
Ad Auctions and Cascade Model: GSP Inefficiency and Algorithms

Gabriele Farina and Nicola Gatti
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano

Piazza Leonardo da Vinci, 32
I-20133, Milan, Italy

gabriele2.farina@mail.polimi.it, nicola.gatti@polimi.it

Abstract

The design of the best economic mechanism for Spon-
sored Search Auctions (SSAs) is a central task in com-
putational mechanism design/game theory. Two open
questions concern (i) the adoption of user models more
accurate than the currently used one and (ii) the choice
between Generalized Second Price auction (GSP) and
Vickrey–Clark–Groves mechanism (VCG). In this pa-
per, we provide some contributions to answer these
questions. We study Price of Anarchy (PoA) and Price
of Stability (PoS) over social welfare and auctioneer’s
revenue of GSP w.r.t. the VCG when the users follow
the famous cascade model. Furthermore, we provide
exact, randomized, and approximate algorithms, show-
ing that in real–world settings (Yahoo! Webscope A3
dataset, 10 available slots) optimal allocations can be
found in less than 1s with up to 1,000 ads, and can be
approximated in less than 20ms even with more than
1,000 ads with an average accuracy greater than 99%.

Introduction

SSAs, in which a number of advertisers bid to have their
ads displayed in some slot alongside the search results of a
keyword, constitute one of the most successful applications
of microeconomic mechanisms, with a revenue of about $50
billion dollars in the US alone in 2014 (IAB 2015). Sim-
ilar models are used in many other advertisement applica-
tions, e.g. contextual advertising (Varian and Harris 2014).
A number of questions remain currently open in the study
of effective SSAs. Among these, two are crucial and con-
cern (i) the adoption of the best user model in real–world
settings and (ii) the design of the best economic mechanism.
In this paper, we provide some contributions to answer these
questions.

The commonly adopted user model is the position de-
pendent cascade (PDC) in which the user is assumed to
observe the slots from the top to the bottom with prob-
abilities to observe the next slot that depend only on the
slots themselves (Narahari et al. 2009). The optimal alloca-
tion can be efficiently found in a greedy fashion. The natu-
ral extension is the ad/position–dependent cascade (APDC)
model, in which the probability to observe the next slot

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

depends also on the ads actually allocated. This model is
extensively experimentally validated (Craswell et al. 2008;
Joachims et al. 2007). However, it is not known whether
finding the best allocation of APDC is FNP–hard, but it
is commonly conjectured to be. (Gatti and Rocco 2013)
provides an exact algorithm that can be used in real time
only with 40 ads or less, while in real–world applications
the ads can be even more than 1,000. The problem admits
a constant–ratio (1 − ε)/4, with ε ∈ [0, 1], approxima-
tion algorithm (Gatti and Rocco 2013; Kempe and Mahdian
2008), but no known algorithm is proved to lead to a truth-
ful economic mechanism. In addition, the known approx-
imation algorithms can be applied in real time only with
100 ads or less (Gatti and Rocco 2013). More expressive
models include a contextual graph, see (Gatti et al. 2015;
Fotakis, Krysta, and Telelis 2011), but they are Poly–APX–
hard. Hence, the APDC is considered as the candidate pro-
viding the best trade–off between accuracy and tractability.

While the GSP is still popular in many SSAs, the in-
creasing evidence of its limits is strongly pushing towards
the adoption of the more appealing VCG mechanism, which
is already successfully employed in the related scenario of
contextual advertising, by Google (Varian and Harris 2014)
and Facebook (Hegeman 2010). The main drawback of the
GSP is the inefficiency of its equilibria (in terms of so-
cial welfare) w.r.t. the VCG outcome (the only known re-
sults concern PDC): considering the whole set of Nash
equilibria in full information, the PoA of the GSP is up-
per bounded by about 1.6, while considering the set of
Bayes–Nash equilibria the PoA is upper bounded by about
3.1 (Leme and E. Tardos 2010). Furthermore, automated
bidding strategies, used in practice by the advertisers to find
their best bids, may not even converge to any Nash equi-
librium and, under mild assumptions, the states they con-
verge to are shown to be arbitrarily inefficient (Evange-
los and Telelis 2010). Some works study how inefficiency
is affected by some form of externalities, showing that no
Nash equilibrium of the GSP provides a larger revenue
than the VCG outcome (Kuminov and Tennenholtz 2009;
Gomes, Immorlica, and Markakis 2009).

