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Abstract

Stackelberg equilibria have become increasingly important
as a solution concept in computational game theory, largely
inspired by practical problems such as security settings. In
practice, however, there is typically uncertainty regarding the
model about the opponent. This paper is, to our knowledge,
the first to investigate Stackelberg equilibria under uncer-
tainty in extensive-form games, one of the broadest classes
of game. We introduce robust Stackelberg equilibria, where
the uncertainty is about the opponent’s payoffs, as well as
ones where the opponent has limited lookahead and the un-
certainty is about the opponent’s node evaluation function.
We develop a new mixed-integer program for the determin-
istic limited-lookahead setting. We then extend the program
to the robust setting for Stackelberg equilibrium under unlim-
ited and under limited lookahead by the opponent. We show
that for the specific case of interval uncertainty about the op-
ponent’s payoffs (or about the opponent’s node evaluations in
the case of limited lookahead), robust Stackelberg equilibria
can be computed with a mixed-integer program that is of the
same asymptotic size as that for the deterministic setting.

In a Stackelberg equilibrium, a leader commits to a strat-
egy first, and then a follower chooses a strategy for herself.
The model was first introduced in the context of competi-
tion between firms where the leader picks a quantity to sup-
ply, and then the follower picks a quantity to supply (von
Stackelberg 1934). Stackelberg equilibria have become im-
portant as a solution concept in computational game theory,
largely inspired by practical problems such as security set-
tings, where the leader is a defender who picks a mixed (i.e.,
potentially randomized) strategy first, and then the follower
who is the attacker decides where to attack, if at all.

Most work on Stackelberg equilibria has focused on
normal-form (aka. matrix-form) games. Conitzer and Sand-
holm (2006) studied the problem of computing an optimal
strategy to commit to in normal-form games. That line of
work has been extended to many security-game applications.
In practice, there is typically uncertainty about the oppo-
nent’s payoffs. In normal-form games this has been stud-
ied as Bayesian Stackelberg games where the players have
private information about their own payoffs, and there is
common knowledge of the prior distribution over the pay-
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offs (Tambe 2011; Paruchuri et al. 2008). As an alterna-
tive, the robust (distribution-free) approach has been sug-
gested for security games: bounds are assumed on the fol-
lower’s payoffs (Kiekintveld, Islam, and Kreinovich 2013;
Nguyen et al. 2014).

Extensive-form games (EFGs)—i.e., tree-form games—
are a very general game representation language. EFGs are
exponentially more compact and also more expressive than
normal-form games. Letchford and Conitzer (2010) study
how to compute an optimal strategy to commit to in EFGs
and prove hardness results under several assumptions about
the game structure. Bošanskỳ et al. (2015) provide further
results specifically for perfect-information EFGs. Bosan-
sky and Cermak (2015) develop a mixed-integer program
(MIP) for computing a Stackelberg strategy, and Cermak
et al. (2016) develop an iterative approach based on upper-
bounding solutions from extensive-form correlated Stackel-
berg equilibria.

To our knowledge, we are the first to consider uncertainty
about the opponent in Stackelberg strategies for EFGs. This
is important because EFGs are a powerful representation
language and because in practice there is typically uncer-
tainty about the opponent. We take a robust approach to
modeling this uncertainty. We introduce robust Stackelberg
equilibria for EFGs, where the uncertainty is about the oppo-
nent’s payoffs, as well as ones where the opponent has lim-
ited lookahead and the uncertainty is about the opponent’s
node evaluation function.

We develop a new MIP for the deterministic limited-
lookahead setting. We then extend the MIP to the robust
setting for Stackelberg equilibrium under unlimited and un-
der limited lookahead by the opponent. We show that for
the specific case of interval uncertainty about the opponent’s
payoffs (or about the opponent’s node evaluations in the case
of limited lookahead), robust Stackelberg equilibria can be
computed with a MIP that is of the same asymptotic size as
that for the deterministic setting.

Our results for robust Stackelberg equilibria in EFGs are
relevant to security-game settings with sequential interac-
tions, where EFG models can more compactly represent
certain games, as compared to a normal-form representa-
tion (Bosansky and Cermak 2015). Robust models are im-
portant in security games, where opponent models often
have uncertainty, both in standard security games (Kiek-



intveld, Tambe, and Marecki 2010; Kiekintveld, Islam, and
Kreinovich 2013; Nguyen et al. 2014), and green security
games (Nguyen et al. 2015).

Our limited-lookahead results are useful for settings
where it is not always desirable to model adversaries as fully
rational, but as having limited lookahead capability. This in-
cludes settings such as biological games, where the goal is
to steer an evolutionary process or an adaptation process
which typically acts myopically without lookahead (Sand-
holm 2015; Kroer and Sandholm 2016b) and security games
where opponents are often assumed to be myopic (which can
be especially well motivated when the number of adversaries
is large (Yin et al. 2012) or in the case of opportunistic crim-
inals (Zhang et al. 2016; Rosenfeld and Kraus 2017)). Our
model of limited lookahead is an extension of that of Kroer
and Sandholm (2015) to a robust setting. Kroer and Sand-
holm (2015) gave a MIP for computing an optimal strategy
to commit to in the deterministic setting. We show an al-
ternative MIP for computing such a strategy to commit to,
which we then extend to the robust setting.

