lemma 1. Consider a (σ̂, µ̂)-trigger agent for Player 1, where σ̂ = (Î , â). The value of the trigger agent,
defined as the expected difference between the utility of the trigger agent and the utility of an agent that
always follows recommendations sampled from correlated distribution µ, is computed as

v1,σ̂(µ, µ̂) :=
∑
z∈ZÎ

u1(z)ξ1(σ̂; z)y1,σ̂(z)−
∑

z∈ZÎ,â

u1(z)ξ1(σ1(z); z),

where ξ1(σ̂; z) :=
∑
π1∈Π1(σ̂)

∑
π2∈Π2(z) µ(π1, π2) and y1,σ̂(z) :=

∑
π̂1∈Π1(z) µ̂(π̂1).

(A symmetric result holds for Player 2, with symbols ξ2(σ̂; z) and y2,σ̂(z).) It now seems natural to perform
a change of variables, and pick distributions for the random variables y1,σ̂(·), y2,σ̂(·), ξ1(·; ·) and ξ2(·; ·)
instead of µ and µ̂. Since there are only a polynomial number (in the game tree size) of combinations
of arguments for these new random variables, this approach allows one to remove the redundancy of
realization-equivalent normal-form plans and focus on a significantly smaller search space. In fact, the
definition of ξ = (ξ1, ξ2) also appears in (von Stengel & Forges, 2008), referred to as (sequence-form)
correlation plan. In the case of the y1,σ̂ and y2,σ̂ random variables, it is clear that the change of variables is
possible via the sequence form (von Stengel, 2002); we let Yi,σ̂ be the sequence-form polytope of feasible
values for the vector yi,σ̂. Hence, the only hurdle is characterizing the space spanned by ξ1 and ξ2 as
µ varies across the probability simplex. In two-player perfect-recall games with no chance moves, this
is exactly one of the merits of the landmark work by von Stengel & Forges (2008). In particular, the
authors prove that in those games the space of feasible ξ can be captured by a polynomial number of linear
constraints. In more general cases the same does not hold (see second half of Section 2), but we prove the
following (Appendix C):

Lemma 2. In a two-player game, as µ varies over the probability simplex, the joint vector of ξ1(·; ·), ξ2(·; ·)
variables spans a convex polytope X in Rn, where n is at most quadratic in the game size.

Saddle-Point Reformulation According to Lemma 1, for each Player i and (σ̂, µ̂)-trigger agent for them,
the value of the trigger agent is a biaffine expression in the vectors yi,σ̂ and ξi, and can be written as
vi,σ̂(ξi, yi,σ̂) = ξ>i Ai,σ̂yi,σ̂ − b>i,σ̂ξi for a suitable matrix Ai,σ̂ and vector bi,σ̂, where the two terms in the
difference correspond to the expected utility for deviating at σ̂ according to the (sequence-form) strategy
yi,σ̂ and the expected utility for not deviating at σ̂. Given a correlation plan ξ = (ξ1, ξ2) ∈ X , the maximum
value of any deviation for any player can therefore be expressed as

v∗(ξ) := max
{i,σ̂,yi,σ̂}

vi,σ̂(ξi, yi,σ̂) = max
i∈{1,2}

max
σ̂∈Σi

max
yσ̂∈Yσ̂

{ξ>i Ai,σ̂yi,σ̂ − b>i,σ̂ξi}.

We can convert the maximization above into a continuous linear optimization problem by introducing the
multipliers λi,σ̂ ∈ [0, 1] (one per each Player i ∈ {1, 2} and trigger σ̂ ∈ Σi), and write

v∗(ξ) = max
{λi,σ̂,zi,σ̂}

∑
i

∑
σ̂

ξ>i Ai,σ̂zi,σ̂ − λi,σ̂b>i,σ̂ξi,

where the maximization is subject to the linear constraints [C1]
∑
i∈{1,2}

∑
σ̂∈Σi

λi,σ̂ = 1 and [C2]

zi,σ̂ ∈ λi,σ̂Yi,σ̂ for all i ∈ {1, 2}, σ̂ ∈ Σi. These linear constraints define a polytope Y .

A correlation plan ξ is an EFCE if an only if vi,σ̂(ξ, yi,σ̂) ≤ 0 for every trigger agent, i.e., v∗(ξ) ≤ 0.
Therefore, to find an EFCE, we can solve the optimization problem minξ∈X v∗(ξ), which is a bilinear
saddle point problem over the convex domains X and Y , both of which are convex polytopes that belong to
Rn, where n is at most quadratic in the input game size (Lemma 2). If an EFCE exists, the optimal value
should be non-positive and the optimal solution is an EFCE (as it satisfies v∗(ξ) ≤ 0). In fact, since EFCE’s
always exist (as EFCEs are supersets of CEs (von Stengel & Forges, 2008)), and one can select triggers to
be terminal sequences for Player 1, the optimal value of the BSPP is always 0. The BSPP can be interpreted
as the NE of a zero-sum game between the mediator, who decides on a suitable correlation plan ξ and a
deviator who selects the yi,σ̂’s to maximize each vi,σ̂(ξi, yi,σ̂). The value of this game is always 0.

5
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Finally, we can enforce a minimum lower bound τ on the sum of players’ utility by introducing an additional
variable λsw ∈ [0, 1] and maximizing the new convex objective

v∗sw(ξ) := max
λsw∈[0,1]

{
(1− λsw) · v∗(ξ) + λsw

[
τ −

∑
z∈Z

u1(z)ξ1(z; z)−
∑
z∈Z

u2(z)ξ2(z; z)

]}
. (1)

4. Computing an EFCE using Subgradient Descent
(von Stengel & Forges, 2008) show that a SW-maximizing EFCE of a two-player game without chance may
be expressed as the solution of an LP and solved using generic methods such as the simplex algorithm or
interior-point methods. However, this does not scale to large games as these methods require storing and
inverting large matrices. Another way of computing SW-maximizing EFCEs was provided by (Dudik &
Gordon, 2009). However, their algorithm assumes that sampling from correlation plans is possible using the
Monte Carlo Markov chain algorithm and does not factor in convergence of the Markov chain. Furthermore,
even though their formulation generalizes beyond our setting of two-player games without chance, our
gradient descent method admits more complex objectives. In particular, it allows the mediator to maximize
over general concave objectives (in correlation plans) instead of only linear objectives with potentially
some regularization. Here, we showcase the benefits of exploiting the combinatorial structure of the BSPP
formulation of Section 3 by proposing a simple algorithm based on subgradient descent; in Section 6 we
show that this method scales better than commercial state-of-the-art LP solver in large games.

For brevity, we only provide a sketch of our algorithm, which computes a feasible EFCE; the extension
to the slightly more complicated objective v∗sw(ξ) (Equation 1) is straightforward—see Appendix D for
more details. First, observe that the objective v∗(ξ) is convex since it is the maximum of linear functions
of ξ. This suggests that we may perform subgradient descent on v∗, where the subgradients are given
by ∂/∂ξ v∗(ξ) = Ai∗,σ̂∗y∗i∗,σ̂∗ − bi,σ̂∗ , where (i∗, σ̂∗, y∗i∗,σ̂∗) is a triplet which maximizes the objective
function v∗(ξ). The computation of such a triplet can be done via a straightforward bottom-up traversal
of the game tree. In order to maintain feasibility (that is, ξ ∈ X ), it is necessary to project onto X , which
is challenging in practice because we are not aware of any distance-generating function that allows for
efficient projection onto this polytope. This is so even in games without chance (where ξ can be expressed
by a polynomial number of constraints (von Stengel & Forges, 2008)). Furthermore, iterative methods such
as Dykstra’s algorithm, add a dramatic overhead to the cost of each iterate.

