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Abstract

High-throughput molecular data are revolutionizing biology by providing massive
amounts of information about gene expression and regulation. Such information
is applicable both to furthering our understanding of fundamental biology and to
developing new diagnostic and treatment approaches for diseases. However, novel
mathematical methods are needed for extracting biological knowledge from high-
dimensional, complex and noisy data sources. In this thesis, I develop and apply
three novel computational approaches for this task. The common theme of these
approaches is that they seek to discover meaningful groups of genes, which confer ro-
bustness to noise and compress complex information into interpretable models. I first
present the GRAM algorithm, which fuses information from genome-wide expression
and in vivo transcription factor-DNA binding data to discover regulatory networks of
gene modules. I use the GRAM algorithm to discover regulatory networks in Saccha-
romyces cerevisiae, including rich media, rapamycin, and cell-cycle module networks.
I use functional annotation databases, independent biological experiments and DNA-
motif information to validate the discovered networks, and to show that they yield
new biological insights. Second, I present GeneProgram, a framework based on Hi-
erarchical Dirichlet Processes, which uses large compendia of mammalian expression
data to simultaneously organize genes into overlapping programs and tissues into
groups to produce maps of expression programs. I demonstrate that GeneProgram
outperforms several popular analysis methods, and using mouse and human expres-
sion data, show that it automatically constructs a comprehensive, body-wide map
of inter-species expression programs. Finally, I present an extension of GenePro-
gram that models temporal dynamics. I apply the algorithm to a compendium of
short time-series gene expression experiments in which human cells were exposed to
various infectious agents. I show that discovered expression programs exhibit tem-
poral pattern usage differences corresponding to classes of host cells and infectious
agents, and describe several programs that implicate surprising signaling pathways
and receptor types in human responses to infection.
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CHAPTER 1

Introduction

“These ambiguities, redundancies, and deficiencies recall those
attributed by Dr. Franz Kuhn to a certain Chinese encyclopedia
entitled Celestial Emporium of Benevolent Knowledge. On these
remote pages it is written that animals are divided into (a) those
that belong to the Emperor, (b) embalmed ones, (c) those that
are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones,
(g) stray dogs, (h) those that are included in this classification,
(i) those that tremble as if they were mad, (j) innumerable ones,
(k) those drawn with a very fine camel’s brush, (l) others, (m)
those that have just broken a flower vase, (n) those that resemble
flies at a distance.”

—Jorge Luis Borges, Other Inquisitions

This thesis is about developing and applying new computer algorithms to dis-
cover meaningful groups of genes from large collections of high-throughput biological
data. The problem is challenging, because the data are complex, high-dimensional
and noisy. We have developed several algorithms that address these issues and will
describe them in this thesis. However, before delving into computational details, it’s
worth considering the more philosophical question: why try to put genes into groups
in the first place?

Categorizing and grouping things—particularly living organisms and their parts—
is an ancient human pursuit1. However, as illustrated by the classification of animals

1The use of computers for grouping biological entities also has a relatively long history. The first
such work was published in 1957, by medical researcher and microbiologist Peter Sneath, in a paper
titled “The application of computers to taxonomy” [201]. In that work, Dr. Sneath described a
hierarchical clustering method and computer program, which he applied to categorizing members of
the bacterial genus Chromobacterium that cause a rare tropical infection.
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in the Celestial Emporium of Benevolent Knowledge, not all groupings are good ones.
The Greek philosopher Aristotle (384-322 BC) developed fairly sophisticated ideas
about what constitutes good categories. Chief among his contributions in this field
is the notion that a collection of traits, rather than a single characteristic, should be
used to differentiate members of a group. In his work, Historia Animalium, he wrote:

“The method then that we must adopt is to attempt to recognize the natu-
ral groups, following the indications afforded by the instincts of mankind,
which led them for instance to form the class of Birds and the class of
Fishes, each of which groups combines a multitude of differentiae, and is
not defined by a single one as in dichotomy [78].”

Of course, Aristotle didn’t quite figure everything out, and subsequent genera-
tions of philosophers and scientists have expanded on his ideas. Three important
modern criteria for evaluating the inherent meaningfulness of groups are based on
evolutionary, mathematical and cognitive perspectives.

From the evolutionary perspective, a system—from an individual cell to entire
ecologies—can be divided into modules, which are relatively independent “building-
blocks” comprised of functionally related components [37]. The inherent decompos-
ability of a system into modules is best justified from the point of view of evolutionary
fitness. Nobel Prize winner and complexity theorist Herbert Simon summarized the
argument for modularity eloquently:

“But if the effectiveness of design of each organ depends on the design
of the organs with which it interacts, then there is no guarantee that
improvements of one organ will not worsen the performance of others . . .
Suppose, instead, that the effectiveness of each organ depends very little
on the design of others, provided that the inputs each requires are supplied
by the others. Then, up to a scale factor, the design of each organ can
be improved independently of what is happening in the others; and it is
easy to show that fitness will rise much more rapidly than when there is
mutual dependence of design [37].”

From the mathematical perspective, good groupings of data provide compression
of information without loss of important details. Mathematical techniques for com-
pressing information enable many modern2 technologies including cell-phones and
digital video [47]. The basic idea behind many compression techniques is to assign
data items to groups, and then to replace individual items with statistics derived from
the groups. In compression algorithms, one must generally trade-off the competing
objectives of making the representation of the compressed data as small as possible
with retaining as much information as possible [212]. From the practical standpoint,
a compressed data set can serve as a useful summary of the original data. Further,
if there is noise in data, compression can result in a smoother, more representative
view of the information.

2Well, these are modern as of 2007!
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From the cognitive perspective, good groupings of data boost the human brain’s
limited ability to understand the natural world. To study the significance of mental
categories, the cognitive psychologist Eleanor Rosch did field experiments with the
Dugum Dani people of Papua New Guinea in the 1970’s [180]. The Dani people
lacked words describing color hues other than dark and light. However, when Rosch
showed them colored chips of various hues, they were able to sort them into natural
“perceptual categories.” Rosch later expanded her experiments to study perception of
other categories, such as shape and semantics, and in different populations, including
American children [181, 182]. Overall, Rosch’s experiments and those of others in
her field suggest that the human tendency to categorize things is critical for our
understanding of the world [132]. Rosch wrote that:

“Categorization occurs . . . to reduce the limitless variation . . . to man-
ageable proportions . . . categories would . . . follow the lines of natural
correlations of attributes, those that maximize the correlation and thus
the predictability of attributes within categories (quoted in [132]).”

Later in this thesis, we will revisit the three perspectives discussed above. In par-
ticular, we’ll describe how the sets of genes discovered using the algorithms developed
in this thesis exhibit properties of modularity, represent mathematically principled
compressions of data, and help us to understand better both model organisms and
human biology.

The work we will present focuses on analysis of data gathered using a major
new technique in experimental biology, DNA microarrays, which allow researchers to
measure thousands of functional characteristics of a biological system simultaneously.
In the next section, we will provide an overview of DNA microarray technologies and
discuss some of their limitations, in order to provide context for the work presented
in this thesis.

1.1 DNA Microarrays

1.1.1 A very brief overview of molecular genetics

In this subsection, we will discuss the bare essentials of molecular genetics for those
unfamiliar with the subject. For more information, please consult a recent text such
as [130].

Essential molecules for life: DNA, RNA and proteins

Much of cellular behavior arises from the interactions between three types of molecules:
DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and proteins.

DNA may be thought of as the primary long-term information storage molecule
in the cell. Often likened to the “blue-print” for the cell, DNA consists of a long
backbone of alternating sugar and phosphate residues. Attached to each sugar residue
is one of four nitrogen-containing bases: adenine (A), cytosine (C), guanine (G)
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and thymine (T). It is the linear ordering or sequence of these bases in the DNA
molecule that encodes information. Non-covalent bonds between hydrogen atoms in
adenine/thymine and cytosine/guanine allow these bases to form stable pairs. The
bases that form such pairs are said to be complementary. It is this base-pairing
that allows DNA to exist as a double-stranded molecule in most normal physiological
situations. The two strands encode the same information but use complementary
bases.

While RNA also serves as an information carrier in the cell, these molecules act
in a more transitory manner than do DNA molecules. RNA is quite similar to DNA
chemically, differing only in the type of sugar used (ribose instead of deoxyribose)
and the use of the base uracil (U) instead of thymine. Unlike DNA, RNA molecules
primarily exist in a single-stranded form, which is less stable and subject to cellular
degradation. A primary function of cellular RNA is to act as the messenger molecules
that carry information copied from DNA. This process of copying DNA to RNA
is called transcription, and is carried out by pieces of cellular “machinery” called
RNA polymerases. The single-stranded copies are called mRNA (messenger RNA)
and serve to amplify the original DNA “signal.” In keeping with the “blue-print”
analogy, the RNA molecules are like working prints that have been photocopied from
the original DNA-based plans.

Many mRNA copies are produced from the DNA, and the information encoded in
these copies is then translated into proteins by elaborate pieces of cellular “machinery”
called ribosomes. If mRNA copies are not made from a gene, then no protein will be
produced and the gene is said to be silent or inactive. When the gene is transcribed
into RNA copies, the mRNA is said to be expressed.

Proteins are the primary “work-horses” of the cell, serving in a wide variety of
roles including formation of physical structures, communication with other cells, and
catalysis of metabolic reactions. In keeping with the “blue-print” analogy, proteins are
the wood, walls, windows, doors, and even hammers and cranes used for constructing
the building! Proteins consist of chains of amino acids, and the sequence of these
amino acids and subsequent molecular modifications enable the protein to fold into
a complex three-dimensional structure. While only four different nucleic acids are
used to encode information at the DNA or mRNA level, proteins use twenty different
amino acids. A triplet genetic code is used, in which three nucleotides, called a codon,
specify a single amino acid. Because there are four types of nucleotides used in DNA,
there are 43 = 64 possible codons. This allows for a degenerate genetic code, in which
a single amino acid can be specified by any of several codons.

Genes and Regulation

Because proteins play such a fundamental role in the life of a cell, biologists are ex-
tremely interested in identifying those regions of DNA called genes that ultimately
lead to functional proteins. The genome for an organism is its complete hereditary
information encoded in DNA, including both genes and regions of DNA that do not
code for proteins. A variety of computational and experimental techniques have been
used to identify genes [203]. Surprisingly, in more advanced organisms, much DNA

24



does not code for functional proteins. The explanations for this are complex and still
not fully understood [176, 203]. For these and other reasons, discovering genes is by
no means a straight-forward or error-free process. Further, even the definition of a
gene is rather controversial and has been subject to revision in recent years [203].
Fortunately, there are organizations such as the National Center for Biotechnology
Information that seek to compile databases of the latest consensus genetic data. Cur-
rently, information is publicly available for many organisms, including bacteria, yeast,
worms, plants, rodents, and humans [147].

Genetic regulation—the control over when and where genes are active in the cell—
is critical in all organisms. Because the ultimate products of genes are proteins that
carry out an extremely diverse set of cellular tasks, lack of control of genetic activity
can have disastrous consequences. For instance, in animals, many genes code for
proteins involved in cellular growth and division. If these genes are inappropriately
regulated, cellular growth may go unchecked, leading to malignant tumor formation.
Because genetic regulation is so critical, its study comprises a large part of the field
of molecular genetics.

The process of genetic regulation is very complex, and is not yet completely un-
derstood for even simple organisms such as bacterial viruses [167, 13]. On the most
basic level, genetic regulation is carried out by transcription factors (specialized pro-
teins) that act either to inhibit or activate transcription of genes. Many transcription
factors bind to regions of DNA near the genes they regulate. In reality, the pro-
cess of regulation is much more complicated, especially in more advanced organisms
such as humans. Genetic regulation is known to involve combinatorial interactions
among transcriptional factors, binding of non-coding RNA molecules, alterations of
the three-dimensional chromatin structure of DNA, control of the rates of transcrip-
tion and translation, and many other mechanisms [159, 137, 145, 65, 176, 167, 165].

1.1.2 The “new era” of genomics

Classical molecular genetics tended to focus on the understanding of individual genes,
which often involved years of painstaking experimental work for each gene [187]. It
has only been in the last several years, with the advent of new automated technolo-
gies, that biologists have begun to take a more holistic approach. This approach is
sometimes called systems biology, or more specifically genomics, when the goal is to
understand organisms at the level of their genomes. This field is generally divided
into two sub-disciplines: structural and functional genomics. Structural genomics is
primarily concerned with elucidating the sequences of genes and regulatory elements.
The definition of functional genomics is a bit less clear, but an article on the topic by
Philip Hieter and Mark Boguski [88] provides a useful viewpoint:

“. . . functional genomics refers to the development and application of global
(genome-wide or system-wide) experimental approaches to assess gene
function by making use of the information and reagents provided by struc-
tural genomics. It is characterized by high throughput or large-scale ex-
perimental methodologies combined with statistical and computational
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analysis of the results . . . Computational biology will perform a critical
and expanding role in this area: whereas structural genomics has been
characterized by data management, functional genomics will be charac-
terized by mining the data sets for particularly valuable information.”

One of the most valuable tools in functional genomics is the DNA microarray,
which allows researchers to measure the expression levels of thousands of mRNAs
simultaneously. Although there are a variety of DNA microarray technologies in use,
all operate on the basic principle that complementary strands of nucleic acids can
“recognize” or hybridize with each other with high specificity through base-pairing.

DNA microarrays consist of a large number of different DNA molecules, called
“probes,” which are immobilized on a solid surface in an ordered matrix. The posi-
tions of the DNA molecules on the array are predetermined, and the different arrayed
pieces of DNA usually correspond to portions of genes or inter-genic regions of inter-
est. For genome-wide expression analysis, messenger RNA from a group of cells is
worked up to produce a sample of nucleic acid “targets,” some of which will hybridize
with the DNA probes on the microarray [187]. Various methods, usually involving
either fluorescence or radioactivity, can be used to detect the degree of hybridization
that occurs and thus quantify the expression levels of mRNAs present. The two most
popular DNA microarray technologies differ principally in the probes or arrayed ma-
terial used: either short sequences of DNA (oligonucleotides) [126] or complementary
DNA (cDNA) [56, 43].

1.1.3 Oligonucleotide microarrays

Oligonucleotide arrays use as probes short DNA sequences, typically of 10-60 nu-
cleotides, which are synthesized directly on microarray slides. The three major
technologies for production of oligonucleotide microarrays involve photolithography,
miniature mirrors, or ink-jet printing.

One of the main producers of oligonucleotide arrays is the company Affymetrix,
Inc., which uses a photolithographic process borrowed from semiconductor manu-
facturing [3]. Affymetrix’s microarray manufacturing process begins with a quartz
wafer that is coated with silane molecules, forming a uniform matrix. Nucleotides
are then attached to this matrix via linker molecules. A photolithographic mask
determines what area of the wafer will receive nucleotides. The mask has small
windows, and when ultraviolet light is shined through these openings, the exposed
linkers become chemically “de-protected,” allowing coupling to added nucleotides.
The added nucleotides also have chemical groups at a particular position that are re-
moved when exposed to ultraviolet light. By using a sequence of different masks, and
adding nucleotides in the appropriate order, a large number of oligonucleotides of cho-
sen sequences may be synthesized directly on the quartz wafer. Current Affymetrix
GeneChips c© have over 1.3 million spatially distinct “features” (oligonucleotides of
different sequences) on a single array. Each oligonucleotide probe is typically 25 bases
long (a 25mer). For expression analysis applications, approximately twenty probes
are carefully chosen to represent a given gene transcript. Computational and em-
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pirical methods are used to choose the probes, in order to maximize sensitivity and
specificity. For each probe selected, a mismatch probe is constructed that differs from
the probe by one nucleotide near the center of the sequence. These mismatch probes
serve as controls for non-specific hybridization.

NimbleGen Systems, Inc. employs an alternative manufacturing method also
based on photochemistry, but that uses miniature mirrors instead of photolithographic
masks to focus light [154]. The mirrors are computer-controlled to produce high-
resolution ultraviolet light patterns on a solid substrate, creating “virtual masks.”
Current Nimblegen arrays contain up to 2.1 million unique probe features on a single
array, with probe sizes ranging from 24-70 nucleotides.

Agilent Technologies, Inc., produces oligonucleotide microarrays using an ink-jet
printing method [5]. Their manufacturing process uses standard phosphoramidite
chemistry to synthesize oligonucleotides base-by-base. The four different nucleotides
are sprayed onto the microarray as needed in precise, minute quantities using ink-jet
nozzles. Oligonucleotides of 60 bases in length (60mers) are typically used for these
arrays. Current Agilent arrays contain up to 244,000 probes on a single array.

The sample preparation, hybridization, and scanning methods for all the oligonu-
cleotide microarrays described above are similar. For example, for expression analysis
using Affymetrix microarrays, the sample or target is typically prepared by collecting
mRNA from a population of cells and then using a viral enzyme, reverse transcrip-
tase, to produce a DNA copy of the RNA. The DNA is then transcribed back into
RNA in vitro using a source of ribonucleotides with attached biotin molecules. Biotin
is a small molecule that binds very tightly to the protein streptavidin, which is used
later in the microarray assay. The purpose of these steps is to amplify the amount of
starting mRNA and to label the material. The labelled RNA is then hybridized to the
microarray, and a fluorescent molecule attached to strepavadin is added. After several
more staining and washing steps, the result is that areas on the chip will fluoresce
proportionately to the concentration of hybridized RNA present [4]. A laser is used
to excite the fluorescing molecules, and an optical scanner captures the emissions.
Image processing algorithms are then used to correct for background noise and other
optical effects [3]. The final output is a set of numbers that are related to the level
of mRNA present for each gene.

1.1.4 Printed cDNA microarrays

In contrast to oligonucleotide arrays, cDNA arrays typically use much longer pieces
of DNA (often a few hundred nucleotides in length [56, 43]). The DNA attached to
these arrays is typically obtained from cDNA libraries. These libraries are usually
constructed by making cDNA copies (with reverse transcriptase) of mRNA from par-
ticular cell types [56] (e.g., cells from different tissue sources). Once a set of cDNA
probes has been selected, the typical procedure is to amplify the cDNA using the
polymerase chain reaction (PCR) and then “print” it onto a glass microscope slide.
Printing is done using a variety of technologies, including a robotic arm that spots
the DNA onto the slide using a pen-like apparatus [43, 187], and the Agilent ink-jet
technology [5]. The cDNA array technique is very flexible, because DNA from almost
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any source may be used. Specialized arrays have been constructed with cDNAs from
human lymphocytes and other tissues, fruit flies, yeast, bacteria, and many other
sources [7, 220, 202, 63].

As with the procedure for expression analysis using oligonucleotide arrays de-
scribed above, the target material to be hybridized to a cDNA array consists of a
sample of mRNA prepared from a population of cells. However, in the case of cDNA
arrays, labelling is done during the reverse transcription to cDNA step. The in vitro
transcription step is skipped, and the cDNA is hybridized directly to the microarray.

These is another important difference in target preparation that is done to com-
pensate for the somewhat inexact printing process. Because inconsistent amounts of
cDNA can be deposited at a given spot, direct comparisons across different arrays may
be inaccurate. Thus, a method of competitive hybridization is used in which two sep-
arate samples labelled with different fluorescent dyes are simultaneously hybridized
to the array.

The remaining laser excitation and scanning processes for cDNA arrays are also
similar to those used for oligonucleotide arrays. One difference is that two lasers of
different wavelengths are used, so that the intensity of fluorescence of the two samples
can be measured separately. A ratio is then reported, giving the fold difference in
expression between the two samples. Thus, with this technique expression levels are
always reported as ratios relative to one sample.

1.1.5 Comparison of DNA microarray technologies

All the microarray technologies described above have been applied to a variety of bi-
ological research problems [56, 43, 3, 154, 5]. In the past, cDNA microarrays were the
dominant technology. Knowledge of a gene’s DNA sequence was not required, longer
probes were presumed to lead to less cross-hybridization, and they were cheaper to
produce. However, with the sequencing of many biologically important organisms,
the development of oligonucleotide arrays using longer probes or mismatch pairs, and
cost reductions in oligonucleotide array manufacture, these advantages have become
less important. Thus, recent experimental studies now most commonly employ com-
mercially manufactured oligonucleotide arrays.

Each microarray manufacturer claims various technological advantages. Agilent
argues that their technology is accurate, very flexible for producing custom arrays,
and the most cost effective. Affymetrix claims to make the best quality products,
because of the superiority of their manufacturing process and more extensive expe-
rience producing microarrays. NimbleGen produces the highest density microarrays,
and argues that their “virtual mask” technology allows them to make very high qual-
ity custom arrays more cost effectively than can Affymetrix. At this time, it is unclear
which, if any, of these technologies has significant practical advantages over the others.

1.1.6 Microarrays for measuring DNA-protein interactions

Although DNA microarrays were originally used for measuring the expression levels
of genes, they have been more recently applied to localizing DNA-protein interactions
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genome-wide. In this location analysis application, a chemical such as formaldehyde
is first used to cross-link proteins to DNA in cells. Extracted DNA is then broken
into randomly sized pieces using sonication. An antibody to a selected protein is
then used to immunoprecipitate DNA fragments bound to the protein. The resulting
precipitated nucleic acids are purified, PCR amplified and fluorescently labeled to
provide the material for hybridization to a microarray for detection. Figure 1-1 shows
a cartoon of the experimental protocol.

This method of chromatin immunoprecipitation, followed by DNA microarray hy-
bridization (termed ChIP-chip), has emerged as a powerful tool for studying in vivo
genome-wide protein-DNA interactions including transcription factor binding [174,
125, 103, 199, 118, 90, 217, 122, 218, 82, 40, 177, 164], DNA replication and recombi-
nation [222, 77], and nucleosome occupancy and histone modification state [28, 153,
179, 144, 113, 27, 223]. Such information has been used to discover transcription
factor DNA binding motifs, to predict gene expression, and to construct large-scale
regulatory network models [82, 134, 121, 85, 21, 113, 27, 131].

A major difference between microarrays used for ChIP-chip experiments and those
used for measuring gene expression levels is that the former typically need to array a
much larger portion of the genome. The coding regions of genes comprise a relatively
small part of the total DNA of eukaryotic organisms [203]. Because proteins may in-
teract with DNA anywhere throughout the genome, microarrays used for ChIP-chip
analysis should in principle cover the entire genome. Cost and technology limitations
drove initial ChIP-chip array designs. Early studies employed printed cDNA arrays,
with only a single 500-2,000 base-pair (bp) probe representing each intergenic re-
gion [118, 82, 113]. Improvements in array technology and reduced costs have allowed
for smaller probe lengths and more complete genome coverage. For instance, a recent
printed array design using Agilent technology covers the non-repeat portions of the
yeast or human genomes with oligonucleotide probes every few hundred bases, yield-
ing approximately 42,000 array features for yeast and 5 million for humans [164, 117].
Another recent array design uses Affymetrix microarrays with probes representing
every 20 to 35 base-pairs of sequence across human chromosomes 21 and 22 [40, 27].

1.1.7 Limitations of DNA microarrays

As with any technology, DNA microarrays have their limitations. The biggest issue
is that microarray data is extremely noisy. Indeed, some recent studies have found
microarray data to be only moderately reproducible at best [100, 173]. Noise is intro-
duced during the many steps of array manufacture, sample preparation, hybridization,
and detection [84]. For instance, pipette error, temperature fluctuations, and reagent
quality can introduce variation in mRNA amplification and the efficiency of fluores-
cent tagging. The variability of all these factors—from chip-to-chip, laboratory-to-
laboratory, and even experimenter-to-experimenter—makes it challenging to compare
results or to quantify precisely the detection limits of microarrays.

High levels of noise are especially problematic for microarrays, because they mea-
sure the expression levels of thousands of genes simultaneously. Thus, it becomes
extremely likely by chance alone that at least some genes will have very high or
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Figure 1-1: The ChIP-chip experimental protocol is used to measure genome-wide protein-
DNA binding. Formaldehyde or another chemical is used to cross-link proteins to DNA in
cells. Extracted DNA is then broken into randomly sized pieces, typically using sonication.
An antibody to a selected protein is then used to immunoprecipitate DNA fragments bound
to the selected protein. The resulting precipitated nucleic acids are purified, PCR ampli-
fied and fluorescently labeled to provide the material for hybridization to a microarray for
detection.

low expression values. In a recent commentary in The Lancet, Dr. John Ioannidis
described several studies that suffered from this problem:

“The promise of microarrays has been of apocalyptic dimensions. As
put forth by one of their inventors, ‘all human illness can be studied
by microarray analysis, and the ultimate goal of this work is to develop
effective treatments or cures for every human disease by 2050 [184].’ All
diseases are to be redefined, all human suffering reduced to gene-expression
profiles . . . Yet . . . on close scrutiny, in five of the seven largest studies
on cancer prognosis, this technology performs no better than flipping a
coin . . . Well, I think there is no free lunch in good research. Microarrays
need evidence and this cannot be obtained from a couple of small studies,
no matter how high-tech . . . we should aim for many independent studies
with a total of several thousand patients, a hundred-fold more than the
current standard [101].”

As suggested in the above commentary, larger sample sizes are an important com-
ponent for the improvement of the quality of research studies using microarrays. A
complementary approach is to develop better computational and experimental meth-
ods for reducing the effective noise level of microarrays (see for example the refer-
ences [97, 214, 53, 108, 54]). The work in this thesis presents several computational
methods that achieve this objective, by exploiting the idea that more statistical power
can be derived from groups than from single genes.

1.2 Categorization of the work in this thesis

The work described in this thesis is cross-disciplinary, involving development of new
computer algorithms and their application to biological data. Multi-disciplinary work
is inherently difficult to categorize.

From the computational perspective, the author developed new algorithms, ex-
tended existing ones, and wrote computer programs to implement them. That work
drew on techniques from the computer science and mathematical subdisciplines of
software engineering, machine learning, computational geometry, statistics, functional
analysis and numerical analysis.

From the biological perspective, the author analyzed and interpreted experimental
data using knowledge from the biological subdisciplines of molecular genetics, func-
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tional genomics, cell biology, anatomy, physiology, immunology and microbiology.
However, this work was clearly not experimental biology, because the author did not
perform experiments in a biological laboratory.

Computational biology perhaps provides the most succinct categorization of the
cross-disciplinary work described in this thesis. The National Institutes of Health
Biomedical Information Science and Technology Initiative Consortium’s working def-
inition of computational biology is:

“The development and application of data-analytical and theoretical meth-
ods, mathematical modeling and computational simulation techniques to
the study of biological, behavioral, and social systems [148].”

1.3 Thesis roadmap

In this thesis, we describe three novel computational approaches—the GRAM (Chap-
ter 2), GeneProgram (Chapter 3) and GeneProgram+++ (Chapter 4) algorithms—
and show that each method finds biologically meaningful sets of genes in large com-
pendia of DNA microarray data. In this section, for each of the three approaches, we
provide a brief overview of the problems addressed by the method and then outline
the organization of each chapter, describing the method and its applications to bio-
logical data. Chapter 5 provides a summary of the contributions made in this thesis,
and discusses directions for future work.

1.3.1 The GRAM algorithm

Problem overview

Understanding of regulatory interactions and molecular mechanisms governing genetic
networks is of fundamental importance to basic biology, and is also relevant to im-
proved diagnosis and treatment of human diseases. A variety of new high-throughput
data sources have recently become available, and these hold the promise of revolution-
izing molecular biology by providing a large-scale view of the regulation of genes in
the cell. Fundamental goals at this scale involve discovering patterns of combinatorial
regulation and how the activity of genes involved in related biological processes is co-
ordinated and interconnected. However, each high-throughput data source measures
only a particular aspect of cellular activity and suffers from limitations in accuracy.
Thus, an important goal is to integrate information from multiple data sources, so
that each type of data can compensate for the limitations of the others. A further goal
is to develop automated methods that can aid in deducing abstractions that can con-
ceptually reduce genetic network complexity without significant loss of explanatory
power.

Initial work on constructing genome-wide regulatory networks relied exclusively
on expression data (see Section 2.1 for details). However, these approaches assume
that expression levels of regulated genes depend on expression levels of regulators.
This assumption is often not biologically realistic, because the expression levels of
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many regulators do not reflect their physiologic activity due to factors such as post-
translational modifications, protein degradation mechanisms, and cellular sequestra-
tion of regulators [143].

Large scale, genome-wide location analysis for DNA-binding regulators offers a
second means for identifying regulatory relationships [118]. Location analysis iden-
tifies physical interactions between regulators and DNA regions, providing strong
direct evidence for genetic regulation. Although useful, binding information is also
limited, as the presence of the regulator at a promoter region indicates binding but
not function; the regulator may act positively, negatively or not at all. In addition,
as with all microarray based data sources, location analysis data contains substantial
experimental noise. Because expression and location analysis data provide comple-
mentary information, our goal was to develop an efficient computational method for
integrating these data sources. We expected that such an algorithm could provide
assignments of groups of genes to regulators that would be both more accurate and
more biologically relevant than assignment based solely on either data source alone.

Chapter 2 organization overview

In Chapter 2, we present a novel algorithm, GRAM (Genetic RegulAtory Modules),
which fuses information from genome-wide expression and in vivo transcription factor-
DNA binding data sets to discover regulatory networks of gene modules. A gene
module is defined as a set of genes that are both co-expressed and bound by the
same set of transcription factors. After some brief introductory material, we discuss
prior work on gene module discovery in Section 2.1. Next, we present the algorithm
in detail in Section 2.2. In Section 2.3, we use the GRAM algorithm to discover
a genome-wide regulatory network using binding information for 106 transcription
factors in Saccharomyces cerevisiae in rich media conditions and over 500 expression
experiments. We also validate the quality of these results by performing analyses using
four independent data sources, and use the discovered modules to label transcription
factors as activators or repressors and identify patterns of combinatorial regulation. In
Section 2.4, we analyze a new genome-wide location analysis data set for regulators in
yeast cells treated with rapamycin, and use the GRAM algorithm to provide biological
insights into this regulatory network. In Section 2.5, we present a method for using
modules to build automatically genetic regulatory sub-networks for specific biological
processes, and use this technique to reconstruct accurately key elements of the cell-
cycle in yeast. Finally, Section 2.6 concludes the chapter with a discussion of the
advantages and limitations of the GRAM algorithm.

1.3.2 The GeneProgram algorithm

Problem overview

The great anatomic and physiologic complexity of the mammalian body arises from
the coordinated expression of genes. A fundamental challenge in computational bi-
ology is the identification of sets of co-activated genes in a given biological context
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and the characterization of the functional breadth of such sets. Understanding of
the functional generality of gene sets has both practical and theoretical utility. Sets
of genes that are very specific to a particular cell type or organ may be useful as
diagnostic markers or drug targets. In contrast, sets of genes that are active across
diverse cell types can give us insight into unexpected developmental and functional
similarities among tissues. While there has been considerable effort in systems bi-
ology to understand the structure and organization of co-expressed sets of genes in
isolated tissues in the context of pathological processes, such as cancer and infec-
tion [107, 128, 189, 215], relatively little attention has been given to this task in the
context of normal physiology throughout the entire body [198, 205]. By analyzing
gene expression in this latter context, we can gain an understanding of baseline gene
expression programs and characterize the specificity of such programs in reference to
organism-wide physiological processes.

Analysis of large genome-wide mammalian expression data compendia present
several new challenges that do not arise when analyzing data from simpler organisms.
First, tissue samples usually represent collections of diverse cell-types mixed together
in different proportions. Even if a sample consists of a relatively homogenous cell
population, the cells can still behave asynchronously, due to factors such as microen-
vironments within the tissue that receive different degrees of perfusion. Second, each
tissue sample is often from a different individual, so that the compendium represents
a patchwork of samples from different genetic and environmental backgrounds. Fi-
nally, the number of expression programs and distinct cell populations present in a
compendium is effectively unknown a priori.

Chapter 3 organization overview

In Chapter 3, we present GeneProgram, a novel unsupervised computational frame-
work that uses expression data to simultaneously organize genes into overlapping
programs and tissues into groups to produce maps of inter-species expression pro-
grams, which are sorted by generality scores that exploit the automatically learned
groupings. Our method addresses each of the above challenges relating to the use of
large mammalian expression data compendia by using a probabilistic model that: 1)
allocates mRNA to different expression programs that may be shared across tissues, 2)
is hierarchical, treating each tissue as a sample from a population of related tissues,
and 3) uses Dirichlet Processes, a non-parametric Bayesian method that provides
prior distributions over numbers of sets while penalizing model complexity.

We begin in Section 3.1 by providing some introductory material and discussion
of prior work relating to discovery of gene sets from expression data compendia. In
Section 3.2, we present background material on ordinary and Hierarchical Dirichlet
Process mixture models, which are a core component of the GeneProgram probability
model. In Section 3.3, we provide a detailed description of the GeneProgram algo-
rithm and probability model. In Section 3.4, we perform synthetic data experiments
to explore the kinds of structures GeneProgram and several other well-known unsu-
pervised learning algorithms can recover from noisy data. In Section 3.5, we apply
GeneProgram to the Novartis Gene Atlas v2 [205], consisting of expression data for
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79 human and 61 mouse tissues. Using this data set, we compare GeneProgram’s
ability to recover biologically relevant gene sets to that of biclustering methods, and
produce a body-wide map of expression programs organized by their functional gen-
erality scores. Finally, in Section 3.6, we discuss the significance of our results and
comment on possible future research directions.

1.3.3 The GeneProgram++ algorithm

Problem overview

In many microarray gene expression experiments, we are interested in genes’ behavior
relative to some baseline condition. For instance, we may be interested in the extent
of induction or repression of gene expression after cells are exposed to environmental
stresses [71], infected with microorganisms [202, 149, 150, 107, 33, 91, 160, 80], or
observed throughout development [220]. The simplest such studies may consider only
a few experiment-control pairs. However, in more complex studies, researchers may
seek to explore complex patterns of change, such as temporal dynamics.

In analyzing patterns of gene expression change, we would like to discover sets of
genes that behave coherently. In Chapter 3, we present the GeneProgram algorithm,
and show that it has a number of advantages over previous methods in the discovery of
biologically relevant sets of genes from large compendia of data. However, a limitation
of the GeneProgram algorithm is that it does not explicitly model patterns of gene
expression change.

There are at least three ways we could imagine extending the GeneProgram al-
gorithm to model patterns of gene expression change. To simplify the discussion, we
will describe examples in terms of induction or repression changes. First, we could
introduce an additional parameter for each gene in each expression program, indicat-
ing whether it was induced or repressed. In this scenario, expression programs would
consist of sets of genes in which each gene is consistently either induced or repressed
(but not both) in a subset of tissue samples. The problem with this approach is that
expression programs could be difficult to interpret and would not really match our
intuition for what constitutes an “atomic” or modular biological process, in which
we expect the expression of all relevant genes to coordinately change in the same
direction in response to some stimuli. This expectation suggests a second possibility
for extending the algorithm, in which we could introduce an additional parameter at
the level of the expression program, indicating whether the genes in the program were
induced or repressed. With this model, the direction of expression change for genes
in a program would be consistent and would be the same for all tissue samples using
the program. However, it is easy to imagine compendia of experiments in which an
expression program is induced in some tissue samples and repressed in others. This
then suggests the third possibility—the one GeneProgram++ uses—in which we in-
troduce a parameter for each tissue sample at the level of the expression program,
specifying the direction of expression change for genes in the program. Thus, with
this model, the direction of expression change is consistent for all genes in a program
for a particular sample.
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Chapter 4 organization overview

In Chapter 4, we present GeneProgram++, an extension of our original GeneProgram
algorithm that explicitly models general patterns of expression changes, including
not only induction or repression, but also temporal dynamics. Patterns of expression
change are modeled using the novel concept of program usage modifiers. A usage
modifier is a variable that is specific to a tissue-expression program pair and describes
how a tissue uses the program. For instance, usage modifiers can specify the temporal
phase and direction (induction or repression) of expression. Thus, the genes used by
a tissue from a program and the manner in which they are expressed (e.g., early
induction versus late repression) are chosen probabilistically and influenced by the
behavior of similar tissues. Further, usage is by definition consistent across a program
for a particular tissue, which facilitates biological interpretation.

