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Abstract

Sponsored Search Auctions (SSAs) are one of the most successful applications of mi-
croeconomic mechanisms, with a revenue of about $72 billion in the US alone in 2016.
However, the problem of designing the best economic mechanism for sponsored search auc-
tions is far from being solved, and, given the amount at stake, it is no surprise that it has
received growing attention over the past few years. The most common auction mechanism
for SSAs is the Generalized Second Price (GSP). However, the GSP is known not to be
truthful : the agents participating in the auction might have an incentive to report false val-
ues, generating economic inefficiency and suboptimal revenues in turn. Superior, efficient
truthful mechanisms, such as the Vickrey-Clarke-Groves (VCG) auction, are well known in
the literature. However, while the VCG auction is currently adopted for the strictly related
scenario of contextual advertising, e.g., by Google and Facebook, companies are reluctant
to extend it to SSAs, fearing prohibitive switching costs. Other than truthfulness, two
issues are of paramount importance in designing effective SSAs. First, the choice of the
user model; not only does an accurate user model better target ads to users, it also is a
critical factor in reducing the inefficiency of the mechanism. Often an antagonist to this,
the second issue is the running time of the mechanism, given the performance pressure
these mechanisms undertake in real-world applications. In our work, we argue in favor
of adopting the VCG mechanism based on the cascade model with ad/position externali-
ties (APDC-VCG). Our study includes both the derivation of inefficiency bounds and the
design and the experimental evaluation of exact and approximate algorithms.

1. Introduction

Sponsored Search Auctions (SSAs), in which several advertisers bid to have their ads dis-
played in some slot alongside the search results of a keyword, constitute one of the most
successful applications of microeconomic mechanisms, with a revenue of about $72 billion in
the US alone in 2016 (IAB, 2017). The most common auction mechanism for SSAs is the
Generalized Second Price (GSP). However, the GSP is known not to be truthful (Edelman,
Ostrovsky, & Schwarz, 2007) and therefore the best strategy of the bidders may be to make
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a bid different from their true value. The untruthfulness of GSP generates inefficiency both
in terms of social welfare and auctioneer’s revenue. The social welfare provides a measure
of the quality of the targeting of ads to users and therefore introducing inefficiency in the
social welfare reduces the opportunities for the advertisers to be clicked by the users. On
the other side, introducing inefficiency in the auctioneer’s revenue reduces the monetary
opportunities of the auctioneer itself. The best-known efficient truthful mechanism is the
Vickrey-Clarke-Groves (VCG). The VCG is currently adopted for the scenario, strictly re-
lated to that one of SSAs, of contextual advertising, e.g., by Google (Varian & Harris, 2014)
and Facebook (Hegeman, 2010), but it is not adopted in SSAs yet because the common
opinion is that the switching costs could be prohibitive. In this perspective, studying the
inefficiency of the GSP with respect to the VCG mechanism or a new auction mechanism
is crucial to accurately evaluate a potential future switch. However, when designing an
effective ad auction, truthfulness is not the only issue to consider. Two other issues are of
paramount importance and cannot be disregarded. First, the choice of the user model; not
only does an accurate user model better target ads to users, it also is a critical factor in
reducing the inefficiency of the mechanism. Often an antagonist to this, the second issue
to consider is the running time of the mechanism: it must be very short since the mecha-
nism must be executed online. Thus, if the winner determination problem is hard within
a given user model, polynomial-time approximation algorithms will likely be used, mining
the efficiency of the VCG mechanism. In this paper, we provide some original contributions
about the adoption of the cascade model with position- and ad-dependent externalities in ad
auctions. In our study, we explore all the issues aforementioned. More precisely, we study
theoretical inefficiency bounds of the GSP and the VCG adopting the separable model with
respect to the VCG adopting the cascade model. We then provide exact and approximation
algorithms employable in real-world settings.

1.1 User Models and Complexity

The commonly adopted user model in ad auctions is the position-dependent cascade (PDC),
also called the separable model, in which the user is assumed to observe the slots from the
top to the bottom and the probability whereby a user observing the ad in slot s continues to
observe the ad in slot s+ 1 depends only on slot s (Narahari, Garg, Narayanam, & Prakash,
2009). The optimal allocation can be computed efficiently in a greedy fashion in O(N logK)
time, where N is the number of ads and K is the number of slots. The PDC model is
currently adopted by the GSP in SSAs and by VCG in contextual advertising. However, a
number of works show that the PDC model gives a non-accurate description of the behavior
of the users and that, instead, the user behavior is affected by externalities (Craswell, Zoeter,
Taylor, & Ramsey, 2008; Joachims, Granka, Pan, Hembrooke, Radlinski, & Gay, 2007;
Goldman & Rao, 2014). Craswell et al. (2008) give an empirical comparison of four user
models for organic search results, including the PDC model, with an ad-dependent cascade
(ADC) model. In the ADC model, the probability whereby a user observing ad a continues
to observe the next ad depends on ad a itself.1 This captures the externality of prematurely
terminating the scanning process due to either the user satisfying his information need or

1. Craswell et al. (2008) make the restrictive assumption that the continuation probability from ad a is
equal to the probability that the user does not click on ad a. Extensions of this model assume that
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the user becoming annoyed with the ads, stopping the scan or switching to organic results.
Craswell et al. also show that the ADC model provides the best fit to click logs of a large
search engine and they suggest also that the best explanation of the ADC model is that
a user stops the scan once he found the needed information. Since the click-through rates
in organic search results and ads appear to be of a similar nature (and, so far, the same
models have been used for both), the ADC model can achieve a significant improvement
over the PDC model when used in ad auctions, as confirmed by empirical results described
by Gunawardana and Meek (2008). Similarly to the PDC case, finding the best allocation
in the ADP model can be efficiently performed by dynamic programming (Aggarwal et al.,
2008; Kempe & Mahdian, 2008).

A natural extension of the ADC model is the ad/position-dependent cascade (APDC)
model proposed by Kempe and Mahdian (2008), in which the probability whereby a user
observing ad a displayed in slot s continues to observe the ad displayed in slot s+1, depends
on both ad a and slot s. This generalization of the ADC model is motivated by the fact
that, in empirical studies, it appears that users have been conditioned to assume results
listed in higher positions to be more relevant and therefore the click-through rates will also
depend on the position. Although there is no proof, the common belief is that finding the
optimal allocation within the APDC model is a hard problem, and therefore it is unlikely
that efficient algorithms exist for this task. Gatti and Rocco (2013) provide an algorithm
finding the best allocation that can be used in real time only with 40 ads or less, while in
real-world applications ads can be in the thousands. The problem admits a constant-ratio
(1−ε)/4, with ε ∈ [0, 1], approximation algorithm (Gatti & Rocco, 2013; Kempe & Mahdian,
2008), but no approximation algorithm is known to lead to a truthful economic mechanism.
Furthermore, the known approximation algorithms can be applied in real time with only
90 ads or less (Gatti & Rocco, 2013) and therefore the application of the APDC model
in real-world settings remains an open challenge. Let us remark that, in SSAs, economic
mechanisms are usually paired with learning algorithms to estimate the values of the model
parameters, as discussed, e.g., in the work by Gatti, Lazaric, Rocco, and Trovò (2015).

Models more accurate than the APDC model include a contextual graph capturing ex-
ternalities between each pair of ads (Gatti, Rocco, Serafino, & Ventre, 2015; Fotakis, Krysta,
& Telelis, 2011). Here, the basic idea is that the probability whereby a user stops to scan
may be different for each subsequent pair of ads. In models with a contextual graph, the al-
location problem is Poly-APX-hard and the best possible approximation ratio is logK

K , while
the best-known approximation ratio leading to a truthful mechanism is 1

K .

1.2 Untruthful Mechanisms and Inefficiency

It is known that the equilibria of the GSP may be inefficient in terms of social welfare when
compared to the VCG outcome. Under the assumption that the user behaves as prescribed
by the PDC model, locally-envy-free equilibria and symmetric Nash equilibria of the GSP
auction provide the auctioneer a revenue not smaller than the one provided by the VCG. This
shows that the Price of Stability (PoS) is 1. However, it is also known that the worst Nash
equilibrium may be inefficient with a Price of Anarchy (PoA) of about 1.6 (Leme & Tardos,

the continuation probabilities and the click probabilities may be independent parameters (Aggarwal,
Feldman, Muthukrishnan, & Pál, 2008; Kempe & Mahdian, 2008).
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2010). The assumption of full information is hardly satisfied in real-world applications, re-
quiring the bidders to have complete information about all the parameters of the opponents,
and this makes locally-envy-free equilibria and Nash equilibria non-credible outcomes. A
more realistic scenario is when information is uncertain with a Bayesian prior. In this case,
the most appropriate solution concept is the Bayes-Nash equilibrium. The social welfare
may be inefficient in a Bayes-Nash equilibrium with an upper bound of about 3.1 over the
PoA (Leme & Tardos, 2010). Similarly, the revenue for the auctioneer may be inefficient in
a Bayes-Nash equilibrium of the GSP with an upper bound of 6 over the PoA (Lucier, Leme,
& Tardos, 2012). Furthermore, when no prior is available, bidders use automated bidding
strategies to find their best bids. However, these bidding strategies may not even converge
to any Bayes-Nash equilibrium and, under mild assumptions, the states they converge to
are shown to be arbitrarily inefficient (Evangelos & Telelis, 2010). A very recent experi-
mental work shows that the VCG mechanism is better than the GSP auction in terms of
auctioneer’s revenue (McLaughlin & Friedman, 2016). When considering externalities—and
we recall that empirical studies show that externalities are present in the real world (Gold-
man & Rao, 2014)—the GSP may be arbitrarily inefficient (Kuminov & Tennenholtz, 2009;
Gomes, Immorlica, & Markakis, 2009). In particular, Giotis and Karlin (2008) show that,
under the assumption that the user behaves as prescribed by the APDC, the social welfare
in the worst Nash equilibrium of the GSP may be arbitrarily worse than the social welfare
of the VCG outcome when no restriction over the bidding policy is present, while the ratio
may be 1

K in the restricted case in which bidders avoid to overbid. Finally, there is a recent
increase in the use of additional features (such as larger formats, reviews, maps, or phone
numbers) arranged by the search engines on the web page together with the ads to increase
the attention of the user. It is known that the GSP behaves poorly in this setting, while the
VCG directly applies to this setting as it does in the standard setting and it does not suffer
from any efficiency loss (Bachrach, Ceppi, Kash, Key, & Kurokawa, 2014).

1.3 Original Contributions

In this paper, we provide some original contributions, constituted by theoretical results and
algorithms, and based on the APDC model and the use of the VCG mechanism. From here
on, we call PDC-VCG auction the VCG within the PDC model and APDC-VCG auction the
VCG within the APDC model. All the algorithms proposed are experimentally evaluated
with the Yahoo! Webscope A3 dataset with 10 or less available slots.

• We assume that the user behaves according to the APDC model and we study the
inefficiency of GSP auction and of the PDC-VCG auction in terms of social welfare
and auctioneer’s revenue with respect to the PDC-VCG auction. We focus on full-
information Nash equilibria and we formally derive bounds on Price of Anarchy (PoA)
and Price of Stability (PoS), showing that inefficiency can be arbitrarily large and
that the PDC-VCG auction may not admit any Nash equilibrium. Our results extend
those presented by Giotis and Karlin (2008).

• We propose a novel polynomial-time algorithm, called dominated-ads, that, exploit-
ing the structure of the problem, prunes the set of ads while preserving the optimal
allocation within the APDC model. The experimental evaluation of dominated-ads
shows that the number of ads surviving the prune is logarithmic in N .
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• We propose a novel exact exponential-time algorithm called colored-ads. This is
inspired by the Color Coding algorithm (Alon, Yuster, & Zwick, 1994) and it finds
the optimal allocation in the APDC model. The algorithm is randomized and requires
a running time O(2K N) per random restart. The probability of finding the optimal
solution is strictly positive when the number of random restarts is exponential in K.
When the success probability is set to 50%, the algorithm is applicable to real-time
settings with 5 slots or less and provides an empirical approximation larger than 0.999.
Furthermore, the algorithm is maximal-in-its-range, allowing the design of truthful
mechanisms, and can be used in an anytime fashion stopping the algorithm once a
deadline has been reached, preserving the truthfulness of the mechanism.

• We propose a novel polynomial-time maximal-in-its-range approximation algorithm,
called sorted-ads, finding an approximate solution in the APDC model. We prove
that our algorithm provides an approximation guarantee of 1

2 in some special instances
and we conjecture that the same holds in the general case. Furthermore, we show that
in the worst case the approximation cannot be better than 1

2 . Experimentally, we
observe that sorted-ads provides an empirical average approximation ratio of 0.992
while having compute times of about 0.005 seconds.

2. Problem Formulation

We adopt the same SSA model used by Gatti and Rocco (2013) and Kempe and Mah-
dian (2008). An SSA without externalities is defined as a tuple Γ = (A,K, {qa}a∈A, {va}a∈A)
where:

• A = {1, . . . , N} is the set of ads. W.l.o.g. we assume each advertiser (i.e., an agent)
to have a single ad, so each agent a ∈ A can be identified with ad a;

• K = {1, . . . ,K} is the set of slots s, ordered from the top to the bottom. We assume
w.l.o.g. K ≤ N ;

• qa ∈ [0, 1] is the quality of ad a, i.e., the probability a user will click ad a once observed;

• va ∈ Va ⊆ R+ is the value for agent a when ad a is clicked by a user, while v =
(v1, . . . , vN ) is the value profile and, as customary in game theory, v−a is the value
profile of all the agents except agent a.