Finally, the question of robust variants of optimization
problems has been studied extensively in the optimiza-
tion literature (Ben-Tal and Nemirovski 2002; Ben-Tal,
El Ghaoui, and Nemirovski 2009; Bertsimas, Brown, and
Caramanis 2011). In that literature, the assumption is that
we are given some nominal mathematical program, and then
the robust variant requires that each constraint in the nomi-
nal program holds with respect to every instantiation of a set
of uncertainty parameters. This makes the setting substan-
tially different from our setting, where there is no nominal
program: the best response of the follower does not need to
be a best response for every uncertainty instantiation (this
would be the equivalent to robust optimization, and often
infeasible), but rather the best response is chosen after the
uncertainty parameters are chosen.

Extensive-Form Games
Extensive-form games (EFGs) can be thought of as a game
tree, where each node in the tree corresponds to some history
of actions taken by all players. Each node belongs to some
player, and the actions available to the player at a given node
are represented by the branches. Uncertainty is modeled by
having a special player, Nature, that moves with some pre-
defined fixed probability distribution over actions at each
node belonging to Nature. EFGs model imperfect informa-
tion by having groups of nodes in information sets, where
an information set is a group of nodes all belonging to the
same player such that the player cannot distinguish among
them. Finally we assume perfect recall, which requires that
no player forgets information they knew earlier in the game.

Definition 1. A leader-follower two-player extensive-form
game with imperfect information and perfect recall Γ is a
tuple (H,Z,A, P, fc, Il, If , ul, uf ) composed of:
• H: a finite set of possible sequences (or histories) of ac-

tions, such that the empty sequence ∅ ∈ H , and every
prefix z of h in H is also in H .

• Z ⊆ H: the set of terminal histories, i.e., those sequences
that are not a proper prefix of any sequence.

• A: a function mapping h ∈ H \ Z to the set of available
actions at non-terminal history h.

• P : the player function, mapping each non-terminal his-
tory h ∈ H \Z to {l, f, c}, representing the player whose
turn it is to move after history h. If P (h) = c, the player
is Chance.

• C: a function assigning to each h ∈ H the probability of
reaching h due to nature (i.e. assuming that both players
play to reach h).

• Ii, for i ∈ {l, f}: partition of {h ∈ H : P (h) = i}
with the property that A(h) = A(h′) for each h, h′ in the
same set of the partition. For notational convenience, we
will write A(I) to mean A(h) for any of the h ∈ I , where
I ∈ Ii. Ii is the information partition of player i, while
the sets in Ii are called the information sets of player i.

• ui: utility function mapping z ∈ Z to the utility gained by
player i when the terminal history is reached.

We further assume that all players have perfect recall.

We will use the more relaxed term extensive-form game,
or EFG, to mean a two-player extensive-form game with im-
perfect information and perfect recall.

In this paper we will investigate settings where there is
uncertainty about the follower’s utility function uf . Specif-
ically, the follower’s utility can be any function from some
given uncertainty set Uf consisting of functions that map
from the set of leaf nodes to R. We leave the exact struc-
ture of Uf undefined for now; in our algorithmic section we
show that the case where each leaf has independent interval
uncertainty can be solved using a MIP.

A strategy for a player i is usually represented in behav-
ioral form, which consists of probability distributions over
actions at each information set in Ii. In this paper we will fo-
cus on an alternative, but strategically equivalent, represen-
tation of the set of strategies, called the sequence form (Ro-
manovskii 1962; Koller, Megiddo, and von Stengel 1996;
von Stengel 1996). In the sequence form, actions are instead
represented by sequences. A sequence σi, is an ordered list
of actions taken by player i on the path to some history h. In
perfect-recall games, all nodes in an information set I ∈ Ii
correspond to the same sequence for player i. We let σ(I)
denote this sequence. Given a sequence σi and an action a
that Player i can take immediately after σi, we let σia de-
note the resulting new sequence. The set of all sequences
for player i is denoted by Σi. Instead of directly choosing
the probability to put on an action, in the sequence form the
probability of playing the entire sequence is chosen; this is
called the realization probability and is denoted by ri(σi).
A choice of realization probabilities for every sequence be-
longing to Player i is called a realization plan and is de-
noted by ri : Σi → [0, 1]|Σi|. This representation relies on
perfect recall: for any information set I ∈ Ii we have that
each action a ∈ A(I) is uniquely represented by a single se-
quence σi = σ(I)a, since σ(I) corresponds to exactly one
sequence. This gives us a simple way to convert any strategy
in sequence form to a behavioral strategy: the probability
of playing action a ∈ A(I) at information set I is simply
ri(σ(I)a)
ri(σ(I)) . For a sequence σ = σ′a, we let the information



set such that a ∈ A(I), σ(I) = σ′ be denoted by inf(σ).
It will be convenient to have function expressing expected

values for a given pair of sequences. Given two sequences σl
and σf , we let

gl(σl, σf ) =
∑

h∈Z;σf (h)=σf ;σl(h)=σl

C(h)ul(h),

g
uf

f (σl, σf ) =
∑

h∈Z;σf (h)=σf ;σl(h)=σl

C(h)uf (h)

be the expected utilities, for the leader and follower respec-
tively, over leaf nodes that are reached with σf , and σl as the
corresponding last player sequences. The function for the
follower guf

f depends on the choice of utility function uf ,
whereas we always know the utility function for the leader.1
Given two realization plans rl, rf and a utility function ui,
we overload notation slightly and let the expected value for
Player i induced by the realization plans be denoted by

ui(rl, rf ) =
∑

σl∈Σl,σf∈Σf

rl(σl)rf (σf )gi(σl, σf ).

