
A New Approach to Analyzing Gene Expression Time Series Data

Ziv Bar-Joseph Georg Gerber David K. Gifford Tommi S. Jaakkola
MIT Lab for Computer Science and MIT AI Lab
200 Technology Square, Cambridge, MA 02139
{zivbj,georg,gifford}@mit.edu, tommi@ai.mit.edu

Itamar Simon
Whitehead Institute for Biomedical Research
9 Cambridge Center, Cambridge, MA 02142

simon@wi.mit.edu

Abstract

We present algorithms for time-series gene expression analy-
sis that permit the principled estimation of unobserved time-
points, clustering, and dataset alignment. Each expression
profile is modeled as a cubic spline (piecewise polynomial)
that is estimated from the observed data and every time point
influences the overall smooth expression curve. We constrain
the spline coefficients of genes in the same class to have sim-
ilar expression patterns, while also allowing for gene specific
parameters. We show that unobserved time-points can be re-
constructed using our method with 10-15% less error when
compared to previous best methods. Our clustering algo-
rithm operates directly on the continuous representations of
gene expression profiles, and we demonstrate that this is par-
ticularly effective when applied to non-uniformly sampled
data. Our continuous alignment algorithm also avoids diffi-
culties encountered by discrete approaches. In particular, our
method allows for control of the number of degrees of free-
dom of the warp through the specification of parameterized
functions, which helps to avoid overfitting. We demonstrate
that our algorithm produces stable low-error alignments on
real expression data and further show a specific application
to yeast knockout data that produces biologically meaningful
results.

1 Introduction

Principled methods for estimating unobserved time-points,
clustering, and aligning microarray gene expression time-
series are needed to make such data useful for detailed anal-
ysis. Datasets measuring temporal behavior of thousands of
genes offer rich opportunities for computational biologists.

For example, Dynamic Bayesian Networks may be used
to build models and try to understand how genetic responses
unfold. However, such modeling frameworks need a suf-
ficient quantity of data in the appropriate format. Current
gene expression time-series data often do not meet these re-
quirements, since they may be missing data points, sampled
non-uniformly, and measure biological processes that exhibit
temporal variation.

In many applications, researchers may face the problem of
reconstructing unobserved gene expression values. Values
may not have been observed for two reasons. First, errors
may occur in the experimental process that lead to corrup-
tion or absence of some expression measurements. Second,
we may want to estimate expression values at time points
different from those originally sampled. In either case, the
nature of microarray data makes straightforward interpola-
tion difficult. Data are often very noisy and there are few
replicates. Thus, simple techniques such as interpolation of
individual genes can lead to poor estimates. Additionally, in
many cases there are a large number of missing time-points
in a series for any given gene, making gene specific interpo-
lation infeasible. In the case of clustering, the treatment of
time-series can be problematic, as a time-series represents a
set of dependent experiments. A particular problem arises
when series are not sampled uniformly such as in [14, 3, 7].

Variability in the timing of biological processes further
complicates gene expression time-series analysis. The rate
at which similar underlying processes such as the cell-cycle
unfold can be expected to differ across organisms, genetic
variants, and environmental conditions. For instance, Spell-
man et al [14] analyze time-series data for the yeast cell-
cycle in which different methods were used to synchronize
the cells. It is clear that the cycle lengths across the different
experiments vary considerably, and that the series begin and
end at different phases of the cell-cycle. Thus, one needs a
method to align such series to make them comparable.

In this paper we use statistical spline estimation to rep-
resent time-series gene expression profiles as continuous
curves. Our method takes into account the actual duration
each time point represents, unlike most previous approaches

that treat expression time-series like static data consisting
of vectors of discrete samples [7, 11, 8]. Our algorithm
generates a set of continuous curves that can be used di-
rectly for estimating unobserved data. However, although
our method uses spline curves (piecewise polynomials) to
represent gene expression profiles, it is not reasonable to fit
each gene with an individual spline due to the issues with
microarray datasets discussed above. Instead, we constrain
the spline coefficients of genes in the same class to covary
similarly, while also allowing for gene specific parameters.
A class is a set of genes with similar expression profiles that
may be constructed using prior biological knowledge or clus-
tering methods. We present a clustering algorithm that infers
classes automatically by operating directly on the continu-
ous representations of expression profiles. This is particu-
larly effective when applied to non-uniformly sampled data.
However, note that our method does require data that has
been sampled at a sufficiently high rate. We demonstrate
in Section 5 that our method performs well on several such
datasets, but for other datasets that have been sampled at
rates too low to capture changes in the underlying biological
processes, our method will not be effective. A future direc-
tion would be to use our method to determine the quality of
the sampling rate.

Our alignment algorithm uses the same spline representa-
tion of expression profiles to continuously time-warp series.
First, a parameterized function is chosen that maps the time-
scale of one series into another. Because we use parame-
terized functions, we are explicitly specifying the number
of allowed degrees of freedom, which is helpful in avoiding
overfitting. Our algorithm seeks to maximize the similarity
between the two sets of expression profiles by adjusting the
parameters of the warping function.