Original contributions. Under the assumption that the
users behave as prescribed by APDC, we study the PoA and
PoS both over the social welfare and over the auctioneer’s
revenue of the GSP w.r.t. the VCG based on APDC (we

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

489

study also the restricted case in which the advertisers do
not overbid). We extend our analysis done for the GSP to
the VCG based on PDC. Both analyses show a wide disper-
sion of the equilibria with PoAs in most cases unbounded,
pointing out the limits of the traditional models. Further-
more, we provide a polynomial–time algorithm that dramat-
ically shrinks auctions instances, safely discarding ads (even
more than 90% in our experiments). We also provide a ran-
domized algorithm (that can be derandomized with polyno-
mial cost) finding optimal allocations with probability 0.5
in real–world instances (based on the Yahoo! Webscope A3
dataset) with up to 1,000 ads and 10 slots in less than 1s and
a maximal–in–its–range (therefore leading to truthful mech-
anisms if paired with VCG–like payments) approximation
algorithm returning allocations with an average approxima-
tion ratio larger than about 0.99 in less than 20ms even with
1,000 ads. This shows that the APDC can be effectively used
in practice also in large instances.

Due to reasons of space, the proofs of some theorems are
omitted. We point an interested reader to (Farina and Gatti
2015) where they can find an extended version of the paper,
including missing proofs and more detailed experimental re-
sults.

Problem formulation

We adopt the same SSA model used in (Gatti and Rocco
2013) with minor variations. The model without externali-
ties is composed of the following elements:
• A = {1, . . . , N} is the set of ads. W.l.o.g. we assume

each advertiser (also called agent) to have a single ad, so
each agent a can be identified with ad a ∈ A;

• K = {1, . . . ,K} is the set of slots s ordered from the top
to the bottom. We assume w.l.o.g. K ≤ N ;

• qa ∈ [0, 1] is the quality of ad a (i.e., the probability a user
will click ad a once observed);

• va ∈ Va ⊆ R
+ is the value for agent a when ad a is

clicked by a user, while v = (v1, . . . , vN) is the value
profile;

• v̄a is the product of qa and va, and can be interpreted as
the expected fraction of the ad value that is actually ab-
sorbed by the users observing ad a;

• v̂a ∈ V̂a ⊆ R
+ is the value reported by agent a, while

v̂ = (v̂1, . . . , v̂N) is the reported value profile;
• Θ is the set of (ordered) allocations of ads to slots, where

each ad cannot be allocated in more than one slot.
Given an allocation θ of ads to slots, we let:
• ads(θ) ⊆ A to denote the subset of ads allocated in θ;
• slotθ(a) to denote the slot in which ad a is allocated, if

any;
• adθ(s) to denote the ad allocated in slot s.

The externalities introduced by the cascade model assume
the user to have a Markovian behavior, starting to observe
the slots from the first (i.e., slot 1) to the last (i.e., slot K)
where the transition probability from slot s to slot s+ 1 is
given by the product of two parameters:

• (ad–dependent externalities) ca ∈ [0, 1] is the continua-
tion probability of ad a;

• (position–dependent externalities) λs ∈ [0, 1] is the fac-
torized prominence of slot s (it is assumed λK = 0).
The click through rate CTRθ(a) ∈ [0, 1] of ad a in al-

location θ is the probability a user will click ad a and it is
formally defined as

CTRθ(a) = qa · Λslotθ(a) · Cθ(a),

where

Cθ(a) =
∏

s< slotθ(a)

cadθ(s),

Λs =
∏
k< s

λk.

Parameter Λs is commonly called prominence (Kempe and
Mahdian 2008).