After some introductory material, we begin by discussing the GeneProgram++
algorithm in detail in Section 4.1. We first describe how a simplified version of
GeneProgram without tissue groups is extended to include program usage modifiers.
We then describe the full GeneProgram++ model and Markov Chain Monte Carlo
(MCMC) sampling methods for the model. In Section 4.2, we describe some addi-
tional technical improvements relating to posterior distribution summarization, and
benchmark the performance of the improved algorithm on expression data. In Sec-
tion 4.3, we apply GeneProgram++ to a compendium of 62 short time-series gene
expression experiments in which various human cell types have been exposed to dif-
ferent infectious agents or immune-modulating substances [107], and produce a map
of expression programs organized by functional generality scores. We evaluate the
biological relevance of the discovered expression programs using biological process
categories and pathway databases, as well as genome-wide data profiling binding of
human transcription factors. Finally, we provide examples of discovered expression
programs involved in key pathways related to the response to infection. We conclude
the chapter with Section 4.4, in which we discuss the significance of our results.
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CHAPTER 2

Genetic RegulAtory Modules (GRAM)

“This we know: the earth does not belong to man, man belongs
to the earth. All things are connected like the blood that unites
us all. Man did not weave the web of life, he is merely a strand
in it.”

—From the apocryphal Chief Seattle speech1

Understanding of regulatory interactions and molecular mechanisms governing
genetic networks is of fundamental importance to basic biology, and is also relevant
to improved diagnosis and treatment of human diseases. A variety of new high-
throughput data sources have recently become available, and these hold the promise
of revolutionizing molecular biology by providing a large-scale view of the regulation
of genes in the cell. Fundamental goals at this scale involve discovering patterns of
combinatorial regulation and how the activity of genes involved in related biological
processes is coordinated and interconnected. However, each high-throughput data
source measures only a particular aspect of cellular activity and suffers from limita-
tions in accuracy. Thus, an important goal is to integrate information from multiple
data sources, so that each type of data can compensate for the limitations of the
others. A further goal is to develop automated methods that can aid in deducing
abstractions that can conceptually reduce genetic network complexity without signif-
icant loss of explanatory power.

Initial work on constructing genome-wide regulatory networks relied exclusively
on expression data (see section 2.1 for details). However, these approaches assume

1These words are commonly thought to have been spoken by Chief Seattle, the Native American
leader, in 1854. However, they were actually written by screenwriter Ted Perry for a 1972 movie,
Home, about ecology [10]. However, because the apocryphal speech has been quoted so much, it is
possible that history has finally been altered, and Chief Seattle really did say all this.
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that expression levels of regulated genes depend on expression levels of regulators.
This assumption is often not biologically realistic, because the expression levels of
many regulators do not reflect their physiologic activity due to factors such as post-
translational modifications, protein degradation mechanisms, and cellular sequestra-
tion of regulators [143].

Large scale, genome-wide location analysis for DNA-binding regulators offers a
second means for identifying regulatory relationships [118]. Location analysis iden-
tifies physical interactions between regulators and DNA regions, providing strong
direct evidence for genetic regulation. Although useful, binding information is also
limited, as the presence of the regulator at a promoter region indicates binding but
not function: the regulator may act positively, negatively or not at all. In addition,
as with all microarray based data sources, location analysis data contains substantial
experimental noise. Because expression and location analysis data provide comple-
mentary information, our goal was to develop an efficient computational method for
integrating these data sources. We expected that such an algorithm could provide
assignments of groups of genes to regulators that would be both more accurate and
more biologically relevant than assignment based solely on either data source alone.

In this chapter, we present a novel algorithm, GRAM (Genetic RegulAtory Mod-
ules), which fuses information from genome-wide expression and in vivo transcription
factor-DNA binding data sets to discover regulatory networks of gene modules. A
gene module is defined as a set of genes that are both co-expressed and bound by the
same set of transcription factors. Unlike previous approaches [58, 162, 99, 26, 191]
that have relied primarily on functional information from expression data, the GRAM
algorithm explicitly links genes to the factors that regulate them by using DNA bind-
ing data to incorporate direct physical evidence of regulatory interactions.

We use the GRAM algorithm to discover a genome-wide regulatory network using
binding information for 106 transcription factors in Saccharomyces cerevisiae in rich
media conditions and over 500 expression experiments. We validate the quality of
these results by performing analyses using four independent data sources. We then
use the discovered modules to label transcription factors as activators or repressors
and identify patterns of combinatorial regulation. Further, we present a method
for using modules to build automatically genetic regulatory sub-networks for specific
biological processes, and use this to reconstruct accurately key elements of the cell-
cycle in yeast. Finally, we analyze a new genome-wide location analysis data set for
regulators in yeast cells treated with rapamycin, and use the GRAM algorithm to
provide biological insights in this regulatory network.

2.1 Related work

Computational discovery of genetic regulatory networks has been a very popular
research area in recent years. In this section, we will focus on previous work most
relevant to our own. For additional prospectives on this topic, the reader is encouraged
to consult a recent review such as [169].

Many studies have focused on networks derived from a single data type, such as
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gene expression or protein interaction data. For instance, Friedman et al. [68] and
Hartemink et al. [84] used limited expression data to learn static Bayesian networks
for the regulation of gene expression in S. cerevisiae. In a more recent approach, Segal
et al. constructed a probabilistic model that uses expression data to construct a large-
scale map linking regulators to regulated genes [191]. All these studies assume that
expression levels of regulated genes depend on expression levels of regulators, which
can be biologically unrealistic as discussed in the introduction to this chapter.

Other studies have combined genome-wide binding data with other data types,
but, unlike our method, these have used a strict cutoff for binding data, reducing
it to a binary relationship. For example, Hartemink et al. [85] used binding data
to constrain the structure of a learned static Bayesian network. Ideker et al. [96]
combined protein interaction and binding data to construct a network structure, and
then used expression data to identify specific subnetworks in that network.

Several methods have been developed that combine DNA sequence motifs or in-
formation from gene function databases with expression data to discover sets of pre-
sumably co-regulated genes [99, 162]. As an example, the methods of Ihmels et al.
and Pilpel et al. start with an initial set of genes that are selected using a certain
criteria (e.g., DNA binding motif or MIPS functional category) and use expression
data to refine the initial set [99, 162]. Although these methods represent an impor-
tant first step, our method improves upon them in several ways. First, the GRAM
algorithm exhaustively and efficiently searches the combinatorial space of subsets of
transcriptional factors. This allows us to distinguish modules that were found to be
identical in previous work but that are controlled by different transcription factors
(see Section 2.6.1). Second, unlike these previous methods, the GRAM algorithm
comprehensively combines the two data sources, binding and expression data, by re-
visiting the binding data after refining an initial gene set. Finally, our method focuses
not only on the genes themselves, but also on the relationships between transcription
factors and genes. This allows us to further refine our understanding of the cell’s
regulatory network, by assigning functional annotations to transcriptional factors.

We also note that all the prior approaches discussed above generate static or
steady-state networks. In contrast, we present methods to reconstruct regulatory
networks using temporal information. This is especially important in the analysis of
dynamic processes in the cell, such as replication.

2.2 The GRAM algorithm

In this section we present the GRAM algorithm for discovering gene modules. As
described above, modules are sets of genes that are both co-expressed and regulated
by the same set of transcription factors (TFs). The computational challenges we face
are:

1. High dimensionality of expression data. Our algorithm must handle continuous
data for thousands of genes measured in hundreds of experiments.

2. Large number of potential regulators. Each module is potentially regulated by
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any combination of over one hundred transcription factors.

3. Noisy data. Both genome-wide binding and expression data are measured ex-
perimentally using DNA microarrays, which produce notoriously noisy output.

The GRAM algorithm addresses these challenges by using efficient methods for
robust determination of nearby genes in the high-dimensional expression data space
and search over combinations of transcriptional regulators. The algorithm begins by
performing an exhaustive search over all possible subsets of regulators indicated by
the DNA-binding data with a stringent criterion for determining binding. Once a set
of genes bound by a common set of transcriptional regulators is found, the algorithm
identifies a subset of these genes with highly correlated expression, which serves as a
“seed” for a gene module. The algorithm then revisits the binding data, and seeks
to add additional genes to the module that are similarly expressed and bound by the
same set of transcriptional regulators using a relaxed binding criteria. Note that the
GRAM algorithm allows genes to belong to more than one module. In the following
subsections we present a formal description of the algorithm.

2.2.1 Formal model description

Figure 2-1 provides pseudo-code for the GRAM algorithm. The inputs consist of
matrices of expression data values and binding data p-values. That is, let E denote
the matrix of continuous expression data, where the rows represent genes and the
columns represent D experiments. We assume that expression data has been mean-
centered and normalized by the standard deviation for each gene. Let B denote the
matrix of binding p-values, where rows correspond to genes and columns correspond
to transcription factors, i.e., bit denotes the binding p-value of TF t for gene i. Below
we discuss details of each step of the algorithm.

Initialization with TF binding patterns

The first step of the algorithm is the construction of a series of sets, F1, . . . ,FJ , of
all possible regulatory TF combinations strictly implied by the binding data, and all
subsets of these combinations. Each set Fj contains all sets of TFs of size j that
are implied by the data. To be precise, let T (i, p) denote the set of all transcription
factors that bind to a gene i with p-value less than p, i.e., the list of factors t such
that bit < p. We denote an element of Fj by Fk, i.e., Fk ∈ Fj implies that |Fk| = j
and Fk ⊆ T (i, p1) for some gene i and a strict binding p-value p1.

The algorithm proceeds by iterating over all elements of each Fj beginning with the
highest numbered set, i.e., with j = J . Note that there is a potentially exponential
number of combinations of TFs to be considered as regulators for gene modules.
However, because we restrict our search to combinations “confidently” implied by the
data, the number of subsets to be searched over is much smaller. This feature of the
algorithm enabled it to operate on a data set containing genome-wide binding data
for over 100 TFs, as discussed in section 2.3.
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GRAM(E,B,p1,p2)
// E and B are matrices of expression and binding experiments, respectively
// p1 and p2 are strict and relaxed binding thresholds, respectively

Initialization:
Construct a series of sets, F1, . . . ,FJ , of all possible regulatory TF combinations
strictly implied by the binding data, and all subsets of these combinations.
GJ ← all genes
// Gj is the working set of genes in iteration j

For all sizes of TF regulatory sets j = J, . . . , 1:
For all subsets of TFs Fk ∈ Fj:

G← G(Fk, p1), a set of genes for a candidate module
c← core expression profile for the set G(Fk, p1)
Expand G to M(Fk), the final module, by including genes with a relaxed binding threshold
Output M(Fk), if the module has a sufficient number of genes

Gj−1 ← Gj\
⋃
kM(Fk) such that |Fk| = j

Figure 2-1: Pseudo-code for the GRAM algorithm for identifying gene modules from
genome-wide expression and transcription factor binding data. See the text for details.

Finding core expression profiles

The algorithm seeks to find a core expression profile for all genes strictly bound
by a set of TFs, i.e., a point in expression space that is significantly close to as
many co-bound genes as possible. Note that the core expression profile is a robust
estimate in the sense that it is insensitive to co-bound genes with outlying expression
measurements.

Let Gj denote the set of genes being considered by the algorithm for sets of TFs
of size j, i.e., |Fk| = j. Let G(Fk, p) denote the set of all genes in Gj to which all the
TFs in Fk are bound with a given p-value threshold p, i.e., all the genes l ∈ Gj such
that Fk ⊆ T (l, p). Then, for every Fk ∈ Fj, the genes in G(Fk, p1) serve as candidates
for a module regulated by the factors in Fk.

For each candidate set G(Fk, p1) of n genes (where n is greater than some thresh-
old), the algorithm attempts to find a core expression profile. That is, the algorithm
seeks a point c in expression space such that for an expression distance threshold rn
(depending on the number of genes in the set, as described below), the ball centered
at c of radius rn contains as many genes in G(Fk, p1) as possible.

We define the distance between two points x and y in normalized expression space
as:

d(x,y) =

√∑D
d=1(xd − yd)2

D

We then denote by C(Fk, p1, c) the set of genes in G(Fk, p1) that are all at distance
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at most rn from a given point c in expression space. In order to find the optimal point,
we would like to solve the following maximization problem:

c = arg max
c′

|C(Fk, p1, c
′)| (2.1)

Unfortunately, the exact solution of this problem is exponential in the dimension D of
the expression space [14]. Because the GRAM algorithm is intended for application
to large expression data sets, an exact search is therefore not practical. Instead we
use an approximation algorithm that has good theoretical guarantees and runs in
time O(n3). Note that since only a relatively small number of genes are bound by a
set of transcription factors, n will be fairly small (e.g., typically less than 100).

The approximation algorithm we use involves iterating over all triplets of genes
from G(Fk, p1). For each such triplet, the algorithm computes the center c′ for the
triplet and the number of genes in C(Fk, p1, c

′). The algorithm selects the point c
that maximizes |C(Fk, p1, c

′)| over all the centers computed from triplets.
In order to present the theoretical guarantees of this method for finding the core

expression profile, we need a lemma from Badoiu and Clarkson [14]. Let P be a set
of points in a high dimensional space. For S ⊆ P , let B(S) denote the smallest ball
enclosing all the points in S, let cB(S) denote the center of such a ball, and let rB(S)

be its radius. Then, the following lemma holds.

Lemma 1 [Badoiu and Clarkson 2003] There exists a set S ⊆ P of size 2/ε such
that the distance between cB(S) and any point p ∈ P is at most (1 + ε)rB(P ).

To see how this applies to our method, set ε = 2/3. Then, according to the above
lemma, there exist three points such that the ball defined by the center of these points
and a radius of (1 + ε)rn contains all the points in the set we are looking for. Because
our method searches over all possible triplets of points, the algorithm must encounter
the three points guaranteed by the above lemma. In other words, our algorithm finds
a solution that is at least as good as a solution that can be found for r∗ = rn/(1+2/3).

The radius rn determines how close genes’ expression values must be to a core
profile in order to be considered co-expressed. This distance is expected to vary with
the size of the set of genes being considered—the larger the set, the more likely it is
that genes will be close to the core profile by chance. We determine the values for rn
by boot-strapping the data, thus avoiding additional unwarranted assumptions about
specific probability models for the expression data. The method involves selecting
n genes uniformly at random for each sample q. For each sample, we compute the
center c(q) for this set, and then determine the distance r

(q)
n to the fifth closest gene

not in the set of genes. We then select rn to be the fifth-percentile of the sampled
r

(q)
n values.

Expanding candidate sets to determine final modules

Now that the algorithm has determined a core expression profile c for a candidate
module regulated by factors Fk, it expands the module through a “relaxation” step
that includes genes that may have been omitted due to noise in the TF binding
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measurements. This is accomplished by considering all genes i that are close to the
expression core, i.e., i ∈ Gj and d(ei, c) < rn. For a gene i to be included in the
module, it must be bound by all factors in Fk with at least a “relaxed” p-value
threshold p2 (determined experimentally as described in Section 2.2.2). That is, for
all TFs f ∈ Fk, we must have that bif < p2. The rationale for this is that genes
with expression values close to the core profile are likely to be co-regulated (bound
by the same factors), and we are thus willing to relax the stringency for determining
TF binding.

We then form the module M(Fk), consisting of the original genes in the candidate
module and those added in the relaxation step. The module thus formed will now
contain similarly expressed and co-bound genes. Note that if a gene i is included in
a module controlled by a set of TFs Fk, it is likely to be included in any module con-
trolled by a subset Fk′ ⊂ Fk. Because we are interested in the complete set of factors
controlling a gene, we exclude the gene from inclusion in further modules controlled
by fewer TFs. That is, Gj−1 = Gj\

⋃
kM(Fk) such that |Fk| = j. This procedure

reduces the number of overlapping modules, without reducing the explanatory power
of the final modules. Once all sets Fk containing j TFs factors have been evaluated,
the algorithm then proceeds to consider sets with j − 1 TFs.

2.2.2 Experimental determination of strict and relaxed bind-
ing thresholds

In order to determine appropriate values for the strict and relaxed binding thresholds
(p1 and p2), we performed independent experiments to test the predictions of the
binding data at a number of different confidence levels. We used chromatin-IP with
gene-specific PCR analysis for selected regulators to test the results predicted at
each of the different p-value thresholds. We then determined how frequently each
regulator-gene interaction agreed in both the genome-wide binding and gene-specific
PCR experiments. We selected two different regulators, Nrg1 and Stb1, for testing.
For each regulator, we selected sets of genes with genome-wide binding p-values closest
to one of four thresholds (0.001, 0.005, 0.01, 0.05), and performed chromatin IP and
gene-specific PCR. See the supplemental web site for the reference [118] for complete
results.

Based on these experiments, we set p1 = 0.001 and p2 = 0.01. For these values
we determined that p1 achieves approximately a 70% true-positive rate and a 5%
false-positive rate, while p2 achieves an over 90% true-positive rate, but an over 50%
false-positive rate. Thus, by starting with p1, genes in candidate modules have a low
false-positive binding rate. However, this strict p-value reduces the number of possible
true-positives. As we demonstrate below, by complementing binding with expression
data, we can use the relaxed threshold (p2) and thus increase the true-positive rate
without increasing the false-positive rate.
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2.2.3 Inference of dynamic sub-networks

We extended the GRAM algorithm to infer dynamic sub-networks from static binding
data and temporal expression data. The first step of the procedure involves running
the GRAM algorithm on the full set of available transcription factor binding data
and a large compendium of expression experiments. In the second step, genes in
the generated modules are flagged if they are determined to be involved in a given
biological process based on an objective criteria. For the cell-cycle, this criteria was
cycling behavior in a collection of time-series gene expression experiments [202]. A
statistical test based on the hypergeometric distribution is then used to determine
which modules contain a significant number of flagged genes. The transcription fac-
tors that regulate these significant modules are then collected into a list. We then
manually select a set of expression experiments in which the biological process of
interest is expected to be particularly active. In the third step, GRAM is run using
the selected expression data, the flagged genes, and the list of regulators determined
in the previous step, producing a set of modules with genes and factors presumably
directly involved in the process of interest.

Finally, in order to uncover the dynamics of the regulatory system, we combine
the above procedure with our interpolation and alignment algorithms. Briefly, our
interpolation and alignment algorithms use a probabilistic model to fit splines (piece-
wise polynomials) to gene expression time-series data and then aligns these continuous
curves, which may differ in phase or period (see [73, 18, 19]). We use our interpolation
algorithm to produce continuous expression profiles for all genes in the sub-network.
Next, we select one module as an anchor, and align the rest of the mean continuous
expression profiles of all the other modules to the mean continuous expression pro-
file of the anchor module using our continuous alignment algorithm. We restrict the
alignment to time-shift (i.e., we do not allow temporal stretching). This results in
a temporal ordering of the discovered modules. Note that by using the expression
levels of regulatory targets in modules (rather than TF expression levels directly),
we can determine the times at which regulators are physiologically active, even if TF
expression profiles do not change under the experimental conditions studied. This
allows us to correctly assign regulators to different temporal phases of the dynamic
system, without directly observing TF protein levels.

2.3 Gene modules in rich media conditions and

modes of regulatory control

The GRAM algorithm was applied to genome-wide binding data for 106 transcription
factors and over 500 expression experiments (complete details on the data used are
available on the supplementary web site for the reference [21]). One-hundred six
gene modules were identified, containing 655 distinct genes and regulated by 68 of
the transcription factors. Figure 2-2 presents a visualization of these results as a
graph with edges between gene modules and regulators. A complete list of modules
is available on the supplementary web site for [21].
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Figure 2-2: Visualization of the transcriptional regulatory network discovered by the
GRAM algorithm as a graph with edges between gene modules and regulators shows that
there are many groups of connected gene modules/regulators involved in similar biological
processes. The network consists of 106 modules containing 655 distinct genes regulated by
68 transcription factors. In most cases in which a gene module is controlled by one or more
regulators, there was previous evidence suggesting that these regulators physically or func-
tionally interact (see Table 2.1 for details). The directed arrows point from transcription
factors to the gene modules that they regulate. Blue arrows indicate discovered activator
regulatory relationships (see Table 2.3 and the text for details). Gene modules are colored
according to the MIPS category to which a significant number of genes belong (significance
test using the hypergeometric distribution, p < 0.005). Modules containing many genes
with unknown function or an insignificant number belonging to the same MIPS category
are uncolored. When the gene modules discovered by the GRAM algorithm were compared
to results generated using location data alone, the GRAM algorithm yielded an almost
three-fold increase in modules significantly enriched for genes in the same MIPS category.
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2.3.1 Discovery of biologically relevant gene modules

Several results obtained by analysis of the discovered gene modules suggest that the
algorithm identifies biologically relevant groupings of genes. First, we found that
gene modules generally identify groups of genes that function in a similar biological
pathway as defined by the MIPS [140] functional categorization (see Figure 2-2 and
the supplementary web site for [21]). For this analysis, we computed the overlap
between the genes contained in each module and different MIPS sub-categories. We
used the hypergeometric distribution to compute a significance value for this overlap,
and used the category with the highest significance level to label modules, provided
that the overlap for such a category was significant with a p-value < 0.005.

Second, we found the gene modules to be generally accurate in assigning reg-
ulators to sets of genes whose functions are consistent with the regulators’ known
functional roles. As an example, Gcr1 is a well-characterized regulator of glucose
metabolism [89, 15]; 6 of the 7 genes identified in the Gcr1 module are enzymes in-
volved in glycolysis and gluconeogenesis. Additionally, we found that in most cases
in which a gene module is controlled by one or more regulators, there was previous
evidence suggesting that these regulators physically or functionally interact (see Ta-
ble 2.1). We used the Saccharomyces Genome Database [166] to find such evidence
in the prior literature. Fifty-five modules had combinations of regulators. Of these,
we found 26 combinations of regulators for which there is evidence for functional
interactions (regulators bind to and regulate common genes) and 15 combinations
of regulators for which there is evidence for physical interactions (regulators con-
tact each others). For example, gene modules identify Hap2/3/4/5, Hap4/Abf1,
Ino2/Ino4, Hir1/Hir2, Mbp1/Swi6, and Swi4/Swi6 interactions. Taken together, the
above results provide evidence that the GRAM algorithm identifies not only biologi-
cally related sets of genes, but also relevant factors that are interacting to control the
genes.

2.3.2 Integration of binding and expression data improves on
either data source alone

While genome-wide location data alone is potentially useful for deriving transcrip-
tional regulatory networks, a key feature of the GRAM algorithm is its ability to
compensate for technical limitations in the location data through the integration of
expression data. To determine binding events in location data, Lee et al. [118] used
a statistical model and chose a relatively stringent p-value threshold (0.001) with
the intention of reducing false-positives at the expense of true-positives. The GRAM
algorithm presents a powerful alternative to using a single p-value threshold to pre-
dict binding events, because our method allows the p-value cutoff to be relaxed if
there is sufficient supporting evidence from expression data. As an example, consider
Hap4, a well-characterized regulator of genes involved in oxidative phosphorylation
and respiration [66]. The Hap4 modules contain twenty-eight genes that are involved
in respiration and show a high degree of co-regulation over the collected expression
data sets (see figure 2-3). Six of these genes (PET9, ATP16, KGD2, QCR6, SDH1,
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Module regulators Functional interactions Physical interactions
ARG80, ARG81, GCN4 Arg80, Arg81, Gcn4 Arg80, Arg81
CBF1, MET4 Cbf1, Met4 Cbf1, Met4
DIG1, STE12 Dig1, Ste12 Dig1, Ste12
FKH2, MCM1, NDD1 Fkh2, Mcm1, Ndd1 Fkh2, Mcm1, Ndd1
HAP2, HAP3, HAP5 Hap2, Hap3, Hap5 Hap2, Hap3, Hap5
HAP2, HAP4 Hap2, Hap4 Hap2, Hap4
HIR1, HIR2 Hir1, Hir2 Hir1, Hir2
INO2, INO4 Ino2, Ino4 Ino2, Ino4
MBP1, SWI4, SWI6 Mbp1, Swi6 Mbp1, Swi6

Swi4, Swi6 Swi4, Swi6
MCM1, STE12 Mcm1, Ste12 Mcm1, Ste12
ABF1, HAP4 Abf1, Hap4
ACE2, SWI4 Ace2, Swi4
ACE2, MBP1, NDD1, SWI5 Ace2, Swi5
ABF1, INO4 Abf1, Ino4
CAD1, YAP1 Cad1, Yap1
FKH1, FKH2 Fkh1, Fkh2
MBP1, SWI4 Mbp1, Swi4
SKN7, SWI4 Skn7, Swi4
STE12, SWI4 Ste12, Swi4

Table 2.1: Many regulator-regulator interactions predicted by the modules generated by
the GRAM algorithm are confirmed by comparison to previously published literature. 55
modules have combinations of regulators. The table lists representative combinations of
regulators for which there is evidence of functional or physical interactions in the Saccha-
romyces Genome Database [166]. Overall, we found 26 combinations of regulators for which
there is evidence for functional interactions (regulators bind and regulate common genes)
and 15 combinations of regulators for which there is evidence for physical interactions (reg-
ulators contact each others).
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and NDI1) would not have been identified as Hap4 targets using the stringent 0.001
p-value threshold (p-values range from 0.0011 to 0.0036).

Overall, 627 out of 1560 unique regulator-gene interactions (40%) in the rich
media network discovered by the GRAM algorithm would not have been detected
using only location data and the stringent p-value cutoff. One would like to show
that these predicted interactions are not erroneous by comparing them against some
independent gold standard. Unfortunately, no such data source exists on a genome-
wide scale for transcription factor-DNA interactions.

Our approach was to verify that the GRAM algorithm improves true-positive rates
without significantly increasing false-positive rates by using available data from four
independent sources:

1. Transcription factor-gene interactions identified previously in the literature for
a well-studied biological process using non-high-throughput methods.

2. Gene-specific chromatin-IP (ChIP) experiments for selected genes.

3. The MIPS database of functional annotations [140].

4. DNA sequence motif information from the TRANSFAC database [136].

For our literature validation, we focused on known transcription factor-gene in-
teractions involved in the cell-cycle, because this is an extensively studied system.
We performed a literature search and found 51 previously identified binding relation-
ships (see supplemental web materials [20]). Seven of these binding relationships were
not detected in the genomic binding assay using a stringent cutoff [118], but three
of these were identified by the GRAM algorithm. Because our method added only
59 new factor-gene relationships for genes involved in the cell-cycle, this result was
significant, with a p-value < 3 · 10−5.

To further verify our results, we performed gene-specific chromatin-IP experiments
for the factor Stb1 and 36 genes. The profiled genes were picked randomly from
the full set of yeast genes, with representatives selected from four p-value ranges in
the genome-wide binding data. In these experiments, three additional genes were
determined to be bound by Stb1 that had p-values between 0.01 and 0.001 in the
genomic location experiments [118], and had thus been excluded with the stringent
cutoff. The GRAM algorithm identified all three genes as bound by Stb1 without
adding any additional genes that were not detected in the gene-specific chromatin-IP
experiments (see Table 2.2 and [20]).

We also expected that the gene modules derived by the GRAM algorithm would
improve on the biological relevance of gene groupings that could be inferred from
location data only. Since genes that participate in the same biological pathway often
have similar expression patterns, and genes in a module share not only a common set
of transcription factors but also similar expression patterns, we expected that genes
in modules would more likely be functionally related than sets of genes identified by
location data alone. Indeed, we found that gene modules derived using the GRAM
algorithm were almost three times more likely to show enrichment for genes in a MIPS
functional category than were sets of genes derived solely from location data.
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Figure 2-3: The GRAM algorithm improves the quality of DNA-binding information, be-
cause it uses expression data to avoid a strict statistical significance threshold. Shown is
DNA-binding and expression information for the 99 genes bound by the regulator Hap4 with
a p-value < 0.01 using the statistical model in Lee et al. [118]. The blue-white column on the
left indicates binding p-values, and the horizontal yellow line denotes the strict significance
threshold of 0.001. As can be seen, the p-values form a continuum and a strict threshold
is unlikely to produce good results. The blue horizontal lines on the right indicate the 28
genes that were selected for modules by the GRAM algorithm. As can be seen, 22 (79%)
have a p-value < 0.001, but 6 (21%) have p-values above this threshold. The lower portion
of the figure shows together the 28 genes selected by the GRAM algorithm, and it can be
seen that they exhibit coherent expression. Further, all the selected genes are involved in
respiration. Six of these genes (PET9, ATP16, KGD2, QCR6, SDH1, and NDI1) would not
have been identified as Hap4 targets using the stringent 0.001 p-value threshold (p-values
range from 0.0011 to 0.0036).
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Figure 2-4: The GRAM algorithm assigns different regulators to genes with similar ex-
pression patterns that cannot be distinguished using expression clustering methods alone.
Hierarchical clustering of expression data was used to obtain the sub-tree on the left. On
the right, the regulators assigned to genes by the GRAM algorithm are color coded. As
can be seen, many genes with very similar expression patterns are regulated by different
transcription factors.

The Stb1-Swi4 Module
Orf name Gene name Cell-

cycle
phase

Binding p-value
for Stb1

YOR065W Hcm1 G1 0.0012
YDR501W YDR501W G1 0.00002
YGR109C Clb6 G1 0.0013
YGR221C YGR221C G1 0.0009
YIL140W Sro4 G1 0.008
YIL141W YIL141W G1 0.008
YMR179W Spt21 G1 0.007
YNL289W Pcl1 G1 0.0000005
YPL256W Cln2 G1 0.00007

Table 2.2: The GRAM algorithm can improve the true-positive binding rate without in-
creasing the false-positive binding rate. In the module controlled by Swi4 and Stb1, out
of the nine genes contained in the module, five had a p-value higher than 0.001 for Stb1
binding, and were thus not considered as bound by Stb1 in Lee et al. [118]. However, in-
dependent gene-specific chromatin-IP experiments for Stb1 confirmed the prediction of the
GRAM algorithm for three out of the five genes (HCM1, SRO4 and SPT21).
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We similarly expected that genes in modules derived by the GRAM algorithm
would be more likely to show independent evidence of co-regulation by the regula-
tors assigned to the module when compared to sets of genes obtained using location
data alone. One line of evidence for such an improvement would be enrichment for
specific DNA sequence motifs. We identified 34 transcriptional regulators that bind
to genes in at least one module and have well-characterized DNA binding motifs in
the TRANSFAC database [136]. For each of these 34 transcriptional regulators, we
generated a list of genes in modules bound by the regulator and a second list of genes
bound by the regulator using location data alone (stringent p-value cutoff of 0.001).
We then computed the percentage of genes from each list that contained the appro-
priate known motif in the upstream region of DNA. We found that in most cases, the
percentage of genes containing the correct motif was higher when modules generated
using the GRAM algorithm were used as compared to sets of genes generated from
location data alone (see Figure 2-5 and the supplementary materials for [21]).

2.3.3 Identification of activators and repressors

The gene modules abstraction allowed us to label regulator-module edges in the graph
to indicate whether there is significant evidence that regulators may be functioning
as activators or repressors. Because a gene module provides a link between a set of
regulators and the common expression pattern of a set of bound genes, we can use
the relationship between a regulator’s expression pattern and the common expression
pattern of genes in a module to infer whether a regulator acts as an activator or
repressor. Note that the use of genomic location data alone only allows us to infer
the presence of regulators at promoters, but can give no information about the type
of interaction.

We searched for activator/repressor relationships by examining regulators with
expression profiles that are positively/negatively correlated with the expression pro-
files of genes in the corresponding modules. Positive correlation indicates that higher
levels of regulator expression correlate with higher levels of expression of genes in
the module and suggests that the transcription factor positively regulates the ex-
pression of genes in the module; negative correlation suggests an opposite, repressive
relationship. We determined the statistical significance of the activator/repressor
relationships by computing correlation coefficients between all transcriptional regula-
tors studied and all gene modules and taking the 5% positive tail of the distribution
of correlation coefficients. Tables 2.3 and 2.4 present the eleven activators and five
repressors determined using the method described above.

Ten of the eleven activators were previously identified in the literature, suggesting
that this analysis produces biologically meaningful results. The literature offered
less information about the five repressors; only Nrg1 was previously identified in the
literature as a repressor. In at least one case, a factor may serve in both activator
and repressor roles under different conditions. Ino4 and Ino2 are thought to dimerize
and activate genes in low inositol conditions, but while Ino4 is required for binding it
apparently does not affect activation. In our analysis, the highest degree of negative
correlation occurs in stress condition expression experiments, suggesting that Ino4
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Figure 2-5: Motif enrichment: genes in modules discovered by the GRAM algorithm are
more likely to show independent evidence of co-regulation by the regulators assigned to
the module when compared to sets of genes obtained using genomic location analysis data
alone, as demonstrated by an enrichment for the presence of known DNA-binding motifs.
We identified 34 transcriptional regulators that bind to genes in at least one module and
have well-characterized DNA binding motifs in the TRANSFAC database [136]. For each
of these 34 transcriptional regulators, we generated a list of genes in modules bound by the
regulator and a second list of genes bound by the regulator using location analysis data alone
(stringent p-value cutoff of 0.001). We then computed the percentage of genes from each list
that contained the appropriate known motif in the upstream region of DNA. In most cases,
the percentage of genes containing the correct motif was higher when modules generated
using the GRAM algorithm were used versus sets of genes generated from location analysis
data alone. See the supplementary materials for [21] for a complete list of transcription
factors.
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might serve as a repressor under certain conditions and as an activator under others.

Activators identified by our algorithm
Factor Module function Corr.

w/
mod-
ule

Comments

Ste12 Pheromone response +0.64 Activator, required for
pheromone response

Hap4 Respiration +0.60 Activator of CCAAT box
containing genes

Yap1 Detoxification +0.53 Activator, possibly involved
in oxidative stress response

Nrg1 Carbohydrate transport +0.50 Previously identified as a re-
pressor

Fkh1 Cell-cycle +0.49 Activator of cell-cycle genes
Cad1 Detoxification +0.47 Activator, involved in multi-

drug resistance
Aro80 Energy and metabolism +0.40 Activator, involved in regula-

tion of amino acid synthesis
Swi6 Cell-cycle +0.39 Activator of cell-cycle genes
Msn4 Stress response +0.38 Activator, involved in stress

response
Fkh2 Cell-cycle +0.37 Activator of cell-cycle genes
Hsf1 Stress response +0.36 Activator of heat shock re-

lated genes

Table 2.3: Eleven activators were identified by our algorithm by computing the correlation
between the expression patterns of genes in a module and its regulators. Ten of the eleven
activators were previously identified in the literature.