The remainder of this paper is organized as follows. In
Section 2 we discuss our algorithm for estimating unob-
served data and in Section 3 we extend this algorithm to
perform clustering. In Section 4 we present our alignment
algorithm. Section 5 presents applications of our method to
expression data and Section 6 concludes the paper and sug-
gests directions for future work.

1.1 Related Work

Recently, several papers have focused on modeling and an-
alyzing the temporal aspects of gene expression data. In
Holter et al [9] a time translational matrix is used to model
the temporal relationships between different modes of the
Singular Value Decomposition (SVD). Unlike our work, this
method focuses on the SVD modes and not on specific genes.
In addition, only relationships between time points that are
sampled at the lowest common frequencies can be studied.
Thus, not all available expression data can be used. In Zhao
et al [17] a statistical model is fit to all genes in order to find
those that are cell cycle regulated. This method uses a cus-
tom tailored model, relying on the periodicity of the specific
dataset analyzed, and is thus less general than our approach.

Several papers have used simple interpolation techniques
to estimate missing values for gene expression data. Aach
et al [1] use linear interpolation to estimate gene expres-
sion levels for unobserved time-points. D’haeseleer [6] use
spline interpolation on individual genes to interpolate miss-
ing time-points. As we show in Section 5.2, both techniques
cannot approximate the expression curve of a gene well, es-
pecially if there are many missing values. In Troyanskaya
et al [15] several techniques for missing value estimations
were explored. However, none of the suggested techniques
take into account the actual times the points correspond to,
and thus time series data is treated in the same way as static
data. As a consequence, their techniques cannot estimate
values for time-points between those measured in the origi-
nal experiments.

There is a considerable statistical literature that deals
with the problem of analyzing non-uniformly sampled data.
These models, known as mixed-effect models [2] use spline
estimation methods to construct a common class profile for
their input data. Recently, James and Hastie [10] presented
a reduced rank mixed effects model that was used for classi-
fying medical time-series data. In this paper we extend these
methods to gene expression data. Unlike the above papers,
we focus on the gene specific aspects rather than the common
class profile. In addition, we present a method that is able to
deal with cases in which class membership is not given. An-
other difference between this work and [10] is that we do not
use a reduced rank approach, since gene expression datasets
contain information about thousands of genes.

Many clustering algorithms have been suggested for gene
expression analysis (see [12]). However, as far as we are
aware, all these algorithms treat their input as a vector of
data points, and do not take into account the actual times
at which these points were sampled. In contrast, our algo-
rithm weights time points differently according to the sam-
pling rate.

Aach et al [1] presented a method for aligning gene ex-
pression time-series that is based on Dynamic Time Warp-
ing, a discrete method that uses dynamic programming and is
conceptually similar to sequence alignment algorithms. Un-
like with our method, the allowed degrees of freedom of the
warp operation in Aach et al depends on the number of data
points in the time-series. Their algorithm also allow map-
pings of multiple time-points to a single point, thus stop-
ping time in one of the datasets. In contrast, our algorithm
avoids temporal discontinuities by using a continuous warp-
ing representation. There is also a substantial body of work
in the speech recognition and computer vision community
that deals with data alignment. For instance, non-stationary
Hidden Markov models with warping parameters have been
used for alignment of speech data [5], and mutual informa-
tion based methods have been used for registering medical
images [16]. However, these methods generally assume high
resolution data, which is not the case with available gene ex-
pression datasets.

2 Estimating Unobserved Expression
Values and Time Points

In order to obtain a continuous time formulation, we use cu-
bic splines to represent gene expression curves. Splines can
be described by a set of basis functions, and are often used
for fitting time-series and other data [4]. By knowing the
value of the splines at a set of control points in the time-
series, one can generate the entire set of polynomials from
these basis functions. In our formulation, the spline con-
trol points are uniformly spaced to cover the entire duration
of the dataset. Once the spline polynomials are generated
we can re-sample the curve to estimate expression values at
any time-points. When estimating these splines from expres-
sion data, we do not try to fit each gene individually. Due to
noise and missing values, such an approach could lead to
over-fitting of the data and may in general lead to estimates
that are very different from the real expression values of that
gene (see Section 5.1). Instead, we constrain the spline co-
efficients of co-expressed genes to have the same covariance
matrix, and thus we use other genes in the same class to es-
timate the missing values of a specific gene.

2.1 A Probabilistic Model of Time Series Ex-
pression Data

In this section we follow a method that is similar to the one
used by James and Hastie [10] for classification. However,
unlike their work, in this paper we focus on gene specific
aspects rather than the common class profile. This allows us
to handle variations in expression levels that are caused by
gene specific behavior.

A class is a set of genes that are grouped together using
prior biological knowledge or a clustering algorithm. In this
section we assume that class information is given. We dis-
cuss how to deal with cases in which such class information
is not given in Section 3.