Given an allocation θ, its social welfare is defined as:

SW(θ) =
∑

ads(θ)

va · CTRθ(a) =
∑

ads(θ)

v̄a · Λslotθ(a) · Cθ(a).

The problem we study is the design of an economic mech-
anismM, composed of
• an allocation function f : ×a∈AVi → Θ and

• a payment function for each agent a, pa : ×a∈AV̂a → R.
Each agent a has a linear utility ua(va, v̂) = va ·
CTRf(v)(a)−pa(v̂), in expectation over the clicks and pays
pa(v̂)/CTRf(v̂)(a) only once its ad is clicked. We are inter-
ested in mechanisms satisfying the following properties:
Definition 1. MechanismM is dominant strategy incentive
compatible (DSIC) if reporting true values is a dominant
strategy for every agent (i.e., v̂a = va).
Definition 2. Mechanism M is individually rational (IR) if
no agent acting truthfully prefers to abstain from participat-
ing to the mechanism rather than participating.
Definition 3. Mechanism M is weakly budget balance
(WBB) if the mechanism is never in deficit.
Definition 4. Mechanism M is computationally tractable
when both f and pa are computable in polynomial time.
Definition 5. Allocation function f is maximal in its range
if f returns an allocation maximizing the social welfare
among a given subset of allocations that is independent of
the agents’ reports.

When f is maximal in its range, VCG–like payments can
be used, obtaining a DSIC, IR and WBB mechanism (Nisan
and Ronen 2000).

Inefficiency of GSP and VCG with PDC

GSP analysis

In the GSP, ads are allocated according to decreasing re-
ported values: supposing v̂1 ≥ · · · ≥ v̂N , the allocation
function maps ad a to slot s = a, for each a = 1, . . . ,K.
Every agent a = 1, . . . ,K − 1 is charged a price pa =
qa+1v̂a+1. Agent K is charged a price pK = 0 if K = N , or
pK = qK+1v̂K+1 otherwise. The following lemma holds:

490

Lemma 1. The GSP is not IR, when users follow the APDC.
The GSP is well known not to be DSIC. For this reason,

we study the inefficiency of its Nash equilibria.
Lemma 2. The PoA of the social welfare in the GSP when
users follow APDC is unbounded.

Lemma 3. The PoA of the social welfare in the GSP when
users follow APDC is ≥ K, in the restricted case the agents
do not overbid.

Lemma 4. The PoA of the revenue in the GSP when users
follow APDC is unbounded (even without overbidding).

Lemma 5. The PoS of the social welfare in the GSP when
users follow APDC is 1 (even without overbidding).

Lemma 6. The PoS of the revenue in the GSP when users
follow APDC is 0 (even without overbidding).

Lemma 2 and 3 together show a huge dispersion of the
social welfare of the allocations associated with GSP equi-
libria: it may be arbitrarily larger than the social welfare of
the APDC. Lemma 4 and 6 show that this situation gets even
worse when we turn our attention onto the auctioneer’s rev-
enue, with the revenue of GSP equilibria being arbitrarily
smaller or larger than that of the APDC.

VCG with PDC analysis

The PDC model is very similar to the APDC: the difference
lies in the fact that ca = 1 for each ad a ∈ A. Payments are
calculated according to the rules attaining the VCG mech-
anism, thus providing a IR, WBB, DSIC mechanism under
the assumption that users experience ad fatigue due only to
the positions of the slots and not to the allocated ads. When
the user’s behavior is affected by ad continuation probabili-
ties, the above mentioned properties do not necessarily apply
anymore. Indeed, the following lemma holds:
Lemma 7. The VCG with PDC is neither IR nor DSIC,
when users follow APDC.

We study the inefficiency of Nash equilibria, VCG with
PDC not being truthful.
Lemma 8. The PoA of the social welfare in the VCG with
PDC when users follow APDC is unbounded.

Lemma 9. The PoA of the social welfare in the VCG with
PDC when users follow APDC is≥ K, in the restricted case
the agents do not overbid.