Furthermore, we introduce the following notation that we use along the paper:

• v̄a is the product of qa and va, and can be interpreted as the expected value for agent a
when the user is observing the corresponding ad;

• v̂a ∈ Va ⊆ R+ is the value reported by agent a to the auctioneer, while v̂ = (v̂1, . . . , v̂N )
is the reported value profile and v̂−a is the reported value profile of all the agents except
agent a;

• Θ is the set of (ordered) allocations θ of ads to slots, where each ad cannot be allocated
in more than one slot;
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• ads(θ) ⊆ A denotes the subset of ads allocated in θ;

• slotθ(a) denotes the slot in which ad a is allocated, if any;

• adθ(s) denotes the ad allocated in slot s.

The APDC model assumes the user to have a Markovian behavior, starting to observe
the slots from the first (i.e., slot 1) to the last (i.e., slot K) where the transition probability
from slot s to slot s+ 1 is given by the product of two parameters:

• (ad-dependent externalities) ca ∈ [0, 1] is the continuation probability of ad a displayed
in slot s;

• (position-dependent externalities) λs ∈ [0, 1] is the factorized prominence of slot s (it
is assumed λK = 0).

An SSA within the APDC model is a tuple Γ = (A,K, {qa}a∈A, {va}a∈A, {ca}a∈A, {λs}s∈K).
The click through rate, CTRθ(a) ∈ [0, 1], of ad a in allocation θ is the probability a user

will click ad a and it is formally defined as

CTRθ(a) = qa Λslotθ(a) Cθ(a),

where
Cθ(a) =

∏
s< slotθ(a)

cadθ(s), Λs =
∏
k<s

λk.

Parameter Λs is commonly named prominence (Kempe & Mahdian, 2008).2 Easily, in the
PDC model, ca = 1 for every a ∈ A. Given an allocation θ, its social welfare is defined as:

SW(θ) =
∑

a∈ ads(θ)

va CTRθ(a) =
∑

a∈ ads(θ)

v̄a Λslotθ(a) Cθ(a).

The problem we study is the design of an economic mechanismM, composed of

• an allocation function f : ×a∈A Va → Θ, and

• a payment function for each agent a, pa : ×a′∈A Va′ → R.

Each agent a has a linear utility ua(va, v̂) = va CTRf(v̂)(a) − pa(v̂), in expectation over
the clicks and pays pa(v̂)/CTRf(v̂)(a) whenever its ad is clicked. Notice that pa(v̂) is the
payment in expectation over the clicks and therefore represents the average payment per
impression. We are interested in mechanisms satisfying the following properties:

Definition 1 (Incentive compatible (Truthful)). Mechanism M is dominant strategy in-
centive compatible (DSIC) if reporting true values is a dominant strategy for every agent,
formally, if ua(va, (va, v̂−a)) ≥ ua(va, (v̂a, v̂−a)) for every va, v̂a, v̂−a.

2. Let us remark that, in the work of Kempe and Mahdian (2008), the authors use ‘λs’ to denote the
prominence that, in the present paper, we denote with ‘Λs’. Our definition forces the prominence Λs to
be monotonically non-increasing in s. Instead, Kempe and Mahdian directly assume the prominence to
be monotonically non-increasing in s. This assumption makes our model and that one studied by Kempe
and Mahdian equivalent.
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Definition 2 (Individually rational). Mechanism M is individually rational (IR) if no
agent acting truthfully prefers to abstain from participating to the mechanism rather than
participating, formally, if ua(va, (va, v̂−a)) ≥ 0 for every va, v̂−a.

Definition 3 (Weakly budget balance). Mechanism M is weakly budget balanced (WBB)
if the mechanism is never in deficit, formally, if

∑
a
pa(v̂) ≥ 0 for every v̂.

Definition 4 (Computationally tractable). Mechanism M is computationally tractable
when both f and pa are computable in polynomial time.

Definition 5 (Maximal-in-its-range). Allocation function f is maximal in its range if f
returns an allocation maximizing the social welfare among a given subset of allocations that
is independent of the agents’ reports, formally, if f := arg max

θ∈Θ′
SW(θ) where the choice of

Θ′ ⊆ Θ does not depend on v̂.

The most common DSIC mechanism is the VCG mechanism, that is defined as follows:

f(v̂) = arg max
θ∈Θ

SW(θ)

pa(v̂) = max
θ∈Θ


 ∑
a′ ∈ ads(θ)
a′ 6=a

v̂a′ CTRθ(a′)

−
 ∑
a′ ∈ ads(f(v̂))

a′ 6=a

v̂a′ CTRf(v̂)(a
′)


 .

We recall that, when f is maximal in its range, VCG-like payments can be used, obtaining
a DSIC mechanism (Nisan & Ronen, 2000).3 Let us remark that if f is maximal in its range
and computable in polynomial time, then also the VCG-like payments are computable in
polynomial time requiring one to call f for K times.

3. Inefficiency of GSP and PDC-VCG

In this section, we study the inefficiency of the GSP auction and of the PDC-VCG auction
when the user behaves as prescribed by the APDC model. We employ the following bounds
for the social welfare over PoA and PoS respectively (notice that the social welfare is defined
in expectation over the clicks).

PoA = max
Γ

max
θ∗M ∈ nash(M,Γ)

SW(θVCG(Γ))

SW(θ∗M)

PoS = max
Γ

min
θ∗M ∈ nash(M,Γ)

SW(θVCG(Γ))

SW(θ∗M)

PoS = min
Γ

min
θ∗M ∈ nash(M,Γ)

SW(θVCG(Γ))

SW(θ∗M)

where:
3. VCG-like payments differ from VCG payments only for the range. In VCG payments, the range is

composed of all the possible allocations Θ. In VCG-like payments, the range is the same used for the
allocation function.
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• M is either the GSP auction or the PDC-VCG auction;

• Γ is an SSA instance within the APDC model;

• θVCG(Γ) is the best allocation returned by the APDC-VCG auction when all the agents
are truthful;

• nash(M,Γ) is the set of all the allocations achievable by some full-information Nash
equilibrium of mechanismM with SSA instance Γ when the users behave as prescribed
by the APDC model;

• θ∗M is one allocation of nash(M,Γ).

In words:

• PoA: it expresses the maximum inefficiency—w.r.t. the optimal social welfare—of a
Nash equilibrium over all the instances and therefore for every auction instance the
inefficiency cannot be larger than PoA;

• PoS: it expresses the maximum inefficiency—w.r.t. the optimal social welfare—of the
Nash equilibrium maximizing the social welfare over all the instances and therefore
for every auction instance there is at least a Nash equilibrium with an inefficiency not
larger than PoS;

• PoS: it expresses the minimum inefficiency—w.r.t. the optimal social welfare—of a
Nash equilibrium over all the instances and therefore for every auction instance the
inefficiency is at least PoS.

We define the same indices for the auctioneer’s revenue, in which we substitute the value
of the social welfare with the auctioneer’s revenue (notice that the revenue is defined in
expectation over the clicks). Furthermore, we study both the unrestricted case in which
agents may overbid and the restricted case in which no agent overbids. The inefficiency in
these two cases may be dramatically different and, even if in principle agents may overbid
if it is the best to do for them, it is improbable they will do since they could be charged
payments larger than their valuation and thus their final utility would be strictly negative.
Finally, let us observe that both PoA and PoS are commonly studied in literature (Giotis &
Karlin, 2008), while PoS is not. We investigate this last index here since, in the specific case
of the auctioneer’s revenue, it allows one to show whether there is a Nash equilibrium more
efficient than the revenue obtained by the truthful mechanism. Here, we do not analyze
the PoA index (whose definition is omitted, but it easily follows from the definitions of the
indices above), and leave its analysis open for future research.

The results are summarized in Table 1. The GSP, as previously showed, always admits
a pure-strategy Nash equilibrium and the inefficiency upper bounds are linear or arbitrarily
large in K. Surprisingly, there are instances in which at some Nash equilibrium the GSP
provides a revenue arbitrarily larger than that one provided by the APDC-VCG auction.
The PDC-VCG auction always admits a pure-strategy Nash equilibrium (in which the agents
truthfully report their types) in the restricted non-overbidding case, while in the unrestricted
case a Nash equilibrium (even in mixed strategies) may not exist. In terms of inefficiency, the
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PDC-VCG auction presents bounds even worse that those of the GSP. We notice that these
results also hold when, instead of considering full-information Nash equilibria, we consider
more realistic settings in which information is uncertain and therefore Bayes-Nash equilibria
are more appropriate.

PoA PoS PoS
Ovb No ovb Ovb No ovb Ovb No ovb

Social Welfare ∞ ♣ K ♣ ≥ K/2,≤ K ♠ K ♠ 1 1
Revenue ∞ ∞ ≥ K/2 ≥ K 0 0

(a) GSP auction vs. APDC-VCG auction.
The GSP always admits a pure Nash equilibrium, as showed by Giotis and Karlin (2008).

The proofs of the bounds marked with ♣ are provided by Giotis and Karlin (2008). The bounds marked with ♠ are
claimed by Giotis and Karlin (2008), but no proof is given in that paper (we provide here the proofs).

PoA PoS PoS
Ovb No ovb Ovb No ovb Ovb No ovb

Social Welfare (∞) ≥ K ≥ K (1) 1
Revenue (∞) ∞ ∞ (0) ≤ 1

(b) PDC-VCG auction vs. APDC-VCG auction.
In the restricted non-overbidding case, the PDC-VCG auction always admits a pure Nash

equilibrium in which each agent reports truthfully the type, while in the unrestricted case a Nash
equilibrium (even in mixed strategies) may not exist. For the ‘Ovb’ case, we report between ‘( )’

the value of the bounds restricted to the subset of instances admitting a Nash equilibrium when known.

Table 1: Summary of inefficiency results (‘ovb’ means ‘overbidding’).

3.1 Analysis of the GSP Auction

In the GSP, ads are allocated according to decreasing reported values: assuming v̂1 ≥
. . . ≥ v̂N , the allocation function maps ad a to slot s = a, for each a = 1, . . . ,K, while
all the remaining ads are not displayed. Every agent a = 1, . . . ,K − 1 is charged a price
pa = qa+1v̂a+1.4 Agent K is charged a price pK = 0 if K = N , or pK = qK+1v̂K+1 otherwise.
The GSP is well known not to be DSIC when users behave as prescribed by the PDC model.
The same result holds also when users behave as prescribed by the APDC model, this
model being a generalization of the PDC model. In order to evaluate the effectiveness of
the GSP, we study the inefficiency of its Nash equilibria, starting from the analysis of PoA.
Since bounds over PoA for the social welfare have already been studied, we focus on the
auctioneer’s revenue, so far unexplored. We state the following results. For the sake of
presentation, we report some proofs of the theoretical results stated in this section and in
the next section in Appendix A.

Lemma 1. Both in the restricted and in the unrestricted case, the PoA of the auctioneer’s
revenue in the GSP when users behave as prescribed by the APDC model is unbounded.

4. Throughout the paper we consider only payments in expectation over the clicks. Cost-per-click payments
can be easily obtained by dividing expected payments by the click trough rate of the ad.
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We now turn our attention to PoS. As aforementioned, Giotis and Karlin (2008) provide
some claims over the upper bounds of PoS both in restricted and unrestricted case, but no
proof is provided. For the sake of completeness, we provide here the proofs.

Lemma 2. In the restricted case, the PoS of the social welfare in the GSP auction when
users behave as prescribed by the APDC model is ≥ K/2.

Lemma 3. In the restricted case, the PoS of the auctioneer’s revenue in the GSP auction
when users behave as prescribed by the APDC model is ≥ K/2.

We now turn our attention to PoS.

Lemma 4. Both in the restricted and in the unrestricted case, the PoS of the social welfare
in the GSP when users behave as prescribed by the APDC model is 1.

Lemma 5. Both in the restricted and in the unrestricted case, the PoS of the auctioneer’s
revenue in the GSP when users behave as prescribed by the APDC model is 0.

The above results show that the GSP auction is largely inefficient also in terms of auc-
tioneer’s revenue.

3.2 Analysis of the PDC-VCG Auction

The PDC model is very similar to the APDC: the difference lies in the fact that ca = 1
for each ad a ∈ A. Payments are calculated according to the rules attaining the VCG
mechanism, thus providing an IR, WBB, DSIC mechanism under the assumption that users
experience ad fatigue due only to the positions of the slots and not to the allocated ads.

We start with the following lemma.

Lemma 6. In the unrestricted case, the PDC-VCG auction may not admit any (even mixed-
strategy) Nash equilibrium when users behave as prescribed by the APDC model.

Instead, in the restricted case in which no agent overbids, the truthful strategy is always
a Nash equilibrium as showed in the following lemma.

Lemma 7. In the restricted case, the PDC-VCG auction always admits a truthful Nash
equilibrium when users behave as prescribed by the APDC model.

Proof. Suppose without loss of generality that the value profile is sorted in non-increasing
order, that is v = (v1, . . . , vN ) with v1 ≥ · · · ≥ vN . By bidding truthfully (i.e., v̂ = v)
the allocation calculated by the PDC-VCG auction is θ̄ = (1, . . . , N). In order to show
that truthful bidding is a Nash equilibrium for the agents even when the actual underlying
behavioral model for the users is the APDC model, we need to prove that no agent has an
incentive to deviate.