We represent each gene expression profile by a spline
curve. For a gene i in class j, Yi(t) is the observed value
for i at time t. Let q be the number of spline control points
used, and s(t) the vector of spline basis functions evaluated
at time t, with s(t) of dimensions q by 1. Denote by µj the
average value of the spline coefficients for genes in class j,
and by γi the gene specific variation coefficients. We assume
that γi is normally distributed vector with mean zero and the
class spline control points covariance matrix Γj , which is a
q by q matrix. Denote by εi a random noise term that is nor-
mally distributed with mean 0 and variance σ2. According
to this model, Yi(t) can be written as:

Yi(t) = s(t)(µj + γi) + εi

This model includes both gene specific and class specific pa-
rameters. This allows us to use information from other genes
in the class based on the extent to which gene specific infor-
mation is missing. We restrict the missing values of a gene

by requiring them to vary with the observed values according
to the class covariance matrix Γj . Using the class average µj

and the gene specific variation γi, we can resample gene i at
any time t′ during the experiment. This is done by evaluating
the spline basis at time t′, and setting Ŷi(t′) = s(t′)(µj +γi).

In order to learn the parameters of this model (µ, γ, Γ and
σ) we use the observed values, and maximize the likelihood
of the input data. Denote by Yi the vector of observed ex-
pression values for gene i, and by Si the spline basis func-
tion evaluated at the times in which values for gene i were
observed. If we observed a total of m expression values for i
in our dataset, then Si is of dimensions mxq. The kth row in
Si contains the spline basis functions evaluated at tk, where
tk is the time at which the kth value was observed. Accord-
ing to our model, we have:

Yi = Si(µj + γi) + εi

where εi is a vector of the noise terms. Note that since we
are estimating the spline coefficients at the control points,
each observed value has an effect related to the actual time
it represents. Thus, different experiments can have different
effects on the resulting curve if the expression values were
sampled non-uniformly.

For our solution, we assume that the expression values
for each gene were obtained independently of other genes.
This assumption is not entirely true since different experi-
mental conditions can affect multiple genes in the same ex-
periment. However, this simplifying assumption allows for
efficient computations and allows us to capture the essence
of the results.

There are two normally distributed parameters in our
model, the noise term ε and the gene specific parameters γ.
Thus the combined covariance matrix for a gene in class j
can be written as:

Σj = σ2I + SΓjS
T

where S is the spline basis function evaluated at all the time
points in which experiments were carried out. Given this for-
mulation, determining the maximum likelihood estimates for
our model parameters is a non-convex optimization problem
(see [10]). Thus, we turn to the EM algorithm. If the γ values
were observed, we could have decomposed the probability in
the following way:

p(Y, γ|σ2, Γ, µ) = p(Y |σ2, Γ, µ, γ)p(γ|σ2, Γ, µ)

which translates into the following joint probability:

∏

j

∏

i∈cj

1

(2π)niσni
×

exp[−
1

2σ2
(Yi − Si(µj + γi))

T (Yi − Si(µj + γi))]×

1

(2π)q |Γj |1/2
exp[−

1

2
γT

i Γ−1
j γi] (1)

where c is the number of classes and cj is the set of genes in
class j. Note that we need to maximize this joint probability
simultaneously for all classes since the variance of the noise,
σ2, is assumed to be the same for all genes.

This representation leads to the following procedure. We
treat the γi’s as missing data and solve the maximum like-
lihood problem using the EM algorithm. In the E step we
find the best estimation for γ using the values we have for
σ2, µ and Γ. In the M step we maximize equation 1 with
respect to σ2, µ and Γ while holding the γi’s fixed. See [10]
for complete details.

The complexity of each iteration of the EM algorithm is
O(q(n + c ∗ q)) since we estimate q parameters for each
gene and q2 + q parameters for each class.

3 Model Based Clustering Algorithm
for Temporal Data

The algorithm described in the previous section allows us to
find the expression curve for each gene when the class par-
titioning is known. Though this information is sometimes
available, either from previous knowledge or from a classi-
fication algorithm [14], this is not always the case. In this
section we describe a new clustering algorithm that simul-
taneously solves the parameter estimation and class assign-
ment problems.

TimeFit(Y, S, c, n) {
For all classes j {

choose a random gene i
// initialize class center with a random gene
µj = (ST

i Si)
−1ST

i Yi

}
Initialize Γ, σ2, γ arbitrarily
Repeat until convergence {

E step:
for all genes i and classes j

p(j|i)←
pjp(Yi|µj ,Γj ,γi,j ,σ2)∑
k

pkp(Yi|µk ,Γk,γi,k,σ2)

M step:
for all genes i and classes j, Find the MAP estimate of γi,j

// see Appendix for complete details
Maximize Γ, σ2, µ w.r.t. P (j|i)
// update the class probability
for all classes j, pj ←

1
n

∑n

i
p(j|i)

}
}

Figure 1: Estimating the model parameters without class in-
formation. The posterior probabilities P (j|i) can be used for
clustering as described in the text.

