
Practical exact algorithm for trembling-hand
equilibrium refinements in games

Gabriele Farina
Computer Science Department

Carnegie Mellon University
gfarina@cs.cmu.edu

Nicola Gatti
DEIB

Politecnico di Milano
nicola.gatti@polimi.it

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
sandholm@cs.cmu.edu

Abstract

Nash equilibrium strategies have the known weakness that they do not prescribe
rational play in situations that are reached with zero probability according to the
strategies themselves, for example, if players have made mistakes. Trembling-
hand refinements—such as extensive-form perfect equilibria and quasi-perfect
equilibria—remedy this problem in sound ways. Despite their appeal, they have
not received attention in practice since no known algorithm for computing them
scales beyond toy instances. In this paper, we design an exact polynomial-time al-
gorithm for finding trembling-hand equilibria in zero-sum extensive-form games.
It is several orders of magnitude faster than the best prior ones, numerically sta-
ble, and quickly solves game instances with tens of thousands of nodes in the
game tree. It enables, for the first time, the use of trembling-hand refinements in
practice.

1 Introduction

Nash equilibrium (NE) [Nash, 1950] is the most seminal solution concept in game theory. However,
in many games it is too permissive, prescribing unsatisfactory strategies. In the case of imperfect-
information extensive-form games, one limitation is that some NEs do not prescribe optimal play
after the player or the opponent has made a mistake. Other issues are that some NEs may prescribe
non-credible threats or weakly dominated strategies.

Since the classic paper by Selten [1975], trembles have played a crucial role in refining—that is,
further curtailing—the set of NEs, to address these issues. Intuitively, trembles represent poten-
tial mistakes by the players. Refined solutions then are limit points of NEs as the mistake prob-
abilities approach zero (different refinement concepts have different additional constraints on the
trembles, which we will make specific in the next sections). The primary role of trembles is to
guarantee that the solutions are sequentially rational [Kreps and Wilson, 1982]. The two most fa-
mous trembling-hand solution concepts that refine NEs while guaranteeing sequential rationality
are quasi-perfect equilibria (QPEs) [van Damme, 1984] and extensive-form perfect equilibria (EF-
PEs) [Selten, 1975].1 In a QPE, a player plays optimally at every information set taking into account
possible future mistakes of her opponent but assuming that she will not make future mistakes. In an

1Proper equilibria (PEs), proposed by Myerson [1978], are a non-empty subset of EFPEs, with the addi-
tional requirement that the worse an action is for a player, the lower the agent’s tremble probability on that

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

EFPE, a player also takes her own possible future mistakes into account. Interestingly, EFPEs need
not be a subset of QPEs: the two sets can be disjoint [Hillas and Kohlberg, 2002]. (An EFPE may
prescribe the players to play weakly dominated strategies, while a QPE never does.)

Sequential rationality guarantees that the strategies in QPEs and EFPEs are optimal also in parts
of the game that are reached with zero probability in equilibrium. This is important, for example,
when playing against a human player, who is expected not to always play optimally. No practically
viable algorithm for computing trembling-hand refinements in large imperfect-information games is
known. For instance, consider the recent milestone where an AI, Libratus [Brown and Sandholm,
2017b,a,c]—that was created automatically using equilibrium-finding approaches—beat top human
specialist professionals in heads-up no-limit Texas hold’em poker. The techniques were based on
approximating NE: no NE refinement was used to capitalize on the opponent’s mistakes.

Sequential rationality should not be confused with the concept of undominated strategy van Damme
[1987]. Miltersen and Sørensen [2006, page 108] illustrate the weakness of undominated Nash equi-
libria (UNEs) and their inability to capitalize on mistakes compared to QPEs. In particular, UNEs
do not preclude a player from hoping for a “gift” (mistake) from the opponent. Poker illustrates this
problem well: only very few strategies are dominated since there is often room for the opponent to
make mistakes later. In other words, while restricting to undominated strategies is a step in the right
direction, it does not rule out sequentially-irrational behavior for either player. The solution con-
cepts we study in this paper—QPEs and EFPEs—guarantee sequential rationality and are a standard
solution to this problem.2

1.1 Prior state of the art

In two-player zero-sum games, the problems of finding a QPE or an EFPE can be formulated as limit
points of linear programs parameterized by the tremble magnitude. In each linear program in that
sequence, the trembles are captured by requiring each action to be played with at least some lower-
bound probability. Assuming the game is of perfect recall, the linear program can be written in the
sequence form [Koller et al., 1996; Romanovskii, 1962; von Stengel, 1996], which we will make
precise later in the paper. The trembles used for the two solution concepts are different, leading
to problems of different nature. In the case of QPE, the trembles appear in the objective function
and in the right-hand side of the constraints [Miltersen and Sørensen, 2010]. In the case of EFPE,
the trembles only appear in the constraint matrix [Farina and Gatti, 2017]. Like Nash equilibrium,
a QPE and EFPE can be computed in polynomial time in the size of the input game. However,
the big-O complexity hides dramatically larger constants in the case of a QPE or an EFPE, and the
algorithms known so far thus do not scale beyond small instances [Čermák et al., 2014; Ganzfried
and Sandholm, 2015].

Solutions under both concepts can be found by setting the perturbation magnitude ε to a sufficiently
small value that guarantees that the basis of the optimal solution with that value remains optimal
as ε ↓ 0,3 and then by solving the corresponding LP by any LP oracle for that sufficiently small ε.
Miltersen and Sørensen [2010] and Farina and Gatti [2017] provide a formula for such an ε for
QPEs and EFPEs, respectively, and show that it is always representable using a polynomial number
of bits. However, in practice, calling an LP oracle with that value of ε is impractical because the
value is extremely small. This causes fatal numerical instability in the LP solver if finite-precision
(i.e., real-valued) arithmetic is used. If rational (i.e., infinite-precision) arithmetic is used, the LP
oracle is prohibitively slow.

An alternative algorithm to compute a QPE is a simplex algorithm variant that deals symbolically
with the perturbation using the lexico-minimum ratio test [Miltersen and Sørensen, 2010]. That
algorithm may require exponential time as it relies on the simplex algorithm, and it was not known
if, in practice, it can scale up to large instances. Our experiments show that it does not. While in
principle also an EFPE can be computed using a simplex algorithm that deals with the perturbation
symbolically, it is not even clear whether it can run in polynomial space. In summary, although there

action must be. Therefore, the trembles are a function of the strategies of the players. This potentially compli-
cates equilibrium finding. It is unknown whether PEs can be efficiently found in extensive-form games.

2Čermák et al. [2014] show experimentally that in two small artificial poker variants (six cards in the deck
and two betting rounds), for two particular models of opponent mistakes, undominated equilibria are as good
as QPEs. As explained above, this is not the case in general.

3We use the symbol “↓” to denote convergence from the right.

2

is agreement that NE refinements can play an important role even in two-player zero-sum games,
prior algorithms do not scale in practice.4

1.2 Our contributions

We design a practical algorithm that works in an iterative fashion. At each iteration, it halves the
value of ε used in the previous iteration, calls an LP oracle, and checks whether the basis of the
solution obtained is also a basis of an optimal solution when ε ↓ 0. The crucial technical contribution
is the design of an efficient numerical algorithm for the basis check step. We prove that our practical
algorithm requires only polynomial time even in the worst case (we prove that the maximum number
of iterations is polynomial and that each iteration runs in polynomial time).