Let pcp(a, v̂) denote the per-click payment charged to each agent a by the mechanism,
when the reported types are v̂. We introduce the following symbols:

updca (va, v̂) = CTRpdc
f(v̂)(a)(va − pcpa(v̂)),
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uapdca (va, v̂) = CTRapdc
f(v̂) (a)(va − pcpa(v̂)),

where CTRpdc
θ (a) and CTRapdc

θ (a) represent the click-through rates for ad a in allocation θ
when users behave as prescribed by the PDC and the APCD model, respectively. When no
agent overbids, all the quantities above are non-negative. Furthermore, by the properties of
the PDC-VCG auction, we know that

updca (va,v) ≥ updca (va, v̂) (1)

for all agents a and all reported value profiles v̂. Inequality 1 can also be rewritten as

CTRpdc
θ̄

(a)

CTRpdc
f(v̂)(a)

≥ 1. (2)

Now, suppose that a deviates from his previous truthful bid v̂a = va, and call v̂a the
resulting reported value profile. Since agents do not overbid, a non-truthful bid can only
result in agent a being allocated to a slot b > a. The resulting allocation f(v̂a) is therefore
equal to θ̂, with the only difference that ad a gets moved from position a to position b. We
are interested in showing that this deviation does not pay off, that is

uapdca (va,v) ≥ uapdca (va, v̂a).

To this end, notice that if uapdca (va, v̂a) = 0 the thesis follows immediately. Therefore, we
focus on the case uapdca (va, v̂a) > 0; we have

uapdca (va,v)

uapdca (va, v̂a)
=

CTRapdc
θ̄

(a)

CTRapdc
f(v̂a)(a)

=
CTRpdc

θ̄
(a)
∏a−1
i=1 ci

CTRpdc
f(v̂a)(a)

∏a−1
i=1 ci

∏b−1
i=a+1 ci

=
CTRpdc

θ̄
(a)
∏a
i=1 ci

CTRpdc
f(v̂a)(a)

∏b−1
i=1 ci

.

Since b > a, we have
∏a
i=1 ci ≥

∏b−1
i=1 ci. Furthermore, Inequality 2 guarantees that

CTRpdc
θ̄

(a) ≥ CTRpdc
f(v̂a)(a), so that we conclude

uapdca (va,v)

uapdca (va, v̂a)
≥ 1 ⇐⇒ uapdca (va,v) ≥ uapdca (va, v̂a)

as we wanted to show.

Now, we analyze the inefficiency of the Nash equilibria when they exist. We start from
the analysis of the PoA for the social welfare.

Lemma 8. In the unrestricted case, when a Nash equilibrium exists, the PoA of the social
welfare in the PDC-VCG auction when users behave as prescribed by the APDC model is
unbounded.
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Lemma 9. In the restricted case, the PoA of the social welfare in the PDC-VCG auction
when users behave as prescribed by the APDC model is ≥ K.

We focus on the analysis of the PoA for the auctioneer’s revenue, obtaining similar
results.

Lemma 10. In the unrestricted case, when a Nash equilibrium exists, the PoA of the auc-
tioneer’s revenue in the PDC-VCG auction when users behave as prescribed by the APDC
model is unbounded.

Lemma 11. In the restricted case, the PoA of the auctioneer’s revenue in the PDC-VCG
auction when users behave as prescribed by the APDC model is unbounded.

We now turn our attention to the analysis of PoS.

Lemma 12. In the restricted case, the PoS of the social welfare in the PDC-VCG auction
when users behave as prescribed by the APDC model is ≥ K.

Lemma 13. In the restricted case, the PoS of the auctioneer’s revenue in the PDC-VCG
auction when users behave as prescribed by the APDC model is unbounded.

We leave the analysis of the PoS in the unrestricted case (assuming the equilibrium
exists) open. We now turn our attention to the analysis of PoS.

Lemma 14. Both in the restricted and unrestricted case, the PoS of the social welfare in
the PDC-VCG auction when users behave as prescribed by the APDC model is 1.

Lemma 15. In the unrestricted case, when a Nash equilibrium exists, the PoS of the auc-
tioneer’s revenue in the PDC-VCG auction when users behave as prescribed by the APDC
is 0.

Lemma 16. In the restricted case, the PoS of the auctioneer’s revenue in the PDC-VCG
auction when users behave as prescribed by the APDC model is ≤ 1.

The above results show that the PDC-VCG auction has several drawbacks: a Nash
equilibrium may not exist and when it exists it may be largely inefficient both in terms of
social welfare and auctioneer’s revenue.

4. dominated-ads Algorithm

We present an algorithm meant to reduce the number of ads, while preserving the optimality
of the solution of the social welfare maximization problem. The central observation is
that, under certain circumstances, given two ads a, b with parameters (v̄a, ca) and (v̄b, cb)
respectively, it is possible to establish a priori that, in any optimal allocation a is allocated
above b; whenever this is the case we say that ad a “dominates” ad b. As an example,
consider two ads a and b, satisfying the condition (v̄a > v̄b) ∧ (ca > cb): in accordance
with intuition, a simple exchange argument shows that a dominates b. A weaker sufficient
condition for deciding whether a dominates b is given in Lemma 17.

276



Adopting the Cascade Model in Ad Auctions

Definition 6. Given an allocation problem defined over the set of slots K, we consider a
modified version of such allocation problem in which no ad can be displayed in the first i− 1
slots and λs = 1 for every s ≤ i. Let alloc(i,K) the optimal social welfare of this modified
allocation problem.

Lemma 17. Let λmax = max{λs : s ∈ K}, and let B be a (weak) upper bound of the quantity

B̃ = max
i∈{1,...,K−1}

{λi alloc(i+ 1,K)}. (3)

Furthermore, let D = [0, λmax] × [0, B]. Given two ads a, b with parameters (v̄a, ca) and
(v̄b, cb), consider the affine function wa,b : D → R, defined as

wa,b(x, y) = det

x −y 1
1 v̄b cb
1 v̄a ca

 .

If the minimum of wa,b over D is greater than 0, then a dominates b.

Proof. Without loss of generality, we introduce a fictitious slot, say K + 1, with λK = 0,
representing the case in which an ad is not displayed. By simple calculations, it can be
observed that, given an allocation θ and two allocated ads a, b such that b is allocated above
a (notice that a may be allocated in any possible slot below the slot of b and therefore even
in slot K + 1), swapping a and b leads to an improvement of the social welfare when the
following condition holds:

va + caD + vb caE > vb + cbD + va cbE

where:

D =

 slotθ(a)−1∑
s=slotθ(b)+1

qadθ(s) vadθ(s)Cθ(adθ(s)) Λs

 /
(
Cθ(b) Λslotθ(b)

)
, E =

Cθ(a) Λslotθ(a)

Cθ(b) Λslotθ(b)
.

Notice that both D and E do not depend on the parameters (v, q, c) of a and b.
Ad a will be always swapped with ad b independently of θ (i.e., independently of the

slots in which they are allocated and of how the other ads are allocated) and therefore ad a
dominates ad b, if the above inequality holds for every feasible value of D and E.

More precisely, D is lower bounded by 0 and upper bounded by

λb alloc(slotθ(b) + 1,K) ≤ max
i∈{1...,K−1}

{λi alloc(i+ 1,K)} = B̃;

the value E is lower bounded by 0 and upper bounded by λmax. Rearranging the above
inequality and replacing D with y and E with x, we obtain:

x (vb ca − va cb) + y (ca − cb) + va − vb = wa,b(x, y).

This concludes the proof.
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Algorithm 1 dominated-ads
1: procedure dominated-ads(ads, slots)
2: Determine D, as defined in Lemma 17
3: For each ad a, compute |dom(a)|
4: Discard all ads a having |dom(a)| ≥ K

We will use the notation a ≺ b to denote that ad a dominates ad b, in the sense of
Lemma 17. Note that ≺ defines a partial order over the set of ads. Since wa,b is an affine
function defined on a convex set, it must attain a minimum on one of the vertices of D,
hence the following holds:

Lemma 18. If the four numbers wa,b(0, 0), wa,b(0, B), wa,b(λmax, 0), wa,b(λmax, B) are all
positive, then a ≺ b.

We introduce the following definition.

Definition 7. The set of dominators of an ad a is the set dom(a) = {b ∈ A : b ≺ a}.
The following lemma is central to our algorithm, as it expresses a sufficient condition for

discarding an ad from the problem:

Lemma 19. If |dom(a)| ≥ K, then ad a can be discarded, as it will never be chosen for an
allocation.

This suggests a straightforward algorithm to determine the set of safely deletable ads,
as streamlined in Algorithm 1. Lemma 20 characterizes the complexity of the algorithm.

Lemma 20. The dominated-ads algorithm has a runtime complexity of O(N2+T (N,K)),
where T (N,K) is the runtime complexity of computing D on Line 2, and a memory com-
plexity of O(N +M(N,K)), where M(N,K) is the memory complexity of computing D on
Line 2.

Notice that iterating the algorithm could lead to successive simplifications of the ads set,
as the upper bound B may decrease in successive runs of dominated-ads. However, the
maximum number of iterations is N , since, if no ad has been discarded, then B does not
change and no further ad can be discarded in future iterations.

We show two methods, respectively named const-λ and decouple, for calculating
a “good” upper bound B that is needed in Line 2 in order to determine D. The first
method (const-λ) has a computational complexity of O(NK) time, while decouple runs
in O(N + K logK) time and makes use of the Fast Fourier Transform (FFT) algorithm
(Cooley & Tukey, 1965). Both methods require linear, i.e. O(N +K) = O(N), memory. Of
course, when K is small enough, both algorithms can be run and the smallest upper bound
can be taken as the value of B. Once D has been computed, the algorithm computes the
number of dominating ads, |dom(a)| for all ads a ∈ A (Line 3) and removes all ads having
at least K dominators (Line 4), in accordance with Lemma 19.

The following sections delve into the details of const-λ (Section 4.1) and decouple
(Section 4.2), as well as a fast method to compute |dom(a)| (Section 4.3).
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4.1 const-λ Algorithm

The rationale behind the const-λ algorithm is that an upper bound for alloc(k,K) is the
optimal allocation of the problem where all the λ values are replaced with

λk,max =

{
max{λk, . . . , λK−1} if k < K,

1 otherwise.

This value can be exactly computed in O(NK) time by first sorting ads in decreasing order
in v̄/(1− λk,max c), as described by Kempe and Mahdian (2008).

Lemma 21. The const-λ algorithm has a runtime complexity of O(N logN + NK) and
a memory complexity of O(NK).

4.2 decouple Algorithm

The main idea behind the decouple algorithm is to repeatedly use the rearrangement
inequality in order to upper-bound the value of the social welfare of the optimal allocation,
given the problem instance, as shown in Lemma 22.

Lemma 22. Given a problem instance Γ, we can upper-bound the value of the social welfare
that can be obtained in any valid allocation by the quantity

v̄∗1 + v̄∗2 c
∗
1 λ1 + · · ·+ v̄∗K−k+1 (c∗1 . . . c

∗
K−1) (λ1 . . . λK−1),

where the v̄∗ values represent the v̄ values of the ads, ordered in decreasing order (i.e. v̄∗1 is
the maximum among all the v̄ values); same for the c∗ values.5

Proof. Without loss of generality, assume θ = (1, . . . ,K) is the optimal allocation. Then,
we have:

SW(θ) = v̄1 + v̄2 c1 λ1 + · · ·+ v̄K (c1 . . . cK−1) (λ1 . . . λK−1).

Since
c1 λ1 ≥ (c1 c2) (λ1 λ2) ≥ · · · ≥ (c1 . . . cK−1) (λ1 . . . λK−1),

by the rearrangement inequality (Hardy, Littlewood, & Polya, 1952) we have

SW(θ) ≤ v̄∗1 + v̄∗2 c1 λ1 + · · ·+ v̄∗K (c1 . . . cK−1) (λ1 . . . λK−1).

Now, we have
v̄∗1 ≥ v̄∗2 λ1 ≥ · · · ≥ v̄∗K (λ1 . . . λK−1),

so that by using the rearrangement inequality once more we conclude

SW(θ) ≤ v̄∗1 + v̄∗2 c1 λ1 + · · ·+ v̄∗K (c1 . . . cK−1) (λ1 . . . λK−1)

≤ v̄∗1 + v̄∗2 c
∗
1 λ1 + · · ·+ v̄∗K (c∗1 . . . c

∗
K−1) (λ1 . . . λK−1).

5. To avoid possible misunderstandings, let us notice that the two orders over v̄ and c are taken indepen-
dently. This means that, given ad i with parameters (v̄i, ci), v̄i and ci can be in different positions (or
ranks) of the two respective orders.
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Corollary 1. We have, with the same symbols of Lemma 22:

alloc(k,K) ≤ v̄∗1 + v̄∗2 c
∗
1 λk + · · ·+ v̄∗K (c∗1 . . . c

∗
K−1) (λk . . . λK−1).

For our convenience, we introduce the symbol ubdecouple(k), k ∈ K, defined as

ubdecouple(k) = v̄∗1 + v̄∗2 c
∗
1 λk + · · ·+ v̄∗K (c∗1 . . . c

∗
K−1) (λk . . . λK−1),

so that we can generally write

alloc(k,K) ≤ ubdecouple(k)

for all k ∈ K.
Remark 1. Notice that we can easily compute v̄∗1, . . . , v̄

∗
K in O(K logK + N) time using

a linear selection algorithm—such as the Introselect algorithm (Musser, 1997)—and then
sorting the topmost K values by an efficient sorting algorithm (the same holds for the c∗

values).

Once we have the values of ubdecouple(k) for all k = 1, . . . ,K, we can simply plug them
in Equation 3 obtaining an upper bound for B̃, i.e. a suitable value for B.

We now show that it is possible to compute the values ubdecouple(1), . . . , ubdecouple(K)
in time sub-quadratic in N . We define

ak = v̄∗k (c∗1 . . . c
∗
k−1), bk = λ1 . . . λk−1.

