Experimental Study of the Interplay of Channel and Network Coding in Low Power Sensor Applications

G. Angelopoulos, A. Paidimarri, A. P. Chandrakasan, M. Médard

ICC 2013
Sensor Networks and their Applications

- Sensors: collect information and reliably transmit it to a sink/processing hub
- They operate under strict energy constraints..
- ... and usually in harsh environments!!
Increasing Data Reliability

Methods to increase data reliability in sensor networks:

• Higher transmission power
• Use of PHY FEC schemes

• Use of packet-level erasure codes

Q: How do these methods perform/interact in low power and interference-heavy sensor networks?
Outline of the Talk

• Packet-level erasure coding schemes
• Implementation considerations
• Experimental setup
• Measurement results
• Joint channel-network coding scheme
• Summary
Packet-level Erasure Coding Schemes

• Several associated advantages:
 – Delay, outage probability, goodput, etc
• Usually implemented at higher layers of the stack
• Plethora of such schemes proposed in the literature
 – Reed-Solomon codes: not rateless
 – Fountain codes (*i.e.* Raptor): non-zero coding overhead (ε)
• Our design choice: random linear network coding
 – Rateless and zero coding overhead
 – Higher complexity in general for the decoding process
 – Re-encoding packets on the fly, w/o decoding first
RLNC and Implementation Considerations

- Delay and memory constraints dictate K to be small ($K=4$)
- Coefficients are generated by LFSRs
- Galois field size 2^8 is used
- Encoding is critical for low power sensors
- Re-encoding is performed by the same process
Experimental Setup I

- Custom 2.4GHz transmitter - commercial receiver
Experimental Setup 1

- Custom 2.4GHz transmitter - commercial receiver

![Diagram showing Custom Sensor Node, FPGA, Matlab, and CC2511 Commercial RX connected by RF signals and data flow.](image)
Experimental Setup I

- Custom 2.4GHz transmitter - commercial receiver

![Diagram of experimental setup]
Experimental Setup 1

- Custom 2.4GHz transmitter - commercial receiver
Coding Schemes Supported in the System

• PHY FEC code
 – Convolutional code at rates 3/4, 1/2 and 1/3
 – Interleaver and hard Viterbi decoding
• Packet-level erasure code
 – Rates 4/5, 4/6 and 4/8
• FSK modulation and coherent demodulation
• Transmission data rate 500Kbps
• Packet format

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Sync word</th>
<th>Seq. num.</th>
<th>Coeffs</th>
<th>Payload</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bytes</td>
<td>8 bytes</td>
<td>1 byte</td>
<td>4 bytes</td>
<td>Up to 64 bytes</td>
<td>2 bytes</td>
</tr>
</tbody>
</table>
Measurements – PHY FEC only

• Use of PHY FEC codes improves reliability
• 2.25dB coding gain at 10^{-2} PER
Measurements – RLNC only

- 3.4dB coding gain at 10^{-2} PER
- Much steeper slope compared to PHY FEC curves
Can we further improve performance?

- PHY FEC codes: can approach capacity of a fixed-SNR AWGN channel
- Packet-level erasure codes: optimal performance in an erasure channel
- Realistic wireless indoors channels lay between the two extreme models
- Low SNR \rightarrow noise effects dominate \rightarrow better corrected by PHY FEC codes

A combination of the two coding schemes would considerably improve performance
Joint Channel and Network Coding (JCNC)

• JCNC achieves greater coding gain for the same effective coding rate

• Its PER curve hits the saturating barrier at a lower SNR
Summary

• Low power sensors need to communicate information reliably and under strict energy limits
• A custom 2.4GHz ISM flexible transmitter is designed
• A testbed is built for performance evaluation of different coding schemes
• RLNC is studied as a packet-level erasure code
• Nature of indoors channel motivates a combination of the two coding methods
• JCNC scheme can efficiently increase performance of low power sensor networks
Acknowledgements

• P. Nadeau and X. Shi for useful discussion/feedback
• FCRP for funding
• TSMC for chip fabrication
• TI for equipment donation
Thank you!

• Questions?