2.3.4 Discovery of modes of combinatorial regulation

A central feature of eukaryotic transcriptional regulation is combinatorial control, the
ability of different combinations of transcription factors to specify distinct biological
outcomes [200]. We sought to determine how combinations of regulators affect ex-
pression by examining the correlation between expression profiles of genes from pairs
of modules that share at least one transcription factor but have no genes in common.
This analysis suggests four distinct types of coordinate regulation:

• Additive—the binding of additional factors increases the expression levels of
the bound genes. Our analysis suggested that this is the most common type
of coordinate regulation. The complete set of pairs of modules that exhibit
additive control appears on the supplementary website [20].
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Repressors identified by our algorithm
Factor Module function Corr.

w/
mod-
ule

Comments

YFL044C Unknown -0.44 Function unknown
Azf1 rRNA transcription -0.41 Previously identified as an ac-

tivator
Nrg1 Unknown -0.40 Transcriptional repressor for

glucose gene expression
Yap5 Ribosome biogenesis -0.39 Function unknown
Ino4 Fatty acid biosynthesis -0.39 Previous evidence of involve-

ment in Ino2-Ino4 dimer that
activates in low inositol con-
ditions

Table 2.4: Five repressors were identified by our algorithm. One of them was previously
reported in the literature, and two have not been studied before. In at least one case, a
factor may serve in both activator and repressor roles under different conditions. Ino4 and
Ino2 are thought to dimerize and activate genes in low inositol conditions, but while Ino4
is required for binding it apparently does not affect activation. In our analysis, the highest
degree of negative correlation occurs in stress condition expression experiments, suggesting
that Ino4 might serve as a repressor under certain conditions and as an activator under
others.
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• Negative—a factor serves as an activator for one module, but addition of a part-
ner factor for a second module abolishes activation or causes repression. This
results in negative expression correlation between the two modules under all
conditions. For example, the module controlled by the two cell-cycle activators
Swi4 and Mbp1 was strongly negatively correlated with a module controlled by
Swi4 and Skn7. This is plausible, because there is evidence that Skn7 acts as a
repressor in the oxidative stress response in yeast [116].

• Delayed—one factor regulates two or more modules in a similar way, but addi-
tion of a partner factor causes expression of the genes in the two modules to be
offset temporally. Thus, the average expression of the modules can be aligned
after an appropriate time shift. For example, Swi6, a cell-cycle transcription
factor, is known to partner with both Swi4 and Mbp1 to regulate genes in the
G1/S cell-cycle phase. However, since Swi4 itself is regulated by Swi6, expres-
sion of the set of genes regulated by Swi6/Mbp1 occurs earlier than that of
those regulated by Swi6/Swi4 (see Figure 2-6). Many other cell-cycle factors
exhibit this type of delayed regulation.

• Conditional—addition of a partner factor causes expression changes in a subset
of conditions. For example, our algorithm discovered a module regulated by
Met4 alone and a second regulated by Met4 and Cbf1. As shown in Figure 2-6,
under many conditions the average expression profile of genes in the module
regulated by Met4 is very similar to that of genes in the module regulated
by Met4/Cbf1. However, there are some experiments in which the average
expression profiles of genes in the two modules are anti-correlated, most notably
under stress conditions.

2.4 The rapamycin response regulatory network

For the rich media network described above, we used a very large set of genome-
wide binding and expression data, which allowed us to validate the results of the
GRAM algorithm comprehensively with searches of the prior literature, independent
chromatin-IP experiments, and analysis for enrichment for genes in the same MIPS
category and for known DNA binding motifs. The results of this large-scale validation
gave us confidence that the GRAM algorithm would be useful in analyzing new data
sources. Because biological insights are often gained by examining responses to spe-
cialized treatments or environmental conditions, we were interested in exploring the
performance of the GRAM algorithm on a smaller, more biologically targeted data
set than the rich media data. So, we chose to examine a transcriptional regulatory
sub-network involved in the response to Tor kinase signaling.

The Tor proteins are highly conserved and function as critical regulators in the
response to nutrient stress [104, 49, 172]. Tor kinase signaling can be inhibited by the
addition of the small macrolide rapamycin, which mimics nutrient starvation and re-
sults in a wide range of physiological responses including cytoskeleton reorganization,
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Figure 2-6: Combinatorial regulation modes: Our analysis of pairs of modules that share at
least one transcription factor but have no genes in common revealed several distinct types
of coordinate regulation. Examples of two such types are shown in the above figures. (Top
figure) Delayed regulation: in delayed control, a factor regulates two or more modules in
a similar way, but the expression of these sets of genes are temporally separated, an effect
brought about by the activity of different bound partner factors. As can be seen, the average
expression of genes in the module regulated by Swi6/Mbp1 lags that of genes in the module
regulated by Swi6/Swi4, though both belong to the G1 phase. (Bottom figure) Conditional
regulation: in conditional control, a partner factor affects expression primarily in a subset
of conditions. As can be seen, under many conditions the average expression profile of genes
in the module regulated by Met4 is very similar to that of genes in the module regulated by
Met4/Cbf1. However, there are some experiments in which the average expression profiles
of genes in the two modules are anti-correlated, most notably under stress conditions.
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decreased translation initiation, decreased ribosome biogenesis, amino acid perme-
ase regulation, and autophagy [195, 38, 86, 175]. Expression analysis indicates that
Tor signaling also controls transcriptional regulation of metabolic pathways involving
nitrogen metabolism, glycolysis and the TCA cycle [83, 195, 38].

The rapamycin response presented an ideal opportunity for applying the GRAM
algorithm to analyzing a novel transcriptional regulatory network. Previous studies
suggested a specific set of regulators that are likely to function in the transcriptional
response to rapamycin [83, 195]. Also, several publicly available genome-wide expres-
sion datasets measuring response after rapamycin treatment are available [83, 195].
More importantly, the fact that there is little information about the transcriptional
regulatory network involved and how this transcriptional network may contribute
to the overall response to rapamycin treatment presented an opportunity for new
biological insights.

2.4.1 Selection of relevant factors

We selected 14 transcriptional regulators that seemed likely to function in the ra-
pamycin response in S. cerevisiae based on evidence from the literature. These factors
and our rationale for choosing them are:

• Gln3 and Gat1—these factors have been identified as general activators of ex-
pression of nitrogen responsive genes. The activated Tor proteins lead to seques-
terization of Gln3/Gat1 in the cytoplasm, and subsequent rapamycin treatment
and Tor inactivation allows Gln3/Gat to enter the nucleus [48, 195]. Gln3/Gat1
apparently activate the allantoin pathway [188].

• Gzf3—this factor and Dal80 have been identified as general repressors of the
nitrogen responsive genes, and there is evidence that these repressors operate
by competing with Gln3/Gat1 DNA-binding [46].

• Dal80—known to repress the allantoin pathway [188]. See also Gln3/Gat1 and
Gzf3.

• Dal81 and Dal82—these factors have been identified as positive regulators of
the allantoin pathway, which degrades allantoin and its metabolic products to
ammonia and carbon dioxide [188].

• Msn2 and Msn4—rapamycin apparently allows the transcription factors Msn2/4
to enter the nucleus. Msn2/4 generally respond to cellular stress, including
carbon source limitation [48, 195].

• Rtg1 and Rtg3—the activated Tor proteins apparently maintain the transcrip-
tional regulators Rtg1/Rtg3 in the cytoplasm and rapamycin treatment allows
nuclear release. Rtg1/Rtg3 generally regulate TCA cycle and glyoxylate cycle
genes [48, 195].
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• Hap2—part of the Hap2/3/4/5 complex, which has been shown to serve as a
transcriptional activator for TCA cycle genes. There is evidence that rapamycin
leads to the activation of both Hap2 and Rtg1/Rtg3 [195].

• Fhl1—has been identified as a transcriptional regulator of rRNA processing
genes [87], although its relationship to rapamycin/Tor pathways has not been
well-established.

• Gcn4—a transcriptional activator of amino acid biosynthetic genes, and has
been shown to be a critical “master regulator” in the amino acid starvation
response [146].

• Uga3—a transcriptional activator of genes in the GABA degradative path-
way [98].

2.4.2 Genome-wide location analysis of selected factors

We performed genome-wide location analysis experiments on the 14 selected tran-
scription factors. Epitope-tagged strains were generated as described previously [118].
Briefly, regulators were tagged at the C-terminus by using homologous recombination
to insert multiple copies of the Myc epitope coding sequence into the normal chromo-
somal loci of these genes. Insertion of the epitope coding sequence was confirmed by
PCR and expression of the epitope-tagged protein was confirmed by Western blotting
analysis.

Strains containing epitope-tagged regulators were grown in 50 ml YPD (yeast
extract-peptone-dextrose) at 30 degrees C. Cells were grown to an OD600 of 0.7-0.8
and rapamycin was then added to a final concentration of 100 nM. Cells were grown
for 20 minutes at 30 degrees C in the presence of rapamycin.

Genome-wide location analysis was performed as previously described [118]. Briefly,
cells containing an epitope-tagged regulator were fixed with formaldehyde (1% final
concentration) and then harvested by centrifugation. Cells were lysed and then son-
icated to shear DNA. DNA fragments representing chromosomal regions crosslinked
to a protein of interest were enriched by immunoprecipitation with an anti-epitope
antibody. After reversal of crosslinking, enriched DNA was purified. The ends of
DNA fragments were then blunted using T4 DNA polymerase and ligated to pre-
viously prepared linkers. The enriched DNA was then amplified and labeled with
a fluorescent dye by ligation-mediated PCR (LM-PCR). A sample of control DNA
was similarly processed and labeled with a different fluorophore. Both IP-enriched
and control DNA were then hybridized to a single DNA microarray. For each fac-
tor, three independently grown cell cultures were processed and scanned to generate
binding information as previously described.

2.4.3 Genome-wide rapamycin regulatory network

We ran the GRAM algorithm using the binding data for the 14 transcription factors in
rapamycin and 22 previously published expression experiments relevant to rapamycin
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conditions. Thirty-nine gene modules containing 317 unique genes and regulated by 13
transcription factors were discovered (see Figure 2-7 and the supplementary material
for [21]). It should be noted that many of the transcription factors profiled have
been demonstrated to be regulated by cytoplasmic sequesterization [195, 49], so we
did not expect to be able to identify activator/repressor relationships by searching
for transcription factor expression profile correlations with regulated modules. The
GRAM algorithm added 192 gene-regulator interactions that would not have been
identified with a strict p-value (0.001) in the location analysis experiments.

Figure 2-7: Rapamycin gene modules network: analysis of the rapamycin transcriptional
regulatory network revealed a number of novel biological insights, including evidence that
some transcriptional regulators may control genes involved in biological pathways different
from those generally associated with these regulators. Further, analysis of the network
suggested more complex regulatory interactions in which there is communication among
modules. Such complicated network topologies may be important for facilitating rapid and
flexible responses to changing environmental conditions. See the text for further details.
Thirty-nine modules containing 317 unique genes and regulated by 13 transcription factors
were discovered. Red arrows between transcriptional regulators indicate that the source
transcription factor binds at least one module containing the target transcription factor.
Modules are colored according to the MIPS category to which a significant number of genes
belong (significance test using the hypergeometric distribution, p-value < 0.05).

As in the case for the rich media gene modules network, many features of the
rapamycin regulatory network discovered by the GRAM algorithm were consistent
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with expectations from the literature. Twenty-three of the gene modules were found
to contain a significant number of genes (p-value < 0.05) belonging to a single MIPS
category. There were a total of 9 represented categories, all corresponding to biological
responses associated with rapamycin treatment [104, 49, 172]. We also found that in
general, regulators were assigned to genes that reflect functions described in previously
published results.

In addition to identifying established regulatory interactions, analysis of the ra-
pamycin gene modules suggested several unexpected interactions in which regulators
typically assigned to a particular biological response also appear to bind genes acting
in different biological pathways. Below we give several examples of such regula-
tory interactions. These findings suggest models of transcriptional regulation of the
rapamycin response that can be validated in further more directed studies. A first
example of an unexpected regulatory interaction involves the factors Msn2 and Msn4,
which are generally regarded as stress response factors and have been well-studied as
activators of such stress-related responses [86, 175, 35]. Unexpectedly, there were five
gene modules in which Msn2 and Msn4 were bound to a significant number of genes
involved in the mating pheromone response pathway. A second example involves the
factors Rtg1 and Rtg3, which are generally thought to regulate directly genes of the
TCA cycle and indirectly contribute to nitrogen metabolism [186, 49, 112, 124] (prod-
ucts of the TCA cycle are shunted to nitrogen metabolism pathways in low or poor
nitrogen conditions). Our gene modules network suggests that Rtg regulators may
directly regulate genes involved in nitrogen metabolism.

A third example of an unexpected regulatory interaction involves Hap2, a part of
the Hap2/3/4/5 complex which has been well-characterized as a regulator of genes
involved in respiration [186, 163]. Indeed, in the rich media gene modules network,
members of the Hap complex were unique among the 106 regulators profiled as the
only regulators controlling modules that are significantly enriched for genes involved
in respiration. As expected, Hap2 regulates a module of respiration genes under
rapamycin conditions. Unexpectedly, Hap2 was also found to regulate two modules
containing genes involved in nitrogen metabolism. There is some genetic evidence for
such cross-pathway regulation, as Hap2 was previously implicated as a regulator of
two nitrogen metabolism genes [50, 51]. Our results indicate that Hap2 participates
in cross-pathway regulation more extensively than previously reported.

In addition to suggesting that some transcriptional regulators may control genes
involved in biological pathways different from those generally associated with these
regulators, analysis of the gene modules network suggested more complex regulatory
interactions in which there is communication among gene modules. Such complicated
network topologies may be important for facilitating rapid and flexible responses to
changing environmental conditions. As an example, we found that several transcrip-
tional regulators may be involved in a feed-forward regulatory loop in which the gene
encoding a regulator is bound by another regulator and both regulators bind to a
set of common genes [118, 196]. The regulator Gat1 has been previously identified
as a general activator of nitrogen responsive genes [44]. We found that Gat1 was
itself contained in several modules along with genes involved in nitrogen metabolism.
These gene modules were bound by the transcriptional regulators Dal81, Dal82, Gln3
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and Hap2. Interestingly, Gat1 also bound several gene modules along with Dal81,
Dal82, and Gln3 (see Figure 2-7). Feed-forward mechanisms may be important in
regulatory responses (such as the response to rapamycin) by modulating regulatory
sensitivity to sustained rather than transient inputs, providing temporal control, or
amplifying the transcriptional response [196].

Analysis of the network also revealed several instances of non-transcriptional
regulatory interactions between modules. For example, Msn2 bound to a module
containing Crm1, which is a nuclear export factor critical in excluding Gln3 from
the nucleus [195, 49]. This finding suggests that Msn2 activation upon rapamycin
treatment may modulate Gln3 activation. As another example, Gcn4 bound to a
module containing genes involved in amino acid biosynthesis, including Npr1, a ser-
ine/threonine protein kinase that is known to promote the function of the general
permease Gap1 [195]. Gap1 itself was contained in a module regulated by Dal81
and Gln3. These findings suggest regulatory connections between these modules, in
which Gap1 is transcriptionally regulated by Dal81/Gln3, Npr1 is transcriptionally
regulated by Gcn4, and then Gap1 is non-transcriptionally activated by Npr1. It is
possible that such regulatory relationships, which are clearly more complicated than
simple activator/repressor mechanisms, may be especially important for facilitating a
rapid and flexible response to environmental emergencies such as rapamycin exposure.

2.5 The cell-cycle dynamic regulatory network

When additional information is available, such as temporal expression data, even
richer regulatory networks can be inferred than the static models described above.
We applied our sub-network discovery algorithm to the yeast cell-cycle in combination
with our continuous temporal alignment algorithm to uncover not only modules and
their regulating transcription factors, but also the temporal relationships among these
modules. The cell-cycle regulatory network was selected because of the importance
of this biological process, the availability of extensive genome-wide expression data
for the cell-cycle, the extensive literature that can be used to understand features of
the regulatory network model, and our interest in determining whether a principled
computational approach can reproduce substantial portions of the network that was
previously discovered using a manual approach [199].

We applied the sub-network discovery algorithm as described in Section 2.2.3
to construct the cell-cycle dynamic regulatory model. The expression data used con-
sisted of a time-series covering approximately two cell-cycles and obtained from alpha
mating factor synchronized cells [202]. Eleven modules containing 75 genes and reg-
ulated by 12 factors were found (see Figure 2-8). A module regulated by the factors
Swi5/Ace2 and containing genes known to be active at the G1/M boundary was cho-
sen as the start of the cell-cycle and the other modules were aligned against this,
allowing us to localize all the modules temporally. We were then able to place ap-
proximately the boundaries for S, G2, and M and thus estimate the lengths of these
phases by using prior biological knowledge about when genes in four other modules
peak during the cell-cycle.
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Figure 2-8: Cell-cycle dynamic regulatory network: in order to investigate the yeast cell-
cycle, we applied our sub-network discovery algorithm in combination with a continuous
temporal alignment algorithm to uncover not only modules and their regulating transcrip-
tion factors, but also the temporal relationships among these modules. The automatically
recovered network is similar to the one described in Simon et al. [199], which required con-
siderable prior biological knowledge to construct. Modules are shown as ovals containing
the names of regulating factors. Blue lines indicate that a transcription factor regulates
a module (the arcs indicate the temporal extent of the factor’s regulatory activity). Red
dashed lines indicate that a transcription factor is itself contained in a module.

.
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Our algorithm correctly assigned all the regulators to stages of the cell-cycle in
which they have been described to function in previous studies (see Simon et al. [199]
and references within). Significantly, this accurate reconstruction of the regulatory
architecture was automatic and required no prior knowledge of the regulators that
control transcription during the cell-cycle. Many of the discovered modules were
regulated by sets of transcription factors that are known to be associated or in com-
plexes, such as Swi4/Swi6, Swi6/Mbp1, Swi5/Ace2, and Fkh1/Fkh2/Ndd1/Mcm1.
Interestingly, the recovered network suggests that combinatorial factor interactions
may provide control that allows for sub-dividing cell-cycle phases into different bio-
logical functions. For instance, a module regulated by Mbp1/Swi4/Swi6 contained
genes involved with budding and could be localized at the M/G1 boundary. Another
module regulated by Mbp1/Swi6 could be localized at almost the same time, but
contained a number of genes involved with DNA recombination and repair. A mod-
ule in the middle of the G1 phase was regulated by Swi4/Swi6 and contained genes
involved in cell-wall synthesis, and one module at the G1/S boundary was regulated
by Swi4/Fkh2/Ndd1 and contained many genes involved with histone synthesis.

2.6 Discussion

2.6.1 Comparison to previous methods

Several other methods have also been used to discover gene modules. Two methods
that also analyzed regulatory networks in yeast produce modules that are directly
comparable to those discovered by the GRAM algorithm [162, 99]. These two meth-
ods, described in Pilpel et al. [162] and Ihmels et al. [99] start with an initial set of
genes that are selected using a certain criteria (DNA binding motif in the promoter or
MIPS functional category) and use expression data to refine the initial set. Figures 2-9
and 2-10 present a comparison between modules discovered by the GRAM algorithm
and those generated by the methods of Pilpel et al. [162] and Ihmels et al. [99]. As
can be seen in these figures, our results represent a refinement of the modules from
the other studies. In particular, our method identifies not only the genes that par-
ticipate in a certain module, but also provides evidence as to the factors that are
used to activate these genes. Our dynamic sub-network discovery procedure provides
further refinement by distinguishing between genes that are regulated differently and
participate in different cell-cycle phases.

2.6.2 Limitations of the GRAM algorithm

Although we clearly demonstrated that the GRAM algorithm produces biologically
meaningful results and improves on previous methods, several limitations should be
pointed out. To begin, the exhaustive search used by the algorithm is efficient for the
data set we analyzed, but is infeasible for extremely large data sets of thousands of
transcription factors. As more binding data is collected for other organisms such as
humans, data sets may approach such sizes.
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Figure 2-9: Comparison of results of the GRAM algorithm to those of Ihmels et al. [99].
Left: a subset of the genes belonging to Module 2 from Ihmels et al. Right: three of the
amino acid biosynthesis modules identified by the GRAM algorithm. As can be seen, our
method improves on results in the Ihmels et al. by identifying not only the genes that
participate in a certain module, but also provides evidence as to the factors that are used
to activate these genes.
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Figure 2-10: Comparison of the results of the GRAM algorithm to those of Pilpel et
al. [162]. Left: a subset of the genes that belong to the Mcm1′-Mcm1 module from Pilpel
et al. Right: a subset of the cell-cycle modules discovered by the GRAM algorithm. As
can be seen, the modules discovered by our method are a refined version of the module
from Pilpel et al. Note that our modules differ not only in the set of factors regulating the
modules, but also in the different cell-cycle phases to which they belong, providing a better
understanding of how the cell regulates the complex expression program that is associated
with the cell-cycle system.
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Another issue with our approach relates to the method for detecting activators and
repressors. The algorithm labeled only a relatively small number of transcription fac-
tors as activators or repressors. This may be due to several issues. First, the method
used cannot detect the many factors that are post-transcriptionally activated and
thus have expression levels that are not expected to fluctuate significantly. Second,
we used the entire set of expression experiments to determine the activator/repressor
relationships. Although using more data can produce more statistically significant
results, it may be that only under certain conditions a factor serves as an activator
or repressor. Finally, we required a very high correlation between modules and reg-
ulating factors. In general, by relaxing threshold parameters, the algorithm can be
used in an exploratory mode to discover more relationships but with less confidence.

2.6.3 Conclusion

In this chapter we presented GRAM, a novel algorithm for discovering modules of
genes that are both similarly expressed and regulated by the same set of transcription
factors. GRAM integrates expression and binding data to help compensate for tech-
nical limitations in either data source alone. We applied GRAM to several biological
data sets in order to determine how genes are regulated in cells, and how various
systems in the cell respond to external stimuli. In the future, genomic binding data
obtained under a variety of conditions is likely to become available and should be of
great value in further discovery of genetic regulatory networks. Overall, the GRAM
algorithm facilitates a genome-wide approach to analysis of transcriptional regula-
tory networks that can suggest specific novel regulatory models, which can then be
validated in more directed experimental studies.
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CHAPTER 3

GeneProgram

“The fear of infinity is a form of myopia that destroys the pos-
sibility of seeing the actual infinite, even though it in its highest
form has created and sustains us, and in its secondary transfi-
nite forms occurs all around us and even inhabits our minds.”

—Georg Cantor

An important research problem in computational biology is the identification of
expression programs, sets of co-activated genes orchestrating physiological processes,
and the characterization of the functional breadth of these programs. The use of
mammalian expression data compendia for discovery of such programs presents sev-
eral challenges, including: 1) cellular inhomogeneity within samples, 2) genetic and
environmental variation across samples, and 3) uncertainty in the numbers of pro-
grams and sample populations.

In this chapter, we present GeneProgram, a new unsupervised computational
framework that uses expression data to simultaneously organize genes into overlap-
ping programs and tissues into groups to produce maps of inter-species expression
programs, which are sorted by generality scores that exploit the automatically learned
groupings. Our method addresses each of the above challenges by using a probabilis-
tic model that: 1) allocates mRNA to different expression programs that may be
shared across tissues, 2) is hierarchical, treating each tissue as a sample from a pop-
ulation of related tissues, and 3) uses Dirichlet Processes, a non-parametric Bayesian
method that provides prior distributions over numbers of sets while penalizing model
complexity. Using synthetic and real gene expression data, we show that GenePro-
gram outperforms several popular expression analysis methods in recovering coherent
and biologically interpretable gene sets. From a large compendium of mouse and
human expression data, GeneProgram discovers 19 tissue groups and 100 expression
programs active in mammalian tissues.
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Our method automatically constructs a comprehensive, body-wide map of expres-
sion programs and characterizes their functional generality. This map can be used for
guiding future biological experiments, such as discovery of genes for new drug targets
that exhibit minimal “cross-talk” with unintended organs, or genes that maintain
general physiological responses that go awry in disease states. Further, our method
is general, and can be applied readily to novel compendia of biological data.

The remainder of this chapter is organized as follows. In Section 3.1, we provide
additional introductory material and discuss prior work relating to discovery of gene
sets from expression data compendia. In Section 3.2, we present background material
on ordinary and Hierarchical Dirichlet Process mixture models, which are a core com-
ponent of the GeneProgram probability model. In Section 3.3, we provide a detailed
description of the GeneProgram algorithm and probability model. In Section 3.4, we
perform synthetic data experiments to explore the kinds of structures GeneProgram
and several other well-known unsupervised learning algorithms can recover from noisy
data. In Section 3.5, we apply GeneProgram to the Novartis Gene Atlas v2 [205],
consisting of expression data for 79 human and 61 mouse tissues. Using this data
set, we compare GeneProgram’s ability to recover biologically relevant gene sets to
that of biclustering methods, and produce a body-wide map of expression programs
organized by their functional generality scores. Finally, in Section 3.6, we discuss the
significance of our results and comment on possible future research directions.

3.1 Introduction and prior work

The great anatomic and physiologic complexity of the mammalian body arises from
the coordinated expression of genes. A fundamental challenge in computational bi-
ology is the identification of sets of co-activated genes in a given biological context
and the characterization of the functional breadth of such sets. Understanding of
the functional generality of gene sets has both practical and theoretical utility. Sets
of genes that are very specific to a particular cell type or organ may be useful as
diagnostic markers or drug targets. In contrast, sets of genes that are active across
diverse cell types can give us insight into unexpected developmental and functional
similarities among tissues. While there has been considerable effort in systems bi-
ology to understand the structure and organization of co-expressed sets of genes in
isolated tissues in the context of pathological processes, such as cancer and infec-
tion [107, 128, 189, 215], relatively little attention has been given to this task in the
context of normal physiology throughout the entire body [198, 205]. By analyzing
gene expression in this latter context, we can gain an understanding of baseline gene
expression programs and characterize the specificity of such programs in reference to
organism-wide physiological processes.

In this work, we use a large compendium of human and mouse body-wide gene
expression data from representative normal tissue samples to discover automatically
a set of biologically interpretable expression programs and to characterize quanti-
tatively the specificity of each program. Large genome-wide mammalian expression
data compendia present several new challenges that do not arise when analyzing data
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from simpler organisms. First, tissue samples usually represent collections of diverse
cell-types mixed together in different proportions. Even if a sample consists of a
relatively homogenous cell population, the cells can still behave asynchronously, due
to factors such as microenvironments within the tissue that receive different degrees
of perfusion. Second, each tissue sample is often from a different individual, so that
the compendium represents a patchwork of samples from different genetic and envi-
ronmental backgrounds. Finally, the number of expression programs and distinct cell
populations present in a compendium is effectively unknown a priori.

We present a novel methodology, GeneProgram, designed for analyzing large com-
pendia of mammalian expression data, which simultaneously compresses sets of genes
into expression programs and sets of tissues into groups. Specific features of our algo-
rithm address each of the above issues relating to analysis of compendia of mammalian
gene expression data. First, our method handles tissue inhomogeneity by allocating
the total mRNA recovered from each tissue to different gene expression programs,
which may be shared across tissues. The number of expression programs used by a
tissue therefore relates to its functional homogeneity. We address the second issue, of
tissue samples coming from different individuals, by explicitly modeling each tissue
as a sample from a population of related tissues. That is, related tissues are assumed
to use similar expression programs and to similar extents, but the precise number of
genes and the identity of genes used from each program may vary in each sample.
Additionally, populations of related tissues are discovered automatically, and provide
a natural means for characterizing the generality of expression programs. Finally,
uncertainty in the numbers of tissue groups and expression programs is handled by
using a non-parametric Bayesian technique, Dirichlet Processes, which provides prior
distributions over numbers of sets.

To understand the novel contributions of the GeneProgram algorithm, it is useful
to view our framework in the context of a lineage of unsupervised learning algorithms
that have previously been applied to gene expression data. These algorithms are di-
verse, and can be classified according to various features, such as whether they use
matrix factorization methods [8], heuristic scoring functions [42], generative proba-
bilistic models [197], statistical tests [190, 209], or some combinations of these meth-
ods [23, 55]. The simplest methods, such as K-means clustering, assume that all genes
in a cluster are co-expressed across all tissues, and that there is no overlap among
clusters. Next in this lineage are biclustering algorithms [42, 209, 39, 133, 210], which
assume that all genes in a bicluster are co-expressed across a subset rather than
across all tissues. In many such algorithms, genes can naturally belong to multiple
biclusters.

GeneProgram is based on two newer unsupervised learning frameworks, the topic
model [64, 79] and the Hierarchical Dirichlet Process mixture model [211]. The topic
model formalism allows GeneProgram to further relax the assumptions of typical
biclustering methods, through a probabilistic model in which each gene in an expres-
sion program has a (potentially) different chance of being co-expressed in a subset
of tissues. The hierarchical structure of our model, which encodes the assumption
that groups of tissues are more likely to use similar sets of expression programs in
similar proportions, also provides advantages. Hierarchical models tend to be more
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robust to noise, because statistical strength is “borrowed” from items in the same
group for estimating the parameters of clusters. Additionally, hierarchical models
can often be interpreted more easily—in the context of the present application, the
inferred expression programs will tend to be used by biologically coherent sets of tis-
sues. Finally, through the Dirichlet Process mixture model formalism, GeneProgram
automatically infers the numbers of gene expression programs and tissue groups. Be-
cause this approach is fully Bayesian, the numbers of mixture components can be
effectively integrated over during inference, and the complexity of the model is auto-
matically penalized. This is in contrast to previous methods that either require the
user to specify the number of clusters directly or produce as many clusters as are
deemed significant with respect to a heuristic or statistical score without providing a
global complexity penalty. We note that Medvedovic et al. have also applied Dirichlet
Process mixture models to gene expression analysis, but not in the context of topic
models, Hierarchical Dirichlet Processes, or mammalian data [139].

As with previous methods [9, 25, 204, 225], we leverage the power of cross-species
information to discover biologically relevant sets of co-expressed genes. However,
these previous analyses generally required genes to be co-expressed across large sets
of experiments [25, 204, 225, 123]. In contrast, GeneProgram uses expression data
more flexibly, and is thus able to produce a refined picture of gene expression across
species: expression programs may be used by only a subset of tissues, and may be
unique to one species or shared across multiple species; tissue groups are similarly
flexible. This probabilistic view of expression programs captures the intuition that
the general structure of many programs is evolutionarily conserved, but some genes
may be interchanged or lost.

3.2 Dirichlet Processes

The task of assigning data to clusters is a classic problem in machine learning and
statistics. A common approach to this problem is to construct a model in which data
is generated from a mixture of probability distributions.

In finite mixture models, data is assumed to arise from a mixture with a pre-
determined number of components [138]. The difficulty with such models is that the
appropriate number of mixture components is not known a priori for many modeling
applications. This issue is generally addressed by constructing a series of models
with different numbers of components, and evaluating each model using some quality
score [138].

An alternate, fully Bayesian approach is to build an infinite mixture model, in
which the number of mixture components is potentially unlimited, and is itself a
random variable that is part of the overall model. Obviously, only a finite number
of mixture components can have data assigned to them. However, we still imagine
the data as arising from an infinite number of components; as more data is collected,
more components may be used to model the data more accurately. Thus, the infinite
mixture model is a nonparametric model, in the sense that the number of model
parameters grows with the amount of data. The challenge with such a model is how

70



to place an appropriate prior on the infinite number of mixture component parameters
and weights.

The Dirichlet Process (DP), a type of stochastic process first introduced in the
1960’s [67] and originally of mostly theoretical interest [61, 62], has recently become
an important modeling tool as a prior distribution for infinite mixture models1. In
this section, we will introduce the main concepts of DPs necessary to understand the
GeneProgram model. In this regard, we will focus on a constructive definition of DPs
in the context of priors for infinite mixture models. This development, which avoids
measure theory, closely parallels that presented by [151] and [171].

A recent extension to the standard DP model is the Hierarchical Dirichlet Process
(HDP), in which dependencies are specified among a set of DPs by arranging them in
a tree structure [211]. HDPs are useful as priors for hierarchical mixture models, in
which data is arranged into populations that preferentially share the usage of mixture
components. In this section, we will discuss the original HDP formulation by Teh et
al. in the context of infinite mixture models.

The use of DPs for real-world applications is predicated on practical inference
methods. A great advance in this regard has been the development of efficient Markov
Chain Monte Carlo (MCMC) methods for approximate inference for infinite mixture
models using DP priors [193, 152, 171]. Although other approximate inference meth-
ods have been developed [141, 29, 114], MCMC remains the most widely used and
versatile method. In particular, efficient MCMC schemes have been developed for
HDP models [211], and can be readily extended for the GeneProgram model. Thus,
our discussion of DP inference in this section will be restricted to MCMC methods.

The remainder of this section is organized as follows. First, we describe how
Dirichlet Processes arise as priors in terms of the infinite limit of mixture models.
Next, we describe the extension of DPs to HDPs. Finally, we describe basic MCMC
sampling schemes for DPs and HDPs.

3.2.1 Probability models

Bayesian finite mixture models

We begin by defining a typical Bayesian finite mixture model, which we will sub-
sequently extend to the infinite case. Figure 3-2 depicts the model using standard
graphical model notation with plates. The model consists of J mixture components,
where each component j has associated with it a mixture weight denoted πj and
a parameter vector denoted θj. Assume we have N data points denoted xi, where
1 ≤ i ≤ N . Each data point is assigned to a mixture component via an indica-
tor variable zi, i.e., the probability that data point i is assigned to component j is
p(zi = j | π) = πj or zi |π ∼ Multinomial(· | π). The conditional likelihood for each

1It is widely believed that the Dirichlet Process was named after the mathematician, Johann
Peter Gustav Lejeune Dirichlet (1805–1859). However, there is some evidence that its name may be
related to certain dubious and fantastical tax collection practices of the French government during its
colonization of the Ivory Coast (see Figure 3-1). The sole source for this reference is a possibly forged,
old, “Ripley’s Believe It or Not!” newspaper cartoon, so the veracity of this claim is questionable.

71



Figure 3-1: The Dirichlet Process may be related to certain dubious and fantastical tax
collection practices of the French government during its colonization of the Ivory Coast.
The “Ripley’s Believe It or Not!” newspaper cartoon shown above lends credence to this
claim.

data point may then be written as:

p(xi | zi = j,θ) = F (xi | θj)

Here, F (· | ·) is a probability density function parameterized by θ.

To complete the model, we need to define prior distributions over the parame-
ters. We will assume that the component parameters are drawn i.i.d. from some
base distribution H, i.e., θj ∼ H(·). We also need to specify a prior distribution for
the weight parameters. As is typical for Bayesian mixture models, we will assume a
symmetric Dirichlet prior on the mixture weights, i.e., π | J, α ∼ Dirichlet(· | α/J).
One consequence of using a symmetric prior is that it is not sensitive to the order of
the component parameters. Note that the Dirichlet prior is conjugate to the multi-
nomially distributed weights, so that the posterior is also a Dirichlet distribution.

To summarize, our J-dimensional mixture model is defined as:

π | α, J ∼ Dirichlet(· | α/J)

θj | H ∼ H(·)
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zi | π ∼ Multinomial(· | π)

xi | zi = j,θ ∼ F (· | θj)

xi N

zi

π Η

θj

α

J

Figure 3-2: A graphical model depiction of a finite mixture model with J mixture com-
ponents and N data items. Circles represent variables, and arrows denote dependencies
among variables. Vectors are depicted with bold type, and observed variables are shown
inside shaded circles. Rectangles represent plates, or repeated sub-structures in the model.