Stackelberg Setting
We will focus on settings where the leader first commits
to a strategy that the follower observes. The follower then
plays a best response to the leader strategy. A strong Stack-
elberg equilibrium (SSE) is a pair of strategies rl, rf such
that rf is a best response to rl and rl is a solution to
the optimization problem of maximizing u(rl, rf ) over rl
and rf , subject to the constraint that rf is a best response
to rl. This definition implies the common assumption that
the follower breaks ties in favor of Player l (Tambe 2011;
Conitzer and Sandholm 2006; Paruchuri et al. 2008). A weak
Stackelberg equilibrium assumes minimization over the set
of optimal best responses.

Limited-Lookahead Model
We will also consider a limited-lookahead variant of EFGs.
There has been a significant amount of work on limited
lookahead in perfect-information games (such as chess and
checkers) in the AI community. Modeling limited looka-
head in imperfect-information games (that have information
sets) is more intricate. A model for that was presented re-
cently (Kroer and Sandholm 2015), and we use that model.
In that model, the follower can only look ahead k steps. He
uses a node-evaluation function ũ : H → R that associates a
heuristic utility with any node in the game tree. At any infor-
mation set I ∈ If , the follower has a set of nodes H̃I ⊂ H
called the lookahead frontier. When choosing his action at
information set I , the follower chooses an action that max-
imizes the expected value of ũ, assuming that they choose
actions so as to maximize ũ at any follower information
sets reached before H̃I . We let gI(σl, σf ) be the expected

1In Stackelberg equilibrium, the follower does not have to be
concerned about the leader’s utility function because the leader
commits to his strategy and declares his strategy to the follower.

value over lookahead-frontier nodes according to the node-
evaluation function (analogous to gi for the setting without
limited lookahead). We assume that for any information set
I ′ ∈ If that comes after I , all the nodes of I ′ are entirely
contained in the set of nodes that precede H̃I , or entirely
disjoint with the set of preceding nodes (this is in order to
avoid any information sets belonging to the follower being
only partially contained in the hypothetical decision making
under I). We let the set of information sets that come after I
such that their nodes are all preceding H̃I be denoted by II .
We ΣIf ⊆ Σf denote the set of all sequences beneath a given
information set I that are within the lookahead frontier.

In the prior paper on limited lookahead in imperfect-
information games (Kroer and Sandholm 2015) it was as-
sumed that the leader knows the follower’s node evaluation
function exactly. That seems quite unrealistic. Therefore, we
will extend the work to the case where the leader has uncer-
tainty about the follower’s node evaluation function.

Best Responses and how to Compute Them
Our solution concept will depend on the notion of a best
response for the follower. For a given leader strategy rl and
utility function uf ∈ Uf , the set of best responses is

BR(rl, uf ) = {rf : uf (rl, rf ) = max
r′f

uf (rl, r
′
f )}.

Given a strategy rl for the leader and a utility function uf ,
the value of each information set can be computed with the
following feasibility program (this holds outside of a leader-
follower setting as well):

vinff (σf ) = sσf
+
∑
I′∈If

σf (I′)=σf

vI′ +
∑
σl∈Σ

rl(σl)g
uf

f (σl, σf )

∀I ∈ If , σf = σf (I) (1)

0 ≤ sσf
≤M(1− bf (σf )) ∀σf ∈ Σf (2)∑

a∈A(I) bf (σa) = 1 ∀I ∈ If , σf = σf (I) (3)

bf (σf ) ∈ {0, 1} σf ∈ Σf (4)

The variables vI represent the value of a given information
set I , bf (σf ) represents whether σf is a best response at
its respective information set, and sσf

represents how much
less utility the follower gets by following the sequence σf
rather than the optimal action at inf(σf ). It is easy to show
via induction that the feasibility MIP given in equations (1-
4) computes a best response to rl and the variables vI repre-
sent the values of information sets I when best-responding
to rl: For the base case of an information set with no future
information sets belonging to the follower, disregarding sσf

,
the RHS of (1) clearly represents the value of choosing σf
at the information set. Now, since all sσf

are nonnegative
and (1) is an equality, it follows that vI upper bounds the
value of each individual sequence at I . But since sσf

= 0
for some σf , it must be an equality for said σf . Thus vI up-
per bounds the value of all sequences at I , but is also equal
to the value of some sequence, and therefore it represents
the value when best responding. Applying the inductive hy-
pothesis to any information set I that has future information



sets belonging to the follower reduces the expression for vI
to one that is equivalent to the base case.

Extension to Uncertainty about the Opponent
We now extend the EFG model to incorporate uncertainty
about the follower’s utility function. We will take a robust-
ness approach, where we care about the worst-case instanti-
ation of the uncertainty set Uf . For limited-lookahead EFGs
we will analogously consider uncertainty over the node-
evaluation function.

Due to the uncertainty (represented by the uncertainty set
Uf ), defining a Stackelberg equilibrium is not straightfor-
ward. We take the perspective that a robust Stackelberg so-
lution is a strategy for the leader that maximizes the leader
utility in the worst-case instantiation of Uf :

Definition 2. A robust strong Stackelberg solution (RSSS) is
a realization plan rl such that

rl ∈ arg max
r′l∈Rl

inf
uf∈Uf

max
r′f∈BR(rl,uf )

ul(rl, r
′
f ).