Unlike in prior papers that propose algorithms for QPEs [Miltersen and Sørensen, 2010] and EF-
PEs [Farina and Gatti, 2017], which were purely theoretical, we show that our algorithm works well
in practice also. We apply it to finding a QPE and an EFPE in many different card games: Kuhn
poker, Leduc poker with various numbers of ranks, and two versions of Goofspiel [Ross, 1971]
with various numbers of ranks. Our algorithm dramatically outperforms the prior algorithms in the
literature. It is able to solve games up to four orders of magnitude larger than those previously solv-
able. It solves games with tens of thousands of nodes in a few minutes, thus showing, for the first
time, that trembling-hand refinements can be effectively used in practice—while having a theoretical
guarantee of correctness and polynomial run time.

2 Extensive-form games and Nash equilibria

Extensive-form games are a general standard representation of games, which can capture sequential
and simultaneous moves as well as private information. It is a tree form game supplemented with
information sets. Each information set contains a set of tree nodes, which are the set of nodes that
the player whose turn it is to move cannot distinguish among. We will focus on extensive-form
games with perfect recall, that is, where no player forgets what the player knew earlier. Additional
background material can be found in the textbook by Shoham and Leyton-Brown [2008].

Extensive-form games with perfect recall are often studied in a tabular representation called the
sequence form [Romanovskii, 1962; Koller et al., 1996; von Stengel, 1996]. It provides a concise
representation that uses space linear in the size of the game tree. A sequence q for player i is a
subset of A that specifies player i’s actions on the path from the root to a decision node v. We
denote with Qi the set of sequences of player i. A strategy defined on the sequence form is called a
realization plan. It is a non-negative vector ri that maps each sequence q ∈ Qi to its probability of
being played. A realization plan ri for player i is well-defined when it satisfies the linear constraint
Fi ri = fi, where Fi is a (|Hi| + 1) × |Qi| matrix that contains {0,±1} entries only, fi is a
(|Hi| + 1)-dimensional vector, and ri is the vector that contains the realization plan of player i.
Finally, the utility function of player i is represented as a sparse matrix Ui defined only for the
profiles of terminal sequences leading to a leaf. The expected payoff for player i ∈ {1, 2} when
the two players play according to the realization plan (r1, r2) is r>i Uir−i (as customary, we let −i
denote the opponent of player i).5

A NE is a strategy profile in which the strategy of each player is a best response to the strategies
of the opponents. In a two-player game, an NE can be defined in the sequence form as a strategy
profile (r∗1, r

∗
2) where r∗i ∈ arg max r>i Uir−i for all i ∈ {1, 2}. Even in zero-sum games, that is

games where the sum of the players’ payoffs in every leaf is zero, NEs can be unsatisfactory as they
do not preclude suboptimal play in branches of the game tree that are not reached in equilibrium, but
that might still be reached if players (e.g., humans) can make mistakes. See, for instance, the work
by Miltersen and Sørensen [2006] for a discussion of this issue in the context of computer poker.

4Some algorithms have been proposed for computing approximate trembling-hand equilibria resorting to
regret-minimization techniques [Farina et al., 2017] or to smoothing methods paired with bilinear saddle-point
techniques [Kroer et al., 2017]. Those algorithms do not provide any guarantee of finding or approximating
actual QPEs or EFPEs. Rather, they provide approximate solutions to approximate solution concepts.

5We use the superscript > to denote the transpose matrix. Similarly, later in the text we use the superscript
−> to denote the inverse transpose matrix.

3

3 Trembling-hand refinements

Nash equilibrium refinement solution concepts curtail the set of Nash equilibria by imposing addi-
tional desiderata on the solution. A given equilibrium refinement concept selects some subset of
a game’s Nash equilibria, thus potentially filtering out some or all of the equilibrium points that
exhibit undesirable behaviors. As discussed in the introduction, trembling-hand refinements are a
key form of equilibrium refinement. In the next subsections we review key properties of the two
main trembling-hand refinements, QPEs and EFPEs. A detailed derivation of the QPE and EFPE
formulations is provided in Appendix A.1 and Appendix A.2, respectively.

3.1 Quasi-perfect equilibria (QPEs)

In a QPE [van Damme, 1984], a player plays optimally at every information set taking into account
possible future mistakes of her opponent but assuming that she will not make future mistakes. Mil-
tersen and Sørensen [2010] show that at least one QPE can be found by forcing the realization ri(q)
of every sequence q to be at least εd, where d is the depth of the sequence itself. This corresponds
to a constraint of the form ri ≥ li(ε), where li(ε) > 0 collects all the lower bounds on the sequence
realizations. So, the following result by Miltersen and Sørensen [2010, Equation (25)] holds.
Proposition 1. In a zero-sum extensive-form game with perfect recall, a limit point as ε ↓ 0 of
solutions of the linear problem in Figure 1(a) is the strategy of player i ∈ {1, 2} in a QPE.

max

r̃i,v−i,z−i

f>−iv−i + l>−i(ε) z−i

s.t. 1 F>−iv−i −U>i r̃i ≤
U>i li(ε)− z−i

2 Fir̃i = fi − Fi li(ε)

3 r̃i, z−i ≥ 0

(a) QPE formulation

max
r̃i,v−i

f>−iv−i

s.t. 1 R−>−i (ε)F>−iv−i ≤
R−>−i (ε)U>i R

−1
i (ε)r̃i

2 FiR
−1
i (ε)r̃i = fi

3 r̃i ≥ 0.

(b) EFPE formulation

Figure 1: Linear programming formulations of trembling-hand refinements.

3.2 Extensive-form perfect equilibria (EFPEs)

In an EFPE [Selten, 1975], a player takes not only the opponent’s but also her own possible fu-
ture mistakes into account. Like QPEs, EFPEs impose a lower bound on the realization of every
sequence. Specifically, given a sequence q and an extension with action a (i.e., the sequence qa),
the realization ri(qa) has to satisfy the lower bound ri(qa) ≥ εq ri(q), where εq > 0 is a real
constant (different sequences can have a different value for εq). In this paper, we will use a uniform
perturbation over the actions of the agent form: εq = ε for all sequences q. An EFPE with such a uni-
form perturbation always exists. This allows to express all constraints of the form ri(qa) ≥ ε ri(q)
more concisely as Ri(ε)ri ≥ 0, where Ri(ε) is the behavioral perturbation matrix. With that, the
following result was proven by Farina and Gatti [2017].
Proposition 2. In a zero-sum extensive-form game with perfect recall, a limit point as ε ↓ 0 of
solutions of the linear problem in Figure 1(b) is the strategy of player i ∈ {1, 2} in an EFPE.