In mixture models, we are primarily interested in knowing which component each
data point i has been assigned to—the weights π are to some extent “nuisance” pa-
rameters. It is possible to derive closed form expressions for the data point assignment
variable posterior distributions with the mixture weights integrated out. These pos-
terior distributions will be particularly useful in the extension to the infinite mixture
model. Note that although the assignment variables z are conditionally independent
given the weights, they become dependent if we integrate out the weights (i.e., the
probability of assigning a data point to a particular component depends on the as-
signments of all other data points). As it turns out, the probability of assigning data
point i to some component j given assignments of all other data points can be written
as a simple closed form expression (see [171]):

p(zi = j | z−i, α, J) =

∫
p(zi = j | π)p(π | z−i, α, J)dπ

p(π | z−i, α, J) ∝ p(z−i | π)p(π | α, J)

⇒ p(zi = j | z−i, α, J) ∝
∫

p(zi = j | π)p(z−i | π)p(π | α, J)dπ

⇒ p(zi = j | z−i, α, J) ∝
n−ij + α/J

N − 1 + α
(3.1)

Here, z−i denotes the assignments of all data excluding data point i, and n−ij denotes
the number of data points assigned to component j excluding data point i. The
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second line of the derivation follows simply from Bayes’ theorem. The final line of
the derivation follows from conjugacy between the Dirichlet prior on the weights and
the multinomial distribution on the assignment variables. Thus, the density function
under the integral is that of a non-symmetrical Dirichlet distribution, allowing us to
derive the final closed form expression.

Infinite mixture models and Dirichlet Processes

In this subsection we show how the Dirichlet Process arises as a prior for infinite
mixture models.

Figure 3-3 depicts an infinite mixture model using standard graphical model no-
tation with plates. As can be seen from the figure, the model is almost structurally
identical to the finite version. The distinguishing feature is that the weight and
parameter vectors are now infinite dimensional.

The challenge with this model is then to define an appropriate prior for the in-
finite dimensional parameters and weights. As with any mixture model, the infinite
dimensional weights must sum to one. A probability distribution that generates such
weights is the stick-breaking distribution, denoted Stick(α), where α is a scaling or
concentration parameter (discussed in more detail below). This distribution is de-
fined constructively. Intuitively, we imagine starting with a stick of unit length and
breaking it at a random point. We retain one of the pieces, and break the second
piece again at a random point. This process is repeated infinitely, producing a set of
random weights that sum to one with probability one [193]. To be more precise, the
jth weight πj is constructed as:

π′j | α ∼ Beta(1, α)

πj = π′j

j−1∏
l=1

(1− π′l)

The infinite mixture model can be constructed using the stick-breaking distribu-
tion as a prior on the mixture weights and the base distribution H as a prior on the
component parameters. This can be summarized as:

π | α ∼ Stick(α)

θj | H ∼ H(·)

zi | π ∼ Multinomial(· | π)

xi | zi = j,θ ∼ F (· | θj)

Note that this construction produces a vector π with a countably infinite number
of dimensions, whose components all sum to one, and H is sampled independently
a countably infinite number of times to generate the mixture component parameter
values.

To establish the connection between Dirichet Processes and the model described
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Figure 3-3: A graphical model depiction of the infinite mixture model. Circles represent
variables, and arrows denote dependencies among variables. Vectors are depicted with bold
type, and observed variables are shown inside shaded circles. Rectangles represent plates,
or repeated sub-structures in the model.

above, we consider the distribution over all possible component parameter values for
the infinite mixture model. This distribution will be non-zero at a countably infinite
number of values. Formally, we denote this distribution by G and can write it as:

G(ψ) =
∞∑
j=1

πjδ(ψ − θj)

Here, ψ is an arbitrary parameter value, and δ(·) is the standard delta-function, which
is non-zero only when its argument is zero.

Each distribution G thus constructed can be viewed as a sample from a stochastic
process, which can in fact be proven to be the Dirichlet Process (see [102] and [193]).
In general, we will characterize a Dirichlet Process by a scalar parameter α, called
the concentration parameter, and a base distribution H. A sample from a Dirichlet
Process, which we denote G |α,H ∼ DP(α,H), is thus a distribution that is non-zero
over a countably infinite number of values (with probability one). As we have seen,
each sample effectively parameterizes an infinite dimensional mixture model.

The concentration parameter α affects the expected number of mixture compo-
nents containing data items when the DP is used as a prior for the infinite mixture
model. As shown in [12], the expected number of non-empty mixture components J
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depends only on α and the number of data points N :

E[J | α,N ] = α
N∑

l=J−1

1

α + l − 1
≈ α ln

(
N + α

α

)
Thus, we see that the number of non-empty components grows approximately as the
logarithm of the size of the data set. Further, we see that the number of components
grows as the concentration parameter α increases.

To make our model fully Bayesian, we would like to treat the concentration pa-
rameter α as a random variable and place a prior on it. The Gamma distribution is
commonly used as a prior for α, in part because efficient inference is possible with
this prior, and also because appropriate parameter choices result in a relatively un-
informative prior [151]. Thus, we place a Gamma prior on α with hyperparameters
aα, i.e., α | aα ∼ Gamma(aα1 , a

α
2 ).

Hierarchical Dirichlet Process models

In this section, we describe the Hierarchical Dirichlet Process (HDP) models intro-
duced by Teh et al. [211]. As in the previous section on DPs, we will present HDPs
in terms of priors for infinite mixture models. We will describe only a two-level hier-
archical model for clarity; additional levels are simply added by applying the model
construction process recursively.

Figure 3-4 depicts a basic HDP using standard graphical model notation with
plates. In HDP models, we assume that data is divided into T subsets, each consisting
of Nt data points denoted xti, where 1 ≤ t ≤ T and 1 ≤ i ≤ Nt. Each such data
set division is modeled by an infinite mixture model with weights πt and component
assignment variables zti. These infinite mixture models are not independent; the
mixtures share component parameters θ and a common Dirichlet Process prior.

The dependencies among the infinite mixture models can be understood in terms
of a construction using the stick-breaking distribution. Beginning at the top of the
model, we imagine drawing a sample G from a Dirichlet Process, i.e., G | α0, H ∼
DP(α0, H). Recall that we can write this sample as:

G(ψ) =
∞∑
j=1

β0
j δ(ψ − θj)

Here, θj are drawn i.i.d. from the base distribution H, and β0 | α0 ∼ Stick(α0).
We next form a second DP using the sample G itself as a base distribution, i.e.,

we construct DP(α1, G). We then generate i.i.d. samples from this DP for each of
the T sub-models, i.e., Gt | α1, G ∼ DP(α1, G). Each sample can be written as:

Gt(ψ) =
∞∑
j=1

πtjδ(ψ − θj)

Notice that these distributions must necessarily be non-zero only at the same points
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Figure 3-4: A graphical model depiction of the Hierarchical Dirichlet Process represented
as an infinite mixture model. Circles represent variables, and arrows denote dependencies
among variables. Vectors are depicted with bold type, and observed variables are shown
inside shaded circles. Rectangles represent plates, or repeated sub-structures in the model.

θj as G is. We have now constructed a set of T dependent infinite mixture models,
where each model has separate (but dependent) weights πt and shared component
parameters θ.

It can be shown that the weights πt can be constructed via a stick-breaking process
using the top-level weights β0 (see [211]):

π′tj ∼ Beta

(
α1β

0
j , α1

(
1−

j∑
l=1

β0
l

))

πtj = π′tj

j−1∏
l=1

(1− π′tl)

3.2.2 Markov Chain Monte Carlo approximate inference

Single level infinite mixture models

Markov Chain Monte Carlo (MCMC) algorithms are general tools for approximat-
ing posterior distributions of models. With these methods, one alternately samples
from the distributions for subsets of variables conditioned on the remaining variables.
Given some mild constraints on the model distributions, the approximation converges
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to the true posterior distribution in the large sample limit [72]. The utility of MCMC
methods hinges on the ability to sample from a set of conditional distributions more
efficiently than sampling from the full posterior.

In the case of infinite mixture models using a DP prior, sampling can be made
efficient by exploiting a “trick” that requires tracking of only a finite number of non-
empty mixture components and the data points already assigned to them. Figure 3-5
presents the overall MCMC sampling scheme for single level infinite mixture models.

Repeat for all data items i = 1 . . . N :
Sample zi, the assignment of the data item to a mixture component,
from its posterior, i.e., p(zi | z−i, α,θ)

If the data item has been assigned to a new component, sample a new
mixture component parameter θ∗ from its posterior

Repeat for all non-empty mixture components j = 1 . . . J :
Sample the component parameter θj from its posterior

Sample the DP concentration parameter α from its posterior

Figure 3-5: One iteration of the basic MCMC sampling scheme for an infinite mixture
model using a Dirichlet Process prior.

The key MCMC sampling step for Dirichlet Processes involves picking assignments
of data points to mixture components. We sample the assignment of a data point i
conditioned on the other variables from the distribution given by:

p(zi | z−i, α,θ, x) ∝ p(zi | z−i, α)p(x | z,θ) (3.2)

The proportionality simply follows from Bayes’ theorem. Recall from equation 3.1
that for finite mixture models, we can write p(zi = j | z−i, α, J) in closed form:

p(zi = j | z−i, α, J) ∝
n−ij + α/J

N − 1 + α

For the case of infinite mixture models, and in which n−ij > 0 (i.e., the jth component
of the mixture is non-empty), it can be proven that this distribution converges to
(see [171]):

p(zi = j | z−i, α) ∝
n−ij

N − 1 + α
(3.3)

For infinite mixture models, we must consider the probability that a data point
does not belong to one of the mixture components containing other data points. That
is, we will need to calculate p(zi 6= zl,∀ l 6= i | z−i, α). It can be proven that this
probability is given by (see [171]):

p(zi 6= zl,∀ l 6= i | z−i, α) ∝ α

N − 1 + α
(3.4)
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We can thus combine equations 3.2, 3.3 and 3.4 to obtain the posterior distribu-
tions for the assignment variables:

p(zi = j | z−i, α,θ, x) ∝
n−ij

N − 1 + α
p(xi | θj) for n−ij > 0 (3.5)

p(zi 6= zl,∀ l 6= i | z−i, α,θ, x) ∝ α

N − 1 + α

∫
F (xi | ψ)H(ψ)dψ (3.6)

Thus, for each iteration, we sample the mixture component assignments for all
data points using equations 3.5 and 3.6. For the first J components already con-
taining data items, we use equation 3.5 to compute the assignment probability. We
use equation 3.6 to compute the probability of assigning the data point to a new
mixture component. Notice that in equation 3.6, we integrate over the mixture com-
ponent parameters, as any component parameters are possible for a new component.
Sampling is most efficient when F (·) and H(·) are conjugate. However, in cases of
non-conjugacy of these distributions, Monte Carlo methods may be used [152, 171].

We also need to sample from the posterior for the concentration parameter α. It
can be shown that the conditional distribution for α is given by (see [151]):

p(α | J,N,aα) ∝ αa
α
1 +J−1e−a

α
2 αB(α,N)

Here, B(·, ·) is the standard Beta function defined as:

B(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
=

∫ 1

0

ηu−1(1− η)v−1dη

Escobar and West describe an efficient sampling scheme for α [60]. They noted
that p(α | J,N) can be written as a marginalization over an auxiliary variable η:

p(α | J,N,aα) ∝
∫ 1

0

p(α, η | J,N,aα)dη

p(α, η | J,N,aα) ∝ αa
α
1 +J−1e−a

α
2 αηα−1(1− η)N−1

From the joint distribution, we can see that:

p(α | η, J,N,aα) ∝ Gamma(α | aα1 + J − 1, aα2 − ln η)

p(η | α, J,N) ∝ Beta(η | α,N)

Thus, by sampling from the above two conditional distributions, we can sample from
the posterior for α to update the concentration parameter during the MCMC sampling
iterations.
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Hierarchical Dirichlet Process models

Teh et al. described an MCMC method for HDP infinite mixture models that uses
auxiliary variables to make sampling from the conditional distributions efficient [211].
Figure 3-6 provides an overview of the sampling scheme.

Repeat for all data subsets t = 1 . . . T and data items i = 1 . . . N :
Sample zti, the assignment of data item i from subset t to a mixture component,
from its posterior, i.e., p(zti | z−i,β0,θ, x, α1)

If the data item has been assigned to a new component, sample a new
top-level mixture weight β0

∗ from the stick-breaking distribution and
a new mixture component parameter θ∗ from its posterior

Repeat for all non-empty mixture components j = 1 . . . J :
Sample the component parameter θj from its posterior

Sample the top-level mixture weights β0 from their posterior

Sample the concentration parameters α0 and α1 from their posteriors

Figure 3-6: One iteration of the basic MCMC sampling scheme for the Hierarchical Dirichlet
Process mixture model with two levels.

The first task is to sample the data point assignment variables, z. The method
for this is similar to that used for ordinary Dirichlet Process mixture models. We
begin by considering a finite mixture model of dimension J and integrating out the
individual mixture weights πt to obtain the conditional probability of z given β0:

p(z | β0, α1) =
T∏
t=1

Γ(α1)

Γ(α1 +Nt)

J∏
j=1

Γ(α1β
0
j + ntj)

Γ(α1β0
j )

(3.7)

Here, Nt denotes the number of data items in subset t, and ntj represents the number
of data items from subset t assigned to mixture component j. It can be shown that in
the limit of an infinite mixture model, the conditional probability has a particularly
simple form:

p(zti = j | z−i,β0, α1) ∝ α1β
0
j + n−itj

By combining this with the conditional likelihood for data points, F (· | ·), we obtain
the posterior distribution for assigning data points to mixture components:

p(zti = j | z−i,β0,θ, x, α1) ∝ (α1β
0
j + n−itj )F (xti | θj) (3.8)

This equation holds if j is a non-empty component. The posterior distribution for
assigning a data point to a new component is given by:

p(zti 6= ztl ∀ t, l 6= i | z−i,β0,θ, x, α1) ∝ (α1β
0
∗)

∫
F (xti | ψ)H(ψ)dψ (3.9)
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Here, we define β0
∗ = 1 −

∑J
l=1 β

0
l , where there are J components with data points

assigned to them. As with ordinary DPs, Monte Carlo methods may be used if F (· | ·)
and H(·) are non-conjugate distributions.

So, to sample the data point assignments we use equations 3.8 and 3.9. If a data
point is assigned to a new component, we must also generate a new weight β0

J+1 using
the stick-breaking distribution, i.e., we sample b ∼ Beta(1, α0) and set β0

J+1 ← bβ0
∗ .

To sample from the model posterior, we also must sample the top-level weights β0.
The method for this relies on a “trick” using auxiliary variables. For the derivation,
we need to use a general property of ratios of Gamma functions given by:

Γ(n+ a)

Γ(a)
=

n∑
m=0

s(n,m)am (3.10)

Here, n and a are natural numbers. In equation 3.10, the ratio of Gamma functions
has been expanded into a polynomial with a coefficient s(n,m) for each term. These
coefficients are called unsigned Stirling numbers of the first kind, which count the
permutations of n objects having m permutation cycles (see [2]). By definition,
s(0, 0) = 1, s(n, 0) = 0, s(n, n) = 1 and s(n,m) = 0 for m > n. Additional coefficients
are then computed recursively using the equation s(n+1,m) = s(n,m−1)+ns(n,m).

Note that the β0 weights in the conditional probability p(z | β0) in equation 3.7
occur as arguments of ratios of Gamma functions. These ratios can be expanded to
yield polynomials in the β0 weights:

Γ(α1β
0
j + ntj)

Γ(α1β0
j )

=

ntj∑
mtj=0

s(ntj,mtj)(α1β
0
j )
mtj (3.11)

An efficient sampling method can be derived by introducing m as auxiliary variables.
The conditional distributions for sampling m and β0 can be shown to be:

p(mtj = m | z,m−tj,β0) ∝ s(ntj,m)(α1β
0
j )
m (3.12)

p(β0 | z,m) ∝ (β0
∗)
α0−1

J∏
j=1

β
∑
tmtj−1

j ∝ Dirichlet(
∑
t

mt1, . . . ,
∑
t

mtJ , α0) (3.13)

Finally, we need to sample the concentration parameters α0 and α1 for the HDP.
As with the regular DP model, we will assume Gamma priors on the concentration
parameters.

For α0, it can be shown that:

p(J = J | α0,m) ∝ s(M,J)αJ0
Γ(α0)

Γ(α0 +M)

Here, M =
∑

t

∑
jmtj and J is the number of non-empty mixture components. Com-

bining the above equation with the prior for α0 yields the conditional probability for
α0, which can be sampled using the same method as described for sampling concen-
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tration parameters for regular DPs.
Sampling α1 requires the introduction of two additional auxiliary variables w and

b. The following update equations can then be derived:

p(wt | α1) ∝ wα1
t (1− wt)Nt−1

p(bt | α1) ∝
(
Nt

α1

)bt
p(α1 | w,b,aα1) ∝ Gamma(aα1

1 +
T∑
t=1

(Mt − bt), aα1
2 −

T∑
t=1

logwt)

Here, aα1
1 and aα1

2 are the hyperparameters for the Gamma prior on α1 and Mt =∑J
j=1mtj.

3.3 The GeneProgram algorithm and probability

model

3.3.1 Algorithm overview

The GeneProgram algorithm consists of data integration (pre-processing), model in-
ference, and distribution summary steps as depicted in Figure 3-7. Data integration
makes data from multiple species comparable and discretizes it in preparation for in-
put to the model. The first data integration step combines replicates and normalizes
microarray data to make measurements of gene expression comparable across tissues.
The second data integration step uses a pre-defined homology map to convert species
specific gene identifiers into meta-gene identifiers. Meta-genes are virtual genes that
correspond one-to-one with genes in each species. Some genes do not have counter-
parts in other species, and these are filtered out. In the final data integration step,
continuous expression measurements are discretized. The model inference step seeks
to discover underlying expression programs and tissue groups in the data probabilis-
tically. To accomplish this, we use Markov Chain Monte Carlo (MCMC) sampling
to estimate the model posterior probability distribution. Each posterior sample de-
scribes a configuration of expression programs and tissue groups for the entire data
set; more probable configurations tend to occur in more samples. The final step
of the algorithm is model summarization, which produces consensus descriptions of
expression programs and tissue groups from the posterior samples.

3.3.2 The probability model

Intuitive overview

We can understand the GeneProgram probability model intuitively as a series of
“recipes” for constructing the gene expression of tissues. Figure 3-8 presents a cartoon
of this process, in which we imagine that we are generating the expression data for the
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1) Normalize

2) Retain
     homologous
     genes

1 0 0 2 2 3
3 3 3 0 1 1

3) Discretize

4) Generate
     posterior
   samples

5) Summarize
     samples

1
2

...
N

Figure 3-7: GeneProgram algorithm steps. The main steps of the algorithm are: data
integration (steps 1-3), model inference (step 4), and posterior sample summarization (step
5). See the text for details.
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digestive tract of a person. The digestive tract is composed of a variety of cell types,
with cells of a given type living in different microenvironments, and thus expressing
somewhat different sets of genes. We can envision each cell in an organ choosing
to express a subset of genes from relevant expression programs; some programs will
be shared among many cell types and others will be more specific. As we move
along the digestive tract, the cell types present will change and different expression
programs will become active. However, based on the similar physiological functions
of the tissues of the digestive tract, we expect more extensive sharing of expression
programs than we would between dissimilar organs such as the brain and kidneys. As
can be seen in Figure 3-8, the final steps of our imaginary data generation experiment
involve organ dissection, homogenization, cell lysis and nucleic acid extraction, to
yield the total mRNA expressed in the tissue, which is then measured on a DNA
microarray.

The conceptual experiment described above for “constructing” collections of mRNA
molecules from tissues is analogous to the topic model, a probabilistic method devel-
oped for information retrieval applications [79, 31] and also applied to other domains,
such as computer vision [206, 207] and haploinsufficiency profiling [64]. In topic mod-
els for information retrieval applications, documents are represented as unordered
collections of words, and documents are decomposed into sets of related words called
topics that may be shared across documents. In hierarchical versions of such models,
documents are further organized into categories and topics are preferentially shared
within the same category. In the GeneProgram model, a unit of mRNA detectable
on a microarray is analogous to an individual word in the topic model. Related
tissue populations (tissue groups) are analogous to document categories, tissues are
analogous to documents, and topics are analogous to expression programs.

GeneProgram handles uncertainty in the numbers of expression programs and
tissue groups by using a model based on Hierarchical Dirichlet Processes [211]. We
note that in the original Hierarchical Dirichlet Processes formulation [211], data items
were required to be manually assigned to groups. The GeneProgram model extends
this work, automatically determining the number of groups and tissue memberships
in the groups.

The GeneProgram probability model consists of a three-level hierarchy of Dirich-
let Processes, as depicted in Figure 3-9 part A. Tissues are at the lowest level in the
hierarchy. Each tissue is characterized by a mixture (weighted combination) of ex-
pression programs that is used to describe the observed gene expression levels in the
tissue. An expression program represents a set of cross-species meta-genes that are
co-activated to varying extents, as depicted in Figure 3-9 part B. When a tissue uses
an expression program, the homology map translates meta-genes into the appropriate
species specific genes. Tissues differ in terms of which expression programs they em-
ploy and how the programs are weighted. The middle level of the hierarchy consists
of tissue groups, in which each group represents tissues that are similar in their use
of expression programs. The highest and root level in the hierarchy describes a base
level mixture of expression programs that is not tissue or group specific.

Each node in our hierarchical model maintains a mixture of gene expression pro-
grams, and the mixtures at the level below are constructed on the basis of those
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Figure 3-8: Conceptual overview of the data generation process for gene expression in
mammalian tissues. The GeneProgram probability model can be thought of as a series
of “recipes” for constructing the gene expression of tissues, as depicted in this cartoon
example for a digestive tract. In the upper right, four expression programs (labeled A-
D) are shown, consisting of sets of genes (e.g., GA1 represents gene 1 in program A).
Cells (circles) throughout the digestive tract choose genes to be expressed probabilistically
from the programs. The biological experimenter than collects mRNA by dissecting out the
appropriate organ, taking a tissue sample, homogenizing it, lysing cells, and extracting the
nucleic acids.
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above. Thus, a tissue is decomposed into a collection of gene expression programs,
which are potentially shared across the entire model, but are more likely to be shared
by related tissues (those in the same tissue group). Because our model uses Dirichlet
Processes, the numbers of both expression programs and tissue groups are not fixed
and may vary with each sample from the model posterior distribution. In the next
section, we describe the GeneProgram probability model in detail.

1 2 3 ...

1 2 3 ... 1 2 3 ...

1 2 3 ... 1 2 3 ... 1 2 3 ...

...

root

tissue groups

tissues

mouse human

meta-gene
expression program

homology
map

A

B

APOH
APOA1
APOA2

ITIH3
ALB

NM_000042
NM_000039
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for human tissue

select meta-
genes for expression 

in tissue

map meta-
genes to species

specific genes

...

expression data

Formal model description

The GeneProgram model consists of three levels of DPs. Starting from the leaves
these are: tissues, tissue groups, and the root. Each expression program corresponds
to a mixture component of the HDP. Because the model is hierarchical, the expres-
sion programs are shared by all DPs in the model. An expression program specifies a
multinomial distribution over meta-genes. Discrete expression levels are treated anal-
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Figure 3-9: (Part A) Overview of the GeneProgram probability model. The model is based
on Hierarchical Dirichlet Process mixture models, a non-parametric Bayesian method. The
model consists of a three-level hierarchy of Dirichlet Processes. Each node describes a
weighted mixture of expression programs (each colored bar represents a different program;
heights of bars = mixture weights). The mixtures at each level are constructed on the
basis of the parent mixtures above. Tissues are at the leaves of the hierarchy, and may
be from either species. The observed gene expression of each tissue is characterized by a
vector of discretized expression levels of species specific genes (row of small shaded squares
below each tissue). (Part B) Example of a gene expression program. A gene expression
program specifies a set of cross-species meta-genes that are co-activated to varying extents
in a subset of tissues. On the left is a simple program containing five meta-genes (colored
bars = expression frequencies). In this example, a human tissue uses the gene expression
program, choosing four meta-genes from the set with various levels of expression. The
homology map (center) translates the meta-genes into species specific genes (right).

ogously to word occurrences in documents in topic models. Thus, a tissue’s vector
of gene expression levels is converted into a collection of expression events, in which
the number of events for a given gene equals the expression level of that gene in the
tissue. The model assumes that each gene expression event in a tissue is indepen-
dently generated by an expression program. In the original HDP formulation [211],
the entire tree structure was assumed to be pre-specified. We extend this work, by
allowing the model to learn the number of groups and the memberships of tissues in
these groups. Thus, groups themselves are generated by a DP, which uses samples
from the root process DP as its base distribution.

Figure 3-10 depicts the model using graphical model notation with plates and
Table 3.1 summarizes the random variables in the model.

We will begin by describing the model at the level of observed data, and then
move up the hierarchy. Assume that there are T tissues and G meta-genes. For
simplicity, we will assume that there are also G genes for each species and that
the ordering of genes uniquely determines the cross-species mapping. Thus, in the
following discussion, genes and meta-genes are used interchangeably. The expression
data associated with each tissue t consists of a G-dimensional vector et of discrete
expression levels, i.e., etg ∈ {0, 1, . . . , E} is the expression level of gene g in tissue t,
where there are E possible discrete expression levels.

A tissue’s vector of gene expression levels is converted into a collection of expres-
sion events, in which the number of events for a given gene equals the expression level
of that gene in the tissue. This representation of expression levels as an unordered
“bag of expression events” is analogous to the representation of words in a document
as a “bag of words” in topic models. To be precise, let xt denote a set of expression
events for tissue t, and define a mapping ω from xt to genes, where ω(xti) = g iff
etg > 0. The vector xt will have Nt elements, where Nt =

∑G
g=1 etg, i.e., as many

elements as there are discrete expression events in the tissue.

The model assumes that each gene expression event in a tissue is independently
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Var. Dim. Description Cond. distribution or prior
xti 1 Expression event i in tissue t; Multinomial, given the assignment to

corresponds directly to observed expression program j.
data.

zti 1 Assignment variable of an Generated from mixing probabilities over
expression event to an expression expression programs for the tissue, i.e.,
program, i.e., zti = j indicates that p(zti = j | πt) = πtj .
expression event i in tissue t is
assigned to expression program j.

πt ∞ Mixing probabilities over expression DP, given the assignment of the tissue to
programs for tissue t. group k, its parent DP mixing probabilities,

and its concentration parameter, i.e.,
πt | qt = k, α1,β

k ∼ DP(α1,β
k).

βk ∞ Mixing probabilities over expression DP, given its parent mixing probabilities
programs at the level of and concentration parameters, i.e.,
tissue group k; middle βk | α0,β

0 ∼ DP(α0,β
0).

level in the DP hierarchy.
β0 ∞ Root level mixing probabilities in DP, generated from the stick-breaking

the DP heterarchy. distribution given its concentration
parameter, i.e., β0 | α0 ∼ Stick(α0).

θj G Parameters for expression, Dirichlet distribution prior
program j, describing a multinomial (parameterized by λ).
distribution over G meta-genes.

λ 1 Pseudo-count parameter for a Gamma distribution prior with a two-
symmetric Dirichlet distribution. dimensional hyperparameter vector aλ.

qt 1 Assignment variable of tissues to Generated from mixing probabilities over
groups, i.e., qt = k indicates that tissue groups, i.e, p(qt = k | ε) = εk.
tissue t belongs to tissue group k.

ε ∞ Mixing probabilities over the tissue DP, generated from the stick-breaking
groups. prior given its concentration parameter,

i.e, ε |γ ∼ Stick(γ).
α1 1 Concentration parameter for πt. Gamma distribution prior with two-

dimensional hyperparameter vector aα1 .
α0 1 Concentration parameter for β0 Gamma distribution prior with two-

and βk. dimensional hyperparameter vector aα0 .
γ 1 Concentration parameter for ε. Gamma distribution prior with two-

dimensional hyperparameter vector aγ .

Table 3.1: Summary of random variables in the GeneProgram model. The columns are:
variable name (vectors are in bold type), dimensions of the variable, description, and the
conditional or prior distribution on the variable.
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Figure 3-10: The GeneProgram model is depicted using graphical model notation with
plates. Circles represent variables, and arrows denote dependencies among variables. Vec-
tors are depicted with bold type, and observed variables are shown inside shaded circles.
Rectangles represent plates, or repeated sub-structures in the model. See the text and
Table 3.1 for details.

generated by an expression program. The variable zti assigns gene expression events
to programs, i.e., zti = j indicates that xti was generated from the jth expression
program. An expression program is a multinomial probability distribution over genes.
To be precise, let θj represent a parameter vector of size G for expression program
j. Then, the probability of generating expression event xti corresponding to gene g
given that it is assigned to expression program j is p(ω(xti) = g | zti = j,θj) = θjg.
We use a symmetric Dirichlet prior for θj with parameter λ, and a Gamma prior for
λ with hyperparameter vector aλ.

The mixing probabilities over expression programs are generated by the DPs in
the hierarchy. To be precise, let πt denote the mixing probabilities at the leaf level
in the DP hierarchy. That is, πt denotes the mixing probabilities over expression
programs for tissue t, i.e., p(zti = j | πt) = πtj. Let βk denote the mixing prob-
abilities at the middle level in the DP hiearchy. That is, βk denotes the mixing
probabilities over expression programs at the level of tissue group k. Finally, we let
β0 denote the root-level mixing probabilities. In the stick-breaking construction for
HDP models, it is assumed that root level mixing probabilities are generated by the
stick-breaking distribution, i.e., β0 | α0 ∼ Stick(α0), where α0 ∼ Gamma(aα0). The
hierarchical structure of the model then implies that βk is conditionally distributed
as a Dirichlet Process, i.e., βk | α0,β

0 ∼ DP(α0,β
0), where we assume that βk also
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uses concentration parameter α0.
The tissue level expression program mixing probabilities πt depend on the group

that the tissue is assigned to. The variable qt assigns tissues to groups, i.e., qt = k
indicates that tissue t belongs to tissue group k and p(qt = k | ε) = εk, where
ε represents mixing probabilities over the tissue groups. The mixing probabilities
ε over tissue groups are also modeled using a Dirichlet Process. That is, ε | γ ∼
Stick(γ), where γ is a concentration parameter with γ ∼ Gamma(aγ). Given an
assignment of tissue t to group k, the tissue level mixing probabilities over expression
programs πt are then generated from the middle level mixing probabilities βk. That
is, πt | qt = k, α1,β

k ∼ DP(α1,β
k), where α1 is a concentration parameter with

hyperparameters aα1 , i.e., α1 ∼ Gamma(aα1). This completes our formal description
of the GeneProgram probability model.

3.3.3 Model inference

The posterior distribution for the model is approximated via Markov Chain Monte
Carlo (MCMC) sampling using the follow steps:

1. Sample each assignment of an expression event to an expression program, zti;
create new expression programs as necessary.

2. Sample β0 and βk and auxiliary variables for all tissue groups.

3. Sample tissue group assignments qt for all tissues; create new tissue groups as
necessary.

4. Sample concentration parameters α0, α1, and γ.

5. Sample expression program Dirichlet prior parameter λ.

Steps 1, 2, and 4 are identical to those described by Teh et al. in their auxiliary
variable sampling scheme [211] (see Section 3.2.2 for further details). Note that
xti | zti = j,θj ∼ Multinomial(θj), and θj is Dirichlet distributed, allowing us to
integrate out θj when computing the posterior for zti. This means that we do not
need to represent θj explicitly during sampling. In step 3, we must compute the
posteriors for tissue group assignments. This can be written as:

p(qt = k | zt,q−t, α0, γ,β
k) ∝ p(qt = k | q−t, γ)

Nt∏
i=1

∫
p(zti | πt)p(πt | βk, α0)dπt

Here, q−t denotes all tissue group assignments excluding tissue t. Note that because
the conditional distributions for zti and πt are conjugate, the integral in the above
equation can be computed in closed form. Step 5 uses the auxiliary variable sampling
method for resampling the parameter for a symmetric Dirichlet prior, as detailed
in [60].

We implemented the sampling scheme in Java. Inference was always started with
all data assigned to a single expression program. We burned in the sampler for

90



100,000 iterations, and then collected relevant posterior distribution statistics from
50,000 samples. We set the hyperparameters for all concentration parameters to 10−8

to produce vague prior distributions. Both hyperparameters for the Gamma prior on
λ were set to 1.0, biasing λ toward a unit pseudo-count Dirichlet distribution.

3.3.4 Summarizing the model posterior probability distribu-
tion

Overview

In order to produce interpretable results, GeneProgram needs to create a summary
of the model posterior distribution that was approximated using MCMC sampling.

The final step of the GeneProgram algorithm summarizes the approximated model
posterior probability distribution with consensus tissue groups (CTGs) and recurrent
expression programs (REPs). The posterior distributions of Dirichlet Process mix-
ture models are particularly challenging to summarize because the number of mixture
components may differ for each sample. Previous approaches for summarizing Dirich-
let Process mixture model components have used pair-wise co-clustering probabilities
as a similarity measure for input into an agglomerative clustering algorithm [139].
This method is feasible if there are a relatively small number of items to be clustered,
and we employ it for producing consensus tissue groups. However, this method is
not feasible for summarizing expression programs in large data sets because of the
number of pair-wise probabilities that would need to be calculated for each sample.

We developed a novel method for summarization of the model posterior distribu-
tion, which discovers recurrent expression programs by combining information from
similar expression programs that reoccur across posterior samples. Our method is
based on the observation that each expression program is significantly used by only a
limited number of tissues. Thus, this limited set of tissues serves as a unique signature
that allows us to track the expression program across model posterior samples. A
recurrent expression program is summarized by the average frequency of expression
of meta-genes across many model posterior samples.

Detailed description of recurrent expression programs and consensus tissue
groups

CTGs are constructed by first computing the empirical probability that a pair of tis-
sues will be assigned to the same tissue group. The empirical co-grouping probabilities
are then used as pair-wise similarity measures in a standard bottom-up agglomerative
hierarchical clustering algorithm using complete linkage (e.g., as discussed in [58]).

To be precise, let S denote the total number of samples, and q
(l)
t the tissue group

assignment for tissue t in sample l. The empirical co-grouping probability for tissues
t and r is then:

p̂tr =
S∑
l=1

I(q
(l)
t = q(l)

r )/S
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Here, I(·) is the indicator function.

Clustering is stopped using a pre-defined cut-off ctg to produce the final CTGs.
We used a cut-off of ctg = 0.90 to produce strongly coherent groups. However, we
note that the empirical co-grouping probabilities tend to be either very small or close
to 1.0, rendering our results relatively insensitive to the choice of ctg.