Lemma 10. The PoA of the revenue in the VCG with PDC
when users follow APDC is unbounded (even without over-
bidding).

Lemma 11. The PoS of the social welfare in the VCG with
PDC when users follow APDC is 1.

Lemma 12. The PoS of the revenue in the VCG with PDC
when users follow APDC is 0.

Lemma 13. The PoS of the revenue in the VCG with PDC
when users follow APDC is ≤ 1, in the restricted case the
agents do not overbid.

Again, we see a huge dispersion, both in terms of social
welfare and of revenue, among the different equilibria of
VCG with PDC.

Algorithms

DOMINATED–ADS algorithm

We present an algorithm meant to reduce the size of the
problem (i.e., the number of ads), without any loss in terms
of social welfare or revenue of the optimal allocation. The
central observation for our algorithm is that, under certain
circumstances, given two ads a, b with parameters (v̄a, ca)
and (v̄b, cb) respectively, it is possible to establish a priori
that, if in an optimal allocation b is allocated to a slot, then
ad a is allocated in a slot preceding that of b; whenever this
is the case we say that ad a “dominates” ad b. As an ex-
ample, consider two ads a and b, satisfying the condition
(v̄a > v̄b) ∧ (ca > cb): in accordance with intuition, a sim-
ple exchange argument shows that a dominates b. A weaker
sufficient condition for deciding whether a dominates b is
given in the following lemma and proved in (Farina and
Gatti 2015).

Lemma 14. Let λmax = max{λs : s ∈ K}, and B an
upper bound1 of the value of the optimal allocation; also,
let D = [0, λmax] × [0, B]. Given two ads a, b with pa-
rameters (v̄a, ca) and (v̄b, cb), consider the affine function
wa,b : D → R, defined as

wa,b(x, y) = det

(
x −y 1
1 v̄b cb
1 v̄a ca

)

If the minimum of wa,b overD is greater than 0, then a dom-
inates b.

We will use the notation a ≺ b to denote that ad a domi-
nates ad b, in the sense of Lemma 14. Note that ≺ defines a
partial order over the set of ads. Since wa,b is an affine func-
tion defined on a convex set, it must attain a minimum on
one of the corner points of D, hence the following holds:

Lemma 15. If the four numbers wa,b(0, 0), wa,b(0, B),
wa,b(λmax, 0), wa,b(λmax, B) are all positive, then a ≺ b.

We define the dominators of an ad a as the set dom(a) =
{b ∈ A : b ≺ a}. The following lemma is central to our al-
gorithm, as it expresses a sufficient condition for discarding
an ad from the problem:

Lemma 16. If |dom(a)| ≥ K, then ad a can be discarded,
as it will never be chosen for an allocation.

This suggests a straightforward algorithm to determine
the set of safely deletable ads, as streamlined in Algorithm 1.

A naı̈ve implementation of Line 3 tests every ad a against
all the other ads, keeping track of the number of domina-
tors of a. Therefore, neglecting the cost of computing D on
Line 1, this results in a O(N2) time algorithm.

1More precisely, it is enough that B is a (weak) upper bound of
the quantity

B̃ = max
i

{λi · ALLOC(i+ 1,K)},

where ALLOC(i,K) is the value of the optimal allocation of the
problem having as slots the set Ki = {i, . . . ,K} ⊆ K.

491

Algorithm 1 DOMINATED–ADS

1: procedure DOMINATED–ADS(ads, slots)
2: Determine D, as defined in Lemma 14
3: For each ad a, compute |dom(a)|
4: Discard all ads a having |dom(a)| ≥ K

COLORED–ADS algorithm

We present an algorithm that can determine an optimal al-
location in time polynomial in N and exponential in K. As
the number of slots is generally small (typically ≤ 10), this
algorithm is suitable for real–world applications. The key
insight for the algorithm is that the problem of finding the
allocation maximizing the social welfare can be cast to an
instance of the well–known problem of finding a maximal
K–vertex weighted simple path in an un undirected graph.
Efficient algorithms for the latter problem can therefore be
used to solve our problem.