The robustness is represented by the minimization over
Uf . Intuitively, if the actual instantiation of uf does not take
on the minimizer over Uf , the leader can only receive better
utility, so we are computing the maximin utility against the
robustness. Typically one is interested in finding an RSSS
strategy for the leader, but we nonetheless define the entire
equilibrium concept as well:

Definition 3. A robust strong Stackelberg equilibrium
(RSSE) is a realization plan rl and a (potentially uncount-
ably large) set of realization plans {ruf

f : ∀uf ∈ Uf} such
that rl is an RSSS and ruf

f ∈ BR(rl, uf ) for all uf ∈ Uf .

Whether an RSSE is even practical to represent is highly
dependent on the structure of the specific game and uncer-
tainty sets at hand, as it would frequently need to be rep-
resented parametrically. On the other hand, once we have
rl, the best response for a specific uf can easily be com-
puted. One method for doing this is to first compute the fol-
lower value u∗ under uf when best responding to rl (e.g.,
via a single tree traversal), and then solving the linear pro-
gram (LP) that consists of maximizing the leader’s utility
over the set of follower strategies that achieve u∗ (this can
be done by adding a single constraint to the sequence-form
best-response LP given by von Stengel (1996)).

One might consider applying the robustness after the fol-
lower chooses her strategy (in a sense, swapping the inner
max and min). In this case, we cannot represent this as a
minimization on the inside since the set of best responses is
defined with respect to the choice of uf . Arguably the most
natural way to apply robustness after the best response of the
follower would be to ask for a pair of strategies rl, rf such
that rf is a best response no matter the instantiation of uf .
This definition of robustness would allow us to apply stan-
dard robust optimization techniques to any Stackelberg MIP.
However, this definition has several drawbacks. First, if we
are applying a robust model, we are often interested in max-
imizing our worst-case utility. By applying robustness after
choosing rf , we would not be doing that, but instead would

be maximizing utility subject to the constraint that we want
to be sure what the follower response is. Second, a robust
Stackelberg equilibrium defined that way would not neces-
sarily exist: if there is overlap between the range of possible
utilities associated with a pair of actions at some information
set, there would be no way to guarantee that a single action
will always be a best response.

MIP for Full-Certainty Setting
We now give a MIP for computing a Stackelberg equilibrium
in a game where the follower has limited lookahead.

max
p,r,v,s

∑
z∈Z

p(z)ul(z)C(z) (5)

vI = sσf
+
∑

I′∈If :σf (I′)=σf

vI,I′ +
∑
σl∈Σl

rl(σl)gI(σl, σf )

∀σf ∈ Σf , I = inff (σf ) (6)

vI,inf(σf ) = sIσf
+
∑

I′∈If :σf (I′)=σf

vI,I′ +
∑
σl∈Σl

rl(σl)gI(σl, σf )

∀I ∈ I, σf ∈ ΣIf (7)

ri(∅) = 1 ∀i ∈ {l, f} (8)
ri(σi) =

∑
a∈A(Ii)

ri(σia) ∀i ∈ {l, f}, Ii ∈ Ii (9)

0 ≤ sσf
≤ (1− rf (σf ))M ∀σf ∈ Σf (10)

0 ≤ sIσf
≤
(
1− rIf (σf )

)
M ∀I ∈ If , σIf ∈ ΣIf (11)

rf (σf ) ∈ {0, 1} ∀σf ∈ Σf (12)

rIf (σf ) ∈ {0, 1} ∀I ∈ Ifσf ∈ ΣIf (13)

0 ≤ p(z) ≤ ri(σi(z)) ∀i ∈ {l, f}, z ∈ Z (14)
1 =

∑
z∈Z p(z)C(z) (15)

0 ≤ rl(σl) ≤ 1 ∀σl ∈ Σl (16)

This MIP is an extension of the MIP given by Bosansky and
Cermak (2015) to the limited-lookahead setting of Kroer
and Sandholm (2015). Eq. (5) is the expected leader value
over leaf nodes. Equations (6) to (13) set up best-response
constraints for each follower information set, as well as for
each pair of information sets I, I ′ such that I ′ ∈ II (these
constraints are completely analogous to (1)-(4) except that
the constraints involving vI,I′ must be set up for each I
in order to represent best responses when applying the
lookahead evaluation function at I). Equations (14) and (15)
ensure that the probabilities over leaves are correct. Finally
(8), (9), and (16) ensure that rl is a valid leader strategy.

MIP with Uncertainty about Follower Payoff
We now move to the computation of RSSS for the setting
with uncertainty about follower payoff but no limited looka-
head. We will consider a particular class of uncertainty func-
tions: interval uncertainty on each leaf payoff. More con-
cretely, the uncertainty set will be

Uf = {uf : uf (h) ∈ [L(h), U(h)],∀h ∈ Z},
where L(h), U(h) are given upper and lower bounds on the
interval that the payoff for leaf node h must be chosen from.



One issue that now arises is that we may not be able to
make a single action optimal: if the maximum-to-minimum
utility intervals for two sequences are guaranteed to overlap
we cannot make either sequence the optimal choice for the
follower player. Instead, we allow choosing both sequences,
and we then assume that the leader player receives the min-
imum over the two. Intuitively, this can be thought of as a
zero-sum game played within the space of actions made op-
timal for the follower player (a similar technique was used
in Kroer and Sandholm (2015)). More generally, we may
have k > 1 actions at a given information set that can all
be made optimal under various instantiations of the utility
function. We now introduce a set-valued function that, un-
der some given strategy for the follower rf , returns the set
of actions at a given follower information set that can be
made optimal under some instantiation of the utility func-
tion, given the tie-breaking rule,

AI(rf ) = {a ∈ AI : @ a′ ∈ AI , vLI (a′) ≥ vUI (a)}.