In particular, a1 = v̄∗1 and b1 = 1. Notice that we can assume without loss of generality that
bk 6= 0 for every k ∈ {1, . . . ,K}. We also let

dk = bk ubdecouple(k).

It is easy to prove that the vector d = (dK , . . . , d1) is the (discrete) convolution of vectors
a = (a1, . . . , aK) and b = (bK , . . . , b1). Indeed, for every k ∈ {1, . . . ,K}:

(a ∗ b)k =
k∑
i=1

(a)i (b)k−i+1 =
k∑
i=1

ai bK−k+i

=

k∑
i=1

v̄∗i (c∗1 . . . c
∗
i−1) (λ1 . . . λK−k+i−1)

= bK−k+1 ubdecouple(K − k + 1)

= dK−k+1

= (d)k

where (z)k is the k-th element of a generic vector z. This means that we can determine c
in O(K logK) time using the FFT algorithm (Cooley & Tukey, 1965). Once we have c, it
is trivial to compute ubdecouple(k) for k = 1, . . . ,K in O(K) time. The final complexity for
the algorithm is then O(K logK +N).

Lemma 23. The decouple algorithm has a runtime complexity of O(N + K logK), and
a memory complexity of O(N +K).
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4.3 Fast Dominance Computation

A naïve implementation of Line 3 in Algorithm 1 tests every ad a against all the other ads,
keeping track of the number of dominators of a. This algorithm requires O(N2) time and is
likely to be efficient enough only for instances up to a few thousand ads. As we now show,
it is possible to compute the number of dominators of an ad a in O(logN) amortized time
using the dynamic fractional cascading technique (Mehlhorn & Näher, 1990), leading to an
overall complexity O(N logN).

In order to efficiently compute |dom(a)| for each ad a, we begin with this simple lemma:

Lemma 24. For any fixed (x, y) ∈ D, the order ≺(x,y) over the set of ads, defined as

a ≺(x,y) b ⇐⇒ wa,b(x, y) > 0,

is a total order.6

Proof. We have, by the properties of the determinant:

wa,b(x, y) = det

x −y 1
1 v̄b cb
1 v̄a ca

 = det

 x −y 1
1− cb x v̄b + cb y 0
1− ca x v̄a + ca y 0

 =

= (1− cb x)(v̄a + ca y)− (1− ca x)(v̄b + cb y).

Hence, wa,b(x, y) > 0 if, and only if,

1− cb x
v̄b + cb y

>
1− ca x
v̄a + ca y

.

As we assumed x and y to be fixed parameters, we see that ≺(x,y) defines a total order
over the set of ads.

Lemmas 18 and 24 together prove that the domination partial order, ≺, is the intersection
of the four total orders ≺(0,0), ≺(0,B), ≺(λmax,0) and ≺(λmax,B). This immediately suggests
the idea of working with ranks; in particular, we define ρ(x,y)(a) as the rank of ad a in the
total order ≺(x,y), and introduce the 4-dimensional vector:

rk(a) =


ρ(0,0)(a)

ρ(0,B)(a)

ρ(λmax,0)(a)

ρ(λmax,B)(a)

 .

The condition of Lemma 18 is then equivalent to the following:

Lemma 25. Given two ads a and b, rk(a) < rk(b) iff a ≺ b.

6. We assume a deterministic tie-breaking condition is used to handle the case when wa,b(x, y) = 0. Hence,
from now on we will assume without loss of generality that wa,b(x, y) 6= 0 for all (x, y) ∈ D and a, b ∈ A.
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Here < denotes component-wise comparison. Using Lemma 25, we see that

dom(a) = {b ∈ A : rk(b) < rk(a)}.

In other words, we can cast the problem of counting the number of ads dominating a to a
geometric dominance counting problem in four dimensions. This problem is widely studied
in literature, with many results showing algorithms computing dominance counts for every
point in the point set in O(N poly logN) time. For instance, we could use a 4-dimensional
range tree (Bentley, 1979) to calculate |dom(a)| for every ad a in batch in O(N log4N) time.

To lower the exponent of the log factor, we exploit the structure of the problem a bit
further. We define the two sets:

dom−(a) = {b ∈ A : b ≺ a ∧ cb ≤ ca}
dom+(a) = {b ∈ A : b ≺ a ∧ cb > ca}.

It is trivial to verify that dom−(a) ∪ dom+(a) = dom(a) and dom−(a) ∩ dom+(a) = ∅, i.e.
that dom−(a) and dom+(a) are a partition of dom(a). Hence,

|dom(a)| = |dom−(a)|+ |dom+(a)|.

Notice that
∂

∂y
wa,b(x, y) = ca − cb.

This means that when cb ≤ ca, we have w(a,b)(x, y) ≥ w(a,b)(x, 0), for all (x, y) ∈ D.
Analogously, when cb > ca, we have w(a,b)(x, y) ≥ w(a,b)(x,B) for all (x, y) ∈ D. As a
consequence, once we focus on one of these two cases (i.e., cb ≤ ca or cb > ca), the problem
of counting the number of ads dominating a can be cast to a geometric dominance counting
problem in two dimensions. We introduce the following restricted ranks:

rk−(a) =

(
ρ(0,0)(a)

ρ(λmax,0)(a)

)
, rk+(a) =

(
ρ(0,B)(a)

ρ(λmax,B)(a)

)
.

We formalize the observation above in the next lemma whose proof follows from the above
observation:

Lemma 26. Given two ads a and b:

• b ∈ dom−(a)⇐⇒ rk−(b) < rk−(a);

• b ∈ dom+(a)⇐⇒ rk+(b) < rk+(a).

Assume we have a data structure rt supporting each of the following operations in
O(logN) time:

• rt.insert(v) insert the 2-dimensional point v in the structure; point v is not already
present.

• rt.erase(v) deletes the 2-dimensional point v from the structure; point v is guaran-
teed to be present. Furthermore, after the first call to sc.erase is made, the structure
no longer accepts calls to ds.insert.

282



Adopting the Cascade Model in Ad Auctions

• rt.dominance(v) counts the number of points w in the structure, satisfying w < v.

Such a data structure is well-known in literature. It basically consists of a 2-dimensional
range tree combined with the technique of dynamic fractional cascading (Mehlhorn & Näher,
1990). The rt data structure can be used to compute |dom(a)| for every ad a in batch in
O(N logN) time, as streamlined in Algorithm 2.

Algorithm 2 fast-dominated-ads
1: procedure fast-dominated-ads(ads, slots)
2: Determine D, as defined in Lemma 17
3: rt+ ← new rt
4: rt− ← new rt
5: for each ad a ∈ A do
6: rt−.insert(rk−(a))

7: for each ad a ∈ A, sorted according to decreasing c, do
8: |dom+(a)| ← rt+.dominance(rk+(a))
9: |dom−(a)| ← rt−.dominance(rk−(a))
10: |dom(a)| ← |dom+(a)|+ |dom−(a)|
11: rt+.insert(rk+(a))
12: rt−.erase(rk−(a))

13: Discard all ads a having |dom(a)| ≥ K

Hence, the following lemma holds:

Lemma 27. The fast-dominated-ads algorithm has a runtime complexity of O(N logN+
T (N,K)), where T (N,K) is the runtime complexity of computing D on Line 2, and a mem-
ory complexity of O(N+M(N,K)), where M(N,K) is the memory complexity of computing
D on Line 2.

5. colored-ads Algorithm

We present an algorithm that can determine an optimal allocation in time polynomial in
the number of ads N and exponential in the number of slots K. As K is generally small
(typically ≤ 10), this algorithm is likely to be suitable for real-world applications. The key
insight for the algorithm is that the problem of finding the allocation maximizing the social
welfare can be cast to an instance of the well-known problem of finding a maximal K-vertex
weighted simple path in a undirected graph. Efficient algorithms for the latter problem can,
therefore, be used to solve our problem.

We introduce the definition of a right-aligned allocation.

Definition 8. Given an ordered sequence S : a1, . . . , an of ads of length n ≤ K, we say that
the right-aligned allocation of S is the allocation mapping the ads in S to the last n slots,
in order, leaving the first K − n slots vacant.

Consider the complete undirected graph G having the available ads for vertices; every
simple path π : a1, . . . , an of length n ≤ K in G can be uniquely mapped to the right-
aligned allocation of π, and vice versa. Following this correspondence, we define the value
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of a simple path in G as the social welfare of the corresponding right-aligned allocation. In
order to prove that the problem of finding a maximal K-vertex weighted simple path in G is
equivalent to that of finding an optimal allocation, it is sufficient to prove that there exists
(at least) one optimal allocation leaving no slot vacant, i.e. using all of the K slots. To this
end, we introduce the following lemma.

Lemma 28. In at least one optimal allocation all the available slots are allocated.

Proof. Let θ be any optimal allocation for the problem at hand. If it satisfies the condition
of the lemma, the lemma is trivially true. Otherwise, we show that it is possible to build an
optimal allocation θ∗ from θ, respecting the condition.

Let k∗ the maximum index of any empty slot of θ. If it is the last slot, take any non-
allocated ad, and allocate it to k∗. Such ad must exist because we always assume N ≥ K.
As the social welfare of the new allocation is not less than that of θ, we conclude that the
new allocation is optimal.

If, on the other hand, k∗ 6= K, we act as follows: we move all the ads allocated in
slots k∗ + 1 to K one slot above. This operation does not decrease the social welfare of the
allocation, and at the same time leaves slot K empty. We then operate as in the previous
case, filling slot K with any non-allocated ad.

We repeat this algorithm until no slot is vacant.

The problem of finding a maximal K-vertex weighted simple path in G can be solved
by means of the Color Coding technique (Alon et al., 1994). The basic idea is as follows:
in a single iteration, vertices are assigned one of K random colors drawn with uniform
probability; then, the best path visiting every color exactly once is found using a dynamic
programming approach; finally, this loop is repeated a certain amount of times, depending
on the type of algorithm (randomized or derandomized). We call the resulting algorithm
colored-ads, and show the pseudocode in Algorithm 3.

Algorithm 3 colored-ads
1: procedure colored-ads(ads, slots)
2: repeat eK log 2 times . 50% success probability
3: Assign random colors ∈ {1, . . . ,K} to G’s vertices

(note: each color must be used at least once)

. We now construct a memoization table memo[C], reporting, for each color subset C of
{1, . . . ,K} the maximum value of any simple path visiting colors in C exactly once.

4: memo[∅]← 0
5: P ← powerset of {1, . . . ,K}, sorted by set size
6: for C ∈ P − {∅}, in order do
7: λ̃← λK−|C|+1

8: for each color c ∈ C do
9: for each vertex (ad) a in G of color c do
10: value← v̄a + ca λ̃ ·memo[C − {c}]
11: memo[C]← max{memo[C],value}
12: return memo[{1, . . . ,K}]

We state the following lemma, whose proof directly follows from the properties of the
Color Coding algorithm (Alon et al., 1994).
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Lemma 29. The colored-ads algorithm finds the optimal solution with probability 1 −
e
− restarts

eK , where restarts is the number of random restarts, with a runtime complexity of
O(2K N) per restart and an overall memory complexity of O(2K +N).

It can be easily observed that an exponential number of restarts is necessary to assure a
strictly positive success probability. Furthermore, notice that in the derandomized version,
the algorithm is exact and requires O((2e)KKO(logK)N logN) time when paired with the
derandomization technique presented by Naor, Schulman, and Srinivasan (1995). In terms of
worst-case approximation, the colored-ads algorithm cannot provide a guarantee better
than 1

K as stated in the following lemma.

Lemma 30. The colored-ads algorithm, when executed in the randomized version, pro-
vides a guarantee of 1

K and this is tight.

Proof. It can be easily observed that it always possible to find a 1
K -approximation by placing

the ad with the largest value v in the first slot. As well, it can be easily observed that in
the worst case for all the random restarts all the ads are assigned with the same color and
therefore the allocation retuned by the algorithm is composed by a single ad.

Note that Algorithm 3 is just a simplified, randomized, with a success probability of
50%, and non-parallelized sketch of the algorithm we test in the experimental section of this
paper; also, for the sake of presentation, in Algorithm 3 we only return the social welfare of
the optimal allocation and not the allocation itself. We investigated also the idea of using
1.3K different colors, as suggested by Hüffner, Wernicke, and Zichner (2008), but we found
out that for this particular problem the improvement is negligible.

We conclude this subsection with some remarks about the above algorithm. First, we
remark that, given the nature of the operations involved (mostly arithmetic operations and
accesses to one array), the algorithm proves to be efficient in practice, with only a small
constant hidden in the big-oh notation. Furthermore, it is worth noting that the iterations of
the main loop (Lines 2 to 15) are independent; as such, the algorithm scales well horizontally
in a parallel computing environment. Second, we point out an important economic property
of the algorithm, that makes colored-ads appealing: it allows the design of truthful
mechanisms when paired with VCG-like payments.

Lemma 31. When colored-ads is paired with VCG-like payments, it leads to a DSIC
mechanism in the following versions:

• derandomized;

• randomized in which the number of random restarts is decided before the reporting
phase of the agents;

• anytime randomized in which the time allocated for each random restart is the worst-
case one (i.e., the time required by the longest execution).