To overcome this hurdle, we observe that in games with no chance moves, the set X of correlation plans—as
characterized by von Stengel & Forges (2008) via the notion of consistency constraints—can be expressed
as the intersection of three sets: (i) X1, the sets of vectors ξ that only satisfy consistency constraints for
Player 1; (ii) X2, the sets of vectors ξ that only satisfy consistency constraints for Player 2; and (iii) Rn+, the
non-negative orthant. X1 and X2 are polytopes defined by equality constraints only. Therefore, an exact
projection (in the Euclidean sense) onto X1 and X2 can be carried out efficiently by precomputing a suitable
factorization the constraint matrices that define X1 and X2. In particular, we are able to leverage the specific
combinatorial structure of the constraints that form X1 and X2 to design an efficient and parallel sparse
factorization algorithm (see Appendix D for the full details). Furthermore, projection onto the non-negative
orthant can be done conveniently, as it just amounts to computing a component-wise maximum between ξ
and the zero vector. Since X = X1 ∩ X2 ∩ Rn+, and since projecting onto X1, X2 and Rn+ individually is
easy, we can adopt the recent algorithm proposed by (Wang & Bertsekas, 2013) designed to handle exactly
this situation. In that algorithm, gradient steps are interlaced with projections onto X1, X2 and Rn+ in a
cyclical manner. This is similar to projected gradient descent, but instead of projecting onto the intersection
of X1, X2 and Rn+ (which we believe to be difficult), we project onto just one of them in round-robin fashion.
This simple method was shown to converge by (Wang & Bertsekas, 2013). However, no convergence bound
is currently known.

5. Introducing the First Benchmarks for EFCE
In this section we introduce the first two benchmark games for EFCE. These games are naturally parametric
so that they can scale in size as desired and hence used to evaluate different EFCE solvers. In addition,
we show that the EFCE in these games are interesting behaviorally: the correlation plan in social-welfare-

6
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maximizing EFCE is highly nontrivial and even seemingly counter-intuitive. We believe some of these
induced behaviors may prove practical in real-world scenarios and hope our analysis can spark an interest
in EFCEs and other equilibria in sequential settings.

5.1. Battleship: Conflict Resolution via a Mediator

In this section we introduce our first proposed benchmark game to illustrate the power of correlation in
extensive-form games. Our game is a general-sum variant of the classic game Battleship. Each player takes
turns to secretly place a set of ships S (of varying sizes and value) on separate grids of size H ×W . After
placement, players take turns firing at their opponent—ships which have been hit at all the tiles they lie
on are considered destroyed. The game continues until either one player has lost all of their ships, or each
player has completed r shots. At the end of the game, the payoff of each player is computed as the sum of
the values of the opponent’s ships that were destroyed, minus γ times the value of ships which they lost,
where γ ≥ 1 is called the loss multiplier of the game. The social welfare (SW) of the game is the sum of
utilities to all players.

In order to illustrate a few interesting feature of social-welfare-maximizing EFCE in this game, we will
focus on the instance of the game with a board of size 3× 1, in which each player commands just 1 ship
of value and length 1, there are 2 rounds of shooting per player, and the loss multiplier is γ = 2. In this
game, the social-welfare-maximizing Nash equilibrium is such that each player places their ship and shoots
uniformly at random. This way, the probability that Player 1 and 2 will end the game by destroying the
opponent’s ship is 5/9 and 1/3 respectively (Player 1 has an advantage since they act first). The probability
that both players will end the game with their ships unharmed is a meagre 1/9. Correspondingly, the
maximum SW reached by any NE of the game is −8/9.

In the EFCE model, it is possible to induce the players to end the game with a peaceful outcome—that is, no
damage to either ship—with probability 5/18, 2.5 times of the probability in NE, resulting in a much-higher
SW of −13/18. Before we continue with more details as to how the mediator (correlation device) is able to
achieve this result in the case where γ = 2, we remark that the benefit of EFCE is even higher when the
loss multiplier γ increases: Figure 1 (left) shows, as a function of γ, the probability with which Player 1
and 2 terminate the game by sinking their opponent’s ship, if they play according to the SW-maximizing
EFCE. For all values of γ, the SW-maximizing NE remains the same while with a mediator, the probability
of reaching a peaceful outcome increases as γ increases, and asymptotically gets closer to 1/3 and the
gap between the expected utility of the two players vanishes. This is remarkable, considering Player 1’s
advantage for acting first.
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Figure 1: (Left) Probabilities of players sinking their opponent when the players play according to the SW-maximizing
EFCE. For γ ≥ 2, the probability of the game ending with no sunken ship and the probability of Player 2 sinking Player
1 coincide. (Right) Example of a playthrough of Battleship assuming both players are recommended to place their ship
in the same position a. Edge labels represents the probability of an action being recommended. Squares and hexagons
denote actions taken by Players 1 and 2 respectively. Blue and red nodes represent cases where Players 1 and 2 sink
their opponent, respectively. The Shoot action is abbreviated ‘Sh.’.

We now resume our analysis of the SW-maximizing EFCE in the instance where γ = 2. In a nutshell, the
correlation plan is constructed in a way that players are recommended to deliberately miss, and deviations
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from this are punished by the mediator, who reveals to the opponent the ship location that was recommended
to the deviating player. First, the mediator recommends the players a ship placement that is sampled
uniformly at random and independently for each players. This results in 9 possible scenarios (one per
possible ship placement) in the game, each occurring with probability 1/9. Due to the symmetric nature of
ship placements, only two scenarios are relevant: whether the two players are recommended to place their
ship in the same spot, or in different spots. Figure 1 (right) shows the probability of each recommendation
from the mediator in the former case, assuming that the players do not deviate. The latter case is symmetric
(see Appendix E for details). Now, we explain the first of the two methods in which the mediator compels
non-violent behavior. We focus on the first shot made by Player 1 (i.e., the root in Figure 3). The mediator
suggests that Player 1 shoot at the Player 2’s ship with a low 2/27 probability, and deliberately miss with
high probability. One may wonder how it is possible for this behavior to be incentive-compatible (that is,
what are the incentives that compel Player 1 into not defecting), since the player may choose to randomly
fire in any of the 2 locations that were not recommended, and get almost 1/2 chance of winning the game
immediately. The key is that if Player 1 does so and does not hit the opponent’s ship, then the mediator
can punish him by recommending that Player 2 shoot in the position where Player 1’s was recommended
to place their ship. Since players value their ships more than destroying their opponents’, the player is
incentivized to avoid such a situation by accepting the recommendation to (most probably) miss. We see
the first example of deterrent used by the mediator: inducing the opponent to play punitive actions against
players that have deviated from the recommendation, if ever that deviation can be detected from the player.
A similar situation arises in the first move of Player 2, where Player 2 is recommended to deliberately miss,
hitting each of the 2 empty spots with probability 1/2. A more detailed analysis is available in Appendix E.