4 Trembling linear programs and their limit solutions

The previous section shows that the problems of finding a QPE and that of finding an EFPE are
similar: in both cases an LP with a parameter ε > 0 is given, and a limit point of a sequence of
optimal solutions to the LP as ε ↓ 0 is sought. We formalize this observation in the concept of a
trembling linear program (TLP), that is a function

ε 7→ P (ε) :

max c(ε)> x

s.t. A(ε)x = b(ε)
x ≥ 0

where P (ε) is an LP, and A(ε), b(ε), c(ε) are polynomials in ε, with rational coefficients. Further-
more, we require that the set of all feasible solutions for P (ε) be non-empty for all positive reals

4

ε ≤ ε̃, and that the set of all feasible solutions for P (0) be non-empty and bounded. These additional
assumptions are satisfied by the formulations in Figure 1.
Definition 3 (Limit solution to a TLP). A limit solution to a TLP ε 7→ P (ε) is a limit point, as ε ↓ 0,
of optimal solutions for P (ε).

In the case of the QPE TLP (Figure 1(a)), the perturbation variable ε only appears in b; limit solu-
tions to the QPE TLP are QPEs. In the case of the EFPE formulation (Figure 1(b)), the perturbation
ε only appears in A; limit solutions to the EFPE TLP are EFPEs.

We now introduce the concept of basis stability for TLPs. First, recall that a basis of an LP is a
subset of the program’s variables such that when only those columns of matrix A that correspond
to those variables are included in a new matrix A′, the new matrix A′ is invertible [Bertsimas and
Tsitsiklis, 1997, page 55].
Definition 4 (Stable basis). Let ε 7→ P (ε) be a TLP. The LP basis B is called stable if there exists
ε̄ > 0 such that B is optimal for P (ε) for all ε : 0 < ε ≤ ε̄.

We prove that there is a tight connection between a stable basis and a TLP limit solution. In par-
ticular, given a stable basis, one can find a TLP limit solution in polynomial time (all proofs are
presented in Appendix A):
Theorem 5. Let P : ε 7→ P (ε) be a TLP, and let B be a stable basis for P , optimal for all
ε : 0 < ε ≤ ε̄. Furthermore, let x(ε) be the optimal basic solution of P (ε) corresponding to B.
Then, x̃ = limε↓0 x(ε) exists, and x̃ is a limit solution to the TLP P .

Given a TLP and a stable basis B for it, let B(ε) denote the basis matrix corresponding to B in the
underlying perturbed LP P (ε), and let cB denote the portion of the objective vector c corresponding
to the basic variables. Similarly, let B̄(ε) and cB̄ denote the matrix formed by all nonbasic columns
and the vector formed by the objective coefficients of all nonbasic variables, respectively.
Theorem 6. Given a TLP ε 7→ P (ε), a basis B is stable if and only if there exists ε̄ > 0 such that

tB(ε) :=

(
B−1(ε)b(ε)

B̄>(ε)B−>(ε)cB − cB̄

)
≥ 0 ∀ ε : 0 ≤ ε ≤ ε̄.

The vector tB(ε) is called the optimality certificate for B.

Theorem 6 is a key step in proving the following.
Theorem 7. Given as input a TLP ε 7→ P (ε), there exists ε∗ > 0 such that for all 0 < ε̄ ≤ ε∗, any
optimal basis for the numerical LP P (ε̄) is stable. Furthermore, such a value ε∗ can be computed
in polynomial time in the input size, assuming that a polynomial of degree d requires Ω(d) space in
the input.

5 A practical algorithm for finding a TLP limit solution

We now develop a practical algorithm for finding a limit solution in a TLP ε 7→ P (ε). It avoids the
pessimistically small numerical perturbation ε∗ of Theorem 7 by using an efficient stability-checking
oracle for checking if a basis is stable or not. It enables an iterative algorithm that repeatedly picks
a numerical perturbation ε̄, computes an optimal basis for the perturbed LP P (ε̄), and queries the
basis-stability oracle. If the basis is not stable, the algorithm concludes that the perturbation value
ε̄ was too optimistic, and a new iteration is performed with a smaller perturbation. On the other
hand, if the basis is stable, the algorithm takes the limit of the LP solution and returns it as the limit
solution of the TLP (by Theorem 5, this is guaranteed to provide a limit solution). Termination of
the algorithm is guaranteed by the following observation.
Observation 8. Any value of ε̄ in the range (0, ε∗] guarantees termination of the algorithm. Indeed,
by Theorem 7, any optimal basis for P (ε̄) is stable and makes our iterative algorithm terminate.
Furthermore, if after every negative stability test the value of ε̄ is reduced by a constant multiplicative
factor (e.g., halved), then since ε∗ only has a polynomial number of bits, the algorithm terminates
after trying at most a polynomial number of different values for ε̄.

It is not necessary—and in general not true—that the inverse of B(0) exist. We start from the simpler
case in which B−1(0) exists (thus ruling out the possibility that the optimality certificate tB is not
defined in 0) and later move to the general case.

5

5.1 Oracle for non-singular basis matrices

If B(0) is non-singular, then B−1(ε)b(ε) and B̄>(ε)B−>(ε) cB − cB̄ are analytic functions of ε
at ε = 0. Thus tB(ε) is analytic at ε = 0. In other words, each entry ti(ε) of tB(ε) is equal to its
Taylor expansion ti(ε) = αi0 + αi1

1! ε+ αi2

2! ε
2 + αi3

3! ε
3 + · · · where αij = (djti(ε)/dε

j)(0) is the j-th
derivative of ti(ε) evaluated at ε = 0.6 The sign of ti(ε) in positive proximity7 of 0 is the same as
the first (i.e., relative to the lowest degree monomial) non-zero coefficient of the expansion of ti(ε)
around 0. In other words, there exists a ε̄ > 0 such that ti(ε) has the same sign as the first non-zero
derivative of ti evaluated in 0 for all 0 < ε < ε̄. If all derivatives are 0, then we conclude that ti(ε)
is identically zero around ε = 0.

This suggests a simple algorithm for determining whether B is stable: we compute its optimality
certificate tB(ε) and repeatedly differentiate each row until we either determine the sign of that row
in positive proximity of 0 or we establish that the row is identically zero. If all the rows happen to
be non-negative in positive proximity of 0, then the basis is stable; otherwise, it is not. In order to
make the algorithm fast, we need to be able to quickly evaluate tB(ε) and its derivatives at 0. This
fundamentally reduces to our ability to efficiently compute a Taylor expansion of a function of the
form B−1(ε)H(ε) around ε = 0, where H is a matrix or vector whose entries are polynomial in
ε. This part of the algorithm assumes that a sparse LU factorization of the numerical basis matrix
B(0) is available; one is easy to compute in polynomial time. Below, we will break the presentation
of the algorithm into multiple steps. Since the algorithm described below can be applied to any
square matrix M(ε)—not only to a basis matrix B(ε)—with polynomial entries and with nonzero
determinant at ε = 0, we will use the symbol M(ε) in place of B(ε).

Derivatives of M−1(ε)H. We start by showing how to efficiently and inductively evaluate deriva-
tives of M−1(ε)H in 0, where H is a constant matrix or vector. We start with a simple lemma.

Lemma 9. For all n ≥ 1,
n∑
i=0

(
n

i

)
diM(ε)

dεi
dn−iM−1(ε)

dεn−i
= 0.

Lemma 9 implies that

M(0)
dnM−1

dεn
(0) = −

n∑
i=1

(
n

i

)
diM

dεi
(0)

dn−iM−1

dεn−i
(0).