We introduce the definition of a right–aligned allocation.

Definition 6. Given an ordered sequence S : a1, . . . , an
of ads, we say that the right–aligned allocation of S is the
allocation mapping the ads in S to the last n slots, in order,
leaving the first K − n+ 1 slots vacant.

Consider the complete undirected graph G having the
available ads for vertices; every simple path π : a1, . . . , an
of length n ≤ K in G can be uniquely mapped to the right–
aligned allocation of π, and vice versa. Following this corre-
spondence, we define the value of a simple path in G as the
value of the corresponding right–aligned allocation. In order
to prove that the problem of finding a maximal K–vertex
weighted simple path in G is equivalent to that of finding an
optimal allocation, it is sufficient to prove that there exists
(at least) one optimal allocation leaving no slot vacant, i.e.
using all of the K slots. To this end we introduce the follow-
ing lemma:

Lemma 17. In at least one optimal allocation all the avail-
able slots are allocated.

The problem of finding a maximal K–vertex weighted
simple path in G can be solved by means of the color coding
technique (Alon, Yuster, and Zwick 1994). The basic idea is
as follows: in a single iteration, vertices are assigned one of
K random colors; then, the best path visiting every color ex-
actly once is found using a dynamic programming approach;
finally, this loop is repeated a certain amount of times, de-
pending on the type of algorithm (randomized or derandom-
ized). In the randomized version, the probability of having
missed the best K–path decreases as e−R/eK , where R is the
number of iterations. Therefore, using randomization, we
can implement a O((2e)KN) compute time and O(2K+N)
memory space algorithm, as streamlined in Algorithm 2. In
the derandomized version, the algorithm is exact and re-
quires O((2e)KKO(logK)N logN) time when paired with
the derandomization technique presented in (Naor, Schul-
man, and Srinivasan 1995).

Algorithm 2 COLORED–ADS

1: procedure COLORED-ADS(ads, slots)
2: repeat eK log 2 times � 50% success probability
3: Assign random colors ∈ {1, . . . ,K} to G’s vertices

note: each color must be used at least once

� We now construct a memoization table MEMO[C], reporting,
for each color subset C of {1, . . . ,K} the maximum value of
any simple path visiting colors in C exactly once.

4: MEMO[∅] ← 0
5: P ← powerset of {1, . . . ,K}, sorted by set size
6: for C ∈ P − {∅}, in order do

7: λ̃ ← λK−|C|+1

8: for each color c ∈ C do
9: for each vertex (ad) a in G of color c do

10: VALUE ← v̄a + ca λ̃ · MEMO[C − {c}]
11: MEMO[C] ← max{MEMO[C], VALUE}
12: return MEMO[{1, . . . ,K}]

Note that Algorithm 2 is just a simplified, randomized and
non–parallelized sketch of the algorithm we test in the ex-
perimental section of this paper; also, for the sake of pre-
sentation, in Algorithm 2 we only return the value of the
optimal allocation and not the allocation itself. We also con-
sidered the idea of using 1.3K different colors, as suggested
by the work of (Hüffner, Wernicke, and Zichner 2008), but
we found out that for this particular problem the improve-
ment is negligible.

We conclude this subsection with some remarks about the
above algorithm. First, we remark that, given the nature of
the operations involved, the algorithm proves to be efficient
in practice, with only a small constant hidden in the big–
oh notation. Furthermore, it is worth to note that the iter-
ations of the main loop (Lines 2 to 15) are independent;
as such, the algorithm scales well horizontally in a parallel
computing environment. Second, we point out an important
economic property of the algorithm, that makes COLORED–
ADS appealing: it allows the design of truthful mechanisms
when paired with VCG–like payments. While this is obvi-
ously true when the algorithm is used in its derandomized
exact form, it can be proven that the truthfulness property
holds true even when only a partial number of iterations of
the main loop is carried out. This easily follows from the
fact that the algorithm is maximal–in–its–range, searching
for the best allocation in a range that does not depend on
the reports of the agent. This implies that it is possible to
interrupt the algorithm after a time limit has been hit, with-
out compromising the truthfulness of the mechanism. This
leads to approximate algorithms that offer convenient time–
approximation trade–offs, as long as K is small.