For any a ∈ AI(rf ), the minimization over the uncertainty
can choose an instantiation making a the only best-response
action at I . Conversely, for a /∈ AI(rf ), even if the utility
function is chosen to maximize the value of action a, there
exists some other action a′ whose worst-case instantiation is
at least as good; if a leads to better leader utility than a′ then
the minimization over utility functions will not allow them
to be tied, and if a leads to worse utility than a′, then even if a
utility function causing a tie is chosen, the best-response tie-
breaking in favor of the leader means that a′ will be chosen.
Thus, a′ (or some other action) is always chosen over a.2

The function AI(rf ) is illustrated in Figure 1. The gen-
eral intuition can be seen from the figure: the dotted line
denotes the split between potentially optimal actions (black
bars) and actions that cannot be made optimal through any
utility-function choice (opaque bars). Note that the dotted
line is touched by interval end-points from both sets: this
means that the two actions could be tied, but the lower-value
would never be chosen, since it is either worse for the leader,
in which case the tie-breaking does not choose it even in case
of a tie, or if it is better then the minimization over the inter-
vals will break the tie and make it inoptimal.

The intuition behind our robust MIP consists of three
components: 1) the best-response feasibility MIP described
in (1)-(4), instantiated independently for both the set of
maximal and minimal valuation functions, 2) a set of con-
straints for computing the setAI(rf ) for a given rf via best-
response values for the maximal and minimal utility func-
tions, and 3) a minimization similar to the dual best-response
LP from the standard sequence-form LP (von Stengel 1996).

In the robust MIP given below, gUf , g
L
f are the functions

giving the expected value over leaf nodes consistent with a
pair of sequences, when every node has its payoff set to the
maximal (gUf ) and minimal (gUf ) payoff, respectively.

2Here we rely on the assumption that every action has a strict
inequality vUI (a) > vLI (a). Without this assumption our MIP still
works, but the math becomes more cumbersome.

Utility

Figure 1: A set of action value-uncertainty intervals.

min
r,v,s,y

y0 (17)

yinff (σf ) ≥
∑
I′∈If

σf (I′)=σf

yI′−
∑
σl∈Σl

gl(σl, σf )rl(σl)−M(1−rf (σf ))

∀σf ∈ Σf (18)

vqinff (σf ) = sqσf
+
∑
I′∈If

σf (I′)=σf

vqI′ +
∑
σl∈Σ

rl(σl)g
q
f (σl, σf )

∀σf ∈ Σf , q ∈ {U,L} (19)

0 ≤ sqσf
≤M(1−bqf (σf )) ∀σf ∈ Σf , q ∈ {U,L} (20)∑

a∈A(I) b
q
f (σf (I)a) = 1 ∀q ∈ {U,L}, I ∈ If (21)

bqf (σf ) ∈ {0, 1} ∀σf ∈ Σf , q ∈ {U,L} (22)

vUI −sUσf
≥ vLI −M(1−rf (σf )) ∀σf ∈ Σf (23)

vUI − sUσf
≤ vLI +Mrf (σf ) ∀σf ∈ Σf (24)

ri(∅) = 1 ∀i ∈ {l, f} (25)

rl(σ) =
∑

a∈A(I)

rl(σa) ∀I ∈ Il, σ = σl(I) (26)

rf (σ) ≤
∑

a∈A(I)

rf (σa) ∀I ∈ If , σ = σf (I) (27)

rf (σf ) ∈ {0, 1} ∀σf ∈ Σf (28)
0 ≤ rl(σl) ≤ 1 ∀σl ∈ Σl (29)

Equations (17) and (18) implement the minimization over
the set of potentially optimal actions AI(rl) at a given in-
formation set I . Equations (19) to (22) ensure that vUI , v

L
I

represent the correct value of each information set under the
maximal and minimal utility function. Equations (23) and
(24) ensure that actions in or not in AI(rl) can potentially
be made optimal (23) or cannot be made optimal (24). Equa-
tions (25) to (29) ensure that rl is a valid sequence-form
leader strategy and that one more pure strategies are active
for the follower. We prove that this MIP computes a RSSS.
Due to space constraints the result is shown in the appendix.

MIP for Limited-Lookahead Interval Uncertainty
We also present an extension of the full-certainty MIP for
limited lookahead to a setting with uncertainty about the
limited-lookahead node-evaluation function. That MIP joins
the ideas from both the full-certainty MIP with limited
lookahead ((5)-(16)) and the robust MIP ((17)-(29)) and is
thus the most comprehensive, but it combines the novel ideas
from the former two MIPs in a fairly straightforward way.
Due to limited space we present the MIP in the appendix.



Experiments
Using our MIPs presented in the previous section we inves-
tigated the scalability and qualitative properties of RSSS so-
lutions. We experimented with three kinds of EFG: Kuhn
poker (Kuhn) (Kuhn 1950), a 2-card poker variant (2-card),
and a parameterized security-inspired search game (Search).
The search game is similar to games considered by Bosan-
sky et al. (2014) and Bosansky and Cermak (2015)).