Multiplying by H and introducing the symbol Dn := dnM−1

dεn (0)H, we obtain

M(0)Dn = −
n∑
i=1

(
n

i

)
diM

dεi
(0)Dn−i.

The right hand side is relatively inexpensive to compute, especially when n is small. Indeed,
computing (diM/dεi)(0) amounts to extracting the coefficients of the monomials of degree i
of the polynomial entries in M. This can be done extremely efficiently by reading directly
from the perturbed LP constraint matrix A. Therefore, if we inductively assume knowledge of
D0,D1, . . . ,Dn−1, we can easily compute Dn using the precomputed LU factorization of M(0).

Derivatives of M−1(ε)H(ε). We now turn our attention to the computation of the derivatives
of M−1(ε)H(ε), where H(ε) can be any matrix or vector with polynomial entries. This case is
particularly relevant, as it applies to both the primal-feasibility conditions and the reduced costs.

We introduce the formal symbol 〈i, j〉 defined over pairs (i, j) ∈ N2 as 〈i, j〉 := diM−1

dεi (0) d
jH
dεj (0).

By means of the product rule, we have that

dn(M−1 H)

dεn
(0) =

n∑
i=0

(
n

i

)
〈i, n− i〉. (1)

6Throughout this paper, we define the zeroth derivative d0f/dε0 of f to be f itself.
7We say that a property parametrized by ε is true in positive proximity of 0 to mean that there exists a ε̄ > 0

such that the property holds for all ε : 0 < ε < ε̄. We say that the property is true in proximity of 0 if there
exists a ε̄ > 0 such that the property holds for all ε : 0 < |ε| < ε̄.

6

From the previous section, we know how to compute 〈i + 1, j〉 having access to 〈0, j〉, 〈1, j〉, . . .,
〈i, j〉. On the other hand, 〈0, j〉 = M(0)−1 dj/dεjH(0) is easy to compute having access to the LU
factorization of M(0). Therefore, Equation (1) gives an efficient way of expanding M−1(ε)H(ε)
into its power series. Finally, we address the problem of determining, row by row in the derivative
vector in the Taylor series, when it is safe to stop after observing only zero-valued derivatives for
some row for a number of iterations (i.e., a number of terms in the Taylor series).
Lemma 10. Consider a TLP ε 7→ P (ε) where P (ε) has n rows and let m be the maximum degree
appearing in the polynomial functions defining P . Fixed any basis B, if the first 2nm+1 derivatives
of the i-th entry of the optimality certificate tB(ε) are all zero, the entry is identically zero.

Since 2nm + 1 is a polynomial number in the input size, we conclude that the overall algorithm
runs in polynomial time, since it terminates in a polynomial number of steps and each step takes
polynomial time. There is a more convenient way of determining whether a given row is 0. It is
sufficient to pick a random number ε̃ (for example in (0, 1)), and evaluate the rational function ti at
ε̃: if ti(ε̃) = 0, then ti is identically zero with probability 1 because of the fundamental theorem of
algebra. This is the variant that we use in the experiments later in this paper.

Finally, in some cases we can take theoretically sound shortcuts to further enhance the speed of the
algorithm. We provide two examples, and we use the two in our implementation of the algorithm.
As the first example, consider a TLP that, for each ε, has no objective. In this case, the vector
c is zero. This allows us to avoid considering the reduced-cost conditions of Theorem 6, thereby
saving time and space. As the second example, if in the QPE formulation of Proposition 1, the LP
constraint matrix A is constant, meaning that the optimality certificate b has polynomial entries, it
is extremely easy to deal with. Again, we can avoid computing all the derivatives of B−1, with large
practical savings of time and space.

5.2 Oracle for singular basis matrices

We now show how to deal with a singular B(0). The core idea of our method is to replace the
computation of the Taylor expansion of the optimality certificate around ε = 0 with a Laurent
expansion, that is a power series at ε where negative exponents are allowed. Lemma 11 provides the
key result that enables this process.
Lemma 11. Let M(ε) be a square matrix with polynomial entries, not all of which are identically
zero. Then there exist k ∈ N+ and matrices M̃(ε) and T(ε) that have polynomials as entries, with
nonsingular M̃(0), such that

M(ε) = εkT−1(ε) M̃(ε), (2)
in proximity of ε = 0.

B(ε) respects the hypotheses of Lemma 11: its entries are not all identically zero since its determi-
nant is not identically zero. Inverting Equation (2) in proximity of ε = 0, we obtain

M−1(ε) =
1

εk
M̃−1(ε)T(ε).

Now, given a matrix or vector with polynomial entries H(ε), suppose that we seek to expand
M−1(ε) ·H(ε) into its Laurent series. Due to Lemma 11, we can rewrite this product as

M−1(ε) ·H(ε) =
1

εk

(
M̃−1(ε)(T(ε)H(ε))

)
,

where the equality holds in proximity of ε = 0. Since M̃(ε) is a square matrix with polynomial en-
tries invertible at ε = 0 and T(ε)H(ε) is a vector or matrix with polynomial entries, we can leverage
the machinery of Section 5.1 to expand M̃−1(ε) · (T(ε)H(ε)) into its Taylor series around ε = 0.
Multiplying this power series by ε−k gives a Laurent series for M−1(ε)H(ε) at ε = 0. The above
shows how to deal with a singular basis matrix. The rest of the algorithm remains unchanged. To-
gether, Sections 5.1 and 5.2 show that, for every TLP, there exists a polynomial-time basis-stability
oracle.

Finally, we deal with the last piece of the algorithm, which is the computation of the limit of optimal
solutions limε↓0 x(ε) = limε↓0 B

−1(ε)b(ε). This task is easy after having computed the Laurent
series expansion of x(ε) around ε = 0 (see Sections 5.1 and 5.2).

7

6 Experiments

The LP oracle we use is GLPK 4.63 [GLPK, 2017]. When ε ≥ 1/500 we use the finite-precision
simplex algorithm provided by GLPK, while for ε < 1/500 we use the arbitrary-precision variant,
as, from our observations, when ε < 1/500 the finite-precision solver is doomed to eventually fail
due to numerical instability. We experimentally evaluate the performance of the following four
algorithms.

Exact Nash equilibrium solver, using an LP oracle with arbitrary-precision arithmetics. We warm
start the LP oracle with a NE found by an LP oracle that uses finite-precision arithmetics.

“NPP solver” for EFPE [Miltersen and Sørensen, 2010] and for QPE [Farina and Gatti, 2017], using
an infinite-precision LP oracle; to improve the efficiency, we warm start the LP oracle with a NE
found using an LP oracle with finite-precision arithmetics.

Symbolic-simplex QPE solver (“M&S Solver”), proposed by Miltersen and Sørensen [2010] to
find a QPE. It is a modified simplex algorithm, where some entries are kept as polynomials. We
implemented the algorithm as described in the original paper. However, we modified the pivoting
rule from the suggested one (pick any nonbasic variable with positive reduced cost) to the greedy
one (pick any nonbasic variable with maximum reduced cost). This greatly improved run time.