Instead of the fixed class model from Section 2, we assume
a mixture model. Thus, we can model the expression vector
for gene i in the following way. First, we select a class j for
gene i uniformly at random. Next, we sample γi using class

j’s covariance matrix Γj , and sample a noise vector εi using
σ2. Finally we construct Yi by setting:

Yi = Si(µj + γi) + εi

In Figure 1 we present TimeFit, our spline fitting algo-
rithm that performs class assignment. The number of desired
classes, c, is an input to TimeFit. Initially all classes are as-
sumed to have the same prior probabilities, though it is easy
to modify this algorithm if one has prior knowledge about the
different classes. TimeFit begins by choosing for each class
one gene at random, and using this gene as an initial estimate
for the class center (or average of the spline coefficients). We
now treat the class assignments as the missing variables, and
iterate using a modified EM algorithm. In the E step we esti-
mate for each gene i and class j the probability that i belongs
to class j, P (j|i), using the values we obtained for the rest
of the parameters in the M step. In the M step, instead of
equation 1 we now maximize our parameters for each class
with respect to the class probability (P (j|i)) as computed in
the E step. In addition, we now treat the γi,j’s as param-
eters, and find their MAP (maximum a posteriori) estimate,
which is then used in the E step. The complete details of this
procedure are explained in the Appendix. As in the previous
section, TimeFit still increases the likelihood monotonically,
and terminates when the parameters converge.

When the algorithm converges, for each gene i we dis-
cover the class j such that p(j|i) = max1≤k≤cP (k|i) and
assign i to this class. Using this ”hard” clustering, when
we need to re-sample gene i’s expression curve (either for
missing values estimation or for new time points) we use the
estimated class js parameters (γi,j , µj) and continue as de-
scribed in the previous section.

For TimeFit, the complexity of each iteration of the EM
algorithm is O(cq(n + q)) since we now estimate c + cq
parameters for each gene.

4 Aligning Temporal Data

The goal of the alignment algorithm is to warp the time-scale
of one realization of a biological process into that of another.
A set of genes are chosen that are assumed to have the same
temporal pattern of expression (e.g., from prior biological
knowledge or clustering methods). A parameterized warp-
ing function (e.g., linear) is then selected and our algorithm
seeks to produce an optimal alignment by adjusting the func-
tion parameters. Note that although it is possible to align in-
dividual genes this is problematic unless one has sufficiently
high quality data (e.g., replicates or a large number of time
points.)

Assume that we have two sets of time-series gene expres-
sion profiles, one of which we will refer to as the reference
set. Denote a spline curve for gene i in the reference time
series as g1

i (s), where smin ≤ s ≤ smax. Here, smin and
smax are the starting and ending points for the reference time
series respectively. Similarly, we will denote splines in the

set to be warped as g2
i (t) for tmin ≤ t ≤ tmax. Define a

mapping T (s) = t, which transforms points in the reference
scale into the time-scale of the set to be warped. In this paper,
we will discuss a linear transformation T (s) = (s − b)/a,
with a the stretch/squash parameter and b the translation.
However, more complex transformations could be used in
our framework. We define the alignment error e2

i for each
gene as:

e2
i =

β∫
α

[g2
i (T (s))− g1

i (s)]2ds

β − α
(2)

where α = max{smin, T
−1(tmin)} is the starting point of

the alignment, and β = min{smax, T
−1(tmax)} is its end

point. The error of the alignment for each gene is propor-
tional to the averaged squared distance between the curve
for gene i in the reference set and in the set to be warped. In
order to take into account the degree of overlap between the
curves, and to avoid trivial solutions such as mapping all the
values in the curve to a single point, we divide this error by
the time-length of the overlap β − α. Thus, our goal is to
find parameters a and b that minimize e2

i . As discussed, we
suggest minimizing the error for a set of genes. We define
the error for a set of genes S of size n as:

ES =

n∑

i=1

wie
2
i (3)

The wi’s are weighting coefficients that sum to one; they
could be uniform (1/n) or used for unequal weighting. For
instance, if one wishes to align wildtype time-series expres-
sion data with knockout data, many of the genes’ expres-
sion patterns are expected to be unchanged in the two ex-
periments. However, a subset of the genes may be highly af-
fected. In this case, we want to down-weight the contribution
of such genes, since they are not expected to align well. One
way of formulating this is to require that the product wie

2
i be

the same for all genes (the weight will be inversely propor-
tional to the error). From wie

2
i = K, we get that ES = nK

and so we can deduce that:

wi =
K

e2
i

⇒
∑

i

wi =
∑

i

K

e2
i

⇒ K =
1∑

i 1/e2
i

=
ES

n

since
∑

i wi = 1. As before, the objective is to minimize
ES , or in this case equivalently to maximize

∑
i 1/e2

i .
Minimization of ES must be done numerically, since a

closed form solution is not possible. In the linear case pre-
sented, we are only searching for two parameters, so we
minimize ES directly using standard non-linear optimization
techniques. We use the Nelder-Mead simplex search method
(available in the Matlab package), which does not use gradi-
ents and can handle discontinuities. For the linear warping
case, the essential constraints are that α < β and a > 0.
Since the use of a numerical optimization method does not
guarantee convergence to a global minimum, multiple ran-
dom re-starts may be necessary. This leads to an algorithm

with running time O(rmnq2), in which r is the number of
random re-starts, m is the number of iterations for conver-
gence, n is the number of genes in S, and q is the number of
spline control points used.