SORTED–ADS approximate algorithm

While the general problem of finding an optimal allocation is
difficult, polynomial time algorithms are easy to derive—as
we show below—when we restrict the set of feasible allo-
cations to those respecting a given total order ≺ads defined

492

Algorithm 3 SORTED–ADS

1: procedure SORTED-ADS(ads, slots, ≺ads)
2: Sort the ads according to ≺ads, so that ad 1 is the minimum

ad w.r.t. the given order

� We now construct a memoization table T [n, k], reporting,
for each 1 ≤ n ≤ N and 1 ≤ k ≤ K, the value of the best
allocation that uses only ads n, . . . , N and slots k, . . . ,K (i.e.
no ads get allocated to slots 1, . . . , k− 1 and λi = 1, ∀i < k).

3: T [N, k] ← v̄N , k = 1, . . . ,K � Base case
4: for n = N − 1 downto 1 do
5: for k = 1, . . . ,K do
6: if k < K then
7: VALUE ← v̄n + λk cn T [n+ 1, k + 1]
8: T [n, k] ← max{VALUE, T [n+ 1, k]}
9: else

10: T [n, k] ← max{v̄n, T [n+ 1,K]}
11: return T [1, 1]

on the ads set. This suggests this simple approximation al-
gorithm: first, T total orders ≺ads,1, . . . ,≺ads,T over the ads
set are chosen; then, the optimal allocation satisfying ≺ads,i
is computed, for each i; finally, the value of the optimal
allocation for the original unrestricted problem is approxi-
mated with the best allocation found over all the T orders.
The number of total orders T is arbitrary, with more orders
obviously producing higher approximation ratios.

In order to find the optimal allocation respecting the to-
tal order ≺ads, we propose a simple O(NK) time dynamic
programming algorithm, which we name SORTED–ADS, de-
scribed in Algorithm 3. The idea behind the algorithm is to
find, for each n = 1, . . . , N and k = 1, . . . ,K, the value
T [n, k] of the best allocation for the problem having An =
{1, . . . , n} ⊆ A as ads set and Kk = {k, . . . ,K} ⊆ K as
slots set. The values of T [n, k] can be computed inductively,
noticing that the associated subproblems share the same op-
timal substructure. As before, in Algorithm 3 we only show
how to find the value of the optimal allocation, and not the
allocation itself.

We end this subsection with the analysis of some econom-
ical and theoretical properties of the algorithm. We note that,
if the total orders used do not depend on the reported types of
the agents, SORTED–ADS is maximal–in–its–range, leading
thus to a truthful mechanism when paired with VCG–like
payments. Furthermore, the resulting mechanism requires
polynomial time both for the allocation and the payments.

Experimental evaluation

For a better comparison of the results, we adopted the
same experimental setting used in (Gatti and Rocco
2013) and given to us by the authors. We briefly de-
scribe it, details can be found in the original paper. The
experimental setting is based on Yahoo! Webscope A3
dataset. Each bid is drawn from a truncated Gaussian
distribution, where the mean and standard deviation are
taken from the dataset, while quality is drawn from a

beta distribution. The values of λs of the first 10 slots
are {1.0, 0.71, 0.56, 0.53, 0.49, 0.47, 0.44, 0.44, 0.43, 0.43}.
We considered two scenarios, one having K = 5 and
one having K = 10. In both cases we let N ∈
{50, 60, . . . , 100} ∪ {200, 300, . . . , 1000}. For each pair
(K,N), 20 instances were generated. We implemented our
algorithms in the C++11 language and executed them on the
OSX 10.10.3 operating system. The main memory was a
16GB 1600MHz DDR3 RAM, while the processor was an
Intel Core i7–4850HQ CPU. We compiled the source with
GNU g++ version 4.9.1. Parallelization was achieved using
OpenMP version 4.0.