Our proposed practical algorithm from Section 5 for finding a TLP limit solution. We use an LP
oracle with infinite-precision arithmetics; to improve the efficiency, we warm start the first iteration
of the algorithm with a NE found by an LP oracle with finite-precision arithmetics, and we warm
start each subsequent iteration with the NE returned by the previous iteration. The second iteration
is performed with ε = 1/10, and ε is halved between subsequent consecutive iteration.

Table 1 lists the games we use to benchmark the algorithms, together with their sizes. All the games
are fairly standard in the computational game theory literature. Appendix B includes a detailed
description of each game.

Game Instance Nodes Information Sets Sequences
Description Acronym Nature Leaves Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

Kuhn poker K 1 30 12 12 6 6 13 13
Simple Leduc poker SL 13 98 44 44 28 28 57 57
Leduc poker — 3 ranks L3 46 1 116 387 387 144 144 337 337
Leduc poker — 5 ranks L5 126 5 500 1 875 1 875 390 390 911 911
Leduc poker — 8 ranks L8 321 22 936 7 752 7 752 984 984 2 297 2 297
Leduc poker — 9 ranks L9 406 32 724 11 043 11 043 1 242 1 242 2 899 2 899
Goofspiel — 3 ranks G3 28 216 273 333 273 273 334 334
Goofspiel — 4 ranks G4 1 793 13 824 17 476 21 328 17 476 17 476 21 329 21 329
Goofspiel∗ — 3 ranks G∗3 0 36 46 57 46 46 58 58
Goofspiel∗ — 4 ranks G∗4 0 576 737 916 737 737 917 917

Table 1: Tree sizes and acronyms of the test game instances.

Every experiment was repeated 50 times. We summarize the average empirical results in Table 2.

Exact Nash equilibrium computation. The impact of the rational simplex iteration is minimal in
the case of the (exact) NE solver. This is because the rational simplex is warm started from a finite-
precision solution, and in practice this avoids further rational-precision pivoting steps. For example,
in L9, the finite-precision LP oracle is responsible for roughly 90% of the total compute time, while
in G4, this figure grows to about 98%.

NPP solvers. The largest poker games solvable within 6 hours were L5 (QPE case) and SL (EFPE
case). The NPP solver is significantly slower than the NE solver. This is because 1) it requires a
larger number of pivoting steps, and 2) each pivoting step has a higher cost. Unlike the exact NE
computation, additional pivoting steps are needed by the rational simplex to find a QPE or an EFPE,
even after warm starting from a Nash equilibrium. These extra pivoting steps need to manipulate
extremely small constants due to the values of ε, hence introducing a large overhead. For instance,
in L5, the order of magnitude of the ε used for QPE is 10−5883. In the QPE case, these expensive
numerical values only appear in the objective function and in the right-hand-side constants. In the

8

Nash QPE EFPE

Game
Simplex M&S NPP TLP Solver NPP TLP Solver
LP Solv. LP Solv. LP Solv. LP Solv. Oracle Iters. Final ϵ LP Solv. LP Solv. Oracle Iters. Final ϵ

K 1ms 78ms 28ms 45ms 35ms 2 1/10 14ms 1ms 5ms 2 1/10
SL 4ms 5.71s 93ms 19ms 82ms 2 1/10 3.09s 5ms 26ms 3 1/20
L3 59ms 36.35m 37.21s 362ms 1.99s 11 1/5120 > 6h 1.56s 1.15s 12 1/10240
L5 372ms > 6h 27.81m 2.61s 4.43s 10 1/2560 > 6h 57.65s 2.87s 10 1/2560
L8 3.35s > 6h > 6h 13.38s 16.65s 14 1/40960 > 6h 3.51m 1.18m 17 1/327680
L9 4.90s > 6h > 6h 30.60s 21.47s 15 1/81920 > 6h 22.66m 28.43s 15 1/81920
G3 33ms 21.64m 2.88s 62ms 251ms 2 1/10 1.93m 36ms 117ms 2 1/10
G4 1.01m > 6h > 6h 2.93m 28.02s 5 1/80 > 6h 1.46m 1.01m 5 1/80
G∗3 5ms 7.03m 94ms 20ms 78ms 2 1/10 266ms 5ms 22ms 2 1/10
G∗4 204ms > 6h 4.00m 588ms 1.48s 6 1/160 > 6h 417ms 1.83s 6 1/160

Table 2: Comparison between different solvers (acronyms are as in Table 1). For TLP Solver, ‘Iters.’: number
of different perturbations tried; ‘Final ε’: value of ε in the last iteration of our algorithm; ‘LP Solv.’ and
‘Oracle’: total compute time over all the iterations spent by the LP solver and our Basis Stability Oracle,
respectively. The total compute time of our algorithm is given by the sum of these two quantities.

EFPE case, they appear in the constraint matrix, and there are qualitatively more of them, making
the computation even slower. Accordingly, the EFPE NPP solver scales very poorly.

M&S solver. The M&S solver only applies to QPEs. Empirically, it is significantly slower than the
NPP solver. The reason is two-fold. First, the method is harder to warm start, as the initial basic
solution has to be feasible for all sufficiently small ε > 0. We initialize the method according to the
suggestion of the authors, but this initial vertex is empirically farther away from the optimal one than
a NE, which we use to warm start NPP solvers. Second, the pivoting step is more expensive, as the
min-ratio test is substituted with a more sophisticated lexicographic test on polynomial coefficients.

TLP solver. Our solver represents a dramatic improvement over the prior state-of-the-art algo-
rithms. It finds a QPE/EFPE in few minutes even on the largest game instances. This is a reduction
in runtime by 3–4 orders of magnitude. This breakthrough is mainly due to the fact that, in practice,
terminates with an ε that is drastically larger than that required by the NPP algorithms. As shown
in Table 2, the final ε used by our solver is never smaller than 10−6, even for the largest instances.
In Kuhn poker, the final ε of our solver is about 10−5 for QPE, while the ε value used by the prior
algorithms is of the order 10−42. In some cases, our method is able to compute an exact refinement
without even using rational arithmetic. Still, our TLP solver is significantly slower than the solver
for NE. For instance, on L9, the ratio of the compute times is about 30. Here, the bottleneck is
mostly due to LP oracle, while the compute time required by our basis stability oracle is relatively
small, and becomes relatively even smaller with increasing problem size.

7 Conclusions

We introduced trembling linear problems (TLPs), which are linear programs in which every entry
can be subject to an independent perturbation expressed by a polynomial in ε > 0. We defined a
limit solution to a TLP as any limit point of any sequence of optimal solutions for the perturbed
linear program as ε ↓ 0. For game theory, TLPs provide a framework for analyzing and computing
important Nash equilibrium refinements based on various forms of trembling-hand perfection in
two-player zero-sum games, such as quasi-perfect equilibria (QPEs) and extensive-form perfect
equilibria (EFPEs). We designed an exact polynomial-time algorithm for finding a limit solution to
a TLP that, when applied to finding a QPE or EFPE, outperforms the speed of prior algorithms by
several orders of magnitude. Our algorithm quickly solves games with tens of thousands of nodes,
thus enabling—for the first time—the use of trembling-hand refinements in practice.

Acknowledgments. This material is based on work supported by the National Science Foundation
under grants IIS-1718457, IIS-1617590, and CCF-1733556, and the ARO under award W911NF-
17-1-0082.