Kuhn consists of a three-card deck: king, queen, and jack.
Each player first has to put a payment of 1 into the pot. Each
player is then dealt one of the three cards, and the third is
put aside unseen. A single round of betting then occurs (with
betting parameter p = 1, explained below).

In 2-card, the deck consists of two kings and two jacks.
Each player first has to put a payment of 1 into the pot. A
private card is dealt to each, followed by a betting round
(with betting parameter p = 2), then a public card is dealt,
followed by another betting round (with p = 4).

In both games, each round of betting goes as follows:
• Player 1 can check or bet p.

– If Player 1 checks Player 2 can check or raise p.
∗ If Player 2 checks the betting round ends.
∗ If Player 2 raises Player 1 can fold or call.
· If Player 1 folds Player 2 takes the pot.
· If Player 1 calls the betting round ends.

– If Player 1 raises Player 2 can fold or call.
∗ If Player 2 folds Player 1 takes the pot.
∗ If Player 2 calls the betting round ends.

If no player has folded, a showdown occurs. In Kuhn
poker, the player with the higher card wins in a show-
down. In 2-card, showdowns have two possible outcomes:
one player has a pair, or both players have the same private
card. For the former, the player with the pair wins the pot.
For the latter the pot is split.

Kuhn poker has 55 nodes in the game tree and 13 se-
quences per player. The 2-card game tree has 199 nodes,
and 57 sequences per player.

The search game is played on the graph shown in Fig-
ure 2. It is a simultaneous-move game (which can be mod-
eled as a turn-taking EFG with appropriately chosen infor-
mation sets). The leader controls two patrols that can each
move within their respective shaded areas (labeled P1 and
P2), and at each time step the controller chooses a move for
both patrols. The follower is always at a single node on the
graph, initially the leftmost node labeled S and can move
freely to any adjacent node (except at patrolled nodes, the
follower cannot move from a patrolled node to another pa-
trolled node). The follower can also choose to wait in place
for a time step in order to clean up their traces. If a patrol
visits a node that was previously visited by the follower, and
the follower did not wait to clean up their traces, they can
see that the follower was there. If the follower reaches any
of the rightmost nodes they received the respective payoff at
the node (5, 10, or 3, respectively). If the follower and any
patrol are on the same node at any time step, the follower is
captured, which leads to a payoff of 0 for the follower and
a payoff of 1 for the leader. Finally, the game times out af-
ter k simultaneous moves, in which case the leader receives

P1 P2

S

5

10

3

Figure 2: The graph on which the search game is played.

Kuhn 2-card Search-5 Search-6

B&C 0 1 13 190
R-0 0 26 1 40

R-0.01 0 548 24 683
R-0.05 0 616 30 910
R-0.1 0 209 36 955
R-0.5 0 365 64 1648
R-1 0 42 41 395

Table 1: Runtime experiments for the MIP by Bosansky and
Cermak (2015) (B& C) and our robust Stackelberg MIP for
increasing uniform uncertainty intervals (R-c where c is the
interval radius). All runtimes are in seconds.

payoff 0 and the follower receives −∞ (because we are in-
terested in games where the follower attempts to reach an
end node). We consider games with k being 5 and 6. We will
denote these by Search-5 and Search-6. Search-5 (Search-6)
has 87,927 (194,105) nodes and 11,830 and 69 (68,951 and
78) leader and follower sequences.

All experiments were conducted using Gurobi 7.5.1 to
solve MIPs, on a cluster with 8 Intel Xeon E5607 2.2Ghz
cores and 47 GB RAM per experiment.

In the first set of experiments we investigate the impact on
runtime caused by uncertainty intervals in each of the four
games, without considering limited lookahead. We compare
the MIP by Bosansky and Cermak (2015) (B&C) for the full-
certainty setting to our robust MIP ((17)-(29)) with an uncer-
tainty interval of diameter d at each node in the game, for 6
different values of d. The results are shown in Table 1. Inter-
estingly, our robust MIP with interval 0 is significantly faster
than the B&C MIP for the Search games. (We do not special-
ize our robust MIP to the full-certainty setting but instead
let Gurobi presolve away most redundant variables and con-
straints. One could easily specialize it and potentially make
it even faster.) Once we add uncertainty, the MIP gets harder
to solve, with the runtime increasing for larger uncertainty
intervals—except for the largest uncertainty interval where
the problem starts to get easier again.

In the second set of experiments, we investigate the cost of
computing an RSSS against a follower utility function that
is different from the one actually employed by the follower.
These experiments were conducted on the Search-5 game.
On Search-6 it would take prohibitively long to conduct all
the experiments, and the experiments would not be interest-
ing on Kuhn and 2-card because they are zero-sum games



EV ≤ 1 ≤ 2 ≤ 3

0 0.842 0.474 0.474 0.474
0.1 0.834 0.479 0.479 0.479
0.5 0.800 0.500 0.500 0.500
1 0.758 0.616 0.526 0.526
2 0.688 0.688 0.417 0.417
4 0.667 0.667 0.667 0.667
6 0.667 0.667 0.667 0.667

40 0.500 0.500 0.500 0.500

Table 2: Leader utility when maximizing utility against an
incorrect utility function. Each row corresponds to a differ-
ent size of uncertainty interval used for computing the leader
strategy (interval size is given in the leftmost column). The
columns are ordered in increasing amounts of incorrectness
allowed in the follower utility function.