Proof. In all the three cases above, colored-ads is maximal-in-its-range. More precisely,
when the algorithm is derandomized, the proof is trivial, since the algorithm always returns
the optimal allocation. When the number of random restarts is fixed a priori, the algorithm
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Algorithm 4 sorted-ads
1: procedure sorted-ads(ads, slots, ≺ads)
2: Sort the ads according to ≺ads, so that ad 1 is the minimum ad w.r.t. the given order

. We now construct a memoization table T [n, k], reporting, for each 1 ≤ n ≤ N and 1 ≤ k ≤ K,
the social welfare of the best allocation that uses only ads n, . . . , N and slots k, . . . ,K (i.e. no
ads get allocated to slots 1, . . . , k − 1 and λi = 1,∀i < k).

3: T [N, k]← v̄N , k = 1, . . . ,K . Base case
4: for n = N − 1 downto 1 do
5: for k = 1, . . . ,K do
6: if k < K then
7: value← v̄n + λk cn T [n+ 1, k + 1]
8: T [n, k]← max{value, T [n+ 1, k]}
9: else
10: T [n, k]← max{v̄n, T [n+ 1,K]}
11: return T [1, 1]

is maximal-in-its-range, as the range is decided independently of the agents’ reports and
the algorithm returns the best allocation among all those available given the range. Finally,
when executed in anytime fashion, in order to preserve the property that the range does not
depend on agents’ reports, it is sufficient to force that the time spent to solve each single
restart is the same and does not depend on the agents’ reports. This can be obtained by
allocating the worst-case execution time to each random restart and, if the execution time
of some random restart terminates prematurely, the algorithm must wait for the remaining
time.

6. sorted-ads Algorithm

While the problem of finding an optimal allocation is difficult when no restriction is posed,
polynomial time algorithms are easy to derive—as we show below—when we restrict the
set of feasible allocations to those respecting a given total order ≺ads defined on the ads
set. This suggests the following simple approximation algorithm: first, T total orders ≺ads,1
, . . . ,≺ads,T over the set of ads are chosen; then, the optimal allocation satisfying ≺ads,i is
computed, for each i; finally, the social welfare of the optimal allocation for the original
unrestricted problem is approximated with the best allocation found over all the T orders.

In order to find the optimal allocation respecting the total order≺ads, we propose a simple
O(NK) time dynamic programming algorithm, which we name sorted-ads, described
in Algorithm 4. The idea behind the algorithm is to find, for each n = 1, . . . , N and
k = 1, . . . ,K, the value T [n, k] of the social welfare of the best allocation for the problem
having An = {1, . . . , n} ⊆ A as ads set and Kk = {k, . . . ,K} ⊆ K as slots set. The values
of T [n, k] can be computed inductively, noticing that the associated subproblems share the
same optimal substructure. As before, in Algorithm 4 we only show how to find the social
welfare of the optimal allocation, and not the allocation itself. Also, for the sake of simplicity,
the algorithm we present uses O(NK) memory, but we remark that it is possible to bring
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the required memory down to O(N + K) = O(N) while letting fast (i.e. O(NK) time)
reconstruction of the optimal allocation, using a technique similar to that one presented by
Hirschberg (1975).

6.1 Memory-Efficient Algorithm

We modify the idea by Hirschberg (1975) to find a O(NK) time, O(N) memory implemen-
tation of sorted-ads. In particular, we need to show that there exists a O(NK) time and
O(N) memory algorithm able to find the least slot k∗, respecting Definition 9.

Definition 9. Slot k is a split-point if there exists an optimal allocation such that slots
1, . . . , k − 1 are occupied only by ads a with a ≤ N/2 and slots k, . . . ,K are occupied only
by ads a with a > N/2.

Conceptually, we scan all the possible values of k, one by one from 1 up until K until
we find the first split-point. Once a tentative value for k∗ has been chosen, it is enough
to test whether the best allocation satisfying the condition in Definition 9 is an optimal
allocation for the original problem. The split-point k breaks the optimal allocation fulfilling
the condition into two natural pieces: the first using only ads in {1, . . . , N/2} and slots
1, . . . , k− 1, and the second piece using ads in {N/2 + 1, . . . , N} and slots k, . . . ,K. We let
the social welfare of the first piece be W1, and that of the second piece be W2; also, we let
C1 be the product of the continuation probabilities of the ads in the first piece. The value
SW of the optimal allocation satisfying the split-point condition is therefore

SW = W1 + Λk−1C1W2.

Since by definition the allocation is optimal, the second piece of the allocation must be
itself an optimal allocation for the problem having A = {N/2 + 1, . . . , N}, K = {k, . . . ,K}.
Notice that we already know how to find W2, for all the possible values of k, in O(NK)
time and O(N) memory. We can therefore treat W2 as a known constant and focus on the
problem of determining the allocation of the first piece maximizing SW. The crucial point
is that we can find the maximum of W1 for each k in dynamic programming. Indeed, the
objective function is the same we would have in the allocation problem in which we have to
allocate ads {1, . . . , N/2} ∪ {X} in slots 1, . . . , k under the constraints:

• v̄X = W2 (notice that W2 is known, while the values cX and λk can be disregarded
not affecting the objective function);

• ad X must be allocated in slot k.

6.2 Economic Properties

We note that, if the total orders used do not depend on the reported types of the agents,
sorted-ads is maximal-in-its-range, leading thus to a truthful mechanism when paired
with VCG-like payments. This is true also when the algorithm is executed on a subset T ′

of the total orders T set to satisfy a given time-limit constraint (the choice of the subset
must be independent of the agents’ reports). Furthermore, the resulting mechanism is
computationally tractable, requiring polynomial time both for finding the allocation and the
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payments. Indeed, the allocation can be found by means of Algorithm 4, that, as discussed
above, requires polynomial compute time, and the payment of agent i can be found by
calling Algorithm 4 to the subproblem in which agent i is removed from the market. We
can state the following lemma whose proof is similar to the proof of Lemma 31.

Lemma 32. The sorted-ads algorithm, when paired with VCG-like payments, leads to a
DSIC mechanism in the following versions:

• the set of orders ≺ad is fixed before the agents report their types;

• the set of orders ≺ad is generated in anytime fashion independently of agents’ reports
and the time allocated for the execution time of the algorithm for each order must be
the same equal to the worst-case time.

6.3 Approximation Guarantees — Constant λ

It is possible to prove a 1/2-approximation ratio for the sorted-ads algorithm in specific
settings, e.g. when all the λ are constant. The proof in the general case, though, is left here
as an open conjecture.

Definition 10. Given a total order ≺ads, we define Θ≺ads as the set of allocations θ where:

• for every a, a′ ∈ θ, slotθ(a) < slotθ(a′) only if a ≺ads a
′ (notice that the constraint is

only over the allocated ads, each non-allocated ad may appear everywhere in ≺ads);

• there are no empty slots before an allocated slot.

Given a ≺ads, the set Θ≺ads constitutes the range of our allocation algorithm.

Definition 11. We define θ∗≺ads
as the optimal allocation (maximizing the social welfare)

among all the allocations in Θ≺ads .

Definition 12. We define θ∗ as the optimal allocation (maximizing the social welfare) among
all the allocations in Θ and ≺∗ads as ≺∗ads= {≺ads: θ

∗
≺ads

= θ∗}.

Definition 13. We define ≺Nads as: for every a, a′ ∈ A, a ≺Nads a′ if and only if va
1−ca ≥

va′
1−ca′

(ties are broken lexicographically).

When λk = 1 for every k, we have ≺Nads ∈≺∗ads for every value of the parameters as shown
by Kempe and Mahdian (2008).

Definition 14. We define ≺Rads as the reverse of ≺Nads.

We introduce a lemma that we use in our main result.

Lemma 33. When λk = 1 for every k, once A is restricted to the ads appearing in θ∗ and
the ads are labeled such that a is the a-th ad in the allocation, then for every a we have:

va
1− ca

≥
K∑
b=a

vb

b−1∏
h=i

ch.
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Proof. The proof is by mathematical induction.

Basis of the induction. The basis of the induction is for slots k and k − 1. We need to
prove that:

vk−1

1− ck−1
≥ vk−1 + ck−1vk. (4)

Equation 4 can be rewritten as:

vk−1

1− ck−1
≥ vk,

that holds since
vk−1

1− ck−1
≥ vk

1− ck
(by definition of ≺Nads) and

vk
1− ck

≥ vk

(by ck ∈ [0, 1]).

Inductive step. We assume that following inequality holds

vi+1

1− ci+1
≥

k∑
j=i+1

vj

j−1∏
h=i+1

ch,

and we want to prove

vai
1− cai

≥
k∑
j=i

vaj

j−1∏
h=i

cah . (5)

Equation 5 can be written as:

vi
1− ci

≥
k∑

j=i+1

vj

j−1∏
h=i+1

ch,

that holds since
vi

1− ci
≥ vi+1

1− ci+1

(by definition of ≺Nads) and
vi+1

1− ci+1
≥

k∑
j=i+1

vj

j−1∏
h=i+1

ch

(by assumption of the inductive step). This completes the proof.

We use the above lemma to derive the bound.
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Theorem 1. When λk = 1 for every k, we have

r =
SW(θ∗≺ads

)

SW(θ∗)
≥ 1

2

for every ≺ads.

Proof. For the sake of presentation, we split the proof in several parts.
Ads ranking. Among all the possible ≺ads, we can safely focus only on ≺Rads given that

this order is the worst for our problem. This property follows from the results discussed
by Kempe and Mahdian (2008). More precisely, the authors show that, given any allocation
θ, for every a, a′ if slotθ(a) < slotθ(a′) and va

1−ca >
va′

1−ca′
then switching a with a′ never

reduces the social welfare of the allocation. Therefore, the social welfare with ≺Rads is the
minimum w.r.t. that one with all the ≺ads. (Interestingly, when ≺ads 6∈≺∗ads, θ∗≺ads

may
prescribe that the number of allocated ads is strictly smaller than the number of ads allocated
in θ∗.)

Allocations set. Given ≺Rads, we use a lower bound over the value θ∗≺Rads
focusing only

on a specific subset of allocations defined below. This subset may not contain the optimal
allocation θ∗≺Rads

and therefore we obtain a lower bound for r that may be not tight. However,
in the following, we complete the result showing that the bound is tight. The allocations we
focus on are of the form: 〈z, z − 1, . . . , 1〉 with z ∈ {1, . . . ,K} where the ads are indexed on
the basis on ≺Nads (i.e., 1 ≺Nads 2 ≺Nads . . .). We study the value of r for each possible value of
z under the constraints that, given z, it holds:

z∑
i=1

vi z∏
j=i+1

cj

 ≥ z+1∑
i=1

vi z+1∏
j=i+1

cj

 (6)

z∑
i=1

vi z∏
j=i+1

cj

 ≥ h∑
i=1

vi h∏
j=i+1

cj

 ∀h : 1 ≤ h < z (7)

with the exception that when z = K, only Constraints (7) are required. We notice that,
for every auction instance, there always exists a value of z such that the above constraints
hold. This value can be found by starting from z = 1 and increasing it until the constraints
are satisfied.

Ratio. Once z is fixed, a lower bound over r can be obtained by using the following
upper bound over the value of θ∗: we compute θ∗ as if K = N . Thus, the ratio r is:

r ≥

z∑
i=1

(
vi

z∏
j=i+1

cj

)
N∑
i=1

(
vi

i−1∏
j=1

cj

) .
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Bound with z = 1. In this case, we have:

z = 1

v1 ≥ v2 + c2v1 (8)

r ≥ v1

N∑
i=1

(
vi

i−1∏
j=1

cj

) (9)

by applying Lemma 33 and Equation 8, we can write r as:

r ≥ v1

N∑
i=1

(
vi

i−1∏
j=1

cj

) ≥ v1

v1 + c1
v2

1− c2

≥ v1

v1 + c1v1
.

The minimization of v1
v1+c1v1

can be achieved by maximizing c1 (i.e., when c1 = 1), obtaining
r ≥ 1

2 .
Bound with K > z > 1. In this case, we can write r as:

r ≥

z∑
i=1

(
vi

z∏
j=i+1

cj

)
N∑
i=1

(
vi

i−1∏
j=1

cj

) =

z∑
i=1

(
vi

z∏
j=i+1

cj

)
z∑
i=1

(
vi

i−1∏
j=1

cj

)
+

z∏
j=1

cj
N∑

i=z+1

(
vi

i−1∏
j=z+1

cj

) ,

by applying Lemma 33, we have:

r ≥

z∑
i=1

(
vi

z∏
j=i+1

cj

)
z∑
i=1

(
vi

i−1∏
j=1

cj

)
+

z∏
j=1

cj
N∑

i=z+1

(
vi

i−1∏
j=z+1

cj

) ≥
z∑
i=1

(
vi

z∏
j=i+1

cj

)
z∑
i=1

(
vi

i−1∏
j=1

cj

)
+

z∏
j=1

cj
vz+1

1− cz+1

,

by using Equation 6 we have:

r ≥

z∑
i=1

(
vi

z∏
j=i+1

cj

)
z∑
i=1

(
vi

i−1∏
j=1

cj

)
+

z∏
j=1

cj
vz+1

1− cz+1

≥

z∑
i=1

(
vi

z∏
j=i+1

cj

)
z∑
i=1

(
vi

i−1∏
j=1

cj

)
+

z∏
j=1

cj
z∑
i=1

(
vi

z∏
j=i+1

cj

) .
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We derive r w.r.t. vz and we show that the derivative is always positive:

∂r

∂vz
=

z∑
i=1

(
vi

i−1∏
j=1

cj

)
−
z−1∏
j=1

cj
z∑
i=1

(
vi

z∏
j=i+1

cj

)
(

z∑
i=1

(
vi

i−1∏
j=1

cj

)
+

z∏
j=1

cj
z∑
i=1

(
vi

z∏
j=i+1

cj

))2

=

z∑
i=1

(
vi

i−1∏
j=1

cj

(
1−

z−1∏
j=i

cj
z∏

j=i+1
cj

))
(

z∑
i=1

(
vi

i−1∏
j=1

cj

)
+

z∏
j=1

cj
z∑
i=1

(
vi

z∏
j=i+1

cj

))2 ≥ 0,

given that

(
1−

z−1∏
j=i

cj
z∏

j=i+1
cj

)
≥ 0. Thus, we minimize r by minimizing vz. Due to

Constraint (7) with h = z − 1, the minimum feasible value of vz is:

vz = (1− cz)

z−1∑
i=1

vi z−1∏
j=i+1

cj

 ,

substituting vz in r we have:

r ≥

z−1∑
i=1

(
vi

z−1∏
j=i+1

cj

)
z−1∑
i=1

(
vi

i−1∏
j=1

cj

)
+
z−1∏
j=1

cj
z−1∑
i=1

(
vi

z−1∏
j=i+1

cj

) .