5.2. Sheriff: Bargaining and Negotiation

Our second proposed benchmark is a simplified version of the Sheriff of Nottingham board game. The
game models the interaction of two players: the Smuggler—who is trying to smuggle illegal items in their
cargo—and the Sheriff —who is trying to stop the Smuggler. At the beginning of the game, the Smuggler
secretly loads his cargo with n ∈ {0, . . . , nmax} illegal items. At the end of the game, the Sheriff decides
whether to inspect the cargo. If the Sheriff chooses to inspect the cargo and finds illegal goods, the Smuggler
must pay a fine worth p · n to the Sheriff. On the other hand, the Sheriff has to compensate the Smuggler
with a utility s if no illegal goods are found. Finally, if the Sheriff decides not to inspect the cargo, the
Smuggler’s utility is v · n whereas the Sheriff’s utility is 0. The game is made interesting by two additional
elements (which are also present in the board game): bribery and bargaining. After the Smuggler has loaded
the cargo and before the Sheriff chooses whether or not to inspect, they engage in r rounds of bargaining. At
each round i = 1, . . . , r, the Smuggler tries to tempt the Sheriff into not inspecting the cargo by proposing
a bribe bi ∈ {0, . . . bmax}, and the Sheriff responds whether or not they would accept the proposed bribe.
Only the proposal and response from round r will be executed and have an impact on the final payoffs—that
is, all but the r-th round of bargaining are non-consequential and their purpose is for the two players to
settle on a suitable bribe amount. If the Sheriff accepts bribe br, then the Smuggler gets p · n− br, while
the Sheriff gets br. See Appendix F for a formal description of the game.

We now point out some interesting behavior of EFCE in this game. We refer to the game instance where
v = 5, p = 1, s = 1, nmax = 10, bmax = 2, r = 2 as the baseline instance.

Effect of v, p and s. First, we show what happens in the baseline instance when the item value v, item
penalty p, and Sheriff compensation (penalty) s are varied in isolation over a continuous range of values.
The results are shown in Figure 2. In terms of general trends, the effect of the parameter to the Smuggler is
fairly consistent with intuition: the Smuggler benefits from a higher item value as well as from higher sheriff
penalties, and suffers when the penalty for smuggling is increased. However, the finer details are much more
nuanced. For one, the effect of changing the parameters not only is non-monotonic, but also discontinuous.
This behavior has never been documented and we find it rather counterintuitive. More counterintuitive
observations can be found in Appendix F. Effect of nmax, bmax, and r. Here, we try to empirically
understand the impact of n and b on the SW maximizing equilibrium. As before we set v = 5, p = 1, s = 1
and vary n and r simultaneously while keeping bmax constant. The results are shown in Table 1. The most
striking observation is that increasing the capacity of the cargo nmax may decrease social welfare. For
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Figure 2: Utility of players with varying v, p and s for the SW-maximizing EFCE. We verified that these plots are not
the result of equilibrium selection issues.

example, consider the case when bmax = 2, nmax = 2, r = 1 (shown in blue in Table 1, right) where the
payoffs are (8.0, 2.0). This achieves the maximum attainable social welfare by smuggling nmax = 2 items
and having the Sheriff accept a bribe of 2. When nmax is increased to 5 (red entry in the table), the payoffs
to both players drop significantly, and even more so when nmax increases further. While counter-intuitive,
this behavior is consistent in that the Smuggler may not benefit from loading 3 items every time he was
recommended to load 2; the Sheriff reacts by inspecting more, leading to lower payoffs for both players.

nmax r = 1 r = 2 r = 3

1 (3.00, 2.00) (3.00, 2.00) (3.00, 2.00)
2 (8.00, 2.00) (8.00, 2.00) (8.00, 2.00)
5 (2.28, 1.26) (8.00, 2.00) (8.00, 2.00)
10 (1.76, 0.93) (7.26, 1.82) (8.00, 2.00)

Table 1: Payoffs for (Smuggler, Sheriff) in the
SW-maximizing EFCE.

That behavior is avoided by increasing the number of rounds
r: by increasing to r = 2 (entry shown in purple), the be-
havior disappears and we revert to achieving a social welfare
of 10 just like in the instance with nmax = 2, r = 1. With
sufficient bargaining steps, the Smuggler, with the aid of
the mediator, is able to convince the Sheriff that they have
complied with the recommendation by the mediator. This
is because the mediator spends the first r − 1 bribes to give
a ‘passcode’ to the Smuggler so that the Sheriff can verify
compliance—if an ‘unexpected’ bribe is suggested, then the Smuggler must have deviated, and the Sheriff
will inspect the cargo as punishment. With more rounds, it is less likely that the Smuggler will guess the
correct passcode. See also Appendix F for additional insights.

6. Experimental Evaluation
Even our proof-of-concept algorithm based on the BSSP formulation and subgradient descent, introduced in
Section 3, is able to beat LP-based approaches using the commercial solver Gurobi (Gurobi Optimization,
2018) in large games. This confirms known results about the scalability of methods for computing NE,
where in the recent years first-order methods have affirmed themselves as the only algorithms that are able
to handle large games.

We experimented on Battleship over a range of parameters while fixing γ = 2. All experiments were run on
a machine with 64 cores and 500GB of memory. For our method, we tuned step sizes based on multiples of
10. In Table 2, we report execution times when all constraints (feasibility and deviation) are violated by
no greater than 10−1, 10−2 and 10−3. Our method outperforms the LP-based approach for larger games.
However, while we outperform the LP-based approach for accuracies up to 10−3, Gurobi spends most of its
time reordering variables and preprocessing and its solution converges faster for higher levels of precision;
this is expected of a gradient-based method like ours. On very large games with more than 100 million
variables, both our method and Gurobi fail—in Gurobi’s case, it was due to a lack of memory while in our
case, each iteration required nearly an hour which was prohibitive. The main bottleneck in our method was
the projection onto X1 and X2. We also experimented on the Sheriff game and obtained similar findings
(Appendix H).
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(H,W ) r
Ship #Actions #Relevant Time (LP) Time (ours)

length Pl 1 Pl 2 seq. pairs 10−1 10−2 10−3 10−1 10−2 10−3

(2, 2) 3 1 741 917 35241 2s 2s 2s 1s 2s 3s
(3, 2) 3 1 15k 47k 3.89M 3m 6s 3m 17s 3m 24s 8s 34s 52s
(3, 2) 4 1 145k 306k 26.4M 42m 39s 42m 44s 43m 2m 48s 14m 1s 23m 24s
(3, 2) 4 2 970k 2.27M 111M — out of memory† — — did not achieve ‡ —

Table 2: #Relevant seq. pairs is the dimension of ξ under the compact representation of (von Stengel & Forges, 2008).
For LPs, we report the fastest of Barrier, Primal and Dual Simplex, and 3 different formulations (Appendix G). † Gurobi
went out of memory and was killed by the system after ∼3000 seconds ‡ Our method requires 1 hour per iteration and
did not achieve the required accuracy after 6 hours.