If a large number of genes are to be aligned, we suggest
the following algorithm to reduce the computation time. Be-
gin by choosing a random subset of fixed size (e.g., 50 genes)
and random initial settings for the warping parameters from
a uniform distribution. The minimization procedure is then
carried out and this process is repeated with a new random
choice of warping parameters for a set number of iterations.
Upon termination, the alignment parameters that correspond
to the minimum error are chosen. These parameters are then
used as the starting conditions for the ES minimization us-
ing the full set of genes. See Section 5.2 for experimental
results on how this reduces the running time on gene expres-
sion datasets.

5 Results

In this section we demonstrate the application of our method
to expression time-series datasets, showing results for unob-
served data estimation, clustering and alignment. Most of
our results make use of the cell-cycle time-series data from
Spellman et al [14]. In that paper, the authors identify
800 genes in Saccharomyces cerevisiae as cell cycle reg-
ulated. The authors assigned these genes to five groups that
they refer to as G1, S, S/G2, G2/M , and M/G1.We also
analyzed time-series data from a Fkh1/Fkh2 knockout exper-
iment done by Zhu et al [18]. Table 5 summarizes the data
sets that we used.

5.1 Unobserved Data Estimation

To test our missing value estimation algorithm we concen-
trated on the cdc15 dataset. We chose this dataset (see Ta-
ble 5) because it is the largest (24 experiments) and contains
non-uniformly sampled data. The results presented in this
section were obtained using splines with 7 control points;
however, similar results were obtained for different numbers
of control points (results not shown).

We compared our algorithm to three other interpolation
techniques that have been used in previous papers: lin-
ear interpolation [1], spline interpolation using individual
genes [6], and k-nearest neighbors (KNN) with k = 20,
which achieved the best results on static data out of all the
algorithms described in [15]. In order to test our algorithm
on a large scale we chose 100 genes at random from the set
of cell-cycle regulated genes. For each of these genes we
ran each estimation algorithm four different times, hiding
1,2,3 and 4 consecutive time points, while not altering the
other genes. Next, we computed the error in our estimations
when compared to an estimate of the variance of the log ra-
tios of the expression values (see the Appendix for complete
details).

dataset method of arrest start end sampling
alphaDS alpha mating factor 0m 119m every 7m
cdc15DS temp. sensitive cdc15 mutant 10m 290m ev. 20m for 1 hr, ev. 10m for 3 hr, ev. 20 min for final hr
cdc28DS temp. sensitive cdc28 mutant 0m 160m every 10m
fkh1/fkh2DS alpha mating factor 0m 210m ev. 15m until 165m, then after 45m

Table 1: Summary of gene expression time series analyzed.

Figure 2 (a) shows a comparison of the error of our estima-
tion algorithm with the three methods mentioned above. For
our method, we performed two separate runs. In the first we
used the class information provided in [14] and in the sec-
ond we used the algorithm described in Section 3 to obtain
the class information. For one missing value, our algorithm
achieves 10% less error than k-nearest neighbors (KNN). For
two and three missing values our algorithm achieves lower
or equal error rates when compared with KNN, and it does
far better than the two other interpolation techniques. Only
when trying to estimate four consecutive missing values does
KNN perform better than our algorithm. However, four con-
secutive missing values are unusual in practice, and in almost
all cases one does not need to estimate more than two consec-
utive values. Interestingly, our algorithm does better when it
is allowed to estimate class membership than it does when
the class information is pre-specified. This can be attributed
to the fact that the five classes from [14] are somewhat ar-
bitrary divisions of a continuous cycle. Thus, for missing
value estimation our clustering algorithm is able to assign
more relevant class labels.

Our algorithm can estimate expression values at any time
point during the course of the experiments. In Figure 2 (b)
we present results that were obtained by hiding 1,2,3 and
4 consecutive experiments. Again, our algorithm achieves
more than 15% less error than the other two techniques. Note
that KNN cannot be used to estimate missing experiments,
and thus is not included in this comparison.

5.2 Clustering

In order to explore the effect that non-uniform sampling can
have on clustering we generated two synthetic curves as fol-
lows. The first curve, f1 is obtained using the equation
f1(x) = sin x. The second curve is given by the following
equation:

f2(x) =

{
sin x : x ≤ π
sin x + (x− π)/(20π) : x > π

We sampled each curve 64 times between −π and π and
then sampled between π and 5π (the remaining portion of the
curve) at different rates of either every π, π/2, π/4 or π/16.
Note that since all curves were sampled between−π and 5π,
the maximal difference between the sampled values (ampli-
tude of the curves) is at most 0.2. For each different sampling
we generated 100 vectors from each curve, and added ran-
dom noise (normally distributed with mean 0 and variance

0.2). Next we used our TimeFit algorithm, and compared the
results to those of k-means clustering. K-means is a clus-
tering algorithm that assumes a mixture model and tries to
assign genes to classes using the class centers (see [12] for
details). K-means treats all points in the same way, and does
not use the actual times they represent. As can be seen in Fig-
ure 3, the lower the sampling rate, the larger the difference
between the performance of TimeFit and k-means. For ex-
ample, for the sampling rate of π, k-means does only slightly
better than chance, while TimeFit has a much higher classi-
fication success.