REPs consist of sets of tissues and genes that appear together with significant
probability in expression programs across multiple samples. For each expression pro-
gram in each sample, a set of index tissues is determined based on the extent of
overlap of genes in the program and those expressed by the tissue (significance is
determined using the hypergeometric distribution). To be precise, let J (s) be the

number of expression programs used in sample s. Let η
(s)
tj denote the number of

genes expressed in tissue t and assigned to expression program j in sample s, i.e.,
η

(s)
tj = |{ω(xti) : z

(s)
ti = j}|. We use the hypergeometric distribution to compute a

p-value, v
(s)
tj , for each tissue and expression program pair:

v
(s)
tj = 1− HyperCDF(η

(s)
tj − 1, G,

J(s)∑
l=1

η
(s)
tl ,

T∑
l=1

η
(s)
lj )

Here, HyperCDF denotes the cumulative distribution function for the hypergeometric
distribution. We use the p-values, v

(s)
tj , to compute the index tissues V

(s)
j for expression

program j in sample s, i.e., V
(s)
j = {t : v

(s)
tj < c1} , i.e., the set of all tissues whose

p-values for expression program j are below a threshold c1 in sample s. We used a
p-value threshold c1 of 5%.

A hash table using the index tissues enables the algorithm to efficiently determine
whether an expression program has already occurred in previous samples. If it has
not, a new REP is instantiated; otherwise the expression program is merged into
the appropriate REP. Statistics are tracked for each REP, including the number of
samples it occurs in, its average weighting in the tissue’s mixture over programs, and
average expression levels of species specific genes and meta-genes in the program. To
be precise, let Sj denote the number of samples in which REP j occurs. Then, the
empirical mean expression level for gene g in REP j is defined as:

êgj =

∑S
s=1

∑
t,i I(z

(s)
ti = j)

|Vj|Sj
s.t. t ∈ V (s)

j , ω(xti) = g

The empirical mean gene occurrence for gene g in recurrent expression program j
is defined as:

ôgj =

∑S
s=1

∑
t I
(∑

i I(z
(s)
ti = j) > 0

)
|Vj|Sj

s.t. t ∈ V (s)
j , ω(xti) = g

The empirical mean tissue weighting for tissue t in recurrent expression program
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j is defined as:

ŵtj =

∑S
s=1 η

(s)
tj

NtS

After all samples have been collected, several post-processing steps are then per-
formed, including filtering out infrequently occurring REPs and genes, and merging of
similar REPs. We filtered out REPs that occurred in fewer than 50% of samples, and
filtered out genes with ôgj scores less than 5%. The final merging step uses the same
agglomerative procedure described for CTGs. In this case, the similarity measure is
the fraction of genes shared by REPs. Only common index tissues are retained in
merging two REPs. Merging is stopped when the similarity measure is less than a
cut-off of 50%.

3.3.5 Expression data discretization

Expression data input into GeneProgram was first discretized using a mutual information-
based greedy agglomerative merging algorithm, essentially as described in Hartemink
et al. [84]. In brief, continuous expression levels are first uniformly discretized into a
large number of levels. The algorithm then repeatedly finds the best two adjacent lev-
els to merge by minimizing the reduction in the pair-wise mutual information between
all expression vectors. The appropriate number of levels to stop at is determined by
choosing the inflection point on the curve obtained by plotting the score against the
number of levels. In this case, we obtained three levels.

For completeness, we describe the discretization algorithm here. We begin by
initializing the algorithm with sets of expression levels for each tissue. We denote
gene i in tissue t by gti, where there are T tissues. Let r(gti) denote the rank of gene
i in tissue t based on the continuous expression value of the gene. To initialize the
algorithm, we begin by assigning genes in each tissue t to an ordered set Λ

(0)
t of NL

discrete expression levels that induce uniform bins on the gene rankings for the tissue.
That is, Λ

(0)
t = (L

(0)
t1 , . . . , L

(0)
tNL

), where gti ∈ L(0)
tl iff l − 1 < r(gti)NL/Gt ≤ l. Here,

Gt is the number of genes in tissue t that are considered expressed (e.g., expression
values greater than some threshold).

Each iteration consists of a set of trial merges, in which adjacent levels are merged
and a score is computed. For iteration q and for each trial h, the adjacent levels
h and h + 1 are merged, forming a new set of levels with one less element, i.e.,
(L

(q−1)
t1 , . . . , L

(q−1)
th

⋃
L

(q−1)
t(h+1), L

(q−1)
t(h+2), . . . , L

(q−1)
t(NL−q)). Let e

(qh)
t denote the discrete vec-

tor of expression levels for tissue t for iteration q of the algorithm and trial merge
h. That is, e

(qh)
ti = l iff gti is in level l for trial merge h and gti is expressed

in the tissue (otherwise, we set e
(qh)
ti = 0). The score for a trial merge h is the

mutual information between all pairs of vectors of discretized expression data, i.e.,
Sqh =

∑T−1
t1=1

∑
t2>t1

MI(e
(qh)
t1 , e

(qh)
t2 ). At each iteration, the single merge operation that

produces the highest score is retained. Note that because the algorithm is greedy, its
run-time is O(N2

LT
2).
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3.4 Synthetic data experiments

We used a simple synthetic data example to explore the kinds of structures GenePro-
gram and several other well-known unsupervised learning algorithms could recover
from noisy data. Our objective with these experiments was to use simulated data to
illustrate the capabilities of the algorithms; whether or not particular structures are
present in real data can only be answered empirically, and is addressed in Section 3.5.

3.4.1 Data simulation

In creating synthetic data, we sought to simulate important features of real microarray
data profiling mammalian tissues. Thus, we assumed noisy data in which there were
several distinct populations of related tissues using different sets of co-expressed genes.

We generated four gene sets used by 40 tissues divided equally among four tissue
populations. Each gene set contained 40 genes with varying mRNA levels; gene sets
three and four overlapped in 10 genes. The simulated underlying mRNA level mij for
gene i in gene set j was generated as mij ∼ round(1000 ∗Gamma(3, 2)).

Each tissue population k was associated with a mean vector Nk of the numbers
of genes to be used from each gene set (see Table 3.2 for the mean vectors used to
generate the simulated data). For a tissue t from population k, the number of genes
to be used from gene set j was sampled from a Poisson distribution with parameter
Nkj.

Genes were picked to be expressed from each set used by the tissue. Genes were
picked without replacement such that the probability of picking gene i from gene set
j for tissue t when l genes had already been picked was:

p
(l)
ti =

logmij∑
k/∈G(l−1)

tj
logmkj

Where genes were picked sequentially and G
(l−1)
tj denotes the collection of the first

l− 1 genes picked from gene set j for tissue t. The probability is zero if the gene had
already been picked. Finally, the observed expression value eit for gene i in tissue t
was generated as:

eit = aitItijmij + bit

Here, Itij is an indicator denoting whether gene i from gene set j was picked by
tissue t, and ait and bit are multiplicative and additive noise respectively. Noise was
generated with ait ∼ lognormal(0, 0.1) and bit ∼ lognormal(log(200), 1). The mean
and scale of noise were chosen to approximate Affymetrix microarray data (see [155]).

Figure 3-11 (part A) depicts the synthetic data. We note that our scheme for simu-
lating data does not simply recapitulate the assumptions present in the GeneProgram
model (e.g., it does not assume discrete and independent “units” of expression signal
and it introduces microarray-like noise).
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gene set no. tissue pop. 1 tissue pop. 2 tissue pop. 3 tissue pop. 4
1 30 25 3 3
2 3 30 25 3
3 5 3 37 20
4 3 3 20 20

Table 3.2: Tissue population means for synthetic data. Each tissue population was asso-
ciated with a mean vector of the numbers of genes to be used from each gene set. For a
tissue from a population, the number of genes to be used from a gene set was sampled from
a Poisson distribution using the population mean.

3.4.2 GeneProgram accurately recovered coherent gene sets
from the noisy synthetic data that other algorithms
could not

Hierarchical clustering is one of the most frequently used methods for clustering mi-
croarray gene expression data. Figure 3-11 (part B) shows the results of hierarchical
clustering, using Pearson correlation as a similarity metric and the average linkage
method [135], applied to sorting both rows (genes) and columns (tissues) of the syn-
thetic data. As can be seen, hierarchical clustering did reasonably well at sorting
tissues and genes independently, although it did not separate gene sets three and four
correctly. But, this method’s failure to consider genes and tissues simultaneously is
known to break up coherent “overhanging” blocks of genes, making interpretation
difficult [42, 209, 39]. This issue was demonstrated in this example by gene sets one
and two that “overhang,” thus causing gene set two to be broken up horizontally
(blue rows in Figure 3-11 part A and part B).

The inability of hierarchical clustering to handle “overhanging” block structures
in data was one of the motivations for the development of biclustering algorithms
that take genes and tissues into account simultaneously [42, 209, 133]. To investigate
the behavior of biclustering algorithms, we used Samba, an algorithm that has been
shown previously to outperform other biclustering methods [209, 194]. Samba pro-
duced 23 biclusters from the synthetic data (not shown). This method tended to find
small subsets of genes co-expressed in some tissues, but did not recover the four gene
sets as coherent biclusters. Presumably, this is because Samba does not attempt to
incorporate more global constraints on biclusters.

Singular Value Decomposition (SVD) is a matrix factorization method that can
be used to approximate a matrix using a smaller number of factors or components.
In the context of gene expression data, the method has previously been used to
decompose data into “eigengenes” and “eigenexperiments,” linear combinations of
genes and experiments respectively [8, 9]. However, SVD often produces components
that are difficult to interpret [39, 36, 111, 115]. As can be seen in Figure 3-11 (part
C), components produced by SVD [135] do not clearly correspond to the distinct gene
sets or tissue populations in the synthetic data. For instance, the first component
is to some extent a composition of gene sets one, three and four, and subsequent
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components then add and subtract different combinations of the gene sets.

The development of non-negative matrix factorization (NMF) methods was in
part driven by the aforementioned problems with SVD. NMF algorithms decompose
a matrix into the product of non-negative matrices [115]. These algorithms generally
produce more interpretable factors than does SVD, and have been successfully applied
to various problems including gene expression analysis [39, 36, 111]. Figure 3-11 (part
D) shows the application of an NMF-based algorithm to the synthetic data. We used
a publicly available implementation [36], which searches for an optimal number of
factors using a cophenetic clustering coefficient metric, and in this case found three
factors to be optimal. As can be seen in the figure, NMF did fairly well at recovering
genes sets one and two, although there was some overlap between the sets. However,
gene sets three and four were indistinguishable.

Figure 3-11 (part E) demonstrates the application of a simplified version of Gene-
Program in which tissue groups were not modeled (all tissues were attached to the
root of the hierarchy). As can be seen, this version of the algorithm accurately re-
covered gene sets one and two. However, as with NMF, gene sets three and four
completely overlapped.

Figure 3-11 (part F) shows the application of GeneProgram with full automatic
learning of tissue groups enabled. As can be seen, the algorithm accurately recovered
all four gene sets. By leveraging hierarchical structure in the data, the algorithm
had additional information (the pattern of expression program use by related tis-
sues), which presumably allowed it to correctly recover all the synthetic gene sets—
something the other methods were not capable of.

3.5 GeneProgram discovered biologically relevant

tissue groups and expression programs in a

large compendium of human and mouse body-

wide gene expression data

Our objective was to apply GeneProgram to a large compendium of mammalian
gene expression data, both to compare our method’s performance against that of
other algorithms, as well as to explore the biological relevance of discovered tissue
groups and expression programs. In this regard, we used the Novartis Gene Atlas
v2 [205], consisting of genome-wide expression measurements for 79 human and 61
mouse tissues. This dataset was chosen because it contains a large set of relatively
high-quality expression experiments, with body-wide samples representative of normal
tissues measured on similar microarray platforms. Further, the data is from two
species, potentially allowing for the discovery of higher quality cross-species gene
expression programs.
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Figure 3-11: Synthetic data experiments demonstrated GeneProgram’s and other algo-
rithms’ abilities to recover gene sets from noisy data. (Part A) Noisy synthetic data,
containing 150 genes (rows) and 40 tissues (columns), with four gene sets and four tissue
sample populations. Vertical numbers and colored bars designate gene sets; corresponding
horizontal elements designate tissue sample populations. Each gene set contained 40 genes
with varying mRNA levels; programs 3 and 4 overlapped in 10 genes. See the text for
complete details. (Part B) Hierarchical clustering was applied to sorting both rows (genes)
and columns (tissues) of the data. Arrows from part A indicate resorting of gene sets. Note
that hierarchical clustering did not separate gene sets 3 and 4 correctly, and broke up gene
set 2 horizontally. (Part C) Singular Value Decomposition (SVD) factors did not clearly
correspond to the distinct gene sets or tissue populations in the synthetic data; the first
three factors are shown. (Part D) A non-negative matrix factorization (NMF) implemen-
tation, which searches for the optimal number of factors, was applied to the data. In this
case, 3 factors were optimal. As can be seen, the method performed fairly well in recovering
genes sets 1 and 2, although there was some overlap between the sets. However, gene sets
3 and 4 were not recovered as separate sets. (Part E) A simplified version of GeneProgram
using a flat hierarchy (automatic tissue grouping disabled) accurately recovered gene sets 1
and 2, but failed to separate sets 3 and 4. (Part F) The full GeneProgram implementation
using automatic tissue grouping correctly recovered all 4 gene sets.

3.5.1 Data set pre-processing

All arrays in the data set were first processed using the GC content-adjusted robust
multi-array algorithm (GC-RMA) [221]. To correct for probe specific intensity differ-
ences, the intensity of each probe was normalized by dividing by its geometric mean
in the 31 matched tissues. For genes represented by more than one probe, we used
the maximum of the normalized intensities. A gene was considered expressed if its
normalized level was greater than 2.0 and was called present in one or more replicates
of the MAS5 Absent/Present calls [92].

We identified pairs of related genes using Homologene (build 47) [219], which
attempts to find homologous gene sets among the completely sequenced eukaryotic
genomes by using a taxonomic tree, conserved gene order, and measures of sequence
similarity. Of the approximately 16,000 homologous human-mouse pairs identified by
Homologene, 9851 gene pairs appear in the Gene Atlas v2.

3.5.2 GeneProgram discovered 19 consensus tissue groups
and 100 recurrent expression programs

Figure 3-12 depicts all 19 tissue groups. Supplemental online Table 1 [74] provides a
summary and supplemental online Table 2 [75] contains the full data for all 100 ex-
pression programs. The tissue groups were of various sizes, ranging from 1–38 tissues
(median of 4). Expression program sizes ranged from 12–292 meta-genes (median of
72) and 1–38 tissues (median of 4). A large fraction (67%) of meta-genes appeared
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in at least one expression program and 31% were shared by several expression pro-
grams. Forty-two percent of tissue groups and 33% of expression programs contained
at least one tissue from each species. It is important to realize that the number of
cross-species tissue groups and expression programs was limited by the data set: only
62 out of the 140 tissue samples could be directly paired between species and some
key tissues with distinct functions, such as the stomach and eye, were represented in
only one species.

3.5.3 GeneProgram automatically assigned tissues to biolog-
ically relevant groups

To provide a quantitative assessment of the biological relevance of sets of tissues,
we manually classified tissues into 10 high-level, physiologically based categories and
then calculated an enrichment score for each discovered tissue group using the hyper-
geometric distribution. See the supplemental online material for [76] for the complete
manually derived tissue categories. To correct for multiple hypothesis tests, we used
the procedure of Benjamini and Hochberg [24] with a false-discovery rate cut-off of
0.05.

Seventy-nine percent of tissue groups had significant enrichment scores, and in
all such cases, the score was significant for only a single category (see Figure 3-
12). For instance, tissue group “L,” which was significantly enriched only for the
“hematological/immune” category, consisted exclusively of human immune cells such
as natural killer cells, and CD4+ and CD8+ T-cells. As another example, tissue group
“B,” significantly enriched only for the “neural” category, consisted exclusively of
neural tissues from both species. We note that GeneProgram discovered these groups
in a wholly unsupervised manner, and that many of the groups clearly represent
a more refined picture of the data than the 10 broad categories we had manually
compiled.

3.5.4 GeneProgram outperformed biclustering algorithms in
the discovery of biologically relevant gene sets

Because expression programs characterize both genes and tissues, we used both Gene
Ontology (GO) categories [11] and the 10 manually derived tissue categories to as-
sess GeneProgram’s ability to recover biologically relevant gene sets and to compare
this performance to that of two biclustering algorithms, Samba [209, 194] and a
non-negative matrix factorization (NMF) implementation [36]. We chose these two
algorithms for comparison because they are popular in the gene expression analysis
community, they have previously outperformed other biclustering algorithms, and
available implementations are capable of handling large data sets.

We mapped genes to GO annotations using RefSeq identifiers from the May 2004
(hg17) and August 2005 (mm7) assemblies of human and mouse genomes [11, 219].
For calculating enrichments, we used both mouse and human GO annotations from
the biological process categories with between 5 and 200 genes. Enrichment score
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Figure 3-12: GeneProgram discovered 19 consensus tissue groups using gene expression
data from 140 human and mouse tissue samples. The algorithm identified these groups
in a wholly unsupervised manner. In each tissue group (denoted A-S), human tissues
are designated with bold type and mouse tissues with italic type. Tissues were classified
manually into 10 broad categories based on physiological function, and it was found that
79% of tissue groups were significantly enriched for at least one category (boxed legend,
lower right corner). To the right of each tissue is a blue vertical bar depicting its weighted
average of generality scores for expression programs, which provides a measure of the extent
to which the tissue uses programs shared by diverse tissue types (see the text for details).

calculation and correction for multiple hypothesis tests were the same as described in
Section 3.5.3.

As Table 3.3 shows, GeneProgram clearly outperformed the other two algorithms
in the tissue dimension (60% of expression programs significantly enriched for tissue
categories, versus 10% for Samba and 20% for NMF). GeneProgram outperformed
NMF and had equivalent performance to Samba in the gene dimension (61% of ex-
pression programs significantly enriched for GO categories, versus 62% for Samba and
27% for NMF).

Figure 3-13 shows the same trends using correspondence plots, which are sensitive,
graphical methods for comparing biclustering algorithms [210]. These plots depict log
p-values on the horizontal axis and the fraction of biclusters with p-values below a
given value on the vertical axis. Depicted p-values are from the most abundant class
for each bicluster (i.e., that with the largest number of genes or tissue in the overlap)
and calculated using the hypergeometric distribution. Note that biclusters with large
p-values are not significantly enriched for any class, and may represent noise.

These results suggest several performance trends related to features of the differ-
ent algorithms. As noted in the section on synthetic data experiments, Samba was
successful at finding relatively small sets of genes that are co-expressed in subsets of
tissues, but had difficulty uncovering larger structures in data. Presumably, our algo-
rithm’s clear dominance of both Samba and NMF in the tissue dimension was partly
attributable to GeneProgram’s hierarchical model. Both of the other algorithms lack
such a model, so the assignment of tissues to biclusters was not guided by global
relationships among tissues.

We note also that the algorithms differed substantially in runtimes: Samba was
fastest (approximately 3 hours), GeneProgram the next fastest (approximately 3
days), and NMF the slowest (approximately 6 days), with all software running on a
3.2 GHz Intel Xenon CPU. Although these runtime differences may be attributable in
part to implementation details, it is worth noting that GeneProgram, a fully Bayesian
model using MCMC sampling for inference, ran faster than the NMF algorithm, which
uses a more “traditional” objective maximization algorithm to search for the appro-
priate number of biclusters.
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algorithm gene dimension tissue dimension
(GO category enrichment) (manually derived category enrichment)

GeneProgram 61% 60%
Samba 62% 10%
NMF 27% 20%

Table 3.3: Comparison of GeneProgram to biclustering algorithms for recovery of biolog-
ically interpretable gene sets. GeneProgram’s ability to recover biologically interpretable
gene sets from a large compendium of mammalian tissue gene expression data was compared
against that of two popular biclustering algorithms, Samba and a non-negative matrix fac-
torization (NMF) implementation. GeneProgram dominated the other two algorithms in
the tissue dimension; it outperformed NMF and had equivalent performance to Samba in the
gene dimension. Biological interpretability of gene sets was assessed using Gene Ontology
(GO) categories in the gene dimension, and manually constructed categories in the tissue
dimension. Each cell in the table shows the percentage of sets significantly enriched for at
least one category in a given dimension (p-value < 0.05, corrected for multiple hypothesis
tests).

Figure 3-13: Correspondence plots comparing GeneProgram to biclustering algorithms.
These plots compare GeneProgram’s ability to recover biologically interpretable gene sets
from a large compendium of mammalian tissue gene expression data against that of two
popular biclustering algorithms, Samba and a non-negative matrix factorization (NMF)
implementation. GeneProgram clearly dominated the other two algorithms in the tissue
dimension; it outperformed NMF and had equivalent performance to Samba in the gene
dimension. Biological interpretability of gene sets was assessed using Gene Ontology (GO)
categories in the gene dimension, and manually derived high-level, physiologically based
categories in the tissue dimension. The plots depict p-values (enrichment scores) on the
horizontal axis and the fraction of biclusters with p-values below a given value on the vertical
axis (the p-value for the most abundant class was used).
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3.5.5 GeneProgram cross-species expression programs out-
performed single-species programs in terms of biologi-
cal relevance in both the gene and tissue dimensions

Seventy-nine percent of cross-species programs were significantly enriched for GO
categories versus 52% of single-species programs, and 82% of cross-species programs
were significantly enriched for the manually derived tissue categories versus 51% of
single-species programs. These results suggest that combining data from both species
was valuable for discovery of biologically relevant expression programs. However,
this conclusion must be interpreted cautiously for the gene dimension, because GO
annotations may be biased toward extensively studied genes that are expressed in
both species.

It is also relevant to ask whether single species expression programs represent
biologically important differences in gene expression between mice and humans. Un-
fortunately, substantial differences in how samples from the two species were obtained,
prepared and experimentally analyzed were confounding factors. Nonetheless, some
single-species expression programs appeared to reflect real biological differences be-
tween mice and humans. For instance, expression program 78 contained only mouse
tissues, including general and snout epidermis. Interestingly, the program contained
many keratin genes, which are components of hair fibers, and the Cochlin gene, which
has been detected in spindle-shaped cells located along nerve fibers that innervate hair
cells [178]; such structures are considerably more abundant in fur-covered mouse skin
than in human skin.

3.5.6 Automatic inference of tissue groups resulted in signif-
icant improvements in model performance

We used cross-validation to analyze the importance of automatic tissue group infer-
ence in our model. We tested the full GeneProgram model versus a simplified version
in which there were no groups and all tissues are attached directly to the root of the
hierarchy.

We used 10-fold cross-validation on the 140 tissues; the order of the tissues was
first randomly permuted so that there would be no bias toward selecting training sets
from only a single species.

The perplexity was then calculated for each held-out tissue; perplexity is a mea-
sure commonly used for evaluating statistical language and information retrieval mod-
els [183]. In this context, it is inversely related to the predicted model likelihood of
the expression data in the held-out tissue given the training data. Thus, smaller
perplexity values indicate a better model fit.

The model was burned in with 100,000 iterations as described in Section 3.3.3.
After burn-in, the model posterior was sampled ten times (we allowed 100 iterations
between samples to reduce dependencies). For each of the ten samples, the held-out
tissue t was then added back, the model was burned in for 10,000 iterations and 500
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samples were generated to compute:

L
(s)
t =

Nt∑
i=1

log p(xti |D)

Here, t denotes the tissue, s the sample, and D all the training data. An estimate of
the tissue log-likelihood L̂t was then computed from the 5,000 L

(s)
t samples using the

harmonic mean method described by Kass and Raftery [110]. The tissue perplexity
was then estimated as:

perplexity = 2L̂t/Nt

The full GeneProgram model consistently yielded reduced perplexity values com-
pared to the simplified model, with a median perplexity reduction of 24%. Figure 3-14
shows a graph of these results. Perplexity reductions of 10% or greater have typically
been considered significant [183]. Thus, we conclude that allowing the model to infer
tissue groups automatically significantly improves performance.
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Figure 3-14: Automatic inference of tissue groups improves cross-validation performance
of the GeneProgram model. We used 10-fold cross-validation to test the full GeneProgram
model (“groups”) versus a simplified version in which there are no groups and all tissues
are attached directly to the root of the hierarchy (“no groups”). Each data point represents
the calculated perplexity value for each held-out tissue (1-79 = human tissues, 80-140 =
mouse tissues). Lower perplexity values indicate better model performance. The median
reduction in perplexity for the full versus the simplified model was 24%.
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3.5.7 The generality score quantified the functional speci-
ficity of expression programs and organized programs
into a comprehensive body-wide map

We developed a score for assessing the functional generality of expression programs,
and demonstrated its utility for automatically characterizing the spectrum of discov-
ered programs—from gene sets involved in general physiologic processes to highly
tissue-specific ones.

The generality score is the entropy of the normalized distribution of usage of
an expression program by all tissues in each tissue group. Because the distribution
employed for calculating the score is normalized, tissue groups that only use an ex-
pression program a relatively small amount will have little effect on the score. Thus, a
high generality score indicates that an expression program is used fairly evenly across
many tissue groups; a low score indicates the program is used by tissues from a small
number of groups.

To be precise, let qt denote the consensus tissue group (CTG) assignment for
tissue t. We compute the usage for CTG k of recurrent expression program (REP) j
as:

hkj =
T∑
t=1

ŵtjI(qt = k)

The normalized usage is then computed as:

ĥkj =
hkj∑K
l=1 hlj

Here, K is the total number of CTGs. The generality score for REP j is then
computed as:

GSj = −
K∑
k=1

ĥkj log ĥkj

We note that the generality score requires a global organization of tissues into
groups, rather than just the local associations of subsets of tissues with individual
gene sets provided by biclustering algorithms. Because there is uncertainty in the
number of tissue groups, GeneProgram’s Dirichlet Process-based model provides a
natural framework for computing the generality score.

Evaluation of the weighted average of generality scores across all expres-
sion programs for each tissue uncovered several trends relating to tissue
function and anatomic location

Figure 3-12 depicts the weighted scores for all tissues. As is evident from this figure,
some tissues types, including neural, testicular and thyroid samples, had very low av-
erage generality scores, presumably reflecting the highly specialized functions of these
tissues. In contrast, a number of other tissue types, including embryologic, hemato-
logic progenitors, immune, malignant, epithelial and adipose samples, had very high
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average generality scores. In the case of embryologic and relatively undifferentiated
malignant tissues, high scores presumably reflected the activation of large numbers of
expression programs shared with many other types of tissues. The other high-scoring
tissues mentioned also shared programs with many types of tissues, but this sharing
may be attributed to both common biological functions as well as the fact that cells
from these high-scoring tissues are found in many organs throughout the body.

We note that it is likely that some tissues had artificially high average generality
scores due to sample contamination from anatomically nearby tissues. For instance,
expression program 24, a program associated with muscle function, was used by fetal
thyroid (3%), prostate (8%), lower spinal cord (4%), bone marrow (5%), and brown
fat (12%). Each of these tissues is underneath substantial amounts of muscle, making
contamination likely [142]. As another example, expression program 83 contained
many genes involved in pancreatic function. However, this program was also used
by mouse spleen (18%) and stomach (4%). Because the pancreas is anatomically
proximal to both the stomach and spleen and can leave pancreatic tissue surrounding
the duodenum as a result of its migration during development [161], contamination
of these tissues seems likely.

Generality scores classified the functional specificity of individual expres-
sion programs

Figure 3-15 displays a histogram of generality scores for all expression programs (EPs)
with non-zero scores. Based on the generality score, we divided expression programs
into three broad categories: 1) general body-wide physiology, 2) specialized organ
physiology, and 3) tissue specific. Below we provide illustrative examples from each
category.

General body-wide physiology expression programs. EPs with high gen-
erality scores were involved in common physiological functions of cells present in a
variety of tissues throughout the body. For instance, EP 13 (generality = 2.50, 25
tissues) contained many genes critical for DNA replication and EP 33 (generality =
2.34, 28 tissues) contained a striking number of genes involved with RNA process-
ing, including numerous nuclear ribonucleoprotein components [119]. Interestingly,
both EPs were used by many of the same tissues containing rapidly dividing cells,
including embryologic, immune, and malignant tissues. Two additional examples in-
clude, EP 39 (generality = 2.88, 13 tissues), significantly enriched for genes involved
in epithelial function, such as keratins and collagens; and, EP 24 (generality = 1.88,
15 tissues), significantly enriched for genes involved in general muscle function, in-
cluding several known to be expressed in both cardiac and skeletal muscle such as
alpha-actin-1 [81], myoglobin [70], and phosphoglycerate mutase isozyme M [57]. In-
terestingly, the tongue used both EPs 39 and 24 to a considerable extent, reflecting
its mixed muscular and epithelial physiological functions.

Specialized organ physiology expression programs. EPs with intermediate
generality scores were involved in specialized functions of a few closely related—but
not necessarily anatomically proximate—tissues. For instance, EP 15 (generality =
1.44, 6 tissues) was significantly enriched for genes involved in erythropoiesis and
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was used primarily by adult bone marrow from both species and human fetal liver.
Interestingly, the fetal liver is known to be critical for erythropoiesis during embryonic
development, after which bone marrow becomes the predominant organ involved in
this process [158]. Another example in this category includes EP 73 (generality =
0.93, 6 tissues), which was used by the kidney and liver in both species, and was
enriched for genes involved in oxidative metabolism and gluconeogenesis. A final
interesting example of this type is EP 88 (generality = 0.84, 3 tissues), which was used
by the pituitary in both species and to a smaller extent by human pancreatic islets
(5%). This EP contained a number of specific genes involved with pituitary function
such as PIT1 [157] and the prolactin precursor [45]. A literature search revealed
that several of the genes contained in this EP are known to be shared between the
pituitary and islets, including prohormone convertase I [226] and proopiomelanocortin
preproprotein [34, 95]. However, many of the genes in EP 88 have not previously been
characterized as shared between the two endocrine organs, and thus may constitute
interesting future candidates for experimental biology work.

Tissue specific expression programs. Finally, EPs with very low generality
scores were used by essentially a single type of tissue, and represented very specialized
aspects of organ functions. For instance, EP 19 (generality = 0.0, 6 tissues) was used
exclusively by testicular tissues in both species, and was significantly enriched for
genes involved in spermatogenesis. Two additional examples clearly illustrate Gene-
Program’s ability to automatically allocate tissues’ gene expression to both general
and specific programs. EP 43 (generality = 0) was used exclusively by the eye and was
highly enriched for lens and retina specific genes. The eye also used EP 39, the general
epithelial program described above, reflecting its more prosaic components. EP 58
(generality = 0) was exclusively used by the heart in both species, and contained car-
diac specific genes such as atrial natriuretic peptide [52] and cardiac troponin T [192].
The heart also used the general muscle topic, EP 24, described above. Finally, EP 53
(generality = 0.26, 38 tissues), which was significantly enriched for genes involved in
neurotransmission, illustrates that the generality score can be low despite usage of a
program by a large number of tissues. Neural tissues were very abundant in the data
set (31% of all tissues); because GeneProgram collapsed these tissues into a small
number of groups, the generality score for EP 53 accurately reflected the biological
homogeneity of the exclusively neural tissues using the expression program.

3.6 Conclusion and discussion

We presented a new computational methodology, GeneProgram, specifically designed
for analyzing large compendia of mammalian expression data. Through synthetic
data experiments, we showed that GeneProgram was able to correctly recover gene
sets that other popular analysis methods could not. We then applied our method to a
large compendium of human and mouse body-wide gene expression data from repre-
sentative normal tissue samples, and demonstrated that GeneProgram outperformed
other methods in the discovery of biologically interpretable gene sets. We further
showed that allowing the GeneProgram model to infer tissue groups automatically
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Figure 3-15: The generality score organized expression programs discovered by Gene-
Program into a comprehensive body-wide map. A histogram using the generality score
summarizes the functional specificity of the expression programs (EPs) discovered by Gene-
Program in a large compendium of human and mouse gene expression data. The horizontal
axis displays bins of generality scores. A high generality score indicates that an expression
program is used fairly evenly across many tissue groups; a low score indicates the program is
used by tissues from a small number of groups. Only EPs with non-zero scores are shown.
EPs are depicted as numbered circles stacked within score bins. Two rings around each
EP provide additional information. The innermost ring shows individual tissue usage per-
centages as shaded wedges (darker shading = higher usage). The outer ring depicts tissue
groups, with arc sizes proportional to the number of tissues in the group using the EP. The
boxed example shows EP 24 (generality = 1.88), which is used by 15 tissues from 6 groups.
The legend below the boxed example depicts the broad physiological category that each
tissue group was significantly enriched for.

significantly improved performance. Using the data compendium, GeneProgram dis-
covered 19 tissue groups and 100 expression programs active in mammalian tissues.
We introduced an expression program generality score that exploits the tissue group-
ings automatically learned by GeneProgram, and showed that this score characterizes
the functional spectrum of discovered expression programs.

GeneProgram encodes certain assumptions that differ from some previous methods
for analyzing expression data and so merit further discussion. First, we model expres-
sion data in a semi-quantitative fashion, assuming that discrete levels of mRNA corre-
spond to biologically interpretable expression differences. We believe this is appropri-
ate because popular array technologies can only reliably measure semi-quantitative,
relative changes in expression; many relevant consequences of gene expression are
threshold phenomena [94, 127, 224]; and it is difficult to assign a clear biological in-
terpretation to a full spectrum of continuous expression levels. Second, GeneProgram
assumes that discrete “units” of mRNA are independently allocated to expression pro-
grams, which captures the phenomena that mRNA transcribed from the same gene
can be translated into proteins that may participate in different biological processes
throughout a cell or tissue. Independence of mRNA units is an unrealistic assumption,
but this approximation, which is important for efficient inference, has worked well in
practice for many other applications of topic models [64, 79, 31]. Finally, although
GeneProgram does not directly model down-regulation of genes, it does capture this
phenomenon implicitly in that a tissue’s non-use of an expression program provides
critical information for the algorithm. However, this approach does not take into ac-
count the magnitude of a gene’s down-regulation or distinguish down-regulation from
a lack of significant change in a gene’s expression. As shown in Chapter 4, GenePro-
gram can be usefully extended to take such information into account for application
to datasets consisting of time-series or samples and controls, such as two-color mi-
croarray data.

Our method produced a comprehensive, body-wide map of expression programs
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active in mammalian physiology with several distinguishing features. First, by si-
multaneously using information across 140 tissue samples, GeneProgram was able
to finely dissect the data, automatically splitting mRNA expressed in tissues among
both general and specific programs. Second, because our model explicitly operates
on probabilistically ranked gene sets throughout the entire inference process, rather
than finding individual differentially expressed genes or merging genes into sets in
pre-processing steps, our results are more robust to noise. Third, the fact that ex-
pression programs provide probabilistically ranked sets of genes also provides a logical
means for prioritizing directed biological experiments. Fourth, because our model is
fully Bayesian, providing a global penalty for model complexity including for the
number of tissue groups and expression programs, the generated map represents a
mathematically principled compression of gene expression information throughout
the entire organism. Finally, although such a large, comprehensive map is inherently
complicated, we believe that GeneProgram’s automatic grouping of tissues and the
associated expression program generality score aid greatly in its interpretation.

We believe that the features of the discovered map discussed above will make it
particularly useful for guiding future biological experiments. Tissue-specific expres-
sion programs can provide candidate genes for diagnostic markers or drug targets
that exhibit minimal “cross-talk” with unintended organs. General expression pro-
grams may be useful for identifying genes important in regulating and maintaining
general physiological responses, which may go awry in disease states such as sep-
sis and malignancy. Both general and tissue-specific discovered programs contained
many functionally unannotated genes, and in some cases the programs were shared
among unexpected sets of tissues. Additionally, some such unannotated genes appear
in cross-species expression programs, making them particularly attractive candidates
for further biological characterization.