By applying iteratively the above steps for vh with h from h = z − 2 to h = 2, we obtain
the same bound of the case with z = 1:

r ≥ v1

v1 + c1v1
≥ 1

2
.

Bound with z = K. Differently from the previous cases, here we do not use an upper
bound over θ∗, but the exact value, and for the lower bound over θ∗≺Rads

we consider only the
ads appearing in θ∗. In this case, we have:

r ≥

K∑
i=1

(
vi

K∏
j=i+1

cj

)
K∑
i=1

(
vi

i−1∏
j=1

cj

) ,
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we derive r w.r.t. vK , obtaining:

∂r

∂vK
=

K∑
i=1

(
vi

i−1∏
j=1

cj

(
1−

K−1∏
j=i

cj
K∏

j=i+1
cj

))
(

K∑
i=1

(
vi

i−1∏
j=1

cj

))2 ≥ 0,

we minimize r by minimizing vK as:

vK = (1− cK)

K−1∑
i=1

vi K−1∏
j=i+1

cj

 ,

obtaining:

r ≥

K−1∑
i=1

(
vi

K−1∏
j=i+1

cj

)
K−1∑
i=1

(
vi

i−1∏
j=1

cj

(
1 + (1− cK)ci

K−1∏
j=i+1

c2
j

)) .
By applying iteratively the above steps for vh with h from h = K−2 to h = 2—the derivative
is always positive—, we obtain:

r ≥ v1

v1 + v1c1

(
1−

K∏
i=2

cj

) =
1

1 + c1

(
1−

K∏
i=2

cj

) ,

r is minimized when c1 = 1 and
K∏
i=2

cj = 0, obtaining r ≥ 1
2 .

The extension of the above result to the case in which λk = λ for every k is straightfor-
ward. Indeed, it is sufficient to observe that in this case we can redefine the continuation
probabilities as c′i = ci λ for every i and subsequently redefine λk = 1 for every k. Finally,
the proof of the theorem above provides an example that proves the following lemma.

Lemma 34. When the orders ≺ad are chosen randomly, the approximation bound of 1
2 is

tight.

6.4 Approximation Guarantees — Small K

The extension of the proof of Theorem 1 to the general case in which λk are arbitrary in (0, 1)
and K can be any is not straightforward. More precisely, the proof is trivial when K = 2.
When K = 3, the proof can be obtained by enumerating a large number of conditions. The
crucial issue is that these conditions rise exponentially in K, and it seems no condition can
be safely discarded. This makes the derivation of a proof when K can be any difficult,
requiring one to enumerate an intractable number of conditions. Nevertheless, we believe
the following conjecture to hold in general:
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Definition 15. Given a total order ≺ads, let Ψ≺ads be the set of all ψ > 0 such that, for any
valid allocation θ ∈ Θ, there exists θ≺ads ∈ Θ≺ads with the property that val(θ≺ads) ≥ ψ val(θ).

Conjecture 1. 1
2 ∈ Ψ≺ads for all ≺ads.

Notice that Conjecture 1 is equivalent to the fact that the sorted-ads algorithm always
returns an 1

2 -approximation of the social welfare of the optimal allocation for the problem at
hand for any total order. We provide some arguments supporting our conjecture. By using
global optimization tools, able to return the optimal solution even of non-convex non-linear
optimization problems within a given finite accuracy (set, in our case, to 10−4), it is possible
to verify the conjecture above for a large number of significant cases. More precisely, we
consider the following feasibility problem:

P≺ads(K,π, ψ) :



Variables:
v̄1, . . . , v̄K (ad parameters)
c1, . . . , cK (ad parameters)
λ1, . . . , λK−1 (slot parameters)

Constraints:
1 Permutation π of {1, . . . , N} coincides with ≺ads
2 val(θ∗) ≥ val(θ), ∀θ ∈ Θ
3 ψ val(θ∗) > val(θ), ∀θ ∈ Θ≺ads

(10)

where, without loss of generality:

• we set N = K;

• θ∗ can be taken as the identity allocation, i.e. the allocation mapping ad i in slot i for
each i = 1, . . . ,K.

We state the following lemma.

Lemma 35. If P≺ads(K,π, ψ) is infeasible for all permutations π of {1, . . . ,K}, then ψ ∈
Ψ≺ads for the given number of available slots K.

Proof. By contradiction, suppose there exists a problem instance where the best allocation θ∗

has a value val(θ∗) > (1/ψ)val(θ∗≺ads
), where θ∗≺ads

is the best allocation respecting the given
order ≺ads. Let π̃ be the permutation induced by ≺ads. Since P≺ads(K,π, ψ) is infeasible
for all π, it is infeasible for π̃ as well. In other words, it is impossible to assign values to
the variables in such a way that constraints 1 , 2 and 3 all hold at the same time. This
means that for any possible assignment of values that satisfies 1 and 2 , there always
exists θ satisfying π̃ such that val(θ) ≥ ψ val(θ∗). Because θ respects π, it is θ ∈ Θ≺ads ,
and hence val(θ∗≺ads

) ≥ val(θ) ≥ ψ val(θ∗). This contradicts our hypothesis, showing that
ψ ∈ Ψ≺ads .

Remark 2. In order to prove that ψ ∈ Ψ≺ads for all ≺ads, one can drop constraint 1 in
(10).
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Remark 3. Our method requires the solution of K! non-linear optimization problems, each
having ≈ K! + 2K constraints and 3K − 1 variables. As such, it becomes impractical even
for very modest numbers, such as K = 7.

Our experimental verification of the conjecture above shows the following results:7

• when 1 ≤ K ≤ 4, we observe 1
2.1 ∈ Ψ≺ads for all ≺ads, showing that, for every given

total order, sorted-ads returns a solution with an approximation ratio of at least 1
2.1 ;

the need for using 1
2.1 in place of 1

2 is due to accuracy issues of the global optimization
solver: when 1

2 is used, the solver requires an extremely long time; by the way, no case
with an approximation ratio < 1

2 has been found;

• when K = 5, we observe 1
2.1 ∈ Ψ≺cads

, where ≺cads represents any total order of ads
respecting a ≺cads b =⇒ ca ≥ cb; this shows that for such total order sorted-ads
returns a solution with an approximation ratio of at least 1

2.1 (by the way, no case with
an approximation ratio < 1

2 has been found); our experimental analysis is limited only
to total order ≺cads due to computational issues: global optimization tools are very fast
with ≺cads thanks to the presence of additional constraints that speedup the resolution
process, while they require an extremely long time with the other total orders, not
allowing us to provide a complete verification of the claim with these total orders in a
reasonable time (by the way, even with total orders different from ≺cads no case with
approximation ratio < 1

2 has been found);

• when K = 6, we observe 1
3 ∈ Ψ≺cads

, showing that, for such total order, sorted-ads
returns a solution with an approximation ratio of at least 1

3 (by the way, no case with
an approximation ratio < 1

2 has been found); the need for using 1
3 in place of 1

2 is due
to computational issues, for the same reason we limit the analysis to the total order
≺cads.

• when K ≥ 7, global optimization tools require excessively long computation times and
therefore they cannot be used unless exploiting a massive parallelization.

7. Experimental Evaluation

For a better comparison of the results, we adopt the same experimental setting used by Gatti
and Rocco (2013). The experimental setting is based on Yahoo! Webscope A3 dataset. Each
bid is drawn from a truncated Gaussian distribution, where the mean and standard deviation
are taken from the dataset, while quality is drawn from a beta distribution. The prominence
values Λs for the first 10 slots are {1.0, 0.71, 0.56, 0.53, 0.49, 0.47, 0.44, 0.44, 0.43, 0.43} and
they were estimated from the dataset by means of least squares method. Instead, the
values of ca cannot be estimated from the dataset, since the dataset does not provide any
information on the displayed allocations, but only information on the single ads. In practice,
this does not allow one to estimate how an ad can influence the CTR of the ads displayed
below. Thus, we use synthetic values of c sampling uniformly from [0, 1]. Let us notice
that Craswell et al. (2008) propose to adopt c = 1 − q. However, in this case, every c
has a value very close to 1 and thus the APDC model is very similar to the PDC model.

7. In our experimental analysis we used the BARON solver (Sahinidis, 2014).
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Empirically, the approximation ratios obtained with our experimental setting are worse
than those obtained with the setting proposed by Craswell et al.. Furthermore, we consider
two scenarios, one having K = 5 and one having K = 10. In both cases we let N ∈
{50, 60, . . . , 100} ∪ {200, 300, . . . , 1000}. For each pair (K,N), 20 instances were generated.
The implementation of our algorithms is in the C++11 language. We ran the algorithms on
the OSX 10.10.3 operating system. The main memory is a 16GB 1600MHz DDR3 RAM,
while the processor is an Intel Core i7-4850HQ CPU. The source is compiled by GNU g++
version 4.9.1. Parallelization is achieved by using OpenMP version 4.0.

7.1 dominated-ads Algorithm

We study the average number of ads that survive dominated-ads in Figure 1. In addition
to the average, the figure also shows the boxplot of the 20 repetitions for each (N,K) pair.8

The upper-bounding strategy needed in Lemma 17 is implemented using a O(NK) time
algorithm.
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Figure 1: Average number of ads after run-
ning the dominated-ads algo-
rithm.
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Figure 2: Average dominated-ads running
time (seconds). This is independent
of K and grows as ≈ 1.2 · 10−8N2

(R2 > 0.99).

Notice that the number of removed ads is already considerable when N is small (e.g.,
N ≈ 50), and that the prune ratio increases dramatically as N grows (for instance, the
prune ratio is approximately 96% on average when N = 1,000 and K = 5). Experiments
show that the number of surviving ads is of the form Ñ = A+B · logN for suitable values
of A and B. In Figure 3, the boxplots of the number of ads surviving dominated-ads and
of the prune ratio are reported.9,10 They show the high statistical significance of the results,
all the boxplots presenting a very strict range, outliers included.

8. A boxplot is composed of a box and whiskers. The box specifies the first quartile (Q1), the median, and
the third quartile (Q3). The distance between Q1 and Q3 is called the interquartile range (IQR). The
upper whisker extends to last datum less than Q3 + 1.5 IQR. Similarly, the lower whisker extends to
the first datum greater than Q1 − 1.5 IQR. Beyond the whiskers, data are considered outliers and are
plotted as individual points.

9. For K = 5, we have A ≈ −6.1, B ≈ 5.9 and R2 > 0.98, where R2 is the coefficient of determination of
the fit.

10. For K = 10, we have A ≈ −16.9, B ≈ 10.9 and R2 > 0.98.
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In Figure 2 we report the average and the boxplot of the running time for dominated-
ads. The graph shows that the running time depends quadratically on the original problem
size N , but it remains negligible (shorter than 20 milliseconds) even when N = 1,000. These
results are also confirmed by the boxplots reported in Figure 3, where the ranges of all the
boxplots are very strict.
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Figure 3: Boxplots of the experimental results of dominated-ads. The average value is
drawn as a dashed green line, while the median as an orange solid line.

7.2 colored-ads Algorithm

Figure 4 shows the average and the boxplot of the running time for colored-ads, imple-
mented in its randomized version. The number of iterations is set to eK log 2, assuring to
have a probability of at least 50% of finding the optimal allocation. The algorithm is run on
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the reduced instances produced by dominated-ads. As a result of the shrinking process,
we point out that the running times for N = 50 and N = 1,000 are comparable. We also
remark that, in order for colored-ads to be applicable in real-time contexts when K = 10,
some sort of hardware scaling is necessary, as a running time of ≈ 0.5 seconds per instance is
likely to be too expensive for many practical applications. When K = 5, though, no scaling
is necessary, and the algorithm proves to be extremely efficient.
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Figure 4: Average colored-ads running time (seconds, eK log 2 runs).

Furthermore, we experimentally investigate the approximation ratio of colored-ads
as the number of random restarts varies. The social welfare of the optimal allocations is
computed by using an exponential branch-and-bound algorithm, similar to that of Gatti
and Rocco (2013). Experimental results are reported in Figure 5. It can be observed that
with K = 10 even the minimum approximation ratio achieved is larger than 0.98, requiring
a running time that is negligible for a number of recolorings smaller than 2,000. When the
number of random restarts is exponential (consider that eK log 2 is larger than 10, 000) the
minimum approximation ratio is larger than 0.999.This shows that colored-ads can be
successfully applied in real-wold settings with a small number of recolorings.