7. Conclusions
In this paper, we proposed two parameterized benchmark games in which EFCE exhibits interesting
behaviors. We analyzed those behaviors both qualitatively and quantitatively, and isolated two ways through
which a mediator is able to compel the agents to follow the recommendations. We also provided an
alternative saddle-point formulation of EFCE and demonstrated its merit with a simple subgradient method
which outperforms standard LP based methods.

We hope that our analysis will bring attention to some of the computational and practical uses of EFCE,
and that our benchmark games will be useful for evaluating future algorithms for computing EFCE in large
games.
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A. Recovering the Linear Program of (von Stengel & Forges, 2008)
Recall the continuous version of the primal version of the inner maximization problem which was obtained
by adding the multipliers λi,σ̂ ∈ [0, 1].

max
λ,zi,σ̂

∑
i∈{1,2}

∑
σ̂∈Σi

ξ>i Ai,σ̂zi,σ̂ − λi,σ̂b>i,σ̂ξi

such that
∑

i∈{1,2}

∑
σ̂∈Σi

λi,σ̂ = 1

λi,σ̂ ≥ 0

zi,σ̂ ∈ λi,σ̂Yi,σ̂, ∀i ∈ {1, 2}, σ̂ ∈ Σi

where zi,σ̂ may be seen as the sequence form representation of a game rooted at a particular information set
of player i, and scaled by the factor λi,σ̂. By expanding the sequence form constraints which define Yi,σ̂,
we get

max
λ,z

∑
i∈{1,2}

∑
σ̂∈Σi

ξ>i Ai,σ̂zi,σ̂ − λi,σ̂b>i,σ̂ξi

such that
∑

i∈{1,2}

∑
σ̂∈Σi

λi,σ̂ = 1

λi,σ̂ ≥ 0

zi,σ̂ ≥ 0

Fi,σ̂zi,σ̂ − λσ̂fi,σ̂ = 0, ∀i ∈ {1, 2}, σ̂ ∈ Σi

where Fi,σ̂ and fi,σ̂ are sequence form constraint matrices rooted at the information set Î containing σ̂, with
the only difference that instead of having the ‘empty sequence’ be equal to 1, we require that all actions
belonging to Î sum to λi,σ̂ . We are now in a position to take duals; the only non-zero elements on the right
hand side of the constraints are from the sum-to-one constraints over λi,σ̂ . This give s the following dual

min
u,νi(σ̂,·)

u

such that FTi,σ̂νi(σ̂, ·) ≥ ATi,σ̂ξi ∀i ∈ {1, 2}, σ̂ ∈ Σi

u− νi(σ̂, Î) ≥ −bTi,σ̂ξi ∀i ∈ {1, 2}, σ̂ = (Î , â) ∈ Σi,

where u and ν(σ̂, ·) are free in sign. Combining this with the outer minimization over ξi gives us the linear
program by (von Stengel & Forges, 2008), up to a change in variable names and conventions.

B. Derivation of Probabilities over Terminal States
In order to express the utility of a trigger agent, it is necessary to compute the probability of the game
ending in each of the terminal states. Before that, we will review the notation introduced in earlier sections
in more detail.

• Z be the set of terminal states (or equivalently, outcomes) in the game, and z ∈ Z is some terminal state.
• ui(z) be the utility obtained by player i if the game terminates at some terminal state z ∈ Z.
• Πi be the set of pure reduced-normal-form strategies for Player i. We also require notation for subsets of

Πi, namely,
– Πi(I), is the set of reduced-normal-form strategies that can lead to information set I (which belongs

to player i) assuming that the other player acts to do so as well. This is equivalent (assuming no
zero-chance nodes or disconnected game trees) to saying that all reduced-normal-from strategies in
Πi(I) have some action which belongs to information set I .

– Πi(I, a) is the set of reduced normal form strategies which will lead to information set I and
recommend the action a in I . This is equivalent to the set of reduced normal form strategies which
contain a as part of their recommendation (this set is typically a subset of Πi(I, a)).

12
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– Πi(z) is the set of reduced-normal-form strategies which can lead to the terminal state z (assuming
the other player players to do so). This is equivalent to the set of reduced-normal-form strategies
which contain the σ = (I, a) pair where σ = (I, a) is the unique last information set-action pair
which has to be encountered by player i before the terminal state z.

• Σi the set of information set-action pairs (I, a) (also known as sequences), where I is an information set
for Player i and a is an action at set I .
• σi(z) is the last (I, a) pair belonging to Player i encountered before some terminal state z ∈ Z.

We are interested in characterizing the random variable tσ̂ : Π1 ×Π2 ×Π1(Î)→ Z that maps a triple of
reduced-normal-form strategies (π1, π2, π̂1) to the terminal state of the game that is reached when Player 1
is a σ̂-trigger agent and Player 2 follows all recommendations. That is, we want to find the probabillity
of terminating at each z ∈ Z for a σ̂-trigger agent, given the mediator’s joint distribution µ over reduced
normal form strategies and the trigger strategy µ̂ for the deviating player, which we will assume to be Player
1 without loss of generality. For each trigger σ̂, the terminal leaves may be partitioned into the following 3
sets.

• Zσ̂ (or equivalently ZÎ,â) is the set of terminal nodes that are descendants of the trigger σ̂ = (Î , â).
In order for the game to end in one of these terminal nodes, it is necessary that the recommendation
device recommended to Player 1 the trigger sequence σ̂, and therefore the agent must have deviated.
Furthermore, Player 2 must have been recommended the terminal sequence σ2(z) corresponding to
the terminal state, and finally π̂1 must be compatible with σ1(z). We can capture all these constraints
concisely by saying that the sampled (π1, π2, π̂1) must be such that π1 ∈ Π1(σ̂), π2 ∈ Π2(z) and
π̂1 ∈ Π1(z). Therefore the probability that a σ̂ trigger agent terminates at some z ∈ Zσ̂ is given by,

Pµ,µ̂[tσ̂ = z ∈ Zσ̂] =

 ∑
π1∈Π1(σ̂)
π2∈Π2(z)

µ(π1, π2)


 ∑
π̂1∈Π1(z)

µ̂1(π̂1)

 ,

where the first term in the product is the probability that Player 2 plays to z and Player 1 gets triggered,
and the second term is the probability that the deviation strategy from Player 1 upon getting triggered is
one that reaches z.
• ZÎ is the set of terminal states that are descendant of any sequence in Î , except σ̂. In order for the game

to reach this terminal state, recommendations issued to Player 1 by the correlation device must have been
such that Player 1 reached Î . There are two cases: either the correlation device recommended σ̂ at Î ,
or it did not. In the former case, Player 1 started deviating (using the sampled reduced-normal-form
plan π̂1); hence, in this case it must be π̂1 ∈ Π1(z). In the latter case, Player 1 does not deviate
from the recommendation, and therefore it must be π1 ∈ Π1(z). Either way, Player 2 must have
been recommended the terminal sequence z corresponding to the terminal state z; that is, π2 ∈ Π2(z).
Collecting all these constraints, it must be

(π1, π2, π̂1) ∈ Π1(σ̂)×Π2(z)×Π1(z) ∪ Π1(z)×Π2(z)×Π1(Î).