The map’s utility can be further enhanced by adding new data as it becomes
available, particularly body-wide tissue samples profiling gene expression in additional
species. Further, our method is general, making it suitable for analyzing any large
expression data compendium, including those relating to developmental or disease
processes. Our framework is also flexible, and could accommodate other genome-
wide sources of biological data in future work, such as DNA-protein binding or DNA
sequence motif information. GeneProgram’s ability to discover tissue groups and
expression programs de novo using a principled probabilistic method, as well as its use
of data in a semi-quantitative manner, makes it especially valuable for novel “meta-
analysis” applications involving large data sets of unknown complexity in which direct
fully quantitative comparisons are difficult.
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CHAPTER 4

GeneProgram++

“What distinguishes a mathematical model from, say, a poem,
a song, a portrait or any other kind of ‘model,’ is that the math-
ematical model is an image or picture of reality painted with
logical symbols instead of with words, sounds or watercolors.”

—John Casti, Reality Rules

In many microarray gene expression experiments, we are interested in genes’ be-
havior relative to some baseline condition. For instance, we may be interested in the
extent of induction or repression of gene expression after cells are exposed to environ-
mental stresses [71], infected with microorganisms [202, 149, 150, 107, 33, 91, 160, 80],
or observed throughout development [220]. The simplest such studies may consider
only a few experiment-control pairs. However, in more complex studies, researchers
may seek to explore complex patterns of change, such as temporal dynamics.

In analyzing patterns of gene expression change, we would like to discover sets
of genes that behave coherently. In Chapter 3, we presented the GeneProgram algo-
rithm, and showed that it has a number of advantages over previous methods in the
discovery of biologically relevant sets of genes from large compendia of data. How-
ever, a limitation of the GeneProgram algorithm is that it does not explicitly model
patterns of gene expression change.

In this chapter, we present GeneProgram++, an extension of our original algo-
rithm that explicitly models general patterns of expression changes, including not only
induction or repression, but also temporal dynamics. Patterns of expression change
are modeled using the novel concept of program usage modifiers. A usage modifier
is a variable that is specific to a tissue-expression program pair and describes how
a tissue uses the program. For instance, usage modifiers can specify the temporal
phase and direction (induction or repression) of expression. Thus, the genes used
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by a tissue from a program and the manner in which they are expressed (e.g., early
induction versus late repression) are chosen probabilistically and influenced by the
behavior of similar tissues. Further, usage is by definition consistent across a program
for a particular tissue, which facilitates biological interpretation. Figure 4-1 presents
an overview of the extended model.

GeneProgram++ usage modifier variables are perhaps best understood intuitively
by imagining several ways in which we might have extended the original algorithm
to handle different patterns of expression change. To simplify the discussion, we will
describe examples in terms of gene expression induction or repression.

There are at least three ways we could imagine extending the GeneProgram al-
gorithm. First, we could introduce an additional parameter for each gene in each
expression program, indicating whether it is induced or repressed. In this scenario,
expression programs would consist of sets of genes in which each gene is consistently
either induced or repressed (but not both) in a subset of tissue samples. The problem
with this approach is that expression programs could be difficult to interpret and
would not really match our intuition for what constitutes an “atomic” or modular
biological process, in which we expect all genes’ expression to coordinately change in
the same direction in response to some stimuli. This expectation suggests a second
possibility for extending the algorithm, in which we could introduce an additional
parameter at the level of the expression program, indicating whether the genes in
the program are induced or repressed. With this model, the direction of expression
change for genes in a program would be consistent and would be the same for all tissue
samples using the program. However, it is easy to imagine compendia of experiments
in which an expression program is induced in some tissue samples and repressed in
others. This then suggests the third possibility—the one GeneProgram++ uses—in
which we introduce a parameter for each tissue sample at the level of the expres-
sion program, specifying the direction of expression change for genes in the program.
Thus, with this model, the direction of expression change is consistent for all genes
in a program for a particular tissue.

A variety of algorithms have been developed to analyze time-series expression
data [17], but to our knowledge, none have been specifically designed for analysis of
large compendia of such data. Analysis methods for combining time-series of different
durations or that use different sampling rates have focused on long time-series over a
few experimental conditions [1, 21], rather than short series over many conditions as
we do. Jenner and Young performed a meta-analysis using hierarchical clustering of
a superset of the infection time-course experiments we analyze in this chapter [107].
However, their analysis was not automated or statistically principled, relying on ex-
tensive prior biological knowledge, and using visual assessment of clusters to manually
assign genes to pathways of interest. Further, as described in the Section 4.3, our
analysis implicated several surprising signaling pathways and receptor types in the
response to infection that previous analyses of these data sets have not.

The remainder of this chapter is organized as follows. In Section 4.1, we present
the GeneProgram++ algorithm in detail. We first describe how a simplified version
of GeneProgram without tissue groups is extended to include program usage modi-
fiers. We then describe the full GeneProgram++ model and Markov Chain Monte
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Carlo (MCMC) sampling methods for the model. In Section 4.2, we describe some
additional technical improvements relating to posterior distribution summarization,
and demonstrate the performance of these improvements on expression data. In Sec-
tion 4.3, we apply GeneProgram++ to a compendium of 62 short time-series gene
expression experiments in which various human cell types have been exposed to dif-
ferent infectious agents or immune-modulating substances [107], and produce a map
of expression programs organized by functional generality scores. We evaluate the
biological relevance of the discovered expression programs using biological process
categories and pathway databases, as well as genome-wide data profiling binding of
human transcription factors. Finally, we provide examples of discovered expression
programs involved in key pathways related to the response to infection. We conclude
the chapter with Section 4.4, in which we discuss the significance of our results.
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Figure 4-1: Overview of the GeneProgram++ model. (A) The model consists of a three-
level hierarchy of Dirichlet Processes. Each node describes a weighted mixture of expres-
sion programs (each colored bar represents a different program; heights of bars = mixture
weights). The distributions at each level are constructed on the basis of the parent mix-
tures above. Tissue group and root level nodes maintain distributions over usage modifiers
(shaded circles above bars, darker circles = more probable), which are variables that alter
the manner in which each tissue uses an expression program. In this example, there are
two possible values for usage modifier variables (+ or -), corresponding to gene induction
or repression; more complex patterns such as temporal dynamics can be captured by us-
ing more values. Tissues are at the leaves of the hierarchy, and choose particular values
for usage modifier variables. The observed gene expression in each tissue is characterized
by a vector of discretized expression magnitudes (first row of small shaded squares below
each tissue) and pattern types (second row of squares with +/- designations below each
tissue). (B) Example of a gene expression program, which represents a set of genes that
are likely to behave coordinately in particular tissues that use the program. On the left is
a simple program containing five genes (colored bars = expression frequencies). A tissue
probabilistically chooses a set of genes from a program, and also a setting for its usage
modifier variable. Note that usage is consistent across a program for a particular tissue,
which facilitates biological interpretation.

4.1 Extending GeneProgram to model patterns of

expression change

4.1.1 A simplified model without tissue groups

Model overview

We first develop the methodology for expression program usage modifiers in a simpli-
fied version of GeneProgram++ that does not include tissue groups. This version of
the algorithm is useful for models in which we have a small number of tissue samples
and so tissue groups are not applicable. Further, it provides a simpler context for
initially understanding the inclusion of modifiers.

Figure 4-2 illustrates the model using standard graphical model notation with
plates; Table 4.1 provides a summary of the random variables. See Section 3.3.2 for
a description of the original GeneProgram probability model.

To describe the extensions to the simplified GeneProgram model, we will begin
at the level of observations. In the original model, a tissue t had associated with it
Nt units of expression denoted xti, where 1 ≤ i ≤ Nt. In the extended model, we
associate an observed pattern type with each unit of expression. The pattern type,
denoted by yti, can take one of V values. For instance, if we are modeling induction
and repression, V = 2 and yti ∈ {−1, 1}, representing the direction of expression
change for the gene.

Program usage modifier variables influence which pattern types are generated for
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genes in an expression program used by a specific tissue. We denote the usage modifier
variable for tissue t using expression program j by ujt, where ujt can take on one of
V values. Usage modifier variables influence how modifiers are generated through a
compatibility function ψ(·, ·), which simply specifies the probability of generating a
particular observed pattern type given some usage modifier value, i.e., ψ(yti, ujt) =
p(yti | ujt). As an example, if we are modeling induction and repression, we might
specify a symmetrical compatibility function that returns a large probability when
the usage modifier and pattern type variables take on the same value, and a small
probability otherwise, i.e., ψ(−1,−1) = ψ(1, 1) = 0.99 and ψ(−1, 1) = ψ(1,−1) =
0.01.

Usage modifier variables themselves are generated via multinomial distributions
parameterized by expression program level parameters Ω. In the simplified GenePro-
gram++ model, the Ω and θ parameters comprise a vector of mixture component
parameters associated with each expression program. Each Ωj is a V -dimensional
vector of parameters that specifies a multinomial distribution, i.e., p(ujt = v | Ωj) =
Ωjv. Finally, we place a Dirichlet prior on the Ω parameters. That is, Ωj ∼
Dirichlet(aΩ

1 , . . . , a
Ω
V ), where aΩ is a V -dimensional vector of hyperparameters.

xti

T
Nt

β

aα0α

zti

πt

aλ

8

yti

ujt θj λ

aΩ

aα1

α

Ωj

1

0

0

Figure 4-2: A simplified version of the GeneProgram++ model without tissue groups
is depicted using graphical model notation with plates. Circles represent variables, and
arrows denote dependencies among variables. Vectors are depicted with bold type, and
observed variables are shown inside shaded circles. Rectangles represent plates, or repeated
sub-structures in the model. See the text and Table 4.1 for details.
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Var. Dim. Description Cond. distribution or prior
xti 1 Expression event i in tissue t; Multinomial, given the assignment to

corresponds directly to observed expression program j.
data.

yti 1 Pattern type for expression Multinomial, given the assignment to
event i in tissue t. expression program j and selection

of the program usage by the tissue.
zti 1 Assignment variable of an Generated from mixing probabilities over

expression event to an expression expression programs for the tissue, i.e.,
program, i.e., zti = j indicates that p(zti = j | πt) = πtj .
expression event i in tissue t is
assigned to expression program j.

πt ∞ Mixing probabilities over expression DP, given its parent mixing probabilities
programs for tissue t. and concentration parameters, i.e.,

πt | α1,β
0 ∼ DP(α1,β

0).
β0 ∞ Root level mixing probabilities in DP, generated from the stick-breaking

the DP heterarchy. distribution given its concentration
parameter, i.e., β0 | α0 ∼ Stick(α0).

θj M Parameters for expression, Dirichlet distribution prior
program j, describing a multinomial (parameterized by λ).
distribution over meta-genes.

λ 1 Pseudo-count parameter for a Gamma distribution prior with a two-
symmetric Dirichlet distribution. dimensional hyperparameter vector aλ.

ujt 1 Usage modifier variable for Multinomial, given the expression
expression program j by program level shared parameters, i.e.,
tissue t. ujt | Ωj ∼ Multinomial(Ωj).

Ωj V Shared multinomial parameters for Dirichlet distribution prior
tissue usages of expression program j. (parameterized by aΩ).

α1 1 Concentration parameter for πt. Gamma distribution prior with two-
dimensional hyperparameter vector aα1 .

α0 1 Concentration parameter for β0. Gamma distribution prior with two-
dimensional hyperparameter vector aα0 .

Table 4.1: Summary of random variables used in the simplified GeneProgram++ model.
The columns are: variable name (vectors are in bold type), dimensions of the variable,
description, and the conditional or prior distribution on the variable.
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MCMC sampling for the simplified extended model

The MCMC sampling scheme for the simplified GeneProgram++ model requires only
a few changes to the method used for the original GeneProgram algorithm (see Sec-
tion 3.3.3). First, the expression program assignment variable zti posteriors now must
incorporate the information about pattern types. For assignment to a non-empty ex-
pression program j, the conditional distribution for zti is now given by:

p(zti = j | z−ti,β0,θ,Ω,u, x, y) ∝ (α1β
0
j + n−itj )F (xti | θj)ψ(yti, ujt)p(ujt | Ωj)

For assignment to a new expression program, the conditional distribution for zti is
now given by:

p(zti 6= ztl ∀ t, l 6= i | z−i,β0,θ,Ω,u, x, y) ∝

(α1β
0
∗)

∫
F (xti | ξ)H(ξ)dξ

(
V∑
v=1

Ω∗vψ(yti, v)

)

Here, β0
∗ represents the mixture weight for the new component and Ω∗ the respective

new parameter values. The new weight is sampled as described previously. The new
Ω∗ is simply sampled from its prior, i.e., Ω∗ ∼ Dirichlet(aΩ).

The usage modifier variables ujt must also be sampled. The posterior distribution
for these variables is given by:

p(ujt = v | z−i,Ω, y) ∝ Ωjv

Nt∏
i=1

ψ(yti, v)

Finally, the Ω parameters must be sampled. The posterior distribution for these
parameters is given by:

p(Ωj | u,aΩ) ∝

p(Ωj | aΩ)
T∏
t=1

p(ujt | Ωj) ∝

Dirichlet(Ωj | aΩ
1 , . . . , a

Ω
V )

V∏
v=1

Ωcjv
j ∝

Dirichlet(Ωj | aΩ
1 + cj1, . . . , a

Ω
V + cjV )

Here, cjv denotes the number of tissues using expression program j with pattern type
value v. The final line follows from conjugacy between the Dirichlet and multinomial
distributions.

119



4.1.2 The full GeneProgram++ model

In this section we describe the addition of expression program usage modifiers to
the full GeneProgram model that includes tissue groups. The difference between this
version of the extended model and the simplified one is the introduction of a hierarchal
prior for the expression program usage modifier variables. Figure 4-3 depicts the full
extended version using graphical model notation with plates and Table 4.2 summarizes
the random variables used in the model.

ε
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aα1aγγ
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α
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α
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Figure 4-3: The full GeneProgram++ model is depicted using graphical model notation
with plates. See the text for details. Circles represent variables, and arrows denote depen-
dencies among variables. Vectors are depicted with bold type, and observed variables are
shown inside shaded circles. Rectangles represent plates, or repeated sub-structures in the
model.

As in the simplified extended model, usage modifier variables are generated via
multinomial distributions parameterized by expression program level parameters.
However, in the full extended model, we now have a separate set of such param-
eters, Ωk

j , for each expression program j and tissue group k. For each expression
program j, these parameters share a common top-level Dirichlet prior parameterized
by Ω0

j and αΩ. That is, Ωk
j ∼ Dirichlet(αΩΩ0

j1, . . . , αΩΩ0
jV ). We assume that αΩ

has a Gamma prior with hyperparameter vector aαΩ . As in the simplified model,
Ω0
j ∼ Dirichlet(aΩ

1 , . . . , a
Ω
V ), where aΩ is a V -dimensional vector of hyperparameters.

MCMC sampling for the full extended model is essentially the same as for the
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Var. Dim. Description Cond. distribution or prior
xti 1 Expression event i in tissue t; Multinomial, given the assignment to

corresponds directly to observed expression program j.
data.

yti 1 Pattern type for expression Multinomial, given the assignment to
event i in tissue t. expression program j and selection

of the program usage by the tissue.
zti 1 Assignment variable of an Generated from mixing probabilities over

expression event to an expression expression programs for the tissue, i.e.,
program, i.e., zti = j indicates that p(zti = j | πt) = πtj .
expression event i in tissue t is
assigned to expression program j.

πt ∞ Mixing probabilities over expression DP, given its parent mixing probabilities
programs for tissue t. and concentration parameters, i.e.,

πt | α1,β
0 ∼ DP(α1,β

0).
βk ∞ Mixing probabilities over expression DP, given its parent mixing probabilities

programs at the level of and concentration parameters, i.e.,
tissue group k; middle βk | α0,β

0 ∼ DP(α0,β
0).

level in the DP hierarchy.
β0 ∞ Root level mixing probabilities in DP, generated from the stick-breaking

the DP heterarchy. distribution given its concentration
parameter, i.e., β0 | α0 ∼ Stick(α0).

θj M Parameters for expression, Dirichlet distribution prior
program j, describing a multinomial (parameterized by λ).
distribution over genes.

λ 1 Pseudo-count parameter for a Gamma distribution prior with a two-
symmetric Dirichlet distribution. dimensional hyperparameter vector aλ.

ujt 1 Usage modifier variable for Multinomial, given the tissue
expression program j by group k level shared parameters, i.e.,
tissue t. ujt | Ωk

j , qt = k ∼ Multinomial(Ωk
j ).

Ωk
j V Tissue group k level parameters for Dirichlet distribution prior, i.e.,

usage modifiers of expression program j. Ωk
j ∼ Dirichlet(αΩΩ0

j1, . . . , αΩΩ0
jV ).

Ω0
j V Root level parameters for Dirichlet distribution prior

usage modifiers of expression program j. (parameterized by aΩ).
qt 1 Assignment variable of tissues to Generated from mixing probabilities over

groups, i.e., qt = k indicates that tissue groups, i.e, p(qt = k | ε) = εk.
tissue t belongs to tissue group k.

ε ∞ Mixing probabilities over the tissue DP, generated from the stick-breaking
groups. prior given its concentration parameter,

i.e, ε |γ ∼ Stick(γ).
α1 1 Concentration parameter for πt. Gamma distribution prior with two-

dimensional hyperparameter vector aα1 .
α0 1 Concentration parameter for β0 Gamma distribution prior with two-

and βk. dimensional hyperparameter vector aα0 .
γ 1 Concentration parameter for ε. Gamma distribution prior with two-

dimensional hyperparameter vector aγ .
αΩ 1 Concentration parameter for Ωk

j . Gamma distribution prior with two-
dimensional hyperparameter vector aαΩ .

Table 4.2: Summary of random variables used in the full GeneProgram++ model. The
columns are: variable name (vectors are in bold type), dimensions of the variable, descrip-
tion, and the conditional or prior distribution on the variable.
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simplified version, except for the sampling procedure for tissue assignments to groups,
and for Ω and αΩ.

The posterior for assignment variables of tissues to groups, qt, is now given by:

p(qt = k | zt, q−t, y, α0, γ,β
k,Ω0,Ωk) ∝

p(qt = k | q−t, γ)
Nt∏
i=1

∫
p(zti | πt)p(πt | βk, α0)dπt

(
J∑
j=1

Nt∑
i=1

V∑
v=1

Ωk
jvψ(yti, v)

)

Here, J is the number of non-empty expression programs. If a tissue is assigned to a
new group, we must also sample new parameters, i.e., Ω∗j ∼ Dirichlet(αΩΩ0

j1, . . . , αΩΩ0
jV )

for j = 1, ..., J . Similarly, when a gene expression unit is assigned to a new expression
program, we must sample new parameters Ωk

∗ for each tissue group k from the prior.

We next need to sample from the posterior distributions for Ωk
j . Because the prior

for Ωk
j is Dirichlet given Ω0

j and the usage modifier variable posteriors are multinomial
conditioned on Ωk

j , the sampling posterior will simply be a Dirichlet distribution:

p(Ωk
j | u,Ωk

j , αΩ) ∝ Dirichlet(Ωk
j | αΩΩ0

j1 + cjk1 , . . . , αΩΩ0
jV + cjkV )

Here, cjkv denotes the number of tissues in group k using expression program j with
pattern type v.

Sampling from the posterior for Ω0
j uses an auxiliary variable sampling scheme

essentially the same as described in Section 3.2.2 for sampling Hierarchical Dirichlet
Process mixture weights. As it turns out, the same sampling method can be used for
a finite Dirichlet distribution with only a slight modification. As before, we introduce
auxiliary variables m. The conditional distributions for sampling m and Ω0

j are then:

p(mkjv = m | u,m−kjv,Ω0
jv) ∝ s(nkjv,m)(αΩΩ0

jv)
m

p(Ω0
j | m) ∝ Dirichlet(

∑
k

mkj1, . . . ,
∑
k

mkjV )

Here, nkjv is the number of tissues in group k using expression program j with value
v.

The parameter αΩ is also sampled using an auxiliary variable sampling scheme
essentially the same as described in section 3.2.2 for sampling Hierarchical Dirichlet
Process concentration parameters. We introduce two auxiliary variables w and b.
The update equations are then given by:

p(wkj | αΩ) ∝ wαΩ
kj (1− wkj)Tk−1

p(bkj | αΩ) ∝
(
Tk
αΩ

)bkj
p(αΩ | w,b,aαΩ) ∝ Gamma(aαΩ

1 +
K∑
k=1

J∑
j=1

(Mkj − bkj), aαΩ
2 −

K∑
k=1

J∑
j=1

logwkj)
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Here, Tk is the number of tissues in group k, aαΩ
1 and aαΩ

2 are the hyperparameters
for the Gamma prior on αΩ and Mkj =

∑V
v=1 mkjv.

4.2 Additional GeneProgram++ algorithmic im-

provements

4.2.1 Recurrent expression programs

The GeneProgram++ algorithm addresses two limitations in the original recurrent
expression programs (REPs) method presented in Section 3.3.4.

The first limitation of the original method related to the calculation of REP usage
scores for tissues. REP usage for a tissue in the original method was equal to the
number of expression events in the tissue allocated to the expression program divided
by the total number of expression events in the tissue. Because tissues can have
different numbers of expression events, the original usage score made comparisons
of scores difficult across tissues. Further, the original usage score did not take into
account expression probabilities for genes in a program. GeneProgram++ improves
upon the original usage score by weighting by the probabilities of genes in the expres-
sion program. For tissue t using expression program j in sample s, GeneProgram++
calculates the tissue usage score v

(s)
tj as:

v
(s)
tj =

∑
i

θω(xti)jI(z
(s)
ti = j)

Here, ω(·) is the function mapping expression events to genes, θj is the probability

vector for genes in program j, I(·) is the indicator function, and z
(s)
ti is a variable

denoting the assignment of expression event i to an expression program in iteration
s. Note that this score will be higher if a tissue uses more genes from the program,
regardless of the total number of expression events in the tissue. Further, the score
will be higher if a tissue uses genes with large θj values (i.e., higher probabilities of
being expressed). Thus, the score better reflects how “typical” a tissue’s usage of the
REP is.

The empirical mean expression level êgj for gene g in REP j was also modified to
reflect the improved usage scores:

êgj =
S∑
s=1

∑
t,i I(z

(s)
ti = j)θgj

S
∑T

t=1 v
(s)
tj

s.t. ω(xti) = g

The second limitation of the original method related to how REPs were tracked.
In the original method, REPs were tracked using a “signature” based on the tissues
that used them significantly. A limitation of this method was that tissues using the
expression program slightly below the significance threshold would not be included
in the REP. This could lead to the creation of many REPs with essentially the same
gene probabilities, but different “signatures” of significant tissues. Although the
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REPs could be merged in subsequent post-processing steps, having to track a large
number of REPs substantially reduced the algorithm’s performance and became in-
feasible for very large data sets. To deal with these issues, GeneProgram++ no
longer tracks REPs based on significant tissues. Instead, the new algorithm saves all
expression programs at each iteration and then sequentially merges similar programs
based on how similar the gene expression probabilities are for programs. Similarity
is calculated using the Hellinger distance, a general distance metric for probability
measures [22]. To be precise, the Hellinger distance between expression programs j1

and j2 is calculated as:

D(θj1||θj2) =
G∑
g=1

√
θgj1θgj2

Here, G is the total number of genes. Expression programs are merged if the distance
between them is less than some threshold c2. A tissue t is reported as associated with
a REP j if its mean usage score vtj is greater than some threshold c1. We used values
of c1 = 0.25 and c2 = 0.50 for the applications in this chapter.

In the applications in this chapter, we used 1,000 samples to generate REPs as fol-
lows. After burn-in of the MCMC sampler for 100,000 iterations, 10,000 samples were
generated, with 1,000 samples saved and 100 iterations between each saved sample
discarded. Spaced samples from the MCMC sampler better approximate independent
samples from the posterior, and can thus result in more accurate results [72]. Note
that the improved method for merging REPs as well as the use of spaced samples
allowed us to use fewer overall samples than we did for the original GeneProgram
applications.

4.2.2 Generality score

GeneProgram++ improves on the generality score calculations of the original al-
gorithm, discussed in Section 3.5.7, in two ways. First, GeneProgram++ employs
the improved tissue usage scores described in Section 4.2.1 to compute the generality
scores. Second, GeneProgram++ computes a generality score for each expression pro-
gram in each MCMC sample, and then averages scores across all samples. The original
algorithm instead computed generality scores based on consensus tissue groups deter-
mined after all samples had been summarized. The limitation of the original method
is that generality scores did not reflect different assignments of tissues to groups in
samples, and thus did not take full advantage of the availability of the approximate
posterior distribution.

GeneProgram++ computes the generality score as follows. First, the algorithm
computes the usage h

(s)
kj for tissue group k of REP j in sample s as:

h
(s)
kj =

T∑
t=1

v
(s)
tj I(q

(s)
t = k)

Here, q
(s)
t is the assignment of tissue t to a tissue group in sample s, and v

(s)
tj is the
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tissue usage score described in Section 4.2.1. The h
(s)
kj values are then normalized

across all tissue groups in the sample, i.e.,:

ĥ
(s)
kj =

hskj∑K
l=1 h

(s)
lj

Here, K is the total number of non-empty tissue groups in the sample. The generality
score for expression program j in sample s is then computed as:

GS
(s)
j = −

K∑
k=1

ĥ
(s)
kj log ĥ

(s)
kj (4.1)

The final generality score for a REP is then simply the mean of generality scores
computed in equation 4.1, averaged across all samples in which the relevant expression
programs occur.

4.2.3 Validation of improvements using real expression data

In Section 3.5.4, we showed that GeneProgram outperformed two popular biclus-
tering methods, Samba [209, 194] and a non-negative matrix factorization (NMF)
implementation [36], in the discovery of biologically relevant gene sets from real ex-
pression data. Here, we demonstrate that GeneProgram++ outperforms these same
biclustering methods to an even greater extent.

As in Section 3.5.4, in this section we also used the Novartis Gene Atlas v2 data
set [205] for our evaluation; preprocessing of this data set was performed as described
previously. We also used a second data set, from Shyamsundar et al., consisting of 115
human tissue samples obtained from surgeries or autopsies, with expression measured
on custom cDNA microarrays [198]. For this data set, the reference channel on the
microarrays consisted of mRNA pooled from 11 established human cell lines. We
considered a gene expressed if its ratio was greater than 2.0. In order to combine the
data from the Novartis Gene Atlas v2 and Shyamsundar et al., we mapped genes to
common identifiers using the IDConverter software [6], and retained only the 7,404
genes present in both data sets.

As in Section 3.5.4, in this section we also used both Gene Ontology (GO) cat-
egories [11] and manually derived, broadly physiologically based tissue categories to
assess the algorithms’ performance. For a description of the tissue categories, see the
supplemental online material for [76].

However, GO categories and the manually derived tissue categories represent only
limited biological knowledge. So, we were also interested in assessing the consistency
of gene sets discovered by each algorithm across the two data sets. Because the two
data sets used different microarray platforms and sources for tissues, similarities in
discovered gene sets between data sets were likely to be biologically relevant. To
analyze gene set consistency for each algorithm, we used the gene sets discovered
from one data set to compute the significance of the overlap with sets produced
using the second data set. We then inverted the analysis and averaged the results
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data algorithm gene dimension tissue dimension
source (GO cat. enrich.) (man. derived cat. enrich.)

N GeneProgram++ 93% 76%
N NMF 35% 29%
N Samba 53% 9%
S GeneProgram++ 66% 53%
S NMF 28% 19%
S Samba 51% 28%

Table 4.3: GeneProgram++ outperformed two popular biclustering algorithms, a non-
negative matrix factorization (NMF) implementation and Samba, in recovering biologically
interpretable gene sets from two compendia of mammalian gene expression experiments.
Further, GeneProgram++ substantially improved on the results obtained using GenePro-
gram for this same analysis (see Section 3.5.4). Biological interpretability of gene sets was
assessed using Gene Ontology (GO) categories in the gene dimension, and manually con-
structed categories in the tissue dimension. Each cell in the table shows the percentage of
sets significantly enriched for at least one category in a given dimension (p-value < 0.05,
corrected for multiple hypothesis tests). The data compendia are the Novartis Tissue Atlas
v2 (N) [205] and the Shyamsundar et al. human tissue data (S) [198].

to produce correspondence plots. See Section 3.5.4 for details on the generation of
correspondence plots.

GeneProgram++ clearly outperformed the other algorithms in both the tissue
and gene dimensions on the two data sets considered separately (Table 4.3), and
substantially improved on the results obtained using GeneProgram for this same
analysis (see Section 3.5.4). GeneProgram++ also clearly outperformed NMF and
Samba in terms of gene set consistency between the data sets (Figure 4-4).

4.3 Application to human infection time-series data

We applied GeneProgram++ to a compendium of sixty-two short time-series gene
expression data sets exploring the responses of human cells to various infectious agents
or immune-modulating molecules.

4.3.1 Data sources

Expression data

The expression data used was compiled by Jenner and Young [107] from six separate
studies. A total of 5042 genes were present in the combined data sets. All data ana-
lyzed were converted to log ratios for each time-point versus the first (pre-exposure)
time-point in the series. Below we briefly describe the data sets; see Table 4.4 for a
summary.

Nau et al. exposed primary human macrophages collected from different donors to
a variety of live bacteria and bacterial cell components [149]. The macrophages were
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Figure 4-4: GeneProgram++ outperformed two popular biclustering methods, a non-
negative matrix factorization (NMF) implementation and Samba, in terms of gene set con-
sistency between two large compendia of mammalian tissue gene expression data. Because
the two data compendia used different microarray platforms and sources for tissues, simi-
larities in discovered gene sets between compendia were likely to be biologically relevant.
For each algorithm, we used gene sets discovered from one data compendium to compute
the significance of the overlap (p-values) with sets produced using the second compendium.
We then inverted the analysis and averaged the results to produce the correspondence plots
shown. The plots depict log p-values on the horizontal axis and the fraction of gene sets with
p-values below a given value on the vertical axis (see Section 3.5.4 for details). The larger
fraction of gene sets at most p-values suggests that GeneProgram++ generally produces
the most consistent results between the data compendia.
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exposed to an infectious agent or component for twenty-four hours, and four to five
time-points were collected. Infectious agents included representative species from the
major classes of human bacterial pathogens: Gram-positive organisms (Staphylococ-
cus aureus and Listeria monocytogenes), Gram-negative organisms (Escherichia coli,
enterohemorrhagic E. coli O157:H7 [EHEC], Salmonella typhi and Salmonella ty-
phimurium), and Mycobacteria (Mycobacterium tuberculosis and Mycobacterium bo-
vis). The macrophages were also exposed to bacterial cell components, including those
specific to Gram-negative organisms (lipopolysaccharide [LPS]) or Gram-positive or-
ganisms (lipoteichoic acid [LTA] and protein A), and components common to all
three classes of bacteria (heat shock proteins [hsp65 and hsp70], muramyl dipeptide
[MDP], formyl-methionine-leucine-phenylalanine [f-MLP] and mannosylated proteins
[D-(+)-mannose]).

In a follow-up study, Nau et al. exposed human macrophages to five differ-
ent immune-modulating molecules [150]. The molecules used were: interferon-alpha
(IFN-α), interferon-beta (IFN-β), interferon-gamma (IFN-γ), interleukin 10 (IL-10)
and interleukin 12 (IL-12). The macrophages were exposed for twenty-four hours and
five time points were collected.

Huang et al. exposed primary human dendritic cells collected from different donors
to several live infectious agents and relevant components of the agents [91]. Dendritic
cells, which reside in tissues in an immature state, are involved in initiating both
innate and adaptive immune responses. They recognize and phagocytose antigens,
which then leads to their maturation, expression of co-stimulatory molecules, and
subsequent interactions with naive T-cells. Dendritic cells were exposed to represen-
tative organisms and relevant components: bacteria (E. coli and LPS), fungi (Candida
albicans and mannan, a fungal cell-wall component) and viruses (Influenza A and syn-
thetic dsRNA). Cells were exposed for twenty-four or thirty-six hours, and seven to
eight time-points were collected.

Boldrick et al. exposed primary human peripheral blood mononuclear cells (PBMCs)
from different donors and cell-line derived macrophages to several heat-killed and live
bacterial pathogens, a bacterial component, avirulent bacterial strains, and immuno-
stimulatory chemicals [33]. Cells were exposed to heat-killed E. coli, S. aureus and
Bordatella pertussis bacteria for six, twelve, or twenty-four hours and five to seven
time-points were collected. Additional experiments were done using live virulent B.
pertussis, avirulent strains, and LPS from the virulent organism. Additionally, cells
were exposed to ionomycin and phorbol 12-myristate 13-acetate (PMA), chemicals
that induce cellular responses mimicking antigen exposure. The authors noted that
heat-killed strains were used to reduce confounding effects from differential bacterial
growth rates and cytotoxic effects on host cells. B. pertussis was chosen for live in-
fections, because this organism is relatively slow-growing and is not known to cause
significant cytotoxicity. The authors additionally noted that the use of peripheral
blood mononuclear cells, which consist of diverse cell populations involved in both
innate and adaptive immunity, had advantages because interactions among different
immune cells might be observed.

Pathan et al. exposed whole human blood cells from two donors to the live
pathogenic bacteria Neisseria meningitidis [160]. Cells were exposed for twenty-four
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agents host cell-type(s) no.
time-
series

no. time-
points

ref.

live pathogenic bacteria and bacte-
rial cell components; representative
Gram-positive, Gram-negative and
Mycobacteria organisms

primary macrophages 23 4–5 (24 hrs) [149]

interferons and interleukins primary macrophages 5 5 (24 hrs) [150]
representative pathogenic bacteria,
fungi, and viruses and relevant
components

primary dendritic cells 9 7–8 (24–36 hrs) [91]

live and heat-killed pathogenic bac-
teria, avirulent strains and bacte-
rial components

primary peripheral
blood mononuclear
cells and cell-culture
macrophages

15 5–7 (6–24 hrs) [33]

live pathogenic bacteria whole blood cells 4 5 (24 hrs) [160]
live pathogenic bacteria and mu-
tant strains

cell-culture gastic ep-
ithelial cells

6 5 (24 hrs) [80]

Table 4.4: Summary of infection gene expression time-series data sets analyzed. All host
cells in the experiments were human primary or cell-culture derived.

hours and five time-points were collected.

Guillemin et al. exposed cell-culture derived human gastric epithelial cells to the
live pathogen Helicobacter pylori, a leading cause of peptic ulcers [80]. Cells were
exposed for twenty-four hours and five time-points were collected. Guillemin et al.
also exposed cells to four different H. pylori mutants deficient in various genes of
the cag pathogenicity island, a contiguous collection of genes that confer virulence
properties. Unlike the host cells used in the other data sets described above, gastric
epithelial cells are not involved in principle immune system functions.