DOMINATED–ADS algorithm

We study the average number of ads that survive
DOMINATED–ADS in Figure 1. The upper bounding strat-
egy needed in Lemma 14 was implemented using a O(NK)
time algorithm.

50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000
Number of ads in the original problem (N)

10

20

30

40

50

60

70

80

K = 5
K = 10
A+B · logN

Figure 1: Average number of ads after running the
DOMINATED–ADS algorithm.

Notice that the number of removed ads already consider-
able when N is small (e.g., N ≈ 50), and that the prune ratio
increases dramatically as N grows (for instance, the prune
ratio is approximately 96% on average when N = 1,000 and
K = 5). Experiments show that the number of surviving ads
is of the form Ñ = A + B · logN for suitable values2,3 of
A and B.

In Figure 2 we report the average running time for
DOMINATED–ADS. The graph shows that the running time
depends quadratically on the original problem size N , but it
remains negligible (around 20ms) even when N = 1,000.

2For K = 5, we have A ≈ −6.1, B ≈ 5.9 and R2 > 0.98,
where R2 is the coefficient of determination of the fit.

3For K = 10, we have A ≈ −16.9, B ≈ 10.9 and R2 > 0.98.

493

50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000
Number of ads in the original problem (N)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

1.14 ·10−8 N2

Figure 2: Avg. DOMINATED–ADS run. time [s]. This is inde-
pendent of K and grows as ≈ 1.14 · 10−8N2 (R2 > 0.99).

COLORED–ADS algorithm

Figure 3 shows the average running time for COLORED–
ADS, implemented in its randomized version. The number of
iterations was set to eK log 2, i.e. 50% probability of finding
the optimal allocation. The algorithm is run on the reduced
instances produced by DOMINATED–ADS. As a result of the
shrinking process, we point out that the running times for
N = 50 and N = 1,000 are comparable. We also remark
that, in order for COLORED–ADS to be applicable in real–
time contexts when K = 10, some sort of hardware scaling
is necessary, as a running time of≈ 0.5 seconds per instance
is likely to be too expensive for many practical applications.
When K = 5, though, no scaling is necessary, and the algo-
rithm proves to be extremely efficient.

250m
300m
350m
400m
450m

K = 10

50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000
Number of ads in the original problem (N)

250μ
350μ
450μ
550μ
650μ

K = 5

Figure 3: Avg. COLORED–ADS run. time [s] (eK log 2 runs).

SORTED–ADS algorithm

In figure 4 we study the approximation ratio of SORTED-
ADS. Optimal allocation values were computed using an
exponential branch–and–bound algorithm, similar to that
of (Gatti and Rocco 2013). For each shrunk problem
instance, we generated 2K3 random orders, and used
SORTED–ADS to approximate the optimal allocation. Sur-
prisingly, even though the number of iterations is relatively
low, approximation ratios prove to be very high, with values
> 97% in the worst case, with both medians and means al-
ways > 99%. Finally, in Figure 5 we report the correspond-
ing computation times. These prove to be in the order of a

handful of milliseconds, thus making SORTED–ADS suitable
in real-time contexts even for a large number of ads.

50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000
Number of ads in the original problem (N)

0.980

0.985

0.990

0.995

1.000

K = 5
K = 10

Figure 4: Avg. SORTED–ADS approx. ratio (2K3 orders).

50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000
Number of ads in the original problem (N)

0.000

0.001

0.002

0.003

0.004

0.005

K = 5
K = 10

Figure 5: Avg. SORTED–ADS running time [s] (2K3 orders).