Using the fact that the two cases as to whether or not Player 1 was recommended σ̂ or not at Î are disjoint,
we can write

Pµ,µ̂[tσ̂ = z ∈ ZÎ ] =

 ∑
π1∈Π1(σ̂)
π2∈Π2(z)

µ(π1, π2)


 ∑
π̂1∈Π1(z)

µ̂1(π̂1)

 +

 ∑
π1∈Π1(z)
π2∈Π2(z)

µ(π1, π2)

 .

The first term in the summation may be understood as the probability that the agent was triggered and its
deviation was to play something other than σ̂. The second term is that probability that the agent was not
triggered and the game simply terminates at z based on µ.
• Finally, Z−Î is the set of terminal nodes that are neither in Zσ̂ nor in ZÎ . If the game has ended

in any terminal state that belongs to Z−Î , Player 1 has not deviated from the recommended strategy,
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since they have never even reached the trigger information set, Î . Hence, in this case it must be
(π1, π2) ∈ Π1(z)×Π2(z). Hence,

Pµ,µ̂[tσ̂ = z ∈ Z−Î ] =
∑

π1∈Π1(z)
π2∈Π2(z)

µ(π1, π2).

With the above, we can finally express the constraint that no deviation strategy µ̂ can lead to a higher utility
for Player 1 than simply following each recommendation. Indeed, for all µ̂, the utility of the trigger agent is
expressed as ∑

z∈Z
u1(z)Pµ,µ̂[tσ̂ = z],

where the correct expression for Pµ,µ̂[tσ̂ = z] must be selected depending on whether z ∈ Zσ̂, z ∈ ZÎ or
z ∈ Z−Î . On the other hand, the utility of an agent that follows all recommendations is

∑
z∈Z

u1(z)Pµ,µ̂[π1 ∈ Π1(z), π2 ∈ Π2(z)] =
∑
z∈Z

u1(z)
∑

π1∈Π1(z)
π2∈Π2(z)

µ(π1, π2)

 .

Therefore, following all recommendations is a best response for the σ̂-trigger agent if and only if µ is
chosen so that

∑
z∈Z

u1(z)

Pµ,µ̂[tσ̂ = z]−
∑

π1∈Π1(z)
π2∈Π2(z)

µ(π1, π2)

 ≤ 0 ∀µ̂ ∈ ∆|Π1(Î)|. (2)

The crucial observation is that all the probabilities Pµ,µ̂[t = z] defined above can be expressed via the
following quantities:

y1,σ̂(z) :=
∑

π̂1∈Π1(z)

µ̂1(π̂1) ∀z ∈ Z; ξ1(σ1; z) :=
∑

π1∈Π1(σ1)
π2∈Π2(z)

µ(π1, π2) ∀σ1 ∈ Σ1, z ∈ Z.

For example, for all z ∈ ZÎ we can write

Pµ,µ̂[tσ̂ = z] = ξ1(σ̂; z)yi,σ̂(z) + ξ1(σ1(z); z).

When deviations relative to Player 2 are brought into the picture, the following two sets of symmetric
quantities also become relevant:

y2,σ̂(z) :=
∑

π̂2∈Π2(z)

µ̂1(π̂2) ∀z ∈ Z; ξ2(σ2; z) :=
∑

π1∈Π1(z))
π2∈Π2(σ2)

µ(π1, π2) ∀σ2 ∈ Σ2, z ∈ Z.

It would now seem natural to perform a change of variables, and pick (correlated) distributions for the
random variables y1,σ̂(·), y2,σ̂(·), ξ1(·; ·) and ξ2(·; ·) instead of µ, µ̂1 and µ̂2. Since there are only a
polynomial number (in the game tree size) of combinations of arguments for these new random variables,
thisapproach would allow one to remove the redundancy of realization-equivalent normal-form plans and
focus on a polynomially-small search space. In the case of the random variables y1,σ̂ and y2,σ̂, it is clear
that the change of variables is possible via the sequence form (von Stengel, 2002). Therefore, the only
difficulty is in characterizing the space spanned by ξ1 and ξ2 as µ varies across the probability simplex.
In two-player perfect-recall games with no chance moves, this is exactly the merit of the landmark work
by von Stengel & Forges (2008). In particular, the authors prove that in those games the space of feasible
ξ1, ξ2 can be captured by a polynomial number of linear constraints.
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C. Proof of Lemma 2
The vectors of entries ξ1(·; ·), ξ2(·; ·) are obtained from µ via a linear mapping. Hence, the set of values
that can be assumed by ξ is the image of the probability simplex via a linear mapping. Since images of
polytopes via linear functions are polytopes, the lemma holds.

D. Details of Our Subgradient Method
First, observe that the objective v∗(ξ) is convex since it is the maximum of linear functions of ξ. This
suggests that we may perform subgradient descent on v∗, where the subgradients are given by

∂/∂ξ v∗(ξ) = Ai∗,σ̂∗y∗i∗,σ̂∗ − bi,σ̂∗ , (3)

where (i∗, σ̂∗, y∗i∗,σ̂∗) is a triplet which maximizes the objective function v∗(ξ). The computation of such a
triplet is a straightforward bottom-up traversal of the game tree. In order to maintain feasibility (that is,
ξ ∈ X ), it is necessary to project onto X , which is challenging in practice, because we are not aware of any
distance-generating function which allows for efficient projection onto this polytope. This is so even in
games without chance (where ξ can be expressed by a polynomial number of constraints (von Stengel &
Forges, 2008)). Furthermore, iterative methods such as Dykstra’s algorithm, add an dramatic overhead to
the cost of each iterate.

To overcome this hurdle, we observe that in games with no chance moves, the set X of correlation plans—as
characterized by von Stengel & Forges (2008) via the notion of consistency constraints—can be expressed
as the intersection of three sets: (i) X1, the sets of vectors ξ that only satisfy consistency constraints for
Player 1; (ii) X2, the sets of vectors ξ that only satisfy consistency constraints for Player 2, respectively; and
(iii) Rn+, the non-negative orthant. X1 and X2 are polytopes defined by equality constraints only. Therefore,
an exact projection (in the Euclidean sense) onto X1 and X2 can be carried out efficiently by precomputing
a suitable factorization the constraint matrices that define X1 and X2. In particular, we are able to leverage
the specific combinatorial structure of the constraints that form X1 and X2 to design an efficient and parallel
sparse factorization algorithm (see Appendix D for the full details). Furthermore, projection onto the
non-negative orthant can be done conveniently, as it just amounts to computing a component-wise maximum
between ξ and the zero vector. Since X = X1 ∩ X2 ∩ Rn+, and since projecting onto X1, X2 and Rn+
individually is easy, we can adopt the recent algorithm proposed by (Wang & Bertsekas, 2013) designed to
handle exactly this situation. In that algorithm, gradient steps are interlaced with projections onto X1, X2

and Rn+ in a cyclical manner. This is similar to projected gradient descent, but instead of projecting onto
the intersection of X1, X2 and Rn+ (which we believe to be difficult), we project onto just one of them in
round-robin fashion. This simple method was shown to converge by (Wang & Bertsekas, 2013), however,
no convergence bound is currently known.