7.3 sorted-ads Algorithm

In Figure 6 we study the approximation ratio of sorted-ads. For each problem instance
shrunk by dominated-ads, we generate T = 2K3 random orders, and use sorted-ads
to approximate the optimal allocation. Surprisingly, even though the number of iterations
is relatively low, approximation ratios demonstrate to be very high, with values > 97% in
the worst case, with both medians and means always > 99%. In Figure 7 we report the
corresponding running times. These are in the order of a handful of milliseconds (one order of
magnitude smaller than the running time of colored-ads when run for a sub-exponential
number of random restarts), thus making sorted-ads suitable in real-time contexts even
for a large number of ads.
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Figure 5: Approximation ratio and running time of colored-ads when run for a sub-
exponential number of iterations. The standard deviation σ of the outcomes is
computed for each fixed number of restarts.
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Figure 7: Average sorted-ads running
time (seconds, T = 2K3 orders).

In Figure 8, we report the boxplots related to the above experimental results. They show
that the range is very strict, and therefore the standard deviation is extremely small. It can
be observed that the running time required by the execution of dominated-ads together
with sorted-ads in the worst case for N = 1, 000 is less than 20 milliseconds, with an
approximation ratio in the worst case larger than 0.98. Summarily, sorted-ads provides
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an empirical approximation ratio slightly smaller than that of colored-ads, but it requires
less running time.
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Figure 8: Boxplots of the results of sorted-ads.

7.4 Discussion

We compare here the proposed algorithms in terms of theoretical and empirical properties.
A brief summary is provided in Table 2.

Approximation guarantees. colored-ads does not provide any theoretical guarantee
over the worst-case approximation better than 1

K . When colored-ads is executed with
an exponential number of restarts, the probability to find the optimal solution is strictly
larger than 0, while when the number of restarts is sub-exponential the probability goes
to zero in K (however, it is not negligible with K = 10 and 2, 000 restarts, being about
9%). When derandomized, colored-ads is the most efficient known algorithm finding
the optimum allocation within the APDC model. Instead, sorted-ads provides some
guarantees in terms of approximation in the worst case, while the probability of finding
the optimal solution is negligible. The empirical approximation of the algorithms with
K = 10, N = 1, 000 is > 0.999 on average for colored-ads with exponential restarts,
0.997 on average for colored-ads with polynomial restarts (precisely, 2, 000 restarts) and
0.990 on average for sorted-ads (precisely, 2, 000 restarts).

Running time. In colored-ads, the asymptotic running time needed for each restart is
exponential inK (in terms of both time and memory), while in sorted-ads is polynomial in
K (all the algorithms are polynomial inN). The actual running times of the three algorithms
with K = 10, N = 1, 000 are: about 0.5 seconds to have 50% success probability with
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colored-ads, about 0.05 seconds with a polynomial number of restarts with colored-
ads (with 2, 000 restarts), about 0.005 seconds with sorted-ads (with 2, 000 restarts).

Truthfulness. All the algorithms are truthful when executed with a given number of
restarts and even when executed in an anytime fashion.

Summary. The choice of the algorithm to adopt strictly depends on the available tech-
nology. Our recommendation is that, with the current technology, the sorted-ads algo-
rithm should be adopted. It provides theoretical guarantees that make the performance
of the algorithm robust even in non-average cases, its average performance is close to that
of colored-ads, and its running time is extremely low. Considering the huge number of
simultaneous queries a search engine has to manage, we believe that requiring a very low
running time is crucial. However, we envision that in the future the growth in available
computing power will make the computational cost of the derandomized colored-ads al-
gorithm affordable. In this case, this latter approach guarantees that the best allocation is
always found.

Algorithm colored-ads
exp(K) restarts

colored-ads
poly(K) restarts

sorted-ads
poly(K) restarts

Theoretical
approximation

guarantee

1

K

1

K

1

2
in special cases

(numerical)
1

2
up to K = 5

(numerical)
1

3
up to K = 6

(conjectured)
1

2

Empirical
approximation with
K = 10, N = 1, 000

> 0.999 on average 0.997 on average
(2,000 restarts)

0.990 on average
(2,000 restarts)

Theoretical bound on
optimal solution

probability

1− e
− restarts

eK

(50% with eK log 2
restarts)

1− e
− restarts

eK

(9% with K = 10
and 2,000 restarts)

1− (N −K)!

N !
(∼ 0% with K = 10, N = 1,000

and 2,000 restarts)

Asymptotic running
time restarts · 2K restarts · 2K restarts · poly(K,N)

Actual running time
with K = 10, N = 1,000

about 0.5 seconds
(eK log 2 restarts)

about 0.05 seconds
(2,000 restarts)

about 0.005 seconds
(2,000 restarts)

Anytime truthfulness yes yes yes

Table 2: A comparison of the theoretical and empirical properties of the proposed algo-
rithms.

8. Conclusions and Future Work

In this paper, we provide several contributions about the ad/position dependent cascade
model for ad auctions introduced by Kempe and Mahdian (2008). This user model is
more accurate than the separable model that is currently used. However, it is not know
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whether there is an efficient algorithm for the winner determination problem and no (even
exponential) algorithm suitable for real-world applications is known. Initially, we study
the inefficiency of the GSP auction—currently adopted for sponsored search auctions—
and the PDC-VCG auction—currently adopted for contextual advertising—with respect
to the APDC-VCG auction. We analyze upper bounds over the PoA and PoS both of
the social welfare and the auctioneer’s revenue. Our results show that the inefficiency is
in most cases unbounded and that the dispersion over the equilibria is extremely large,
suggesting that the GSP auction, as well as the PDC-VCG auction, presents severe limits.
Subsequently, we provide three algorithms and we experimentally evaluate them with a
real-world dataset. Our first algorithm reduces the size of the instances, discarding ads
that surely will not be allocated in the optimal allocation. Empirically, the number of non-
discarded ads is logarithmic. Our second algorithm finds the optimal allocation with high
probability, requiring a short time (less than 1 millisecond when K = 5 even with 1,000 ads),
but too long for real-time applications when K = 10. Our third algorithm approximates the
optimal allocation in very short time (less than 5 milliseconds even with 1,000 ads) providing
very good approximations on average (>0.99). This shows that the ad/dependent cascade
model can be effectively used in practice. Furthermore, we prove that our approximation
algorithm has a tight theoretical bound of 1/2 in restricted domains and we conjecture that
the bound holds in general settings.

In the future, we will extend our analysis and our algorithms to models in which there
is a contextual graph among the ads, and in which there are multiple slates. Furthermore,
we will explore novel advertising scenarios, such as, e.g., mobile advertising.
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Appendix A. Missing Proofs

Lemma 1. Both in the restricted and in the unrestricted case, the PoA of the auctioneer’s
revenue in the GSP when users behave as prescribed by the APDC model is unbounded.

Proof. Consider a problem with N > K ≥ 2 having:
• v1 = 1, v2 = . . . = vN = 1− ε,
• q1 = . . . = qN = 1,
• c1 = 0, c2 = . . . = cN = 1,
• λ1 = . . . = λK−1 = 1,
• v̂1 = 1, v̂2 = . . . = v̂N = 0.

The allocation mapping ad i to slot i for each i = 1, . . . ,K is optimal for the GSP. The
revenue of the auctioneer is 0, each agent being charged a payment of 0. Furthermore, the
above strategy profile is a Nash equilibrium, as the first agent obviously has no incentive in
decreasing her reported type, while each other agent can be allocated in the first slot only
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bidding a value larger than or equal to 1, leading to a payment of 1 > 1−ε, hence generating
a strictly negative utility. The APDC-VCG auction admits an optimal allocation featuring
ad 1 in slot K. In this case, agent 1 is charged a payment 1 − ε, leading the auctioneer to
have a strictly positive revenue. This concludes the proof.

Lemma 2. In the restricted case, the PoS of the social welfare in the GSP auction when
users behave as prescribed by the APDC model is ≥ K/2.
Proof. Consider a problem with N = K ≥ 3 having:
• v1 = . . . = vN = 1,
• q1 = . . . = qN = 1,
• c1 = 0, c2 = . . . = cN = 1,
• λ1 = . . . = λK−1 = 1.

We need to characterize all Nash equilibria of the GSP auction when the correct externality
model is that provided by the APDC model. We assume w.l.o.g. a tie-breaking mechanism
breaking ties in favor of the auctioneer with the lowest index. We split the analysis into
cases:

• v̂1 is the maximum among {v̂1, . . . , v̂N}. By the tie-breaking rule, this means that ad
1 is assigned to slot 1. Now, if an equilibrium exists, v̂adθ(2) ≤ v1 = 1 (otherwise, agent
1 would be better off lowering their bid to the point where they get assigned to the
last slot). But this means that, if a Nash equilibrium for this case exists, the revenue
of the system is ≤ v̂adθ(2) ≤ 1, since c1 = 0. In other words, whatever the equilibrium,
the PoS, in this case, is not smaller than K.

• v̂1 is (strictly) the second maximum among the bids, i.e. there exists exactly one bid
(w.l.o.g. that of agent 2) such that v̂2 > v̂1. Iterating the reasoning above, we conclude
that v̂1 ≤ 1 and v̂adθ(3) ≤ 1. Therefore, in this case, the equilibrium, if it exists, has
a PoS on the social welfare not smaller than K/2. Unlike the previous case, we prove
that such equilibrium exists. Indeed, consider the case where v̂2 = 2 and all other bids
are 1. All agents have a utility equal to 0, and it is easy to verify that nobody has an
incentive to deviate from the profile.

• v̂1 is (strictly) neither the first nor the second maximum among the bids, i.e. there
exist at least two distinct bids (w.l.o.g., e.g. that of agent 2 and agent 3 respectively)
such that v̂2 ≥ v̂3 > v̂1. The utility of agent 2 is u2 ≤ 1− v̂3. However, by bidding a
value close enough (yet greater than) v̂1, agent 2 would increase their utility by at least
v̂3 − v̂1 > 0. This means that there cannot be any Nash-compatible bidding strategy
in which agent 1 is assigned to a slot lower than the second.

The analysis above shows that the PoS on the social welfare is ≥ K/2.

Lemma 3. In the restricted case, the PoS of the auctioneer’s revenue in the GSP auction
when users behave as prescribed by the APDC model is ≥ K/2.
Proof. The thesis follows from the proof of Lemma 2.

Lemma 4. Both in the restricted and in the unrestricted case, the PoS of the social welfare
in the GSP when users behave as prescribed by the APDC model is 1.
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Proof. Trivially, by definition of PoS over the social welfare, PoS is always larger than or
equal to 1. In order to show that PoS may be equal to 1, it is enough to show that in at
least one circumstance the allocation of GSP and APDC-VCG auction coincide. To this
end, consider a problem with N > K ≥ 2 having:
• v1 = . . . = vN = 1,
• q1 = . . . = qN = 1,
• c1 = . . . = cN = 1,
• λ1 = . . . = λK−1 = 1,
• v̂1 = . . . = v̂N = 1.

It is easy to see that the allocation mapping ad i to slot i for each i = 1, . . . ,K is optimal
with both the mechanisms. Furthermore, it is a Nash equilibrium in the GSP, since each
agent whose ad is displayed evaluates the allocation 1, pays 1 to the mechanism, and thus
has a utility of 0, while all the other agents have a utility of 0. It is straightforward to see
that no agent benefits from misreporting their true type. This concludes the proof.

Lemma 5. Both in the restricted and in the unrestricted case, the PoS of the auctioneer’s
revenue in the GSP when users behave as prescribed by the APDC model is 0.

Proof. Consider a problem with N = K = 2 having:
• v1 = 1, v2 = 1/3,
• q1 = q2 = 1,
• c1 = 1, c2 = 1/2,
• λ1 = 1,
• v̂1 = 1, v̂2 = 1/3.

The GSP allocates ad 1 before ad 2, with a revenue of 1/3. Notice that the above strategy
profile constitutes a Nash equilibrium, as agent 1 can only decrease her utility from 2/3 to
1/2 when ad 1 is allocated below ad 2, while agent 2 can only decrease her utility from
1/3 to −2/3 if ad 2 is allocated in the first slot. While the APDC-VCG auction allocates
ad 1 before ad 2 as well, the revenue for the system is 0, since agent 2 is not charged any
payment (not being subject to competition for the second slot), and agent 1 is charged
v2 − λ1c1v2 = 0. This concludes the proof.

Lemma 6. In the unrestricted case, the PDC-VCG auction may not admit any (even mixed-
strategy) Nash equilibrium when users behave as prescribed by the APDC model.

Proof. Consider a problem with N = K ≥ 2 having:
• v1 = . . . = vN = 1,
• q1 = . . . = qN = 1,
• c1 = . . . = cN = 1/2,
• λ1 = . . . = λK−1 = 1.

It can be observed that each agent is charged a payment of 0 independently of the reported
values v̂i. This is due to the fact that N = K and λs = 1 for every s. However, each agent
aims at having their ad displayed in the first position. Thus, given any profile v̂−i, agent i
will bid ε+ maxj 6=i{v̂j}. This shows that the agents keep increasing their bids and therefore
no equilibrium exists. Notice that the non-existence of a mixed-strategy equilibrium is due
to the fact that the game is not finite, but the set of actions is [0,+∞).
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Lemma 8. In the unrestricted case, when a Nash equilibrium exists, the PoA of the social
welfare in the PDC-VCG auction when users behave as prescribed by the APDC model is
unbounded.

Proof. Consider a problem with N = K = 2 having:
• v1 = 0, v2 = 1,
• q1 = q2 = 1,
• c1 = 0, c2 = 1,
• λ1 = 1/2,
• v̂1 = 4, v̂2 = 0.