9

References
Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, 1st

edition, 1997.

Noam Brown and Tuomas Sandholm. Reduced space and faster convergence in imperfect-
information games via pruning. In International Conference on Machine Learning (ICML), 2017.

Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-information
games. In Proceedings of the Annual Conference on Neural Information Processing Systems
(NIPS), pages 689–699, 2017.

Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats
top professionals. Science, 2017.

Jiřı́ Čermák, Branislav Bošanskỳ, and Viliam Lisỳ. Practical performance of refinements of nash
equilibria in extensive-form zero-sum games. In Proceedings of the Twenty-first European Con-
ference on Artificial Intelligence (ECAI), pages 201–206. IOS Press, 2014.

George B Dantzig and Mukund N Thapa. Linear programming 2: theory and extensions. Springer
Science & Business Media, 2006.

Gabriele Farina and Nicola Gatti. Extensive-form perfect equilibrium computation in two-player
games. In AAAI Conference on Artificial Intelligence (AAAI), 2017.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Regret minimization in behaviorally-
constrained zero-sum games. In International Conference on Machine Learning (ICML), 2017.

Sam Ganzfried and Tuomas Sandholm. Endgame solving in large imperfect-information games.
In International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2015.
Extended early versions in AAAI-15 Workshop on Computer Poker and Imperfect Information
and in AAAI-13 Workshop on Computer Poker and Incomplete Information.

GLPK. Gnu linear programming kit, version 4.63, 2017.

John Hillas and Elon Kohlberg. Foundations of strategic equilibrium. Handbook of Game Theory
with Economic Applications, 2002.

Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Efficient computation of equilibria for
extensive two-person games. Games and Economic Behavior, 14(2), 1996.

David M. Kreps and Robert Wilson. Sequential equilibria. Econometrica, 50(4):863–894, 1982.

Christian Kroer, Gabriele Farina, and Tuomas Sandholm. Smoothing method for approximate
extensive-form perfect equilibrium. In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), 2017.

Harold W. Kuhn. A simplified two-person poker. In H. W. Kuhn and A. W. Tucker, editors, Contri-
butions to the Theory of Games, volume 1 of Annals of Mathematics Studies, 24, pages 97–103.
Princeton University Press, Princeton, New Jersey, 1950.

Peter Bro Miltersen and Troels Bjerre Sørensen. Computing sequential equilibria for two-player
games. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 107–116, 2006.

Peter Bro Miltersen and Troels Bjerre Sørensen. Computing a quasi-perfect equilibrium of a two-
player game. Economic Theory, 42(1), 2010.

Roger B. Myerson. Refinements of the Nash equilibrium concept. International Journal of Game
Theory, 15:133–154, 1978.

John Nash. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences,
36:48–49, 1950.

10

I. Romanovskii. Reduction of a game with complete memory to a matrix game. Soviet Mathematics,
3, 1962.

Sheldon M Ross. Goofspiel—the game of pure strategy. Journal of Applied Probability, 8(3):621–
625, 1971.

Reinhard Selten. Reexamination of the perfectness concept for equilibrium points in extensive
games. International journal of game theory, 1975.

Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press, New York, NY, USA, 2008.

Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse Billings,
and Chris Rayner. Bayes’ bluff: Opponent modelling in poker. In Proceedings of the 21st Annual
Conference on Uncertainty in Artificial Intelligence (UAI), July 2005.

Eric van Damme. A relation between perfect equilibria in extensive form games and proper equilib-
ria in normal form games. International Journal of Game Theory, 1984.

Eric van Damme. Stability and Perfection of Nash Equilibria. Springer-Verlag, Berlin, Heidelberg,
1987.

Bernhard von Stengel. Efficient computation of behavior strategies. Games and Economic Behavior,
14(2), 1996.

11

A Proofs

A.1 QPE computation

Proposition 1. In a zero-sum extensive-form game with perfect recall, a limit point as ε ↓ 0 of
solutions of the linear problem in Figure 1(a) is the strategy of player i ∈ {1, 2} in a QPE.

Proof. We start by considering the max-min problem for player i,
maxri

minr−i r>i Uir−i

s.t. 1 F−i r−i = f−i

2 r−i ≥ l−i(ε)

s.t. 3 Fi ri = fi
4 ri ≥ li(ε).

(3)

Taking the dual of the inner problem, we obtain the following:

maxri

maxv−i,z−i

f>−i v−i + l−i(ε)
>z

s.t. 1 F>−i v−i + z ≤ U>i ri

2 z−i ≥ 0

s.t. 3 Fi ri = fi

4 ri ≥ li(ε).

By substituting r̃i = ri − li(ε), r̃−i = r−i − l−i(ε) we obtain the formulation in the statement.

A.2 EFPE computation

Lemma 12 (Farina and Gatti [2017]). Let R(ε) be a behavioral perturbation matrix. Then R(ε) is
invertible.

Proposition 2. In a zero-sum extensive-form game with perfect recall, a limit point as ε ↓ 0 of
solutions of the linear problem in Figure 1(b) is the strategy of player i ∈ {1, 2} in an EFPE.

Proof. We start by considering the max-min problem for player i,
maxri

minr−i r>i Uir−i

s.t. 1 F−i r−i = f−i

2 R−i(ε) r−i ≥ 0

s.t. 3 Fi ri = fi
4 Ri(ε) ri ≥ 0.

(4)

Since the perturbation matrices Ri and R−i are invertible (Lemma 12), we can substitute r̃i =
Ri(ε)ri, r̃−i = R−i(ε)r−i, obtaining

maxr̃i

minr̃−i

r̃>i R
−>
i (ε)UiR

−1
−i (ε)r̃−i

s.t. 1 F−iR
−1
−i (ε)r̃−i = f−i

2 r̃−i ≥ 0

s.t. 3 FiR
−1
i (ε) r̃i = fi

4 r̃i ≥ 0.

Taking the dual of the inner problem introducing the vector of dual variables v−i for constraint 1 ,
we obtain the LP in the statement.

12

A.3 Trembling linear program

Theorem 5. Let P : ε 7→ P (ε) be a TLP, and let B be a stable basis for P , optimal for all
ε : 0 < ε ≤ ε̄. Furthermore, let x(ε) be the optimal basic solution of P (ε) corresponding to B.
Then, x̃ = limε↓0 x(ε) exists, and x̃ is a limit solution to the TLP P .

Proof. The fact that x̃ is a solution to P follows directly from Definition 3. Therefore, it is enough
to show the existence of x̃.

For all ε, let B(ε) be the basis matrix in P (ε), corresponding to the given basis B. By definition
of stable basis, B is optimal for P (ε) for all ε : 0 < ε ≤ ε̄. Therefore, B(ε) is invertible for all
ε : 0 < ε ≤ ε̄ and we conclude that detB(ε) is not identically zero over that range. This implies
that x(ε) = B−1(ε)b(ε) is well defined and is a vector of rational functions. This, together with the
boundedness assumption in Section 4, is enough to conclude that limε↓0 x(ε) exists.