D.1. Factorization of constraints over X

von Stengel & Forges (2008) showed that a ξ may be represented compactly as a 2-dimensional matrix,
with dimensions equal to the sequence form representation (von Stengel, 1996) of each player, where one
is only interested in entries corresponding to relevant sequence pairs (von Stengel & Forges (2008) for
details). Then, the aforementioned constraints (i) and (ii) defining X1 and X2 are equivalent to the sequence
form constraints for each row and column respectively. Constraint (iii) ensures that the entries of ξ are
non-negative and that the entry for the empty sequence pair is 1.

Observe that projection (based on L2 distance) on X1 and X2 individually can be decomposed a series
of disjoint projections (either on rows or columns) and thus computed in parallel. We now show that L2-
projection of each individual row/column over the sequence form constraints (von Stengel & Forges, 2008)
may be done efficiently. Let F and f be matrices and vectors corresponding to the sequence form constraints
Fx− f = 0. Here, F is a (sparse) matrix of size #information sets×#sequences which contains entries
in {−1, 0, 1} and f is a vector containing 1’s or 0’s. Each information set in F corresponds to the ‘flow’
constraints for an information set, with a coefficient of −1 for the unique parent sequence leading to that
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information set, and a coefficient of −1 for all sequences immediately following that information set. 4

Given a vector w, the projection onto the affine space given by Fx− f is given by the optimization problem

min
x

1

2
‖x− w‖22

s.t. Fx− f = 0

The closed form solution may be found using Lagrange multipliers, and is given by

x∗ = FT (FFT )−1(f − Fw) + w,

Since F is sparse, the main difficulty in computing x∗ is overcome if we can efficiently compute (FFT )−1q
for any vector q.
Lemma 3. Let F be the sequence form constraint matrix. Computing (FFT )−1q may be done efficiently.

Proof. The key here is to exploit the structure of FFT . Observe that FFT is symmetric, positive-definite
and has dimension equal to the number of information sets. Furthermore, FFT may be expressed in closed
form:

(FFT )ij =


−1 i is the direct parent/child of j
1, i is the sibling of j
1 + # actions at i, i = j

0, otherwise

,

where i, j above are information sets, and i being the parent of j means that there is some action in i which
can lead to information set j (without any other information set from the same player in between), and
i being the sibling of j means that the (unique) sequence leading to i and j are the same. Observe that
FFT is almost, but not quite tree-structured. However, it is sparse and more importantly, has 0 fill-in if we
order variables in a bottom-up fashion in the player’s game tree. That is, we treat FFT as a graph with
information sets as vertices, then repeatedly remove vertices (information sets) in a bottom-up fashion,
while forming cliques with all neighbors of the removed vertex. Note that due to the structure of FFT ,
we will not introduce any new edges. In other words, performing Gaussian elimination on (FFT ) may be
done without introducing additional non-zero entries. If the number of maximum number of actions that an
information set may have is upper bounded by a constant amax, then eliminating a single variable will only
require time quadratic in amax. This means that computing (FFT )−1q may be done efficiently when xmax
is small.

Remark. Lemma 3 and the fact that L2 projections onto sequence form constraints can be done
efficiently may be of separate interest to researchers beyond the scope of EFCEs.

In practice, we precompute a sparse Cholesky factor of FFT . From the previous discussion, the Cholesky
factors are guaranteed to be sparse and easily stored. Withe the Cholesky decomposition of FFT , finding
(FFT )−1q becomes straightforward. This precomputation is done once per trigger-sequence σ̂, since the
set of relevant sequence pairs for each trigger sequence (i.e., the location of non-zero entries in the matrix
representing ξ) differs. This precomputation step is trivially parallel. In our experiments, computing the
Cholesky factors was rarely the bottleneck (although we do include this timing when evaluating our method)

D.2. Social Welfare Maximization

Observe that Equation (1) may be rewritten in the form of (1− λsw)v∗sw(ξ)− λswb
T ξ for a suitable vector b.

Hence, the gradient for the modified objective is given by

∂/∂ξ v∗(ξ) =

{
Ai∗,σ̂∗y∗i∗,σ̂∗ − bi,σ̂∗ v∗(ξ) ≥ κ(ξ)

−b otherwise
,

4In our implementation, f need not have this restriction, but it is included her to be more in line with the classic
work of (von Stengel, 1996).
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where κ(ξ) = τ −
∑
z∈Z u1(z)ξ1(z; z) −

∑
z∈Z u2(z)ξ2(z; z), the difference between τ and the social

welfare obtained from ξ.

E. Battleship Game
E.1. Extended Description of the Game

A game of Battleship is parameterized by a tuple (H,W,S, r, γ), where

• the integers H,W ≥ 1 define the height and width of the playing field for each player;

• S is an ordered list containing ship descriptions si for each player. Each description is a pair si =
(`i, vi), where `i is the length of the i-th ship and vi is its value;

• r ≥ 1 is the number of rounds in the game;

• γ ≥ 1 is a loss multiplier that controls the relative value of a losing versus destroying ships.

The game proceeds in 2 phases: ship placement and shooting. During the ship placement phase, the players
(starting with Player 1) take turns placing their ships on their playing field. The players must place all
their ships, in the same order in which they appear in S, on the playing field. The ship placement phase
ends when all ships have been placed. We remark that the players’ playing fields are separate: in other
words, there are two playing fields of dimensions H ×W , one per player. The ships may be placed either
horizontally or vertically on each player’s grid (playing field); all ships must lie entirely within the playing
field and may not overlap with other ships the player has already placed. Finally, the locations of a player’s
ships is private information for each player.

In the shooting phase, players take turns firing at each other; Player 1 starts first. This is done by selecting a
pair of integer coordinates (x, y) that identify a cell within the playing field. After taking a shot, the player
is told if the shot was a hit, that is, the selected cell (x, y) is occupied by a ship of the opponent, or if it is a
miss, that is, (x, y) does not contain an opponent’s ship. If all cells covered by a ship have been shot at, the
ship is destroyed and this fact is announced. Note that the identity of the ship which was hit or sunk is not
revealed; players only know that some ships was hit or sunk. The game ends when r shots have been made
by each player, or if one player has lost all their ships, whichever comes first. At the end of the game, each
player’s payoff is computed as follows: for each opponent’s ship that the player has destroyed, the player
receives a payoff equal to the value v of that ships; for each ship that the player has lost to the opponent, the
player incurs a negative payoff equal to γ · v, that is the value of the ship times the loss multiplier γ. Note
that when γ > 1 the game is general sum.

Since γ ≥ 1, this asymmetric model describes situations where players are encouraged to destroy other
ships, but are ultimately more protective of their own assets. The loss multiplier γ governs this gap; a higher
value of γ makes so that each player values their ships more than destroying others. Note that when γ = 1,
we obtain a zero-sum version of battleships (with varying scores for each ship).

For the remainder of the discussion, we define the social welfare (SW) of any outcome to be the sum of
payoffs of each player. We will demonstrate that with the aid of a mediator (the correlation device), the
social welfare of the optimal correlated equilibria are dramatically higher than the social welfare of even the
best Nash equilibrium. In other words, the mediator leads to significantly less destructive outcomes, and
leads to more frequent ties where the players sometimes agree to deliberately miss their opponents, while
still retaining incentive-compatibility and rationality in the standard game-theoretic sense.