Figure 3: A comparison between k-means and TimeFit for clus-
tering the vectors from f1 and f2. The success rate was determined
by the total number of correctly clustered vectors out of the 200
vectors. As can be seen, the lower the sampling rate, the greater the
advantage of using our algorithm.

Next we tested TimeFit on the cdc15DS described above
and compared the results to k-means (results not shown). For
both algorithms we generated five classes. When analyzing
the results we used the Spellman clusters as the gold stan-
dard, and determined how many clusters in our results cor-
respond to these clusters. Four out of the five clusters that
were generated by TimeFit correspond to Spellmans’ clus-
ters, containing genes from at most two neighboring phases
(the fifth contained genes from three consecutive phases).
Since we are dealing with cell cycle data, the clusters defined
in [14] can only have arbitrary boundaries and thus joining
two of them is reasonable. On the other hand, in the k-means
clustering result, one of the clusters contained a significant

(a) Missing values (b) Missing experiments

Figure 2: Comparison among different missing value interpolation techniques. (a) Finding missing values and (b) finding missing experi-
ments (time points not originally sampled). As can be seen, in almost all cases our algorithm does better than the others methods.

number of genes from four of the Spellman clusters, and an-
other cluster contained genes from three clusters. Thus, the
results of our clustering algorithm are in better correspon-
dence with existing biological knowledge than those of k-
means.

5.3 Alignment

We aligned three yeast cell-cycle gene expression time-series
that clearly occur on different time-scales and begin in dif-
ferent phases. The cdc15DS was used as a reference set and
the alphaDS and cdc28DS were aligned against it using a lin-
ear warping T (s) = (s − b)/a and the full set of cell-cycle
regulated genes as identified in [14]. For the cdc28DS, we
obtained a = 1.42 and b = 2.25 with ES = 0.1850. These
results indicate that the cdc28DS cell-cycle runs at approxi-
mately 1.4 times the speed of the cdc15DS cycle and starts
approximately 5.5 minutes before (i.e., we calculate T (10)
since cdc15DS starts at 10 minutes). For the alphaDS, we
obtained a = 1.95 and b = −5.89 with ES = 0.1812. Fig-
ure 4 shows the aligned/unaligned expression values for the
G1 and S/G2 clusters for the cdc28DS to cdc15DS align-
ment. Alignment for each dataset took approximately 5.5
minutes on a 1 GHz Pentium III machine using our algorithm
that performs initial alignments on smaller subsets of genes;
the alignments took approximately 45 minutes without this
improvement. To validate the quality of these alignments we
performed two analyses: 1) alignments of genes in alphaDS
against genes in cdc15DS with gene identity of those in
cdc15DS randomly permuted and 2) alignments of alphaDS
to cdc15DS using different numbers of genes. Note that for
brevity only the alphaDS was used; we chose this dataset be-
cause it is the smallest and presumably demonstrates worst-

genes a std a b std b
5 1.80 0.42 -7.70 16.41
10 1.89 0.21 -5.06 21.5
25 1.93 0.10 -4.99 7.07
50 1.93 0.13 -5.13 9.03
100 1.96 0.03 -6.86 2.42
200 1.95 0.02 -6.38 1.76
400 1.96 0.02 -6.12 1.30

Table 2: Results of experiments in which random subsets of
fixed size were sampled 100 times and alignment of alphaDS and
cdc15DS were performed. The columns are as follows: number of
genes used, stretch/squash parameter, standard deviation of this pa-
rameter, offset parameter, and standard deviation of this parameter.
This analysis shows that the variance in the parameters decreases as
more genes are used and there is convergence to the a and b settings
found with the full set of genes.

case results. For the first analysis, we performed 200 tri-
als giving ES scores between 0.2562-0.3554, with 50% of
the scores lying between 0.2780-0.3129. These results sug-
gest that the actual alphaDS to cdc15DS ES score of 0.1812
would not arise by a chance alignment of the genes. For the
second analysis, we sampled subsets of between 5-400 genes
100 times from the full set of cell-cycle regulated genes (Ta-
ble 2). This analysis shows that the variance in the param-
eters decreases as more genes are used and there is conver-
gence to the a and b settings found with the full set of genes.
Interestingly, our algorithm is usually able to find the ”ac-
tual” a and b parameter settings even when relatively small
numbers of genes are used.