(the leader will end up getting the value of the game as long
as the correct utility function is contained in the uncertainty
intervals). The setup is as follows. We use our robust MIP to
compute a leader strategy for the original payoffs in Search-
5. We instantiate the MIP with several different uncertainty-
interval widths (given in the leftmost column in Table 2).
For each leader strategy, we then conduct a grid search over
triplets of numbers in {±0.1,±0.5,±1,±2,±3}3, where
the three numbers correspond to a change in utility being
added to each of the three rightmost payoff nodes in Fig-
ure 2. For each payoff change, we compute the follower’s
best response (breaking ties in favor of the leader) to the
leader strategy under the new game and the resulting leader
utility. The second column in Table 2 (EV) denotes the
value that the leader is expected to get if he were solv-
ing the correct game. The following three columns, labeled
≤ 1,≤ 2,≤ 3, show the worst utility achieved by the leader
when the grid search is restricted to payoff changes of at
most 1, 2, and 3, respectively. For example, in the case ≤ 1
we only do the grid search over {±0.1,±0.5,±1}3 The ex-
periment shows that when uncertainty is not taken into ac-
count, all amounts of perturbation leads to a large decrease
in leader utility. Conversely, taking uncertainty into account
leads to much better utility in almost every case.

In the third set of experiments, we investigate the cost
to the leader from having to take uncertainty into account
against a limited-lookahead follower. We perform this ex-
periment on Kuhn and 2-card, both zero-sum games, which
allows us to apply the same node-evaluation scheme as
in Kroer and Sandholm (2015). In order to construct the
limited-lookahead evaluation function, we first compute a
Nash equilibrium of the game. We then recursively define
the value of each node to be the weighted sum over the val-
ues of nodes beneath it, where the weights are the prob-
abilities of each action in the Nash equilibrium, and then
add Gaussian noise to the computed value (we do not add
any noise to leaf nodes). Since the value of a node is based
on the noisy value of nodes beneath it, the farther away
from leaf nodes a node is, the noisier the estimate of the
node’s value (from Nash equilibrium) is. We then use our ro-

Lookahead depth: 1

Noise σ 0.01 0.05 0.1 0.5 1 2

0.1 1.35 1.33 1.33 1.15 0.25 0.00
0.5 1.42 1.41 1.33 1.33 0.61 0.00
1 1.50 1.50 1.50 1.33 1.33 0.34
2 1.50 1.50 1.50 1.44 1.33 1.33

Lookahead depth: 2

Noise σ 0.01 0.05 0.1 0.5 1 2

0.1 0.67 0.43 0.05 0.00 0.00 0.00
0.5 0.69 0.69 0.68 0.05 0.00 0.00
1 0.73 0.72 0.71 0.48 0.08 0.00
2 0.80 0.79 0.78 0.71 0.59 0.19

Table 3: Limited-lookahead with depth 1 and 2 in 2-card.

Lookahead depth: 1

Noise σ 0.01 0.05 0.1 0.5 1 2

0.1 0.33 0.33 0.33 0.25 -0.06 -0.06
0.5 0.33 0.33 0.33 0.33 -0.06 -0.06
1 0.33 0.33 0.33 0.33 0.33 0.16
2 0.87 0.87 0.87 0.86 0.84 0.22

Lookahead depth: 2

Noise σ 0.01 0.05 0.1 0.5 1 2

0.1 -0.03 -0.05 -0.06 -0.06 -0.06 -0.06
0.5 0.29 0.28 0.28 0.16 -0.06 -0.06
1 0.41 0.41 0.40 0.30 0.22 0.16
2 0.87 0.87 0.87 0.86 0.84 0.22

Table 4: Limited-lookahead with depth 1 and 2 in Kuhn.

bust limited-lookahead MIP to solve the limited-lookahead
game resulting from having the follower apply this node-
evaluation function. We consider lookahead depths of 1 and
2. The results for 2-card are shown in Table 3 and the re-
sults for Kuhn are shown in Table 4. The different rows in
the tables correspond to varying standard deviations in the
Gaussian noise, and columns correspond to increasing sizes
of uncertainty intervals. For all games, lookahead depths,
and noise levels, we see that the amount that the leader can
exploit the follower goes down as uncertainty intervals get
larger. However, we also see that for most noise amounts,
some amount of robustness can be added without losing sub-
stantial leader utility. Coupled with our results from the sec-
ond set of experiments, which showed that uncertainty inter-
vals are necessary if there is mis-specification in the model,
this suggests that uncertainty intervals can lead to substan-
tially more robust outcomes, potentially at a small cost to
optimality even if the initial model turns out to be correct.

Discussion
While we showed that our technique scales to medium-
size games, in practice we would often like to scale to
even larger games. The iterative LP-based approach of Cer-
mak et al. (2016) could potentially be extended to the ro-



bust setting. Likewise, abstraction methods have dramati-
cally increased the scalability of Nash equilibrium finding in
EFGs (e.g., (Gilpin and Sandholm 2007; Lanctot et al. 2012;
Kroer and Sandholm 2014; 2016a; Brown, Ganzfried, and
Sandholm 2015)) and could potentially be adapted to the ro-
bust Stackelberg setting as well. This could be done while
giving guarantees on follower behavior by only abstracting
the strategy space of the leader.
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Proof of Interval Uncertainty MIP Correctness
Theorem 1. The interval uncertainty MIP computes a ro-
bust Stackelberg equilibrium for an EFG with interval un-
certainty on each leaf payoff for the follower.