Genome-wide binding data

Members of the NF-κB family of transcription factors are key controllers of mam-
malian immune and inflammatory responses [41]. The NF-κB family members form
homodimers or heterodimers that bind to specific 9-10 base pair sites in promoters
through a conserved DNA-binding/dimerization domain termed the Rel homology
domain (RHD). Some NF-κB family members also contain a transactivation domain
(TAD), which interacts directly with co-activators or components of the general tran-
scription machinery; apparently both the TAD and RHD domains are necessary for
transcriptional activation. The various homodimers and heterodimers formed by the
NF-κB proteins are believed to have at least some degree of target specificity. As
mentioned, some NF-κB proteins do not contain TADs, which may allow relevant
dimers to act as repressors. Table 4.5 provides a summary of NF-κB proteins and
their proposed dimerization partners.
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protein TAD? comments partners
p50 no amino terminal half of p105; homodimer

is thought to act as a repressor, but may
also act as an activator when it interacts
with BCL-3

p50, RELA, RELB, c-
REL

p52 no amino terminal half of p100; homodimer
is thought to act as a repressor

p52, RELB

RELA (p65) yes generally thought to be an activator, but
some evidence that it can function as a
repressor

p50, RELA, c-REL

c-REL yes p50, RELA, c-REL
RELB yes no homodimer p50, p52

Table 4.5: Overview of the NF-κB proteins profiled in genome-wide binding assays in
human cell-culture deived macrophages by Schreiber et al. [185]. Information from the
table is from [185, 41]. The “TAD?” column indicates whether the protein contains a
transactivation domain (TAD). The “partners” column indicates proposed dimerization
partners.

As a validation data set, we used static genome-wide data profiling binding of five
transcription factors in the NF-κB family in untreated or lipopolysaccharide (LPS)
stimulated human cell-culture derived macrophages [185]. Binding data was obtained
after one hour of LPS stimulation and 9492 genes were arrayed for the ChIP-chip
analysis. We used the same criteria for determining binding events as in the original
study [185] (a p-value threshold of 0.002).

4.3.2 Temporal pattern and expression level discretization

Behavior for each gene over each time-series experiment was mapped to one of six
simple temporal patterns. The six patterns characterize three temporal phases (early,
middle, or late) with two possible directions (induction or repression) for the first sig-
nificant expression change for each gene in each time-series experiment. See Figure 4-5
for a summary of the temporal patterns used, and Figure 4-6 for example genes with
expression profiles corresponding to the patterns.

To be precise, time-points for all experiments were divided into three general
phases: early (less than two hours), middle (greater than two hours and not more
than twelve hours) and late (greater than twelve hours). For each gene in each time-
series experiment, the gene was assigned to the pattern corresponding to the earliest
phase in which the gene’s expression value exceeded a two-fold increase (decrease)
in at least one experiment in the respective time interval. Further, to be assigned
to a pattern, a gene’s expression across the time-series was required to be consistent
in direction (either a two-fold increase or decrease in expression but not both). If a
gene’s expression profile did not meet all these criteria, it was not assigned to any
pattern. The absolute expression value for a gene’s earliest induction (repression) in
each time-series was then used to represent the magnitude of differential expression.
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These values were discretized using the method described in Section 3.3.5, with two
levels chosen.

A limited set of possible temporal patterns was intentionally chosen for two rea-
sons. First, in the original studies, a primary feature of interest for all the experiments
analyzed was the time of earliest induction or repression of each gene [33, 91, 149, 150].
Thus, a small set of relevant temporal patterns aids in the biological interpretability
of our results. Second, the time-series data sets analyzed had different durations,
sampling rates and numbers of samples. By considering only simple temporal pat-
terns that extract features present in all time-series, we could produce meaningful
results spanning all the data sets.
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Figure 4-5: Schematic of six pre-defined temporal patterns used in analyzing the infection
time-series compendium. Time-points for all experiments were divided into three general
phases: early (less than two hours), middle (greater than two hours and not more than
twelve hours) and late (greater than twelve hours). For each gene in each time-series
experiment, the gene was assigned to the pattern corresponding to the earliest phase in
which the gene’s expression value exceeded a two-fold increase (decrease) in at least one
experiment in the respective time interval.

4.3.3 GeneProgram++ discovered 5 consensus tissue groups
and 104 expression programs in the infection time-
series data

Figures 4-7 (programs 1–25), 4-8 (programs 26–50), 4-9 (programs 51–75) and 4-10
(programs 76–104) summarize the discovered tissue groups and expression programs.
See the supplemental online material for [76] for the complete data.
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Figure 4-6: Examples of genes with the six temporal expression patterns used for data
analysis. The top plots depict, from left to right, early (≤ 2 hours), middle (> 2 and
≤ 12 hours) and late (> 12 hours) induction patterns; the bottom plots depict analogous
repression patterns. For all plots, the vertical axis represents log2 transformed expression
fold-changes and the horizontal axis represents time in hours. See the text for complete
details.
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The tissue groups essentially corresponded to the different host-cell types used for
the infection experiments, although there was some intermingling of the dendritic and
peripheral blood mononuclear cell experiments and those using other host-cell types.
Expression programs were used by 2-27 experiments (median = 7) and contained
101-410 genes (median = 201).

All six temporal patterns were used, although late induction and late repression
were used least frequently, likely in part because the corresponding time intervals
were the most sparsely sampled in the compendium analyzed. In many cases, usage
patterns for a single program were uniformly inductive or repressive, although pro-
grams were sometimes used with differently phased patterns by different experiments.
However, in other interesting cases, usage patterns were not uniformly inductive or
repressive. Specific examples of expression programs with different temporal pattern
usage are discussed in Section 4.3.5.

4.3.4 Validation of the biological relevance of the discovered
expression programs

Expression programs overlapped extensively with key human signaling
pathways and biological processes

To evaluate the biological relevance of expression programs, we used two external
sources of information about gene function: GO biological process categories [11] and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [109]. Computation
of enrichment scores, significance testing and correction for multiple hypotheses were
done as described in Section 3.5.3.

A large number of expression programs were significantly enriched for GO cate-
gories (50%) or KEGG pathways (59%). Specific examples of expression programs
enriched for genes involved in key pathways and biological processes are discussed in
Section 4.3.5; below, we describe general trends for the expression programs.

As expected, many significant GO categories and KEGG pathways were specif-
ically involved with the response to infection. Examples include inflammatory re-
sponse (GO: 0006954), response to virus (GO: 0009615), chemotaxis (GO: 0006935),
positive regulation of T-cell proliferation (GO: 0042102), endogenous antigen pro-
cessing via MHC class II (GO: 0019886), lymph node development (GO: 0048535),
cytokine-cytokine receptor interaction (KEGG: hsa04060), natural killer cell medi-
ated cytotoxicity (KEGG: hsa04650), leukocyte transendothelial migration (KEGG:
hsa04670) and complement and coagulation cascades (KEGG: hsa04610).

There were also a number of significantly enriched biological processes or pathways
not directly labeled as being infection-related, but that are involved with significant
changes in cellular physiology consistent with infection. Examples include apopto-
sis (GO: 0006915), nucleotide-excision repair (GO: 0006289), nuclear mRNA splicing
(GO: 0000398), glycolysis (GO: 0006096), glycogen metabolism (GO: 0005977), anti-
apoptosis (GO: 0006916), cell cycle (GO: 00070490), positive regulation of cell pro-
liferation (GO: 0008284), tricarboxylic acid cycle (GO: 000609), regulation of adeny-
late cyclase activity (GO: 0045761), chloride transport (GO: 0006821), focal adhe-
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A m0 control1
 m0 control2
 m0 control3 E- M-
 m0 control4
 m0 Latex
 m0 E. coli
 m0 EHEC E- E-
 m0 S. typhi
 m0 S. typhimirium
 m0 S. aureus E- E-
 m0 L. monocytogenes E- M-
 m0 M. tuberculosis
 m0 M. bovis BCG
 m0 LPS E
 m0 LPS S
 m0 LTA
 m0 MDP
 m0 TB hsp70 E- E-
 m0 BCG hsp65 E-
 m0 MPA
 m0 f-MLP
 m0 Protein A
 m0 Mannose
 m0 IFN-alpha
 m0 IFN-beta
 m0 IFN-gamma M+
 m0 IL-10
 m0 IL-12
 DC control1
 DC control2
 DC control3 E- E-
B m0 (U937) control1 E-
 m0 (U937) B. pertussis 338 E- E+
 m0 (U937) B. pertussis 537 (avirulent) E- E- M- E- E+
 m0 (U937) B. pertussis A2-6 (AC-) E-
 m0 (U937) B. pertussis Tox6 (PT-) E- E+ E+ E+
 PBMC control1 E+ M- M+ M- M- E+ E- E+
 PBMC B. pertussis LPS E- E+ M+ E- E- M- E+ E+ E+ E-
 PBMC B. pertussis 338 E+ E+
 PBMC B. pertussis Minnesota1 E+ M-
 PBMC E. coli E+ E-
 PBMC S. aureus (1) E- M- E- E+ M- M-
 PBMC S. aureus (2) E+ M- E+ E- E- M- M- E- E-
 PBMC Ionomycin+PMA E+ E- M- E-
C DC E. coli 
 DC LPS 
 DC Influenza 
 DC C. albicans 
 DC Mannan 
 DC PolyIC 
D PBMC B. pertussis 338 Killed E+ E+ E-
 PBMC B. pertussis 338 Live E+ E- M+ M-
 WB control NP M+ M-
 WB control SW E+ M- M-
 WB N. meningitidis NP E+ M- M-
 WB N. meningitidis SW E+ E- M-
E Epithelial cell control E- M- E- E- M+ E+ M-
 Epithelial cell H. pylori G27 E- E- E- M- E- E+ M+ M+
 Epithelial cell H. pylori cagN- M- M- E- M- E- E+ E- M+
 Epithelial cell H. pylori cagA- M- E- E- M- E- E+ M+ M+
 Epithelial cell H. pylori cagE- E- E- E- M- E- E+ M+ M+
 Epithelial cell H. pylori PAI- M- M- E- E- M+ E+ M+ M+

0.001 0.005 0.012 0.011
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Figure 4-7: Summary of expression programs (EPs) 1–25 discovered by GeneProgram++
in the infection data (see Figures 4-8, 4-9 and 4-10 for the remaining EPs). Letters A–E
label the five tissue groups discovered by the algorithm. Each entry in the matrix represents
the usage of an expression program (darker shading = higher usage), and matrix entries are
colored and labeled with temporal patterns. The patterns are early induction (E+, red),
middle induction (M+, yellow), late induction (L+, green), early repression (E-, cyan),
middle repression (M-, blue) and late repression (L-, light purple). Generality scores are
shown at the bottom of the figure; programs are sorted from lowest to highest scores (left
to right).

sion (KEGG: hsa04510), oxidative phosphorylation (KEGG: hsa00190), proteasome
(KEGG: hsa03050), androgen and estrogen metabolism (KEGG: hsa00150), regula-
tion of actin cytoskeleton (KEGG: hsa04810), gap junction (KEGG: hsa04540), and
fatty acid metabolism (KEGG: hsa00071).

Interestingly, a substantial number of the significantly enriched GO categories
or KEGG pathways corresponded to signaling cascades. Examples include MAP-
KKK (GO: 0000165 and KEGG: hsa04010), JAK-STAT (GO: 0007259 and KEGG:
hsa04630), Toll-like receptor, (KEGG: hsa04620), B-cell receptor (KEGG: hsa04662),
T-cell receptor (KEGG: hsa04660), insulin (KEGG: hsa04910), VEGF (KEGG: hsa04370),
calcium (KEGG: hsa04020), phosphatidylinositol (KEGG: hsa04070), I-κB kinase/NF-
κB (GO: 0043123), and transmembrane receptor protein tyrosine kinase (GO: 0007169)
signaling pathways.

There were also some surprising significantly enriched signaling pathways or bio-
logical processes. These are discussed further in Section 4.3.5.

A surprising number of expression programs contained many genes bound
by NF-κB transcription factor family members

Because NF-κB transcription factors are key controllers of mammalian immune and
inflammatory responses (see Section 4.3.1), we expected that some genes differentially
expressed in the infection time-series compendium would also be bound by NF-κB
transcription factors in the ChIP-chip experiments. Thus, to further evaluate the
biological relevance of discovered expression programs, we used genome-wide data
profiling binding of NF-κB family transcription factors in human cell-culture derived
macrophages [185]. Computation of enrichment scores, significance testing and cor-
rection for multiple hypotheses were done as described in Section 3.5.3.

Fifteen of the expression programs discovered by GeneProgram++ were signifi-
cantly enriched for sets of genes bound by at least one NF-κB family member. This
overlap with the binding data was quite large, considering that only 348 genes were
bound by NF-κB family members in the ChIP-chip experiments [185].

Overall, the fifteen significantly enriched programs tended to be those used by a
diverse array of host-cell types exposed to a range of pathogens and their components.
This suggests that these expression programs may represent common processes that
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26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
A m0 control1 M+ M-
 m0 control2 E+ E- E+ E-
 m0 control3 E+ E- E+
 m0 control4 M- E+ M- E+ E-
 m0 Latex E- M+ M- E-
 m0 E. coli M- E+
 m0 EHEC E+ E- M- E+ E-
 m0 S. typhi E+
 m0 S. typhimirium
 m0 S. aureus E- E+ E- M- E+ E-
 m0 L. monocytogenes M- M+ E- M- E+ E-
 m0 M. tuberculosis M- E+ E- E+ E-
 m0 M. bovis BCG M-
 m0 LPS E E- M- E-
 m0 LPS S E- M- M- E+ M-
 m0 LTA M- M+ E+
 m0 MDP E- M- M+
 m0 TB hsp70 E+ E- E+
 m0 BCG hsp65 E+ E- E+ E-
 m0 MPA E- E+
 m0 f-MLP E- E- E+
 m0 Protein A E- M+ E-
 m0 Mannose E- E- M+ M-
 m0 IFN-alpha M- E+ E+ M+
 m0 IFN-beta E+ E+ M+
 m0 IFN-gamma M- E+ E+
 m0 IL-10 E- E+ M+
 m0 IL-12 M+ M+ M+
 DC control1
 DC control2
 DC control3 E-
B m0 (U937) control1 E- E-
 m0 (U937) B. pertussis 338 E+
 m0 (U937) B. pertussis 537 (avirulent) E- E- M-
 m0 (U937) B. pertussis A2-6 (AC-)
 m0 (U937) B. pertussis Tox6 (PT-) E+ M- E+
 PBMC control1 E- E- M+ M- E+
 PBMC B. pertussis LPS M- E- E+ M+ E- E-
 PBMC B. pertussis 338 E-
 PBMC B. pertussis Minnesota1 E-
 PBMC E. coli E+ E- E+ E-
 PBMC S. aureus (1) E- E- E- E+
 PBMC S. aureus (2) E- E- M+ M+ E+
 PBMC Ionomycin+PMA E- E+
C DC E. coli 
 DC LPS 
 DC Influenza 
 DC C. albicans 
 DC Mannan 
 DC PolyIC E-
D PBMC B. pertussis 338 Killed M+ M+ M- M-
 PBMC B. pertussis 338 Live M+ E+ M- M-
 WB control NP M+ M+ M-
 WB control SW M+ M+ M-
 WB N. meningitidis NP M+ M- M-
 WB N. meningitidis SW M+ M+ M- M-
E Epithelial cell control E+ M-
 Epithelial cell H. pylori G27 E- M- E+
 Epithelial cell H. pylori cagN- E- E- E+
 Epithelial cell H. pylori cagA- E- M- E+
 Epithelial cell H. pylori cagE- M- E- E+
 Epithelial cell H. pylori PAI- E- E- M+

0.013 0.022 0.057 0.113
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Figure 4-8: Summary of expression programs (EPs) 26–50 discovered by GeneProgram++
in the infection data. See Figure 4-7 containing EPs 1–25 for an explanation of the matrix;
see also Figures 4-9 and 4-10 for the remaining EPs.

are strongly induced or repressed during infection via NF-κB family member regula-
tory activity. Examples of such programs are discussed in Section 4.3.5.

4.3.5 The generality score naturally categorized programs
into a spectrum of responses to infection

We used the generality score to organize the discovered expression programs. Below
we discuss representative examples of programs with low, intermediate and high gen-
erality scores. We focus the discussion on biological processes and pathways in which
the programs are involved.

Programs with low generality scores were used by experiments spanning
a limited number of host-cell and infection types

Experiments involving exposure of gastric epithelial cells to H. pylori used several low
generality expression programs (EPs). This is biologically plausible, because gastric
epithelial cells are not involved in principle immune system functions, unlike all other
host-cells profiled in the data set [80]. As an example of a program used exclusively
by H. pylori infected epithelial cells, EP 22 (generality = 0.011, 5 experiments) was
enriched for genes involved in regulation of the actin cytoskeleton (KEGG: hsa04810),
and was used with a middle induction modifier by all associated experiments. The
induction of this pathway is consistent with extensive host-cell shape changes known
to occur in H. pylori infection; delayed induction likely reflects the time necessary
for bacterial attachment and secretion of proteins that induce host-cell cytoskeletal
rearrangements [80].

Peripheral blood mononuclear cell (PBMC) and whole blood experiments also
used several low generality programs. This is biologically reasonable, because PBMCs
and whole blood represent mixtures of innate and adaptive immunity-mediating cell
types, and thus contain cell types not profiled in the other experiments analyzed.
Further, the diversity of cell types in PBMC and whole blood cultures allows for
critical interactions that are necessary to trigger certain cellular responses [33]. As an
example, EP 33 (generality = 0.027, 9 experiments) was used by experiments involving
PBMCs and whole blood exposed to the Gram-negative bacteria N. meningitides or
B. pertussis, and was enriched for genes with anti-apoptotic function (GO: 0006916).
We hypothesize that this program, which was generally induced in the middle of
the time-courses, may involve stabilization of an anti-apoptotic state necessary for
maturation and differentiation of peripheral immune cells following infection.
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51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
A m0 control1 M- M+ M-
 m0 control2 E- E+ E- E+
 m0 control3 E+ E+ M- M- E- E- E-
 m0 control4 E- E+ M- E-
 m0 Latex E- M+ E+ M+ E-
 m0 E. coli E- M+ M+
 m0 EHEC E+ E+ E- E- E- E- E- E- E- E-
 m0 S. typhi E+ E+ M+ M- E- E+ E- E- E- M-
 m0 S. typhimirium M+ E- E- E- E- E- E-
 m0 S. aureus E- E+ E- E- E- E- E- E-
 m0 L. monocytogenes E+ M+ E- M- E- M- M- M- M- E- E-
 m0 M. tuberculosis E- E-
 m0 M. bovis BCG M- M+
 m0 LPS E E+ E- E- E- E-
 m0 LPS S E- E+ E- E-
 m0 LTA E- M+ M+ E+ M- M+ M- M- E+ M+ E+
 m0 MDP E- E- E+ M- E- E-
 m0 TB hsp70 E+ E+ M+ M+ E+ E- E- E- E- E- E- E- E+ E-
 m0 BCG hsp65 E+ E+ E+ M+ M- M- E- E-
 m0 MPA E- E+ E- M+ E+ E-
 m0 f-MLP E- E+ E- E- E-
 m0 Protein A E- E- E+ M- M- E-
 m0 Mannose E- E- E+ M- E- E- E-
 m0 IFN-alpha E+ E+ E+ E+ E+ E- E- E- E+ M+
 m0 IFN-beta M+ E+ E+ E+ E+ E- E- E- E- E+ E+
 m0 IFN-gamma E+ E+ M+ M+ E+ E+ E- E- E- E+ E+ M-
 m0 IL-10 E+ E+ E+ E+ E+ E- E- E- E+ E+
 m0 IL-12 E- E- M+ E- E- M- E- E+ E- E-
 DC control1 E+ E+ E+ E- E- E- E- E+ E+ E+
 DC control2 E+ E- E+ E- E+ L+ E-
 DC control3 E- E+ E+ E- E+ E- E- E- E- E+ L- M-
B m0 (U937) control1
 m0 (U937) B. pertussis 338
 m0 (U937) B. pertussis 537 (avirulent)
 m0 (U937) B. pertussis A2-6 (AC-)
 m0 (U937) B. pertussis Tox6 (PT-)
 PBMC control1
 PBMC B. pertussis LPS E+
 PBMC B. pertussis 338 M+
 PBMC B. pertussis Minnesota1
 PBMC E. coli
 PBMC S. aureus (1) M+
 PBMC S. aureus (2) M+
 PBMC Ionomycin+PMA M+
C DC E. coli E- L+ M+
 DC LPS 
 DC Influenza L+ E- L+ M+
 DC C. albicans E- L+ M+
 DC Mannan E-
 DC PolyIC E- E+ E- E- E-
D PBMC B. pertussis 338 Killed
 PBMC B. pertussis 338 Live
 WB control NP
 WB control SW
 WB N. meningitidis NP
 WB N. meningitidis SW
E Epithelial cell control
 Epithelial cell H. pylori G27 
 Epithelial cell H. pylori cagN-
 Epithelial cell H. pylori cagA-
 Epithelial cell H. pylori cagE-
 Epithelial cell H. pylori PAI-

0.135 0.225 0.201 0.262
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Figure 4-9: Summary of expression programs (EPs) 51–75 discovered by GeneProgram++
in the infection data. See Figure 4-7 containing EPs 1–25 for an explanation of the matrix;
see also Figures 4-8 and 4-10 for the remaining EPs.

Programs with intermediate generality scores were used by experiments
involving host-cells exposed to a wider variety of agents

Several intermediate generality programs appeared to represent coordinated down-
regulation of proteolytic and antigen presentation pathways. For example, EP 68
(generality = 0.227, 14 experiments) was used by experiments involving exposure
of primary macrophages to a variety of interleukins/interferons, pathogens or their
components. This program was enriched for genes involved in proteasome function
(KEGG: hsa03050), and was generally repressed early in the time-series. As another
example, EP 77 (generality = 0.298, 6 experiments) was used by several experiments
involving PBMCs or cell-culture derived macrophages exposed to different bacteria
or immune modulating chemicals. This program was enriched for genes involved in
both MHC I and MHC II antigen processing and presentation pathways (KEGG:
hsa04612), and was used with a middle repression modifier by all associated experi-
ments. Downregulation of proteasome and antigen presentation pathways subsequent
to infection may reflect commitment of phagocytic cells to presentation of antigens
from a pathogen that has just been encountered [33].

Several intermediate generality expression programs revealed differences in tem-
poral phasing of the response of host cells exposed to different classes of pathogenic
organisms. For example, EP 88 (generality = 0.386, 13 experiments) was enriched
for genes involved in ribosomal structure or function (KEGG: hsa03010). Induction
of ribosomal genes may be a prelude to production of critical signaling and defensive
proteins, such as chemokines and cytokines. EP 88 was induced early in macrophages
or dendritic cells exposed to several varieties of Gram-negative bacteria, but induced
in the middle of the time-series in host cells exposed to Gram-positive bacteria. As
another example, EP 91 (generality = 0.402, 13 experiments), was enriched for genes
involved in mRNA splicing (GO: 0000398) and oxidative phosphorylation (KEGG:
hsa00190). This program was induced early in time-courses in dendritic cells exposed
to bacteria or viruses, but not induced until the middle phase in experiments involving
dendritic cells exposed to live fungi or fungal cell components. Interestingly, the pro-
gram was repressed early in macrophages exposed to various interferons/interleukins.
We hypothesize that the phasing differences observed in induction of EPs 88 and
91 may be due to the lesser ability of Gram-positive or fungal organisms to induce
critical signaling pathways in innate immune cells. We also note that both programs
were significantly enriched for genes bound by NF-κB family members. Interestingly,
a number of the NF-κB targets in EP 88 were ribosomal genes, suggesting a direct
role for this transcription factor in ribosome activity induction.

Several intermediate generality programs were significantly enriched for surprising
signaling pathways or host-cell receptor types.
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76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
A m0 control1 M- M+ M+
 m0 control2 M+
 m0 control3 E+ E+ E- E+ E- E-
 m0 control4
 m0 Latex M+ M- E+
 m0 E. coli M- M- M+ M+ E+ M+ M+ M+
 m0 EHEC M- M- M+ E+ M- E+ M+ M+
 m0 S. typhi E- M- M- M+ M- E+ M- M+ E+ M+
 m0 S. typhimirium M- M- M- M+ E- M- E+ M- M+ M+
 m0 S. aureus E- M- M- M+ M+ M- E+ M+ M+
 m0 L. monocytogenes M- M- M+ M+ M- E+ M+
 m0 M. tuberculosis M- E+ M+
 m0 M. bovis BCG M- M- M+ M+ M+ M- E+ M+ M+
 m0 LPS E M- M- E+ M+ M+
 m0 LPS S M- M+ E+ M+ M+
 m0 LTA M- M+ E+ E+ E+ E+
 m0 MDP E+
 m0 TB hsp70 E+ M- E- M+ E+ E- M- E+
 m0 BCG hsp65 E+ M- E- E+ E+ E- M+
 m0 MPA
 m0 f-MLP
 m0 Protein A
 m0 Mannose E+
 m0 IFN-alpha E- E+ E+ E- E+ E- E- E- M- M+ E+
 m0 IFN-beta E- E+ E+ E- E+ M- E- M- E- E+ M+
 m0 IFN-gamma E- E+ E+ E- E+ M+ E- E- E- E-
 m0 IL-10 M- E+ E+ E- E+ E- E- E- E-
 m0 IL-12 E- M- E- E-
 DC control1 E- M- E- E- E- E+ M- M-
 DC control2 E+ E+ E+ E+ E- M- M- M+ L- M- L- E+
 DC control3 E+ L- L- L+ E+ M+
B m0 (U937) control1
 m0 (U937) B. pertussis 338 M- E+ M+
 m0 (U937) B. pertussis 537 (avirulent) E+ M+
 m0 (U937) B. pertussis A2-6 (AC-) E+ M+
 m0 (U937) B. pertussis Tox6 (PT-) E+ M+
 PBMC control1
 PBMC B. pertussis LPS E+
 PBMC B. pertussis 338 M- E+
 PBMC B. pertussis Minnesota1 M- E+
 PBMC E. coli M- E+
 PBMC S. aureus (1) E+
 PBMC S. aureus (2) M- E+
 PBMC Ionomycin+PMA M- E+
C DC E. coli M- E- L- M- L+ M+ L- L+ E+ L+ E+ M+ L+ M- L+ M- E+ E+ E+ M- M+ E+ M+
 DC LPS L+ E- M+ M+ L+ E+ M+ L+ M- L+ M+ E+ M+ L+ M+ E+
 DC Influenza E- L+ L- E+ M+ E+ M+ L+ M- L+ E+ E+ E+ M- M+ M+
 DC C. albicans L- L+ M+ L- M+ M+ M+ M+ M+
 DC Mannan M- M- M+ M+ M+ M+ M- M- M+ E+ M- M+ E+ M+
 DC PolyIC M- E+ E+ E+ M+ M+ M+ E+ E+ M+ E+ E+ M+ M+
D PBMC B. pertussis 338 Killed E+ M+ M+
 PBMC B. pertussis 338 Live E- E+ M+
 WB control NP M+ M+
 WB control SW M+ M+
 WB N. meningitidis NP M+ M+
 WB N. meningitidis SW E+ M+
E Epithelial cell control E+
 Epithelial cell H. pylori G27 M+
 Epithelial cell H. pylori cagN-
 Epithelial cell H. pylori cagA-
 Epithelial cell H. pylori cagE- M+
 Epithelial cell H. pylori PAI- E+

0.294 0.435 0.401 0.535 0.727
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Figure 4-10: Summary of expression programs (EPs) 76–104 discovered by GenePro-
gram++ in the infection data. See Figure 4-7 containing EPs 1–25 for an explanation
of the matrix; see also Figures 4-8 and 4-9 for the remaining EPs.

For instance, EP 50 (generality = 0.134, 13 experiments) and EP 84 (generality
= 0.331, 12 experiments) were significantly enriched for genes involved in the Wnt
signaling pathway (KEGG: hsa04310), including WNT7A and FZD5 in EP 50, and
WNT1, WNT5A and MMP7 in EP 84 (see Figure 4-11). Wnt signaling pathways
have been traditionally implicated in developmental processes [93], and have only
recently been shown to be involved in immune system functions [32, 129, 168]. For
instance, Lobov et al. demonstrated that macrophages can secrete WNT7B, which
induces apoptosis in vascular endothelial target cells via the canonical Wnt signaling
pathway [168]. Signaling via the WNT5A receptor FZD5 has been implicated in stim-
ulation of pro-inflammatory molecules (e.g., MMP7, TNF-α, IL-12) in macrophages,
possibly via both canonical and non-canonical pathways [32, 168]. Consistent with
these reports of Wnt activity in macrophages, EP 50 was used by macrophages ex-
posed to a variety of bacteria and stimulatory molecules. Interestingly, the program
was repressed in macrophages infected with bacteria and induced in cells treated with
interleukins or interferons. This difference in program usage may reflect the ability
of bacteria to downregulate pro-inflammatory Wnt pathways. In contrast, EP 84,
which was mostly used by macrophages and dendritic cells exposed to bacteria or
microbial components, was uniformly induced in the middle of the infection time-
series. Because the two programs contain different Wnt pathway genes, they may
be involved in different inflammatory functions. Further, we note that only some of
the Wnt pathway associated genes in EPs 50 and 84 have previously been implicated
in macrophage function, making these attractive candidates for future experimental
biology work.

EP 55 (generality = 0.161, 12 experiments), which was significantly enriched for
genes coding for neurotransmitter or hormonal receptors (KEGG: hsa04080), was
another surprising finding. This program was induced in macrophages treated with
various interleukins or interferons, and repressed in macrophages exposed to various
microbial components. The program contained genes coding for a variety of receptors
including those for acetylcholine (CHRM5), cannabinoids (CNR2), dopamine (DRD2)
and histamine (HRH1). Although such receptor types are typically found on neurons,
they have also been found on macrophages and T-cells, and recent studies suggest
they may have important pro- and anti-inflammatory properties [69, 156, 208, 213].
The different use of this program by macrophages exposed to interleukins/interferons
(induction) versus that of those exposed to bacterial components (repression) may
reflect bias toward pro- or anti-inflammatory states mediated by different neuroactive
receptor signaling pathways.
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Figure 4-11: The Wnt signaling pathway (KEGG: hsa04310) and overlapping genes in
EP 50 (shaded in pink) and EP 84 (shaded in green). The pathway graphic was adapted
from the KEGG database [109]. EP 50 was used by macrophages exposed to a variety of
bacteria and stimulatory molecules. The program was repressed in macrophages infected
with bacteria and induced in cells treated with interleukins or interferons. EP 84 was mostly
used by macrophages and dendritic cells exposed to bacteria or microbial components, and
was uniformly induced in the middle of the infection time-series.

Programs with high generality scores were used by the full spectrum of
experiments involving exposure of different host cell types to a wide variety
of agents

Most programs with high generality scores were enriched for genes bound by NF-κB
family members and involved in a range of signaling pathways.

For instance, EP 99 (generality = 0.585, 27 experiments) appeared to represent
a “common infection response” program, which was used by experiments from every
tissue group and almost always induced early. This EP contained 203 genes, 15% of
which code for cytokines or cytokine receptors, and was also significantly enriched for
a number of signaling pathways. Of particular interest, it contained many genes in-
volved in the Toll-like receptor signaling pathway (KEGG: hsa04620, see Figure 4-12).
As expected, many of the genes in the overlap between EP 99 and this pathway code
for cytokines, but a number also code for various downstream signaling molecules,
including TRAF6, AP-1, NF-κB (p105) and IκBα. Further, EP 99 was significantly
enriched for genes bound by NF-κB family members RELB, p65, p50, p52 or c-REL
in ChIP-chip experiments.

In contrast, EP 102 (generality = 0.634, 15 experiments) was also used by a
wide variety of experiments, but was induced in the middle of the time-series of all
associated experiments, and was not significantly enriched for binding of any NF-
κB family members. This program contained a large number of genes coding for
interferons or interferon induced chemokines [107]. Interestingly, many interferon
sensitive genes (ISGs) are activated by transcription factors other than NF-κB, and
a delay in production of ISGs has previously been noted, presumably due to the time
needed to establish critical autocrine and paracrine signaling loops [107].

4.4 Conclusion and discussion

In this chapter, we presented GeneProgram++, an extension of our original algorithm
that explicitly models general patterns of expression changes, such as induction and
repression or temporal dynamics. We achieved this through the innovation of program
usage modifiers, which are variables that alter the context in which each tissue uses an
expression program. We first developed a simplified model without tissue groups that
uses modifiers, and then presented the full GeneProgram++ model and described an

143



C
C

L5

C
C

L4

C
C

L3

JU
N

M
A

P2K
3

144



Figure 4-12: The Toll-like receptor signaling pathway (KEGG: hsa04620) and overlapping
genes in EP 99 (shaded in pink). The pathway graphic was adapted from the KEGG
database [109]. EP 99 appeared to represent a “common infection response” program,
which was used by experiments from every tissue group and almost always induced early.
This EP contained 203 genes, 15% of which code for cytokines or cytokine receptors, and
was also significantly enriched for a number of signaling pathways including the Toll-like
receptor pathway depicted here. As expected, many of the genes in the overlap between
EP 99 and this pathway code for cytokines, but a number also code for various downstream
signaling molecules, including TRAF6, AP-1, NF-κB (p105) and IκBα. Further, EP 99 was
significantly enriched for genes bound by NF-κB family members RELB, p65, p50, p52 or
c-REL in ChIP-chip experiments.

efficient MCMC sampling method for approximate model inference. We also described
additional improvements relating to the interpretability and efficiency of posterior
distribution summary methods. We used two large compendia of expression data to
show that GeneProgram++ outperformed popular biclustering algorithms to an even
greater extent than did the original GeneProgram algorithm.

We then took advantage of GeneProgram++’s ability to find coherent gene sets
used with different temporal dynamics by each tissue sample—a capability traditional
biclustering algorithms do not have. We applied GeneProgram++ to a compendium
of short time-series gene expression data sets exploring the responses of human host-
cells to infectious agents and immune-modulating molecules. Using this data set,
GeneProgram++ discovered 5 tissue groups and 104 expression programs, a substan-
tial number of which were significantly enriched for genes involved in key signaling
pathways and/or bound by NF-κB transcription factor family members in ChIP-chip
experiments. We used the generality score to characterize the functional spectrum
of discovered expression programs—from gene sets involved in response to specific
pathogens in one host cell type, to those mediating common inflammatory pathways.

GeneProgram++ automatically discovered many expression programs involved in
key pathways related to the response to infection and uncovered temporal phasing
differences in program use by some experiments. For instance, programs enriched
for genes involved in ribosomal function or energy production were induced earlier
in host-cells exposed to Gram-negative organisms than in those exposed to Gram-
positive organisms or fungi. Some of the discovered programs overlapped with previ-
ously described gene sets derived from the same expression data, such as EP 99 and
the “common host response” genes discussed by Jenner and Young [107]. However,
previous meta-analyses of the data compendium relied on extensive prior biological
knowledge and manual inspection of data [107]. In contrast, our method was auto-
matic, discovering expression programs, associating them with consistent temporal
patterns, and finding significantly overlapping biological pathways and NF-κB bind-
ing from ChIP-chip data.

Some of the gene sets discovered by GeneProgram++ implicated surprising sig-
naling pathways or host-cell receptor types in the response to infection. In particular,
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EPs 50 and 84 were significantly enriched for genes involved in the Wnt signaling
pathway, and EP 55 was significantly enriched for genes coding for neurotransmitter
or hormonal receptors. Wnt signaling pathways [32, 129, 168] and neurotransmitter
receptors [69, 156, 208, 213] have only recently been implicated in the response to
infection. To our knowledge, our work is the first to uncover the activity of these path-
ways in the data sets analyzed, and to characterize the different temporal behaviors of
these pathways in response to a variety of infectious agents and immunomodulatory
molecules. We believe that the genes in the above-mentioned expression programs
constitute particularly attractive candidates for further biological characterization.