E.2. Analysis of Social-Welfare-Maximizing EFCE

We analyze one social-welfare-maximizing EFCE in the same small instance of Battleship as the previous
section. The mediator in this EFCE recommends the players a ship placement that is sampled uniformly
at random and independently for each players. This results in 9 possible scenarios (one per possible
ship placement) in the game, each occurring with probability 1/9. Due to the symmetric nature of ship
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placements, only two scenarios are relevant: whether the two players are recommended to place their ship
in the same spot, or in different spots. Figure 3 details the strategy of the the mediator in each of these two
scenarios, assuming that the players do not deviate. Note that the game trees in Figure 3 are parametric on
the recommended ship placements a and b; all 9 possible ship placements can be recovered from Figure 3
by setting a and b to appropriate values in {1, 2, 3}.

Pl.1 in cell a, Pl.2 in cell a

Sh. b Sh. a Sh. c

Sh. b

Sh. a Sh. c

Sh. a Sh. c

Sh. c

Sh. a Sh. c

Sh. bSh. a

Sh. b

Sh. a Sh. b

Sh. a Sh. c

Sh. c

Sh. a Sh. b

Sh. bSh. a

25/54 2/27 25/54

1/2 1/2

2/5 3/5 2/5 3/5

1/2 1/2 1/2 1/2

1/2 1/2

2/5 3/5 2/5 3/5

1/2 1/2 1/2 1/2

Pl.1 in cell b, Pl.2 in cell a

Sh. b Sh. a Sh. c

Sh. a

Sh. a Sh. c

Sh. b Sh. c

Sh. c

Sh. a Sh. c

Sh. b Sh. a

Sh. a

Sh. a Sh. b

Sh. b Sh. c

Sh. c

Sh. a Sh. b

Sh. b Sh. a

25/54 2/27 25/54

1/2 1/2

2/5 3/5 2/5 3/5

1/2 1/2 1/21/2

1/2 1/2

2/5 3/5 2/5 3/5

1/2 1/2 1/21/2

Figure 3: Example of a playthrough of Battleship assuming both players were recommended to place their ship in a
(left), or that Player 1 and 2 were recommended to place their ships in a and b respectively (right). For both pictures,
the numbers along each edge denote probabilities of each action being recommended; no edge is shown for actions
recommended with zero probability. Squares and hexagons denote actions taken by Players 1 and 2 respectively.
Similarly, blue and red nodes represent cases where Players 1 and 2 sink their opponent’s ship, respectively. Green leaf
nodes are where the game results in no ship loss. The Shoot action is abbreviated to ‘Sh.’

For both game trees, note that the correlation device suggests that Player 1 shoot at the Player 2’s ship with
a low 2/27 probability, and deliberately miss with high probability. As hinted in earlier sections, this type of
recommendation is key to understanding why the EFCE succeeds in promoting less destructive outcomes.
One may wonder why this behavior is incentive-compatible (that is, what are the incentives that compel
Player 1 into not defecting), since the player may choose to randomly fire in any of the 2 locations that were
not recommended, and get almost 1/2 chance of winning the game immediately. The key is that if Player
1 does so and does not hit the opponent’s ship, then the mediator can punish him by recommending that
Player 2 shoot at the location of Player 1’s ship. Since players value their ships more than destroying their
opponents, the player is incentivized to avoid such a situation by accepting the recommendation to (most
probably) miss.

A similar situation arises in the first move of Player 2. Here, Player 2 is recommended to deliberately miss,
hitting each of the 2 empty spots with probability 1/2. If he deviates and attempts to destroy Player 1’s ship,
then he risks the mediator revealing his location to his opponent if his shot misses; this risk is enough to
keep Player 2 ‘in line’. The second move of Player 1 (third shot of the full game) bears a similar ideas.
Here, Player 1 is recommended to hit Player 2’s ship with probability 2/5. Similar to his first shot, Player 1
may deviate and fire at the remaining location and enjoy 3/5 chance of winning the game out right. Yet, this
behavior is discouraged, since in the 2/5 chance that he misses the shot (i.e., the recommendation was in
fact, the correct location of Player 2’s ship), then his location would be revealed by the mediator and he
loses the next round. Again, this threat from the mediator encourages peaceful behavior, even though the
recommendation to Player 1 reveals a more accurate ‘posterior’ of Player 2’s ship location, as compared to
the uniform distribution of 1/2. While making these recommendations, the mediator ensures that Player 2
has a uniform distribution of Player 1’s ship location, meaning that even though Player 2 has the final move,
he may not do better than guessing at uniform at this stage.

Remark. It is important to note that Figure 3 does not convey the full information of the correlated
plans. Crucially, it does not show the consequences suffered if a player deviates from his recommended
strategy—in this case, the deviating player stops receiving recommendations and risks having his ship’s
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location revealed to the opponent. These ‘counterfactual’ scenarios may be counter-intuitive but are key to
understanding how SW-maximizing EFCEs achieve their purpose.

F. Sheriff Game
F.1. Extended Version of the Game

The Sheriff game is described by the the parameters v, p, s ∈ R+, nmax, bmax, r ∈ N. The parameters
v, p, s ≥ 0 describe the value of each illegal item, the penalty that the Smuggler has to pay for each
discovered illegal item, and the compensation that the Sheriff pays to the Smuggler in the case of a false
alarm. At the beginning of the game, the Smuggler loads n ∈ {0, . . . , nmax} items into his cargo. The
amount of goods loaded is unknown to the Sheriff. The game then proceeds for r ≥ 1 rounds of bargaining.
Each round comprises two steps. First, the Smuggler offers a bribe bt ∈ {0, . . . , bmax} to the Sheriff, where
t ≤ r is the round of bargaining. After that, the Sheriff responds with ‘Yes’ or ‘No’.

All actions are public knowledge, except for the selection of cargo contents, which only the Smuggler
knows. In the final step, we compute the payoffs to players. The outcome of the game is decided by the
last step of bargaining. In particular, the first r − 1 rounds of bargaining have no explicit bearing on the
outcome of the game, except for purposes of coordination. The payoffs for each outcome are:

1. Sheriff accepts the bribe. The Smuggler’s gets n · v − br, and the Sheriff’s gets the bribe offered br.

2. Sheriff inspects and discovers illegal items. The Smuggler is fined and gets a payoff of −n · p while
the Sheriff gets a payoff of n · p.

3. Sheriff chooses to inspect and does not find illegal items. The Smuggler receives a compensation of s,
while the Sheriff gets −s.

The objective of the mediator is to maximize social welfare in the space EFCEs. Ideally, this will involve
the Smuggler bringing in goods and the Sheriff accepting bribes – any other outcome would simply be
zero-sum, since it no goods will be successfully smuggled and money only changes hands between players.
A qualitative description of the welfare maximizing equilibrium is not obvious, since the game contains
elements of both lying and bargaining.

Remark. The communication in the bargaining steps is at a superficial level similar to that in cheap
talk (Crawford & Sobel, 1982), where costless and non-binding signals are transmitted between players.
However, in our setting, the signals are transmitted in the middle of the game as opposed to just at the
beginning. More importantly, the presence of the mediator during the phase of bargaining bestows more
uses for the signals—in particular, the mediator may be able to take punitive measures against players who
deviate from recommendations, since future recommendations will be withheld from players who deviate.
We will illustrate the importance of this at the end of Appendix F.2.