Conclusions and future work

In this paper, we provide several contributions about the
ad/position dependent cascade model for sponsored search
auctions. This model is commonly considered the one pro-
viding the best tradeoff between accuracy and computational
complexity, but no algorithm suitable for real–world ap-
plications is known. Initially, we study the inefficiency of
GSP and VCG with the only position dependent cascade
model w.r.t. the VCG with the ad/position dependent cas-
cade model, analyzing PoA and PoS both of the social wel-
fare and the auctioneer’s revenue. Our results show that the
inefficiency is in most cases unbounded and that the disper-
sion over the equilibria is extremely large, suggesting that
the GSP, as well as the VCG with position dependent cas-
cade model, presents severe limits. Subsequently, we pro-
vide three algorithms and we experimentally evaluate them
with a real–world dataset. Our first algorithm reduces the
size of the instances, discarding ads. Empirically, the num-
ber of non–discarded ads is logarithmic. Our second algo-
rithm finds the optimal allocation with high probability, re-
quiring a short time (less than 1ms when K = 5 even with
1,000 ads), but too long for real–time applications when
K = 10. Our third algorithm approximates the optimal allo-
cation in very short time (less than 5ms even with 1,000 ads)
providing very good approximations (>0.98). This shows

494

that the ad/dependent cascade model can be effectively used
in practice.

In future, we will extend our analysis and our algorithms
to models in which there is a contextual graph among the ad,
and in which there are multiple slates.

References

Alon, N.; Yuster, R.; and Zwick, U. 1994. Color-coding: A
new method for finding simple paths, cycles and other small
subgraphs within large graphs. In ACM STOC, 326–335.
Craswell, N.; Zoeter, O.; Taylor, M.; and Ramsey, B. 2008.
An experimental comparison of click position–bias models.
In WSDM, 87–94.
Evangelos, E., and Telelis, O. 2010. Discrete strategies
in keyword auctions and their inefficiency for locally aware
bidders. In WINE, 523–530.
Farina, G., and Gatti, N. 2015. Ad auctions and cascade
model: GSP inefficiency and algorithms. ArXiv e-prints,
1511.07397.
Fotakis, D.; Krysta, P.; and Telelis, O. 2011. Externalities
among advertisers in sponsored search. In SAGT, 105–116.
Gatti, N., and Rocco, M. 2013. Which mechanism in spon-
sored search auctions with externalities? In AAMAS, 635–
642.
Gatti, N.; Rocco, M.; Serafino, P.; and Ventre, C. 2015. Cas-
cade model with contextual externalities and bounded user
memory for sponsored search auctions. In AAMAS, 1831–
1832.
Gomes, R.; Immorlica, N.; and Markakis, E. 2009. Exter-
nalities in keyword auctions: An empirical and theoretical
assessment. In WINE, 172–183.
Hegeman, J. 2010. Facebook’s ad auction. Talk at Ad Auc-
tions Workshop.
Hüffner, F.; Wernicke, S.; and Zichner, T. 2008. Algorithm
engineering for color-coding with applications to signaling
pathway detection. Algorithmica 52(2):114–132.
IAB. 2015. IAB internet advertising revenue report. 2014
full year results.
Joachims, T.; Granka, L.; Pan, B.; Hembrooke, H.; Radlin-
ski, F.; and Gay, G. 2007. Evaluating the accuracy of im-
plicit feedback from clicks and query reformulations in web
search. ACM Transactions on Information Systems 25(2):7.
Kempe, D., and Mahdian, M. 2008. A cascade model for
externalities in sponsored search. In WINE, 585–596.
Kuminov, D., and Tennenholtz, M. 2009. User modeling in
position auctions: re-considering the GSP and VCG mecha-
nisms. In AAMAS, 273–280.
Leme, R. P., and E. Tardos, E. 2010. Pure and Bayes–Nash
price of anarchy for generalized second price auction. In
FOCS, 735–744.
Naor, M.; Schulman, L. J.; and Srinivasan, A. 1995. Splitters
and near-optimal derandomization. In FOCS, 182–191.
Narahari, Y.; Garg, D.; Narayanam, R.; and Prakash, H.
2009. Game Theoretic Problems in Network Economics and
Mechanism Design Solutions. Springer.

Nisan, N., and Ronen, A. 2000. Computationally feasible
VCG mechanisms. In ACM EC, 242–252.
Varian, H. R., and Harris, C. 2014. The VCG auction in the-
ory and practice. American Economic Review 104(5):442–
445.

495