Thus, these analyses give evidence that our algorithm can
reliably align the cell-cycle datasets. These results compare
favorably with those in Aach et al [1] using the same data. In

Figure 4: Alignment of genes for the cdc28DS to cdc15DS. Linear warping was used with the full set of cell-cycle regulated genes. The
left-hand side shows class-averages of unaligned expression values for two clusters. The top row shows aligned results for the G1 cluster
(186 genes) and the bottom row the S/G2 cluster (283 genes). These results indicate that the cdc28DS cell-cycle runs at approximately 1.4
times the speed of the cdc15DS cycle and starts approximately 5.5 minutes before.

their case, they found that their actual alignment score was
not at a low percentile when compared against alignments
using randomized data (gene values shuffled). Further, they
indicate that poor results were obtained with small cluster
sizes (an analysis over a wide range of sizes was not pre-
sented in their paper). The fact that our method uses a con-
tinuous representation and fits only two parameters to all the
genes helps to explain its good performance on the cell-cycle
data. However, one must be careful in extrapolating these
results, since they are clearly dependent on the underlying
dataset.

In a second application of our alignment algorithm, we
used our method to discover yeast cell-cycle regulated genes
that appear to be regulated by the Fkh2 transcriptional fac-
tor. Zhu et al performed an experiment in which two yeast
transcriptional factors (fkh1 and fkh2) were knocked out
and a time-series of gene expression levels was measured in
synchronized cells [18]. Simon et al [13] demonstrated with
a microarray DNA-binding experiment that a set of genes
are bound by Fkh2 in wildtype unsynchronized yeast. We
were interested in discovering which genes in this set show
altered expression in the knockout experiments. However,
direct comparison of the data from Zhu et al [18] and that
from Spellman et al [14] is problematic, because the series
were sampled at different rates, begin at different cell-cycle
phases, and exhibit different periods.

We used our algorithm to rank fifty-six genes bound by
Fkh2 according to the difference in expression curves of
the aligned wildtype and knockout experiments. The non-
uniform weighting version of our algorithm was used to align
the datasets using all genes identified as cell-cycle regulated

in [14] and the gene alignment error scores e2
i were used

for ranking. Figure 5 shows a plot of the spline expression
profiles of the top four genes with the worst alignment scores
and the top four with the best scores. A poor alignment score
indicates that a gene is behaving differently in the knockout
experiment.

The ranking produced by our algorithm appears to yield
biologically meaningful results, highlighting which genes
appear to be regulated by Fkh2 and those that are merely
bound by it. For instance, all of the genes with the worst
alignment scores shown were determined to be bound by
both Fkh1 and Fkh2 in [13], whereas all of the best aligning
genes were determined to be bound by Fkh2 only. This cor-
responds to biological knowledge indicating that both Fkh1
and Fkh2 are required for regulation of a number of genes.
It is also interesting that among the genes shown with good
alignment, three are bound also by Swi6 and either Mbp1
or Swi4, factors that are likely to work independently of the
Fkh proteins. Further, the genes with poor alignment are
known to be bound by Ndd1 and Mcm1 or Ace2 and/or Swi5.
Mcm1/Ndd1 are known to work with the Fkh proteins and
are not sufficient to regulate expression without them. Ace2
and Swi5 apparently can bind and regulate independently of
the Fkh proteins, but their expression is Fkh dependent.

6 Conclusion and Future Work

We presented a unified model and algorithms that use sta-
tistical spline estimation to represent gene time-series ex-
pression profiles as continuous curves. Results using our ap-

Figure 5: Alignment of fkh1/fkh2 knockout data and the wildtype alphaDS. Genes shown are from a set of genes demonstrated to be bound
by Fkh2. Shown are the genes with the four worst (top row) and best (bottom row) gene alignment scores. A poor alignment score indicates
that a gene is behaving differently in the knockout experiment. See text for biological interpretation of these results.

proach on a large yeast cell-cycle data set demonstrate that
our framework, when used for estimating unobserved time-
points, clustering, and alignment of datasets has substantial
advantages over other methods that treat time-series as vec-
tors of points. Overall, we believe that as the analysis of
dynamic genetic behavior becomes more sophisticated, prin-
cipled model-based methods such as ours will become essen-
tial for reconstructing and combining data.

There are a number of interesting extensions that could
be made to our work. Experimental biologists often deter-
mine the sampling rate for a time-series experiment based
on knowledge about how quickly gene expression values
change. These assessments often make little use of infor-
mation that may be gleaned from previous expression exper-
iments. Our algorithm could be used to find the ”right” sam-
pling rate for time-series experiments, which could lead to
substantial time/cost savings or improvements in biological
results. Another way of extending this work is to develop a
clustering algorithm that uses our alignment method in order
to group genes that show similar kinetic changes between
datasets. Another open problem is developing a principled
method for determining the significance of the alignment er-
ror in order to automatically detect genes whose temporal
behavior is altered between experiments.

Acknowledgements

The first author acknowledges support by a Fellowship from
the Program in Mathematics and Molecular Biology at the

Florida State University, with funding from the Burroughs
Wellcome Fund Interfaces Program.

References

[1] J. Aach and G. M. Church. Aligning gene expression
time series with time warping algorithms. Bioinformat-
ics, 17:495–508, 2001.

[2] B. Brumback and J. Rice. Smoothing spline models for
the analysis of nested and crossed samples of curves.
Am. Statist. Assoc., 93:961–976, 1998.

[3] S. Chu, J. DeRisi, and et al. The transcriptional
program of sporulation in budding yeast. Science,
282:699–705, 1998.