Proof. First we show that a robust Stackelberg equilibrium
corresponds to a solution to the MIP. Let rl, rf be a robust
Stackelberg equilibrium. Without loss of generality, assume
that rf is a pure strategy (for any mixed-strategy best re-
sponse, by the assumption of tie-breaking in favor of the
leader, a pure best response exists yielding the same util-
ity for the leader). Set all MIP variables rl(σl) according
to the equilibrium strategies. For all σf ∈ Ainf(σf )(rl) set
the corresponding MIP variable rf (σf ) = 1, and for all
σf /∈ Ainf(σf )(rl) set rf = 0. For any information set I , the
action a played in the pure strategy rf must be in AI(σl):
if not it could not be made optimal by any utility function.
Conversely, it must be the action providing the lowest util-
ity to the leader among actions in AI(σl), or the minimiza-
tion over utility functions would not have made it optimal.
Choose y so as to minimize (17) subject to (18). This cor-
responds exactly to minimizing the leader utility over the
set of follower sequences such that rf (σf ) = 1, and thus
the objective is equal to the value of the RSSE. This can
also be seen by realizing that (17, 18) correspond to the dual
sequence-form best-response LP of an opponent wishing to
minimize the leader utility over AI(rl). Set vUI , bU , s

U
σf

and
vLI , bL, s

L
σf

equal to the values obtained by arbitrarily chosen
best responses according to the maximal and minimal utility
functions respectively. By our choices for MIP variables it is
clear that (18), (19), and (25)-(29) are satisfied. For (23) note
that we set rf (σf ) = 1 only for variables in Ainf(σf )(σl),
that is, sequences where their upper-bound value is greater
than every lower-bound value, and thus vUI − sUσf

, which is
exactly the upper-bound value associated with σf , is greater
than vLI . Conversely, for σf such that rf (σf ) = 0 we know
that their upper-bound value is less than some lower-bound
value, and thus vUI − sUσf

≤ vLI .
Now consider an optimal solution to the MIP. The leader

strategy for an RSSE is exactly the values computed for
rl(σl) for all σl. By the same logic as for the standard
Stackelberg MIP, vUI , v

L
I represent the information-set val-

ues according to the maximal and minimal utility func-
tions for the follower (Shoham and Leyton-Brown 2009;
Bosansky and Cermak 2015). Since vUI − sUσ corresponds
exactly to the information-set value associated with a given
sequence σ ∈ ΣI , (23) implies that rf (σ) = 1 if and
only if vUI (σ) ≥ vLI (σ′) for all σ′ ∈ ΣI . In other words,
σ ∈ AI(rl). Conversely rf (σ) = 0 implies σ /∈ AI(rl).
Thus the set of active sequences is exactly the set of se-
quences that can be made optimal for some choice of utility
function for the follower. Because y is chosen to minimize
the utility over active variables, this corresponds to the util-
ity achieved when committing to rl.

Since every RSSE is a solution of the MIP, and the optimal
solution to the MIP corresponds to the payoff received by
the leader if they were to commit to the strategy computed
by the MIP, we conclude that the MIP computes an RSSS.

If not, there would exist some RSSE which achieves better
utility than what is computed by the MIP. This would be a
contradiction, since such an RSSE would also be feasible
and its objective would be equal to the RSSE value.

MIP for Robust Limited-Lookahead
Stackelberg Equilibria

Here we present a MIP that computes an RSSS when the fol-
lower has limited lookahead and there is interval uncertainty
about the evaluation function used to determine actions by
the follower. This MIP is a straightforward combination of
the MIP for limited lookahead and the MIP for interval un-
certainty that we presented in the main paper.

min
r,v,s,y

y0 (30)

yinff (σf ) ≥
∑
I′∈If

σf (I′)=σf

yI′ −
∑
σl∈Σl

gl(σl, σf )rl(σl)−M(1− rf (σf ))

∀σf ∈ Σf (31)

vqI,inff (σf ) = sqI,σf
+
∑
I′∈II

σf (I′)=σf

vqI,I′ +
∑
σl∈Σ

rl(σl)g
q
I (σl, σf ),

∀I ∈ If , σf ∈ ΣI , q ∈ {U,L}
(32)

0 ≤ sqI,σf
≤M(1− bqI(σf )) ∀I ∈ If , σf ∈ ΣI , q ∈ {U,L}

(33)∑
a∈A(I′)

bI(σf (I ′)a) = 1 ∀I ∈ If , q ∈ {U,L}, I ′ ∈ II

(34)

bqI(σf ) ∈ {0, 1} ∀I ∈ If , σf ∈ ΣI , q ∈ {U,L}
(35)

vUI,I − sUI,σ ≥ vLI,I −M(1− rf (σ)) (36)

vUI,I − sUI,σ ≤ vLI,I +Mrf (σ) (37)

ri(∅) = 1, ∀i ∈ {l, f} (38)

rl(σ) =
∑

a∈A(I)

rl(σa) ∀I ∈ Il, σ = σl(I) (39)

rf (σ) <=
∑

a∈A(I)

rf (σa) ∀I ∈ If , σ = σf (I) (40)

rf (σf ) ∈ {0, 1} σf ∈ Σf (41)
0 ≤ rl(σl) ≤ 1 σl ∈ Σl (42)