F.2. Effect of Additional Rounds of Bargaining (r)

nmax r = 1 r = 2 r = 3 r = 4

1 (4.00, 1.00) (4.00, 1.00) (4.00, 1.00) (4.00, 1.00)
2 (1.24, 0.19) (4.00, 1.00) (4.00, 1.00) (4.00, 1.00)
5 (0.89, 0.11) (1.11, 1.00) (4.00, 1.00) (4.00, 1.00)
10 (0.82, 0.00) (0.84, 1.00) (3.62, 1.00) (4.00, 1.00)

Table 3: Payoffs for (Smuggler, Sheriff) when players play according to the SW-maximizing EFCE in the Sheriff game
with bmax = 2 (right).
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We illustrate the effect of the non-consequential bribes with two small settings, where v = 5, p = 1, s =
1, nmax = 3, bmax = 2, r ∈ {1, 2}. Examples of SW-maximizing equilibria are shown in Figure 4 and
Figure 5. 5

Start of Game

Load 1 Load 3

Bribe $0 Bribe $1 Bribe $2

Inspect Pass Pass

Bribe $2

Pass

62/79 17/79

29/62 8/31 17/62 1

1 1 1 1

Figure 4: Example of a playthrough of the Sheriff game with r = 1. Edge labels correspond to action probabilities,
edges with 0 probability are omitted. Squares and hexagons denote actions taken by Players 1 and 2 respectively, while
green and red nodes denote the Sheriff choosing to pass or inspect.

Start of Game

Load 1 Load 3

Bribe $0 Bribe $1 Bribe $2 Bribe $0 Bribe $1 Bribe $2

Feedback 1 Feedback 1 Feedback 1 Feedback 1 Feedback 1 Feedback 1

Bribe $2 Bribe $2 Bribe $2 Bribe $2 Bribe $2 Bribe $2

Pass Pass Pass Pass Pass Pass

1/2 1/2

3/8 3/8 1/4 3/8 3/8 1/4

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Figure 5: Example of a playthrough of the Sheriff game with r = 2. Edge labels correspond to action probabilities,
edges with 0 probability are omitted. Squares and hexagons denote actions taken by Players 1 and 2 respectively, while
green and red nodes denote the Sheriff choosing to pass or inspect.

The SW maximizing EFCE yields payoffs of (3.89, 1.43) and (8.0, 2.0) for r = 1 and r = 2 respectively.
We will first consider the case where r = 2 (Figure 5. Here, what occurs happens along the equilibrium
path is straightforward. The Smuggler loads in 1 or 3 items with equal probability. Next, he offers a
(non-consequential) bribe of either 0, 1, or 2. Then, he receives some feedback of 1, and proceeds to offer a
bribe of $2, which the Sheriff gladly accepts. The payoffs to players is (13, 2) and (3, 2) depending if the
Smuggler was recommended to load 1 or 3 items, leading to an average payoff of (8, 2).

The underlying mechanism is in fact fairly straightforward and mirrors the idea in the modified sig-
nalling game of (von Stengel & Forges, 2008). Assume that a random number is chosen uniformly from
{0, . . . , bmax}. This acts as a ‘passcode’ which the Sheriff expects from the Smuggler in the first round.

5As with the analysis of Battleship, note that this only shows interactions of players on the equilibrium path, that is,
the graph omits what would happen if some player deviated.
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This passcode forms part of the correlated plan, and will eventually be revealed to the Smuggler assuming
he did not deviate when selecting the number of illegal items (recall that the sequential nature of the EFCE
means that the recommended amount to bribe is not revealed until the Smuggler loads the cargo with the
recommended number of items.) In other words, the first (non-consequential) bribe may be used as a signal
which hints to the Sheriff if the Smuggler has deviated—if it is not equal to the passcode, the Smuggler must
have deviated somewhere. On the other hand, a deviating Smuggler may successfully guess the passcode
with probability no greater than 1/(bmax + 1); if the number of signals bmax is sufficiently large, then it is
near impossible to guess the code. Using these tools, the mediator is able to engineer a ‘deviation detector’
which checks if the Smuggler ever deviated. Note, however, that unlike the Signaling game, the Sheriff is
not able to glean exactly how what was recommended (in this case, the number of items in the cargo); he is
only able to deduce if the player deviated from the recommendation (in this case, this would be load either 1
or 3 items).

Issuing threats to the Smuggler becomes straightforward with this deviation detector. If the Sheriff knows
the Smuggler is lying, he employs a ‘grim trigger’ for the rest of the game—in this case, the Sheriff opts to
inspect all of the player’s cargo, regardless of the bribe offered in the second round. The Smuggler could also
be pretending to bring in illegal goods, i.e., by loading 0 items and hoping that he would guess the incorrect
passcode, resulting in the Sheriff making a false accusation. However, because the Smuggler’s payoff for
deceiving the Sheriff in this manner is just 1, he remains incentivized to stick to the recommendations,
which guarantees him a payoff of either 3 of 13.

We now make the following hypotheses. First, the effect of additional bargaining rounds r is that the chance
of randomly guessing the passcode is reduced. If there are r rounds, then there are (b + 1)r−1 different
possible signals that the Smuggler could have sent to the Sheriff through the first r− 1 rounds. When r = 1,
this class of correlation plans fails since the bribe by the Smuggler serves both as the answer to the ‘secret
question’ and as the actual bribe to be offered. This aliasing of roles is what leads to a lower payoff; the risk
of sending an incorrect passcode is not sufficiently high to dissuade the Smuggler from deviating.

G. 3 LP formulations for computing EFCEs
Refer to the dualized problem in Appendix A. Observe that u is the value of the maximum deviation over all
σ̂—when all incentive constraints are met, u should be non-positive. We propose 3 different formulations.

• Min-Deviation: what was presented in Appendix A.

• Feas-Deviation: instead of minimizing u in the objective, replace that by a hard constraint that u ≤ 0.

• Maximum-SW: formulate the LP similar to Feas-Deviation, but with the SW-maximizing objective.

H. Additional Experiments on Sheriff Game
The results for the Sheriff game were run using the parameters p = 1, v = 5, bmax = 3, r = 5, s = 4 while
varying the maximum number of items that can be smuggled nmax. The time required for the error to drop
below a certain threshold is reported for both Gurobi and our subgradient method. The results are reported
in Table 4. As before, we observe that our method can outperforms Gurobi if lower levels of accuracy are

nmax
#Actions #Relevant Time (LP) Time (ours)
Pl 1 Pl 2 seq. pairs 2 1 0.75 0.5 2 1 0.75 0.5

6 131k 37k 6.5M 723 723 723 743 42 42 44 88
8 168k 37k 8.4M 1187 1223 1223 1223 63 69 102 333

10 206k 37k 10M 1662s 1774 1774 1829 83 240 298 N/A

Table 4: #Seq. pairs is the dimension of ξ under the compact representation of (von Stengel & Forges, 2008). For LPs,
we report the fastest of Barrier, Primal and Dual Simplex, and 3 different formulations (Appendix G). Our subgradient
method did not manage to achieve an accuracy of 0.5 after 1 hour of running.

desired. However, it was observed that for higher levels of accuracy, Gurobi requires significantly less
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time, if our method converges at all. This is because Gurobi spends the majority of its time performing
preprocessing steps.
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