GeneProgram++’s handling of temporal data by collapsing time-series into pre-
defined, discrete patterns differs from the approach taken by many previous analysis
methods, and so merits some further discussion. Overall, we believe that our approach
is very useful for finding interpretable gene expression programs, particularly when
analyzing short time-series experiments in which there are a limited number of clearly
meaningful temporal patterns. Further, our method allows us to extract features
present in a compendium of time-series, even when the series have different durations,
sampling rates, and numbers of samples. In the case of the infection time-series data
analyzed in this work, we defined relevant temporal patterns manually, based on
prior biological knowledge [33, 91, 149, 150]. However, in future work, temporal
patterns could be derived in more automated ways, such as through pre-processing
steps that apply time-series clustering algorithms [17, 59] to individual series in the
data compendium.
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CHAPTER 5

Conclusion

“Before reaching the final line, however, he had already under-
stood that he would never leave the room, for it was foreseen
that the city of mirrors (or mirages) would be wiped out by
the wind and exiled from the memory of men at the precise
moment when Aureliano Babilonia would finish deciphering the
parchments, and that everything written on them was unrepeat-
able since time immemorial and forever more, because races con-
demned to one hundred years of solitude did not have a second
opportunity on earth.”

—Gabriel Garcia Marquez, One Hundred Years of Solitude

We have presented three novel computational approaches and have shown that
each finds biologically meaningful sets of genes in large collections of high-throughput
molecular data. In the remainder of this thesis, we summarize the main contributions
made in each chapter and then conclude with a discussion of directions for future work.

5.1 The GRAM algorithm

5.1.1 Summary of results

In Chapter 2, we presented the GRAM (Genetic RegulAtory Modules) algorithm, a
method for fusing information from genome-wide expression and in vivo transcription
factor-DNA binding data sets to discover regulatory networks of gene modules, which
are sets of genes that are both co-expressed and bound by the same set of transcription
factors. We used the GRAM algorithm to discover a genome-wide regulatory network
using binding information for 106 transcription factors in Saccharomyces cerevisiae
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in rich media conditions and over 500 expression experiments. We validated the
quality of these results by performing analyses using four independent data sources.
We then used the discovered modules to label transcription factors as activators or
repressors and identified patterns of combinatorial regulation. Further, we analyzed
a new genome-wide protein-DNA binding data set profiling transcription factors in
yeast cells treated with rapamycin, and used the GRAM algorithm to provide bio-
logical insights in this regulatory network. Finally, we presented a method for using
modules to build automatically genetic regulatory sub-networks for specific biological
processes, and used this to reconstruct accurately key elements of the cell-cycle in
yeast.

5.1.2 Specific computational and biological contributions

The GRAM algorithm was the first published method for fusing genome-wide expres-
sion data and large collections of transcription factor binding data. Unlike previous
approaches [58, 162, 99, 26, 191] that relied primarily on functional information from
expression data, the GRAM algorithm explicitly links genes to the factors that reg-
ulate them by using DNA binding data to incorporate direct physical evidence of
regulatory interactions.

Fusion of genome-wide expression and binding data is computationally challeng-
ing for several reasons. First, expression data is high-dimensional, and the GRAM
algorithm must handle continuous data for thousands of genes measured in hundreds
of experiments. Second, each module is potentially regulated by any combination
of over one hundred transcription factors. Finally, both genome-wide binding and
expression data are measured experimentally using DNA microarrays, which produce
notoriously noisy output.

To address these challenges, we made several specific computational contributions
with the GRAM algorithm:

• Efficient, robust determination of nearby genes in the high-dimensional
expression space. The GRAM algorithm uses a theoretically justified approx-
imation technique inspired by computational geometry methods for finding the
largest set of “nearby” genes in expression space. This method is robust in
the sense that it is insensitive to co-bound genes with outlying expression mea-
surements. To our knowledge, the GRAM algorithm is the first use of such a
method in the context of expression data analysis.

• Efficient search over combinations of transcription factors. As dis-
cussed, there is a potentially exponential number of combinations of transcrip-
tion factors to be considered as regulators for each gene module. However, the
GRAM algorithm efficiently restrict its search to combinations “confidently”
implied by the data, rendering the number of subsets to be searched over much
smaller. This innovation enabled the algorithm to operate on a data set con-
taining genome-wide binding data for over 100 transcription factors.
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• Improvement of true-positive rates without significant increases in
false-positive rates in genome-wide binding data. A key feature of
the GRAM algorithm is its ability to compensate for technical limitations in
genome-wide binding data through the integration of expression data. To de-
termine binding events in data, previous methods [118] used a statistical model
and chose a relatively stringent p-value threshold with the intention of reducing
false-positives at the expense of true-positives. The GRAM algorithm presents
a powerful alternative to using a single p-value threshold to predict binding
events, because our method allows the p-value cutoff to be relaxed if there
is sufficient supporting evidence from expression data. Approximately 40% of
binding events discovered by the GRAM algorithm would not have been de-
tected using only genome-wide binding data and the stringent p-value cutoff.
We used four independent sources of biological information, including gene-
specific chromatin-immunoprecipitation experiments, to demonstrate that the
newly predicted binding events did not substantially increase the false-positive
rate.

We made several biological contributions with our applications of the GRAM al-
gorithm to genome-wide yeast gene expression and transcription factor binding data:

• The first genome-wide regulatory network in yeast derived from di-
rect physical information. Using genome-wide binding data for over 100
yeast transcription regulators profiled in rich media conditions, the GRAM al-
gorithm discovered 106 gene modules, containing 655 distinct genes and reg-
ulated by 68 of the transcription factors. Although previous studies derived
regulatory networks from large-scale data sources in yeast, these methods did
not incorporate large compendia of genome-wide binding data [162, 99]. We
demonstrated that our results represent a refinement of the modules from these
other studies. In particular, our method identified not only the genes that par-
ticipate in a certain module, but also provided evidence as to the factors that
are used to activate these genes.

• Biological insights from construction of a regulatory network from
novel genome-wide transcription factor binding data profiling yeast
exposure to rapamycin. Rapamycin is a small macrolide that mimics nu-
trient starvation and has recently been investigated for the treatment of ma-
lignancies and heart disease [104, 49, 172]. Prior to our work, there was little
information about the transcriptional regulatory network involved and how this
transcriptional network contributed to the overall response to rapamycin treat-
ment. Our biologist collaborators identified 14 key transcriptional regulators
involved in the yeast response to rapamycin treatment and performed genome-
wide binding experiments for the regulators. Our analysis suggested several
unexpected interactions in which regulators typically assigned to a particular
biological response also appear to bind genes acting in different biological path-
ways. In addition, our analysis suggested more complex regulatory interactions
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in which there was communication among gene modules. Such complicated net-
work topologies may be important for facilitating rapid and flexible responses
to changing environmental conditions. These results provide suggestions for
future directed biological experiments.

• Automatic, accurate recovery of key elements of the yeast cell-cycle
regulatory network. We developed a novel sub-network discovery algorithm
that drew on our previous work involving continuous representations of time-
series data [18] and applied it to analysis of the yeast cell-cycle. Our method
correctly identified cell-cycle associated transcriptional regulators, and assigned
all to stages of the cell-cycle in which they had been described to function in pre-
vious studies [199]. Significantly, this accurate reconstruction of the regulatory
architecture was automatic and required no prior knowledge of the regulators
that control transcription during the cell-cycle. Further, our analysis suggested
that combinatorial factor interactions may provide control that allows for sub-
dividing cell cycle phases into different biological functions.

5.2 The GeneProgram algorithm

5.2.1 Summary of results

In Chapter 3, we presented a new computational methodology, GeneProgram, specifi-
cally designed for analyzing large compendia of mammalian expression data. Through
synthetic data experiments, we showed that GeneProgram was able to correctly re-
cover gene sets that other popular analysis methods could not. We then applied our
method to a large compendium of human and mouse body-wide gene expression data
from representative normal tissue samples, and demonstrated that GeneProgram out-
performed other methods in the discovery of biologically interpretable gene sets. We
further showed that allowing the GeneProgram model to infer tissue groups automati-
cally significantly improved performance. Using the data compendium, GeneProgram
discovered 19 tissue groups and 100 expression programs active in mammalian tissues.
We introduced an expression program generality score that exploits the tissue group-
ings automatically learned by GeneProgram, and showed that this score characterizes
the functional spectrum of discovered expression programs.

5.2.2 Specific computational and biological contributions

GeneProgram addresses an important research problem in computational biology: the
identification of expression programs, sets of co-activated genes orchestrating phys-
iological processes, and the characterization of the functional breadth of these pro-
grams. The use of mammalian expression data compendia for discovery of such pro-
grams presents several challenges, including cellular inhomogeneity within samples,
genetic and environmental variation across samples, and uncertainty in the numbers
of programs and sample populations.

Specific computational contributions from our GeneProgram work include:
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• First application of Hierarchical Dirichlet Process-based topic mod-
els to expression data analysis. GeneProgram’s probability model addresses
the above-mentioned challenges associated with finding expression programs in
large, complex compendia of mammalian expression data. A topic model-based
framework allows GeneProgram to deal with tissue inhomogeneity by allocat-
ing the total mRNA recovered from each tissue to different gene expression
programs, which may be shared across tissues. A hierarchical model allows
GeneProgram to deal with tissue samples coming from different individuals, by
explicitly modeling each tissue as a sample from a population of related tissues.
Uncertainty in the numbers of tissue groups and expression programs is handled
in an integrated, principled manner by using Dirichlet Processes, which provide
prior distributions over numbers of sets. To our knowledge, GeneProgram is
the first model to incorporate all these features.

• Extension of the Hierarchical Dirichlet Process model for automatic
learning of tissue groups. In the original formulation of Hierarchical Dirich-
let Processes (HDPs), the number of data groups was fixed and needed to
be specified a priori [211]. GeneProgram extends the HDP model, allowing
the number of groups and membership in them to be learned automatically.
This is accomplished by employing another Dirichlet Process to generate tissue
groups. We developed efficient MCMC update steps to make approximate in-
ference feasible for this extended HDP model. Further, we used cross-validation
to compare the full GeneProgram model to one without automatic inference of
tissue groups, and demonstrated that the full model had significant performance
improvements.

• A novel method for summarization of the model posterior probability
distribution. The posterior distributions of Dirichlet Process mixture mod-
els are particularly challenging to summarize because the number of mixture
components may differ for each sample. Previous approaches for summarizing
Dirichlet Process mixture model components have used pair-wise co-clustering
probabilities as a similarity measure for input into an agglomerative clustering
algorithm [139]. This method is not feasible for summarizing expression pro-
grams in large data sets because of the number of pair-wise probabilities that
would need to be calculated for each sample. We developed a novel method for
summarization of the model posterior distribution, which discovers recurrent ex-
pression programs by combining information from similar expression programs
that reoccur across posterior samples.

• Ability to accurately recover coherent gene sets in noisy synthetic
data that other algorithms could not. We created synthetic data that
simulated important features of real microarray data profiling mammalian tis-
sues, and evaluated the ability of our algorithm and several others to recover
coherent gene sets from the data. We chose for evaluation several popular algo-
rithms used for microarray data analysis including hierarchical clustering [58],
Samba (a biclustering algorithm) [209, 194], singular value decomposition [8, 9]
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and a non-negative matrix factorization implementation [36]. We also evalu-
ated a simplified version of GeneProgram without the capability for automatic
tissue group discovery. Only the full version of GeneProgram was capable of
accurately recovering all the gene sets present in the synthetic data.

We applied GeneProgram to a large compendium of data, consisting of genome-
wide expression measurements for 79 human and 61 mouse tissues. Specific biological
contributions from this application of GeneProgram include:

• Automatic assignment of tissues to biologically relevant groups. Gene-
Program discovered 19 tissue groups, 79% of which were significantly enriched
for tissues belonging to one of ten manually derived, broad physiological cat-
egories. For instance, a tissue group significantly enriched for the “hemato-
logical/immune” category consisted exclusively of human immune cells such as
natural killer cells, and CD4+ and CD8+ T-cells. As another example, a tissue
significantly enriched only for the “neural” category, consisted exclusively of
neural tissues from both species. GeneProgram discovered these groups in a
wholly unsupervised manner, and many of the groups clearly represent a more
refined picture of the data than the ten manually derived categories.

• Outperformance of biclustering algorithms in the discovery of biolog-
ically relevant gene sets. Because expression programs characterize both
genes and tissues, we used both Gene Ontology (GO) categories [11] and 10
manually derived tissue categories to assess GeneProgram’s ability to recover
biologically relevant gene sets and to compare this performance to that of two
biclustering algorithms, Samba [209, 194] and a non-negative matrix factoriza-
tion (NMF) implementation [36]. GeneProgram clearly outperformed the other
two algorithms in the tissue dimension (60% of expression programs significantly
enriched for tissue categories, versus 10% for Samba and 20% for NMF). Gene-
Program outperformed NMF and had equivalent performance to Samba in the
gene dimension (61% of expression programs significantly enriched for GO cat-
egories, versus 62% for Samba and 27% for NMF). Presumably, our algorithm’s
clear dominance of both Samba and NMF method in the tissue dimension was
partly attributable to GeneProgram’s hierarchical model. Both of the other
algorithms lack such a model, so the assignment of tissues to biclusters was not
guided by global relationships among tissues.

• Outperformance of cross-species versus single-species expression pro-
grams in terms of biological relevance. Seventy-nine percent of cross-
species expression programs were significantly enriched for GO categories ver-
sus 52% of single-species programs, and 82% of cross-species programs were
significantly enriched for the manually derived tissue categories versus 51% of
single-species programs. These results suggest that combining data from both
species was valuable for discovery of biologically relevant expression programs.

• Introduction of a novel generality score that automatically quantified
the functional specificity of expression programs. We developed a score
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for assessing the functional generality of expression programs, and demonstrated
its utility for automatically characterizing the spectrum of discovered programs.
Based on the generality score, we divided expression programs into three broad
categories: 1) general body-wide physiology, 2) specialized organ physiology,
and 3) tissue specific. Evaluation of the weighted average of generality scores
across all expression programs for each tissue uncovered several trends relating
to tissue function and anatomic location. For instance, some tissues types,
including neural, testicular and thyroid samples, had very low average generality
scores, presumably reflecting the highly specialized functions of these tissues.
In contrast, a number of other tissue types, including embryologic, hematologic
progenitors, immune, malignant, epithelial and adipose samples, had very high
average generality scores. The generality score requires a global organization of
tissues into groups, rather than just the local associations of subsets of tissues
with individual gene sets provided by biclustering algorithms. Because there is
uncertainty in the number of tissue groups, GeneProgram’s Dirichlet Process-
based model provides a natural framework for computing the generality score.

• Automatic discovery of a comprehensive, body-wide map of expres-
sion programs active in mammalian physiology. By simultaneously using
information across 140 tissue samples, GeneProgram was able to finely dissect
the data, automatically splitting mRNA expressed in tissues among both general
and specific programs. Because our model is fully Bayesian, providing a global
penalty for model complexity including for the number of tissue groups and ex-
pression programs, the generated map represents a mathematically principled
compression of gene expression information throughout the entire organism. Al-
though such a large, comprehensive map is inherently complicated, we believe
that GeneProgram’s automatic grouping of tissues and the associated expres-
sion program generality score will make it particularly useful for guiding future
biological experiments. Tissue-specific expression programs can provide candi-
date genes for diagnostic markers or drug targets that exhibit minimal “cross-
talk” with unintended organs. General expression programs may be useful for
identifying genes important in regulating and maintaining general physiological
responses, which may go awry in disease states such as sepsis and malignancy.
Both general and tissue-specific discovered programs contained many function-
ally unannotated genes, and in some cases the programs were shared among
unexpected sets of tissues. Additionally, some such unannotated genes appear
in cross-species expression programs, making them particularly attractive can-
didates for further biological characterization.

5.3 The GeneProgram++ algorithm

5.3.1 Summary of results

In Chapter 4, we presented GeneProgram++, an extension of the GeneProgram algo-
rithm that explicitly models general patterns of expression changes, such as induction
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and repression or temporal dynamics. We described an efficient approximate inference
scheme for the GeneProgram++ model as well as additional improvements relating
to the interpretability and efficiency of posterior distribution summary methods. We
used two large compendia of expression data to show that GeneProgram++ outper-
formed popular biclustering algorithms to an even greater extent than did the orig-
inal GeneProgram algorithm. We then applied GeneProgram++ to a compendium
of short time-series gene expression data sets exploring the responses of human host-
cells to infectious agents and immune-modulating molecules. Using this data set,
GeneProgram++ discovered 5 tissue groups and 104 expression programs, a substan-
tial number of which were significantly enriched for genes involved in key signaling
pathways and/or bound by NF-κB transcription factor family members in ChIP-chip
experiments. We used the generality score to characterize the functional spectrum
of discovered expression programs—from gene sets involved in response to specific
pathogens in one host cell type, to those mediating common inflammatory pathways.
GeneProgram++ automatically discovered many expression programs involved in key
pathways related to the response to infection and uncovered temporal phasing dif-
ferences in program use by some experiments. Of particular interest, some of the
gene sets discovered by GeneProgram++ implicated surprising signaling pathways or
host-cell receptor types in the response to infection.

5.3.2 Specific computational and biological contributions

We made several computational contributions in our work on GeneProgram++:

• Introduction of the novel concept of program usage modifiers that ex-
plicitly model general patterns of expression changes including tem-
poral dynamics. In many microarray gene expression experiments, we are
interested in genes’ behavior relative to some baseline condition. For instance,
we may be interested in the extent of induction or repression of gene expression
after cells are exposed to environmental stresses [71], infected with microor-
ganisms [202, 149, 150, 107, 33, 91, 160, 80], or observed throughout develop-
ment [220]. In analyzing patterns of gene expression change, we would like to
discover sets of genes that behave coherently. A limitation of the GeneProgram
algorithm is that it does not explicitly model patterns of gene expression change.
GeneProgram++ extends the algorithm with usage modifiers. A usage modifier
is a variable that is specific to a tissue-expression program pair and describes
how a tissue uses the program. For instance, usage modifiers can specify the
temporal phase and direction (induction or repression) of expression. Thus,
the genes used by a tissue from a program and the manner in which they are
expressed (e.g., early induction versus late repression) are chosen probabilisti-
cally and influenced by the behavior of similar tissues. Further, usage is by
definition consistent across a program for a particular tissue, which facilitates
biological interpretation. We fully incorporated usage modifier variables into a
hierarchical model based on Dirichlet Processes. We then developed efficient
MCMC update steps that make approximate inference feasible for this model.
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• Improvements in recurrent expression program computation that in-
crease algorithm performance and model interpretability. GenePro-
gram’s method for deriving recurrent expression programs (REPs) had two lim-
itations. First, the original tissue REP usage score was difficult to compare
across tissues and did not take into account expression probabilities for genes in
a program. GeneProgram++ improves upon the original REP usage score by
weighting by the probabilities of genes in the expression program. Second, the
method used by GeneProgram to track REPs could lead to the creation of many
REPs with essentially the same gene probabilities, but different “signatures” of
significant tissues. Although the REPs could be merged in subsequent post-
processing steps, having to track a large number of REPs substantially reduced
the algorithm’s performance and became infeasible for very large data sets. To
deal with these issues, GeneProgram++ does not track REPs based on signif-
icant tissues, but instead saves all expression programs at each iteration and
then sequentially merges similar programs based on how similar the gene expres-
sion probabilities are for programs. GeneProgram++ also uses spaced samples
from the MCMC sampler, which better approximate independent samples from
the posterior, and can thus result in more accurate results [72]. The improved
method for merging REPs as well as the use of spaced samples allows us to use
fewer overall samples than we did for the original GeneProgram applications.
We used two large compendia of expression data to show that GeneProgram++
outperformed popular biclustering algorithms to an even greater extent than did
the original GeneProgram algorithm in terms of the biological relevance of gene
sets.

We applied GeneProgram++ to a compendium of 62 short time-series gene ex-
pression experiments in which various human cell types had been exposed to different
infectious agents or immune-modulating substances. Specific biological contributions
from this application of GeneProgram++ include:

• Extensive overlap of automatically discovered expression programs
with key human signaling pathways and biological processes. Gene-
Program++ discovered 104 expression programs in the infection time-series
data. A large number of expression programs were significantly enriched for
GO categories (50%) or KEGG pathways (59%). As expected, many significant
GO categories and KEGG pathways were specifically involved with response to
infection. Interestingly, a substantial number of the significantly enriched GO
categories or KEGG pathways corresponded to signaling cascades with genes
in expression programs spanning the levels of cascades, from genes coding for
cell-membrane associated proteins to end effectors such as transcriptional reg-
ulators. Further, there were also a number of significantly enriched biological
processes or pathways not directly labeled as being infection-related, but that
are involved with significant changes in cellular physiology consistent with in-
fection. To our knowledge, this application of GeneProgram++ represents the
first large-scale, automated analysis using signaling pathways of a compendium
of expression data profiling response of human cells to infection.
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• Surprising number of expression programs containing many genes
bound by NF-κB transcription factor family members. NF-κB family
members are critical transcription factors in many immune cell types. We eval-
uated the biological relevance of discovered expression programs using genome-
wide ChIP-chip data profiling static binding of NF-κB family transcription fac-
tors in human cell-culture derived macrophages [185]. Fifteen of the 104 ex-
pression programs discovered by GeneProgram++ were significantly enriched
for sets of genes bound by at least one NF-κB family member. This overlap with
the binding data was quite large, considering that only 348 genes were bound by
NF-κB family members in the ChIP-chip experiments [185]. Overall, the fifteen
significantly enriched programs tended to be those used by a diverse array of
host-cell types exposed to a range of pathogens and their components. This
suggests that these expression programs may represent common processes that
are strongly induced or repressed during infection via NF-κB family member
regulatory activity.

• Automatic categorization using the generality score of discovered ex-
pression programs into a spectrum of responses to infection. Programs
with low generality scores were used by experiments spanning a limited number
of host cell and infection types. For instance, experiments involving exposure
of gastric epithelial cells to H. pylori used several low generality programs,
some of which were clearly involved in specific responses to this infection (such
as actin cytoskeleton reorganization). Programs with intermediate generality
scores tended to be used by experiments involving host cells exposed to a wider
variety of agents. For instance, several programs with intermediate generality
scores appeared to represent coordinated downregulation of cellular degrada-
tive and antigen presentation pathways in response to infection with different
pathogens. Programs with high generality scores were used by the full spec-
trum of experiments involving exposure of different host cell types to a wide
variety of agents. For instance, one program with a high generality score was
used by essentially all the experiments in the data set and appeared to repre-
sent a “common infection response.” This program contained 203 genes, 15% of
which code for cytokines or cytokine receptors and was enriched for a number
of pathways and biological processes, including the important Toll-like receptor
signaling pathway. These results improved on previous meta-analyses of the
infection time-series data compendium that relied on extensive prior biological
knowledge and manual inspection of data [107]. In contrast to previous anal-
yses, our method was automatic, discovering expression programs, associating
them with consistent temporal patterns, and finding significantly overlapping
biological pathways and NF-κB binding from ChIP-chip data.

• Discovered expression programs revealed differences in temporal phas-
ing. Several expression programs revealed differences in temporal phasing of
the response of host cells exposed to different classes of pathogenic organisms.
For example, one expression program was enriched for genes involved in ribo-
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somal structure or function. Induction of ribosomal genes may be a prelude to
production of critical signaling and defensive proteins, such as chemokines and
cytokines. The expression program was induced early in macrophages or den-
dritic cells exposed to several varieties of Gram-negative bacteria, but induced
in the middle of the time-series in host cells exposed to Gram-positive bacte-
ria. As another example, a second expression program was enriched for genes
involved in mRNA splicing and oxidative phosphorylation. This program was
induced early in time-courses in dendritic cells exposed to bacteria or viruses,
but not induced until the middle phase in experiments involving dendritic cells
exposed to live fungi or fungal cell components. We hypothesize that the phas-
ing differences observed in induction of the above-mentioned programs may be
due to the lesser ability of Gram-positive or fungal organisms to induce critical
signaling pathways in innate immune cells.

• Implication of surprising signaling pathways or host-cell receptor types
in the human response to infection. Some of the gene sets discovered by
GeneProgram++ implicated surprising signaling pathways or host-cell receptor
types in the response to infection. In particular, two programs were significantly
enriched for genes involved in the Wnt signaling pathway, and a third program
was significantly enriched for genes coding for neurotransmitter or hormonal
receptors. Wnt signaling pathways [32, 129, 168] and neurotransmitter recep-
tors [69, 156, 208, 213] have only recently been implicated in the response to
infection. To our knowledge, our work is the first to uncover the activity of these
pathways in the data sets analyzed, and to characterize the different temporal
behaviors of these pathways in response to a variety of infectious agents and im-
munomodulatory molecules. We believe that the genes in the above-mentioned
expression programs constitute particularly attractive candidates for further
biological characterization.

5.4 Directions for future work

5.4.1 The GRAM algorithm

Extensions to handle multi-condition and temporal transcription factor
binding data

Although the GRAM algorithm was applied to data from two conditions—rich media
and rapamycin exposure—the conditions were considered separately in our analy-
sis. In future work, the algorithm could be extended to model binding data across
time or different conditions explicitly. One method for doing this would be to intro-
duce multi-condition binding patterns associated with each transcription factor and
each gene. Because the GRAM algorithm considers transcription factor binding as a
discrete event, there would be a limited number of possible binding patterns across
the different conditions (or time-points). Instead of searching over combinations of
transcription factors directly, the extended algorithm would search over combinations
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of multi-condition binding patterns associated with transcription factors. Assuming
that transcription factors bind to a limited number of genes, the extended algorithm
could exploit the spareness of the data in the same manner as the original algorithm.

The utility of such an extension is dependent on large compendia of multi-condition
(or temporal) binding data. Harbison et al. [82] measured binding of yeast transcrip-
tion factors across several conditions. However, only a small number of factors were
profiled in most conditions, and very few factors were profiled in more than two
conditions. To our knowledge, there is currently no ChIP-chip data measuring the
temporal binding of transcription factors. However, more comprehensive and varied
genome-wide transcription factor binding data is likely to become available soon.

Application to nucleosome state and other ChIP-chip data sources

The GRAM algorithm can be readily applied to new types of ChIP-chip data measur-
ing genome-wide protein-DNA interactions. In this thesis, we applied the algorithm
to genome-wide transcription factor binding data. Recently, the ChIP-chip technique
has also been used to measure genome-wide nucleosome occupancy and histone mod-
ification state [28, 153, 179, 144, 113, 27, 223]. Such data, particularly if it measures
changes in nucleosome state across multiple conditions, can provide important new in-
sights into cellular processes such as development. The current version of the GRAM
algorithm could be applied to single condition nucleosome state data; the extended
version described above would be appropriate for multi-condition or temporal data.

Models for larger data sets and coherence across subsets of expression data

As described in Section 2.6.2, the GRAM algorithm is inefficient on extremely large
data sets—particularly those in which genes are bound by large numbers of transcrip-
tion factors—due to the algorithm’s exhaustive search step. An additional limitation
of the algorithm is that it requires coherence across all expression experiments. Both
these limitations could be overcome by resorting to probabilistic search techniques
(i.e., choosing random subsets of transcription factors and expression experiments).
Although various heuristic scoring schemes could be developed for such probabilistic
search methods, an attractive alternative would be to construct a model based on
Dirichlet Processes. We note that such a model would differ from that used for Gene-
Program, because a GRAM gene module consists of genes that are all co-expressed
and bound by the same set of transcription factors. A model capturing GRAM-like
modules could be constructed using a Dirichlet Process mixture model, in which each
mixture component consists of random variables for each gene in each experiment,
indicating whether the gene is bound (or differentially expressed) and the degree of
binding (or expression level). Thus, each mixture component would map to a module,
specifying a subset of transcription factor and expression experiments and relevant
levels.
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5.4.2 GeneProgram and GeneProgram++

Improved run-time for model inference

Although GeneProgram is able to analyze large data sets in a reasonable amount of
time (on the order of days), faster run-times will be necessary for feasible analyses of
truly huge data compendia.

As described in Section 3.3.3, GeneProgram uses Markov Chain Monte Carlo
(MCMC) methods for approximate model inference. MCMC is a relatively efficient
inference method for GeneProgram, because many of the distributions used by the
model are conjugate to one another. The general efficiency of GeneProgram’s infer-
ence method is attested to by the fact that it ran faster than an implementation of
a competing biclustering algorithm (non-negative matrix factorization), which uses
a more “traditional” objective maximization algorithm to search for the appropriate
number of biclusters deterministically (see Section 3.5.4). However, such relatively
good performance does not mean that GeneProgram’s run-time cannot be improved.

A “split-merge” MCMC method, recently introduced by Jain and Neal [105, 106],
has been shown to improve mixing and convergence times for some types of Dirichlet
Process mixture models. The basic idea behind the improved sampling scheme is to
probabilistically split or merge mixture component, thereby potentially reassigning
multiple data points to components simultaneously. This method can in principle
avoid the problem of the MCMC sampler becoming trapped in local modes that
cannot be readily escaped through single reassignments of data points. However,
even with these improvements to the MCMC method, a general problem remains:
there are no clear theoretical guidelines indicating when to stop sampling, and in
practice we must collect a very large number of samples in an attempt to find a good
approximation to the model posterior. This difficulty encourages the development of
alternative inference methods for GeneProgram.

Mean-field variational methods are another alternative for approximate inference
for Dirichlet Process mixture models [29]. Variational methods involve deriving a
lower bound on the log likelihood for the model using a tractable distribution over
the model’s hidden variables (i.e., an exponential family distribution). The lower
bound is then deterministically optimized. In recent work, variational methods have
been shown to have faster run-times while producing results similar to those obtained
using MCMC methods for some types of Dirichlet Process mixture models [29].

Expectation propagation methods are yet another alternative for approximate
inference for Dirichlet Process mixture models [141]. This inference technique iter-
atively attempts to find an optimal approximation of a complex distribution using
products of simpler functions. Minka worked out the update equations for a simple
Dirichlet Process mixture model [141]. However, even for this case, the algorithm
apparently produces worse results than does MCMC sampling.

None of the above alternative approximate inference methods (including split-
merge MCMC sampling) have been applied to Hierarchical Dirichlet Processes (HDPs)
so far. Such applications are not straightforward, because of the dependencies intro-
duced among mixture components in HDP models. GeneProgram and GenePro-
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gram++ further extend the HDP model, making inference even more difficult. Ad-
ditionally, none of the above-mentioned alternative inference methods provide direct
means for updating of concentration parameters or other model hyperparameters.
However, despite these complications, it is likely that one or more of the alterna-
tive approximate inference methods discussed above can be tailored to work with
GeneProgram and GeneProgram++ to improve our algorithms’ run-times.

Applications to novel data types

As discussed in Section 3.6, GeneProgram is a general method, making it suitable for
analyzing any large expression data compendium, including those relating to develop-
mental or disease processes. Our framework is also flexible, and could accommodate
other genome-wide sources of biological data in future work, such as DNA-protein
binding or DNA sequence motif information. As a specific example, compendia of
ChIP-chip data could readily be analyzed by discretizing binding data (either contin-
uous ratios or binding p-values as the GRAM algorithm does). In such an application,
mixture components in the GeneProgram model would correspond to sets of genes
that are generally bound by the same factors. Groups would correspond to tran-
scription factors that tend to act together (e.g., complexes or co-factors). Overall,
GeneProgram’s ability to discover tissue groups and expression programs de novo us-
ing a principled probabilistic method, as well as its use of data in a semi-quantitative
manner, makes it especially valuable for novel “meta-analysis” applications involving
large data sets of unknown complexity in which direct fully quantitative comparisons
are difficult.

Dependencies among gene expression events

As discussed in Section 3.6, an unrealistic assumption of the GeneProgram model is
that gene expression “events” are independently generated by expression programs.
There are several approaches by which this assumption could be relaxed.

The n-gram methods developed for text analysis applications of topic models
could be applied. The assumption of independent expression events in GeneProgram
is equivalent to the “bag-of-words” assumption in topic models applied to text anal-
ysis. Despite the success of the “bag-of-words” assumption [64, 79, 31], word order
in documents can clearly provide important information. In n-gram models, words
are no longer generated independently, but are assumed to depend on n other words.
Bigram models (n = 2) are relatively efficient, because they assume that the proba-
bility for generating a word in a document is dependent only on the previous word
generated [216]. Thus, instead of parameterizing the word probabilities for each topic
with a multinomial distribution, the topic uses a conditional probability table that
specifies the probability of generating each word conditioned on any other word. If
gene expression data for each experiment were converted to a ranking of genes, an n-
gram model would be meaningful for expression programs. That is, the model would
capture the information that “gene X’s expression is likely to be greater than gene Y’s
in expression program Z.” The use of rankings rather than quantitative expression
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values could be advantageous, due to the reasons discussed in Section 3.6.
Another approach would be to use two variables to model observed expression

data for a gene: a binary variable indicating whether a gene is “used” by the program
and a continuous variable modeling the level of expression. An expression program
would then consist of a binomial distribution and a continuous level distribution
(e.g., an exponential distribution) for each gene. A potential difficulty with this
approach is that it is not obvious how discrete indicator variables and continuous
expression levels should be weighted in the model likelihood function. Additionally,
as discussed in Section 3.6, it is unclear whether observed continuous expression data
has a meaningful biological interpretation.

Yet another alternative would be to deal with continuous expression data directly
and not use topic models. For instance, expression data for a tissue could be modeled
as a linear combination over expression programs. Battle et al. developed such a
model, but assumed the number of programs was fixed and that experiments were
independent [23]. Such a model could in principle be extended to use a Hierarchical
Dirichlet Process framework, although efficient inference methods would need to be
developed. Additionally, as mentioned previously, it is unclear the extent to which
observed continuous expression data has a meaningful biological interpretation.

Explicit dependencies among expression programs

In the GeneProgram model, the fact that tissues in the same group are more likely
to share expression programs induces implicit dependencies among programs.

An alternate approach would be to model hierarchical dependencies among pro-
grams explicitly. For example, with such a model, we might discover a hierarchical
structure among programs involved in metabolism, with general programs near the
root and very specific programs at the leaves. Li and McCallum introduced a model in
which topic dependencies are specified using a directed acyclic graph structure [120].
Although their method is based on a fixed number of topics, the extension to an
infinite mixture model using Dirichlet Processes seems quite feasible.

Another interesting explicit dependency to model would be expression program
relationships over time. Blei and Lafferty introduced the dynamic topic model, in
which both the content of topics (probabilities over words) and the prior distribution
for choosing topics (mixture weights) evolve over time [30]. They applied their model
to a corpus of over 100 years of articles from the journal Science, and demonstrated
how topics relating to scientific disciplines such as atomic physics were automatically
discovered in late nineteenth century articles, and evolved to be used by modern ar-
ticles on atomic physics. One could imagine applying a version of such a model to an
extensive compendium of developmental time-series or cross-species gene expression
data, and discovering how programs change during growth of an organism or through-
out evolution. At present, data is still too limited to be useful in such a model, but
prospects for future applications of this sort are very exciting.
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