Theorem 6. Given a TLP ε 7→ P (ε), a basis B is stable if and only if there exists ε̄ > 0 such that

tB(ε) :=

(
B−1(ε)b(ε)

B̄>(ε)B−>(ε)cB − cB̄

)
≥ 0 ∀ ε : 0 ≤ ε ≤ ε̄.

The vector tB(ε) is called the optimality certificate for B.

Proof. Remember that B(ε) be the basis matrix corresponding to B in the underlying perturbed LP
P (ε). From the theory of LPs, we know that B is optimal for P (ε) if and only if (see, for instance,
the book by Dantzig and Thapa [2006]):

• it is primal-feasible, that is, B−1(ε)b(ε) ≥ 0, and

• the reduced costs of all nonbasic columns are nonpositive, that is, c>B̄−c
>
BB
−1(ε)B̄(ε)≤0,

where cB is the part of c corresponding to the basic variables, cB̄ is the part of c corre-
sponding to the nonbasic variables, B̄(ε) is the matrix formed by all nonbasic columns.

The optimality certificate collects the conditions above into a vector tB(ε), which is nonnegative if
and only if B is an optimal basis for the LP P (ε). Therefore, by the definition of basis stability, a
basis is stable if tB(ε) is nonnegative for all sufficiently small values of ε.

Theorem 7. Given as input a TLP ε 7→ P (ε), there exists ε∗ > 0 such that for all 0 < ε̄ ≤ ε∗, any
optimal basis for the numerical LP P (ε̄) is stable. Furthermore, such a value ε∗ can be computed
in polynomial time in the input size, assuming that a polynomial of degree d requires Ω(d) space in
the input.

Before showing the proof of Theorem 7 we introduce a couple of simple facts.

Lemma 13 (Farina and Gatti [2017]). Let p(ε) = a0 + a1ε + · · · + anε
n be a polynomial over R

such that a0 6= 0, and let M = maxi |ai|. Then p(ε) has the same sign of a0 for all 0 ≤ ε ≤ ε∗

where ε∗ = |a0|/(M + |a0|).

Lemma 14 (Farina and Gatti [2017]). Let

p(ε) =
a0 + a1ε+ · · ·+ anε

n

b0 + b1ε+ · · ·+ bmεm

be a rational function with integer coefficients, where the denominator is not identically zero; let
µa = maxi |ai|, µb = maxi |bi|, µ = max{µa, µb} and ε∗ = 1/(2µ). Exactly one of the following
holds:

• p(ε∗) = 0 for all ε : 0 < ε ≤ ε∗;

• p(ε∗) > 0 for all ε : 0 < ε ≤ ε∗;

• p(ε∗) < 0 for all ε : 0 < ε ≤ ε∗.

We now proceed with the proof of Theorem 7.

13

Proof of Theorem 7. We extend the arguments made by Miltersen and Sørensen [2010] and Farina
and Gatti [2017], and we generalize them to the case of trembling LPs.

Let Ω be the set of all bases for P (ε) that are optimal for at least one ε ∈ R++. For any B ∈ Ω, we
let tB(δ) be the optimality certificate for B (Theorem 6). All entries of tB(δ) are rational functions
in δ; hence, by Lemma 14, we can find a value δ∗B > 0, such that all entries of tB(δ) keep the same
sign on the domain 0 < δ ≤ δ∗B. We now introduce the function f : Ω → R++ mapping every
B ∈ Ω to the corresponding value of δ∗B. Since Ω is finite, min f exists and is (strictly) positive;
this means that any optimal basis for P (min f) is optimal for all P (ε) where 0 < ε ≤ min f , and is
therefore stable.

In light of the above, we only need to prove that we can compute a lower bound for min f in poly-
nomial time. We will assume without loss of generality that the objective function is not perturbed
and. Furthermore, we will assume without loss of generality that A(ε),b(ε) and c(ε) only contain
integer entries (if not, it is enough to multiply all the entries in the LP by the least common multiple
of all denominators to satisfy this assumptions). As long as we can prove that the maximum coef-
ficient appearing in tB is polynomially large (in the size of the input TLP), the result follows from
the bound in Lemma 14.

The entries of the optimality certificate are obtained by composing sums and products of entries from
three vectors: the LP matrix A(ε), the inverse of the basis matrix B−1(ε), the vector of constants
b(ε) and the objective function coefficients c. Let M be the largest coefficient that appears in
A(ε),b(ε) and c, and let m be the largest polynomial degree appearing in A(ε) and b(ε). We
now study the magnitude of the maximum coefficient and the maximum polynomial degree that can
appear in B(ε)−1.

Introducing C(ε) = cof B(ε), the cofactor matrix of B(ε), we can write the well-known identity

B−1(ε) =
C>(ε)

detB(ε)

Denominator. We now give an upper bound on the coefficients of the denominator of the entries in
B−1(ε). By using Hadamard’s inequality, we can write

coeff(detB(ε)) ≤ nn/2Mn coeff((1 + ε+ · · ·+ εmA)n),

where coeff(·) is the largest coefficient of its polynomial argument. Since coeff((1 + ε + · · · +
εmA)n) ≤ (mA + 1)n, we have

coeff(detB(ε)) ≤ nn/2((mA + 1)M)n,

deg(detB(ε)) ≤ n ·mA.

Notice that this bound is valid for all possible basis matrices B(ε).

Numerator. It is easy to see that the bounds on coeff(detB(ε)) hold for the cofactor matrix as well:

coeff(detC>(ε)) ≤ nn/2((mA + 1)M)n,

deg(detC>(ε)) ≤ n ·mA.

Again, it is worthwhile to notice that this bound is valid for all possible basis matrices B(ε).

Optimality certificate. We have

coeff(C>b(ε)) ≤ coeff(B̄>(ε)C>(ε) cB) ≤ nn/2((mA + 1)M)n ·mA ·McM,

coeff(detB(ε) cB̄) ≤ nn/2((mA + 1)M)n ·Mc.

Hence,

coeff(tB(ε)) ≤ nn/2((mA + 1)M)n ·Mc(mAM + 1)

≤ nn/2((mA + 1)M)n+1 ·Mc.

Therefore, all coefficients involved require a polynomial number of bits to be represented, conclud-
ing the proof.

14

A.4 Basis stability oracle

Lemma 9. For all n ≥ 1,
n∑
i=0

(
n

i

)
diM(ε)

dεi
dn−iM−1(ε)

dεn−i
= 0.

Proof. The statement is equivalent to the expansion of the identity

dn/dεn(M(ε)M−1(ε)) = 0,

true for all n ≥ 1, by means of the product rule of derivatives.

Lemma 15. Let f(ε)/g(ε) be a rational function with g(0) 6= 0 and with deg f = d. If the first
d+ 1 derivatives (starting from the zeroth derivative) of f(ε)/g(ε) evaluated at ε = 0 are zero, then
f(ε) (and therefore also f(ε)/g(ε)) is identically zero.

Proof. We prove the results by induction. The base case (d = 0) is clear. Otherwise, let deg f =
d+ 1, d ≥ 0. We can write

f(ε)

g(ε)
=
fd(ε)

g(ε)
+ ad+1

εd+1

g(ε)
,

where fd(ε) is a polynomial of degree d. All derivatives of order 6= d+1 of εd+1/g(ε) are 0. Hence,
since the first d + 2 derivatives (and thus, in particular, the first d + 1 = 1 + deg fd) of f/g are 0,
by induction we deduce that fd is identically 0.