The utilities for the agents are both 0 in the PDC-VCG auction. The PDC-VCG auction
allocates ad 1 before ad 2, as q1v̂1 + λ1q2v̂2 > q2v̂2 + λ1q1v̂1. The above strategy profile is a
Nash equilibrium, as agent 1 does not gain more by reducing her bid, while, if agent 2 made
any bid > 4, her utility would be v̄2− (1− λ1)q1v̂1 < 0. The social welfare produced by the
PDC-VCG auction is 0. On the other hand, the APDC-VCG auction allocates ad 2 before
ad 1, producing a strictly positive social welfare. This concludes the proof.

Lemma 9. In the restricted case, the PoA of the social welfare in the PDC-VCG auction
when users behave as prescribed by the APDC model is ≥ K.

Proof. Consider a problem with N > K ≥ 2 having:
• v1 = . . . = vN = 1,
• q1 = . . . = qN = 1,
• c1 = 0, c2 = . . . = cN = 1,
• λ1 = . . . = λK−1 = 1,
• v̂1 = 1, v̂2 = . . . = v̂N = 0.

The allocation mapping ad i to slot i for each i = 1, . . . ,K is optimal for the PDC-VCG
auction, resulting in a revenue of 1. Under the assumption that ties are broken lexicograph-
ically, this strategy profile is also a Nash equilibrium. Indeed, agent 1 has a utility of 1
and cannot improve it; agents i with i ≥ 2 have a utility of 0 since their value from the
allocation is zero and their payments are zero. They cannot improve their utility. Every
optimal allocation for APDC-VCG auction allocates ad 1 either in slot K or it does not
display such an ad, resulting in a payment of K. This concludes the proof.

Lemma 10. In the unrestricted case, when a Nash equilibrium exists, the PoA of the auc-
tioneer’s revenue in the PDC-VCG auction when users behave as prescribed by the APDC
model is unbounded.

Proof. Consider a problem with N = K ≥ 2 having:
• v1 = 1, v2 = . . . = vN = 1/2− ε,
• q1 = . . . = qN = 1,
• c1 = 0, c2 = . . . = cN = 1,
• λ1 = 1/2, λ2 = . . . = λK−1 = 1,
• v̂1 = 1, v̂2 = . . . = v̂N = 0.

The optimal allocation for the PDC-VCG auction is to display ad i in slot i. The payments
are 0 for every agent. The above strategy profile is a Nash equilibrium: agent 1 cannot
gain more than in the current strategy profile, while the other agents would have a strictly
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negative utility if they overbid to be displayed in the first position since they would pay
1/2 to the mechanism. As a result, the mechanism has a revenue of 0. In the APDC-VCG
auction the revenue is strictly positive. This concludes the proof.

Lemma 11. In the restricted case, the PoA of the auctioneer’s revenue in the PDC-VCG
auction when users behave as prescribed by the APDC model is unbounded.

Proof. Consider a problem with N = K ≥ 2 having:
• v1 = . . . = vN = 1,
• q1 = . . . = qN = 1,
• c1 = . . . = cN = 1/2,
• λ1 = . . . = λK−1 = 1,
• v̂1 = . . . = v̂N = 1.

Any allocation is optimal for the PDC-VCG auction, charging each agent a payment of 0
since N = K. Furthermore, the above strategy profile is a Nash equilibrium for the PDC-
VCG auction in the restricted case in which no agent overbids. Thus, the revenue of the
auctioneer with PDC-VCG auction is 0. On the other hand, in the APDC-VCG auction, all
the agents except the one allocated in slot K are charged a strictly positive payment. This
concludes the proof.

Lemma 12. In the restricted case, the PoS of the social welfare in the PDC-VCG auction
when users behave as prescribed by the APDC model is ≥ K.

Proof. Consider a problem with N = K ≥ 2 having:
• v1 = . . . = vN = 1,
• q1 = . . . = qN = 1,
• c1 = 0, c2 = . . . = cN = 1− ε,
• λ1 = . . . = λK−1 = 1.

We need to characterize all Nash equilibria of the PDC-VCG auction when the correct exter-
nality model is that provided by the APDC model. The existence of at least an equilibrium is
guaranteed by Lemma 7. We assume w.l.o.g. a tie-breaking mechanism breaking ties in favor
of the auctioneer with the lowest index. Since N = K and λ = 1 for all slots, all payments
are 0. Notice that ad 1 will always be allocated in slot 1, for otherwise agent 1 could bid
v̂1 = v1 = 1 and secure the first slot for themselves, strictly increasing their utility. But since
c1 = 0, all equilibria of the PDC-VCG auction mechanism produce a social welfare of 1, while
the APDC-VCG auction would produce a social welfare of 1+(1−ε)+ · · ·+(1−ε)K−1 ≈ K.
Hence, the PoS for this scenario is K, showing that the PoS of the mechanism is ≥ K.

Lemma 13. In the restricted case, the PoS of the auctioneer’s revenue in the PDC-VCG
auction when users behave as prescribed by the APDC model is unbounded.

Proof. Consider a problem with N = K ≥ 2 having:
• v1 = . . . = vN = 1,
• q1 = . . . = qN = 1,
• c1 = . . . = cN = 1/2,
• λ1 = . . . = λK−1 = 1.
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We need to characterize all Nash equilibria of the PDC-VCG auction when the correct exter-
nality model is that provided by the APDC model. The existence of at least an equilibrium
is guaranteed by Lemma 7. We assume w.l.o.g. a tie-breaking mechanism breaking ties
in favor of the auctioneer with the lowest index. Since N = K and λi = 1 for all slots
i, all payments are 0. This implies that whatever the equilibrium considered, the revenue
for the system is 0. On the other hand, the APDC-VCG auction auction would have a
strictly positive revenue, as the continuation probabilities are not all 1. All equilibria of
this instance have an unbounded inefficiency, showing that the PoS of the revenue in the
PDC-VCG auction may be unbounded.

Lemma 14. Both in the restricted and unrestricted case, the PoS of the social welfare in
the PDC-VCG auction when users behave as prescribed by the APDC model is 1.

Proof. Follows by considering the same setting as in the proof of Lemma 4.

Lemma 15. In the unrestricted case, when a Nash equilibrium exists, the PoS of the auc-
tioneer’s revenue in the PDC-VCG auction when users behave as prescribed by the APDC
is 0.

Proof. Consider a problem with N = K = 2 having:
• v1 = 1, v2 = 0,
• q1 = q2 = 1,
• c1 = 1, c2 = 1/2,
• λ1 = 1/2,
• v̂1 = 1, v̂2 = 1/2.

Both PDC-VCG auction and APDC-VCG auction allocate ad 1 before ad 2. With PDC-
VCG auction, agent 1 has a utility of 3/4, while agent 2 has a utility of 0. Notice that the
above strategy profile is a Nash equilibrium of the PDC-VCG auction: if agent 1 made a
bid < 1/2, her utility would be 1/4; if agent 2 made a bid > 1, her utility would be −1/2.
The revenue for PDC-VCG auction is 1/4, while that of APDC-VCG auction is 0. This
concludes the proof.

Lemma 16. In the restricted case, the PoS of the auctioneer’s revenue in the PDC-VCG
auction when users behave as prescribed by the APDC model is ≤ 1.

Proof. Consider a problem with N > K ≥ 2 having:
• v1 = . . . = vN = 1,
• q1 = . . . = qN = 1,
• c1 = . . . = cN = 1,
• λ1 = . . . = λK−1 = 1/2,
• v̂1 = . . . = v̂N = 1.

Notice that the strategy is a Nash equilibrium of the PDC-VCG auction, as no agent can
overbid, and no agent benefits from lowering her reported type. Furthermore, since all the
ad continuation probabilities are equal to 1, the revenues of the two systems are equal, thus
proving the lemma. This concludes the proof.

307



Farina & Gatti

References

Aggarwal, G., Feldman, J., Muthukrishnan, S., & Pál, M. (2008). Sponsored search auctions
with Markovian users. In Proceedings of the International Workshop on Internet and
Network Economics (WINE), pp. 621–628.

Alon, N., Yuster, R., & Zwick, U. (1994). Color-coding: A new method for finding simple
paths, cycles and other small subgraphs within large graphs. In Proceedings of the
ACM Symposium on Theory of Computing (STOC), pp. 326–335.

Bachrach, Y., Ceppi, S., Kash, I. A., Key, P., & Kurokawa, D. (2014). Optimising trade-
offs among stakeholders in ad auctions. In Proceedings of the International ACM
Conference on Economics and Computation (EC), pp. 75–92.

Bentley, J. L. (1979). Decomposable searching problems. Information Processing Letters,
8 (5), 244 – 251.

Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex
Fourier series. Mathematics of computation, 19 (90), 297–301.

Craswell, N., Zoeter, O., Taylor, M., & Ramsey, B. (2008). An experimental comparison
of click position-bias models. In Proceedings of the ACM International Conference on
Web Search and Data Mining (WSDM), pp. 87–94.

Edelman, B., Ostrovsky, M., & Schwarz, M. (2007). Internet advertising and the Generalized
Second-Price auction: Selling billions of dollars worth of keywords. American Economic
Review, 97 (1), 242–259.

Evangelos, E., & Telelis, O. (2010). Discrete strategies in keyword auctions and their in-
efficiency for locally aware bidders. In Proceedings of the International Workshop on
Internet and Network Economics (WINE), pp. 523–530.

Farina, G., & Gatti, N. (2016). Ad auctions and cascade model: GSP inefficiency and
algorithms. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pp. 489–495.

Fotakis, D., Krysta, P., & Telelis, O. (2011). Externalities among advertisers in sponsored
search. In Proceedings of the International Symposium on Algorithmic Game Theory
(SAGT), pp. 105–116.

Gatti, N., Lazaric, A., Rocco, M., & Trovò, F. (2015). Truthful learning mechanisms for
multi-slot sponsored search auctions with externalities. Artificial Intelligence, 227,
93–139.

Gatti, N., & Rocco, M. (2013). Which mechanism in sponsored search auctions with exter-
nalities?. In Proceedings of the International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), pp. 635–642.

Gatti, N., Rocco, M., Serafino, P., & Ventre, C. (2015). Cascade model with contextual
externalities and bounded user memory for sponsored search auctions. In Proceedings
of the International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pp. 1831–1832.

308



Adopting the Cascade Model in Ad Auctions

Giotis, I., & Karlin, A. R. (2008). On the equilibria and efficiency of the GSP mechanism
in keyword auctions with externalities. In Proceedings of the International Workshop
on Internet and Network Economics (WINE), pp. 629–638.

Goldman, M., & Rao, J. M. (2014). Experiments as instruments: Heterogeneous position
effects in sponsored search auctions. Working papers, SSRN. Available online at
http://dx.doi.org/10.2139/ssrn.2524688.

Gomes, R., Immorlica, N., & Markakis, E. (2009). Externalities in keyword auctions: An
empirical and theoretical assessment. In Proceedings of the International Workshop on
Internet and Network Economics (WINE), pp. 172–183.

Gunawardana, A., & Meek, C. (2008). Aggregators and contextual effects in search ad mar-
kets. In Proceedings of the Workshop on Targeting and Ranking for Online Advertising
at the International World Wide Web Conference (WWW).

Hardy, G., Littlewood, J., & Polya, G. (1952). Inequalities. Cambridge Mathematical Li-
brary.

Hegeman, J. (2010). Facebook’s ad auction. Talk at Ad Auctions Workshop.

Hirschberg, D. S. (1975). A linear space algorithm for computing maximal common subse-
quences. Communications of the ACM, 18 (6), 341–343.

Hüffner, F., Wernicke, S., & Zichner, T. (2008). Algorithm engineering for color-coding with
applications to signaling pathway detection. Algorithmica, 52 (2), 114–132.

IAB (2017). IAB Internet Advertising Revenue Report. 2016 Full year results.

Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski, F., & Gay, G. (2007). Eval-
uating the accuracy of implicit feedback from clicks and query reformulations in web
search. ACM Transactions on Information Systems, 25 (2), 7.

Kempe, D., & Mahdian, M. (2008). A cascade model for externalities in sponsored search.
In Proceedings of the International Workshop on Internet and Network Economics
(WINE), pp. 585–596.

Kuminov, D., & Tennenholtz, M. (2009). User modeling in position auctions: re-considering
the GSP and VCG mechanisms. In Proceedings of the International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 273–280.

Leme, R. P., & Tardos, E. (2010). Pure and Bayes-Nash price of anarchy for Generalized
Second Price auction. In Proceedings of Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 735–744.

Lucier, B., Leme, R. P., & Tardos, E. (2012). On revenue in the generalized second price
auction. In Proceedings of International World Wide Web Conference (WWW), pp.
361–370.

McLaughlin, K., & Friedman, D. (2016). Online ad auctions: An experiment. Working
papers 16-05, Chapman University, Economic Science Institute.

Mehlhorn, K., & Näher, S. (1990). Dynamic fractional cascading. Algorithmica, 5 (1-4),
215–241.

309



Farina & Gatti

Musser, D. R. (1997). Introspective sorting and selection algorithms. Software: Practice and
Experience, 27 (8), 983–993.

Naor, M., Schulman, L. J., & Srinivasan, A. (1995). Splitters and near-optimal derandomiza-
tion. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 182–191.

Narahari, Y., Garg, D., Narayanam, R., & Prakash, H. (2009). Game Theoretic Problems
in Network Economics and Mechanism Design Solutions. Springer.

Nisan, N., & Ronen, A. (2000). Computationally feasible VCG mechanisms. In Proceedings
of the International ACM Conference on Electronic Commerce (EC), pp. 242–252.

Sahinidis, N. V. (2014). BARON 14.3.1: Global Optimization of Mixed-Integer Nonlinear
Programs, User’s Manual.

Varian, H. R., & Harris, C. (2014). The VCG auction in theory and practice. American
Economic Review, 104 (5), 442–445.

310