[4] C. de Boor. A practical guide to splines. Springer,
1978.

[5] L. Deng, M. Aksmanovic, D. X. Sun, and C. F. J.
X. Wu. Recognition using hidden markov models
with polynomial regression functions as nonstationary
states. IEEE Transactions on Speech and Audio Pro-
cessing, 2:507–520, 1994.

[6] P. D’haeseleer, X. Wen, S. Fuhrman, and R. Somogyi.
Linear modeling of mrna expression levels during cns
development and injury. In PSB99, 1999.

[7] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Bot-
stein. Cluster analysis and display of genome-wide ex-
pression patterns. PNAS, 95:14863–14868, 1998.

[8] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Us-
ing bayesian network to analyze expression data. In
RECOMB, 2000.

[9] N. S. Holter, A. Maritan, and et al. Dynamic modeling
of gene expression data. PNAS, 98:1693–1698, 2001.

[10] G. James and T. Hastie. Functional linear discriminant
analysis for irregularly sampled curves. Journal of the
Royal Statistical Society, to appear, 2001.

[11] S. H Neal, M. Madhusmita, and et al. Fundamental
patterns underlying gene expression profiles: Simplic-
ity from complexity. PNAS, 97:8409–8414, 2000.

[12] Sharan R. and Shamir R. Algorithmic approaches to
clustering gene expression data. Current Topics in
Computational Biology, To appear.

[13] I. Simon, J. Barnett, and et al. Serial regulation of
transcriptional regulators in the yeast cell cycle. Cell,
106:697–708, 2001.

[14] T. S. Spellman, G Sherlock, and et al. Comprehensive
identification of cell cycle-regulated genes of the yeast
saccharomyces cerevisia by microarray hybridiza-
tion. Mol. Biol. of the Cell, 9:3273–3297, 1998.

[15] O. Troyanskaya, M. Cantor, and et al. Missing value es-
timation methods for dna microarrays. Bioinformatics,
17:520–525, 2001.

[16] P. Viola. Alignment by Maximization of Mutual Infor-
mation. PhD thesis, MIT AI Lab, 1995.

[17] L. P. Zhao, R. Prentice, and L. Breeden. Statisti-
cal modeling of large microarray data sets to iden-
tify stimulus-response profiles. PNAS, 98:5631–5636,
2001.

[18] G. Zhu, Spellman T. S., and et al. Two yeast forkhead
genes regulate cell cycle and pseudohyphal growth.
Nature, 406:90–94, 2000.

A EM Algorithm for Class Assign-
ment

In this appendix we present the details of the EM algorithm
that is used in Section 3. We start with the complete log
likelihood given by:

∑

i

log(
∑

j

Z(j|i)
1

σni
×

exp[−(Yi − Si(µj + γi,j))
T (Yi − Si(µj + γi,j))/2σ2]×

1

|Γj |1/2
exp[−

1

2
γT

i,jΓ
−1
j γi,j]) (4)

where j is the class index and ni is the number of ob-
served values for gene i. Z(j|i) is an (unobserved) binary
indicator variable that assigns each gene to exactly one class.

In the E step we compute the expected values for Z(j|i):

p(j|i) = E(Z(j|i)|Yi) =

pje
−(Yi−Si(µj+γi,j))

T (Yi−Si(µj+γi,j))/σ2

e−
1

2
γT

i,jΓ
−1

j
γi,j

∑
k pke−(Yi−Si(µk+γi,k))T (Yi−Si(µk+γi,k))/σ2

e−
1

2
γT

i,k
Γ−1

k
γi,k

In the M step we first find the MAP estimate for γi,j by
setting:

γi,j = (σ2Γ−1
j + ST

i Si)
−1ST

i (Yi − Siµj)

Next, we maximize σ2, µ and Γ w.r.t. the class assignment
probabilities computed in the E step:

σ2 =

∑
i

∑
j p(j|i)(Yi − Si(µj + γi,j))

T (Yi − Si(µj + γi,j))∑
i ni

µj is computed by setting:

µj = (
∑

i

p(j|i)ST
i Si)

−1(
∑

i

p(j|i)ST
i (Yi − Siγi,j))

Then we set Γj to:

Γj =

∑
i p(j|i)[γi,jγ

T
i,j + (Γ̂j

−1
+ ST

i Si/σ2)−1]∑
i p(j|i)

B Computing Error Rates

Here we describe in detail the method we used to compute
the error rates of the four different missing values algorithms
discussed in Section 5.1. Denote by Yi(t) the (hidden) ex-

pression values for gene i at time t, and by Ŷi(t) the esti-
mated values. Denote by m the number of missing (hidden)
data points and by n the number of genes that were used for
the test. Denote by v the variance of the log ratios of expres-
sion values. Then the error of an estimation for m missing
data points is defined as:

errm =
1

mn

n∑

i=1

m∑

l=1

√
[Yi(tl)− ̂Yi(tl)]2

v

If errm is above 1 then the error is (on average) bigger than
the replication variance, and vice versa. The variance v was
computed using the raw expression data of the unsynchro-
nized cells from two different time points.