Therefore, in order to conclude, it suffices to show that the derivative of order d+ 1 of εd+1/g(ε) is
nonzero. To this end, notice that(

dn+1

dεn+1

εn+1

g(ε)

)
(0) =

n+1∑
i=0

(
di(xn+1)

dεi
(0) · d

n+1−i(1/g)

dεn+1−i (0)

)
= (n+ 1)!

1

g(0)
6= 0.

Lemma 10. Consider a TLP ε 7→ P (ε) where P (ε) has n rows and let m be the maximum degree
appearing in the polynomial functions defining P . Fixed any basis B, if the first 2nm+1 derivatives
of the i-th entry of the optimality certificate tB(ε) are all zero, the entry is identically zero.

Proof. First of all, notice that the maximum degree that can appear in the denominator of any entry
in the optimality certificate tB(ε) is 2mn. We use Lemma 15 to conclude.

Lemma 11. Let M(ε) be a square matrix with polynomial entries, not all of which are identically
zero. Then there exist k ∈ N+ and matrices M̃(ε) and T(ε) that have polynomials as entries, with
nonsingular M̃(0), such that

M(ε) = εkT−1(ε) M̃(ε), (2)
in proximity of ε = 0.

Proof. We prove the lemma by induction on the number of roots in 0 of detM(ε). This number
corresponds to the maximum integer d ≥ 0 such that εd is a divisor of detM(ε).

Base case. When d = 0, detM(0) 6= 0, and therefore M(0) is nonsingular. The result holds
trivially by letting M̃(ε) = M(ε) and T(ε) = I be the identity function for all ε.

Inductive step. Suppose the results holds for all matrices M(ε) whose determinants have d ≤ d̄− 1
roots in 0, with d̄ ≥ 1. We will now show that the results holds when d = d̄ as well. Since
d̄ ≥ 1, detM(0) = 0 and therefore there exists a nonzero vector v such that v>M(0) = 0. This
necessarily means that ε divides all entries of v>M(ε), and therefore ε−1v>M(ε) is a vector with
polynomial entries. Let i be any index such that vi 6= 0, and consider the new matrix M′(ε) obtained
by substituting the i-th row in M(ε) with ε−1v>M(ε). It is immediate to verify that we can write
this operation compactly as

M′(ε) =
1

ε
S(ε)M(ε).

15

K SL L3 L4 L5 L6 L7 L8 L9 G3 G4 G∗3 G∗4

QPE 10−42 10−257 10−1875 10−3520 10−5883 10−9045 10−12966 10−17672 10−23187 10−1799 10−169732 10−276 10−5865
EFPE 10−67 10−381 10−2943 10−5611 10−9225 10−13822 10−19434 10−26088 10−33807 10−3215 10−323797 10−441 10−10405

Table 3: Orders of magnitude of ε used for the NPP solver.

where S(ε) is a nonzero square matrix with polynomial entries. Hence,

M(ε) = εS−1(ε)M′(ε). (5)

M′(ε) is a square matrix with polynomial entries not all of which are identically zero; however, the
number of roots in 0 of detM′(ε) is smaller than d̄ since we multiplied one of the rows by ε−1.
Thus, we can apply our inductive hypothesis to M′(ε) and write

M′(ε) = εkT′
−1

(ε) M̃′(ε)

for some integer k ≥ 0. Substituting into Equation (5), we obtain

M(ε) = εk+1 S−1(ε)T′
−1

(ε) M̃′(ε)

= εk+1 (T′(ε)S(ε))−1M̃′(ε).

Sine T′(ε)S(ε) is a square matrix with polynomial entries, the proof is complete.

B Test game instances

Our testbed includes the following classes of extensive-form games. Table 1 shows the acronyms
that we will use, together with tree size results.

Kuhn poker [Kuhn, 1950]. This is a simplified poker variant with less than 100 leaves and a three-
card deck (King, Queen, and Jack). Each player first puts a payment of 1 into the pot. Each player
is then dealt one of the three cards, and the third is put aside unseen. A single round of betting then
occurs (with betting parameter p = 1, see the description of Leduc poker below). If no player folds,
a showdown occurs. The player with the higher card wins the pot; in case of tie, the pot is split
evenly.

Simple Leduc poker. The deck consists of two kings and two jacks. Each player first puts a
payment of 1 into the pot. A private card is dealt to each, followed by a betting round (with betting
parameter p = 2, see the description of Leduc poker below), then a public card is dealt, followed
by another betting round (with p = 4, see the description of Leduc poker below). If no player has
folded, a showdown occurs. In Simple Leduc poker, a showdown has two possible outcomes: one
player has a pair, or both players have the same private card. In the former case, the player with the
pair wins the pot. In the latter case, the pot is split evenly among the players.

Leduc poker [Southey et al., 2005]. This is a widely-used benchmark in the imperfect-information
game-solving community. We test on a larger variant of the game in order to better evaluate scal-
ability. In our enlarged variant, the deck contains k ≥ 3 card ranks, that is, it consists of pairs of
cards 1, . . . , k, for a total 2k cards. We use k ∈ {2, 3, 4, 5, 6, 7, 8, 9} to generate test games of dif-
ferent sizes. Each player initially pays one chip to the pot, and is dealt a single private card. After a
round of betting (with betting parameter p = 2, see below), a community card is dealt face up, and
a subsequent round of betting (with betting parameter p = 4, see below) is played. If no player has
folded, a showdown occurs, and both players reveal their private cards. If either player pairs their
card with the community card they win the pot. Otherwise, the player with the highest private card
wins. In the event that both players have the same private card, they draw and split the pot.

Each round of betting with betting parameter p goes as follows.

1. Player 1 can check or bet p. If Player 1 checks, the betting round continues with Step (2);
otherwise, the betting round continues with Step (4).

2. Player 2 can check or raise p. If Player 2 checks, the betting round ends; otherwise, Player 2 add
p to the pot the betting round continues with Step (3).

3. Player 1 can fold or call. If Player 1 folds, Player 2 wins the pot and the game ends; otherwise,
Player 1 puts p in the pot the betting round ends.

16

4. Player 2 can fold or call. If Player 2 folds, Player 1 wins the pot and the game ends; otherwise,
Player 2 adds p to the pot and the betting round ends.

Goofspiel [Ross, 1971]. We consider a parametric version of the game in order to better test scal-
ability. In our variant with k card ranks, three decks containing cards with values {1, 2, . . . , k} are
distributed: one is shuffled and laid face-down on the table, and the two players hold on deck each
in their hands. Exactly k turns happen; in each turn, the topmost card in the table deck is revealed
for both players to observe. Then, both players simultaneously play a card from their hand. The
player with the highest card wins as many points as the value of the revealed table cards; in case of
tie, this value is split evenly among the players. The revealed table card and the two played cards
are discarded and the a new turn can begin.

Goofspiel∗. In this variant of Goofspiel, the table deck is not shuffled, but rather is laid face-up on
the table with cards 1, 2, . . . , k disposed in this order from top to bottom. The dynamics of the game
are left unchanged.

17

