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What is BSS?

Assume an observation (signal) is a linear mix of >1
unknown independent source signals

The mixing (not the signals) is stationary
We have as many observations as unknown sources

To find sources in observations
- need to define a suitable measure of independence

... For example - the cocktail party problem (sources are speakers and background noise):

The cocktail party problem - find Z
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Formal statement of problem

* N independent sources . (MmxN)

mn

* linear square mixing ... A, (~Nxv)
(#sources=#sensors)

« produces a set of observations ..
..... XT'=AzZT

(Mxv)

mn

Formal statement of solution

* ‘demix’ observations ... X ( nxM)
into YT =WXT
YT (nNxm) = Z7 W (vxv) = At

How do we recover the independent sources?
( We are trying to estimate W = A1 )

.. We require a measure of independence!
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Y7 = W XT

The Fourier Transform

Y. = 3V WX, W, = ¢ i2mkn/N

(Independence between components is assumed)

Recap: Non-causal Wiener filtering
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y(f) + Sa(f)

{Power (4B) Observation S,(f)
/ x[n] - observation
& Noise Power S,(f) y[n] - ideal signal

d[n] - noise component

Ideal Signal Sy(f')

Filtered signal:

lll“ e Saie(f) = S{N)-H()
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BSS is a transform?

Like Fourier, we decompose into components by
transforming the observations into another vector
space which maximises the separation between
interesting (signal) and unwanted (noise).

Unlike Fourier, separation is not based on frequency-
It’s based on independence

Sources can have the same frequency content

No assumptions about the signals (other than they are
independent and linearly mixed)

® So you can filter/separate in-band noise/signals with BSS

Principal Component Analysis

 Second order decorrelation = independence

¢ Find a set of orthogonal axes in the data
(independence metric = variance)

 Project data onto these axes to decorrelate

 Independence is forced onto the data through the
orthogonality of axes

¢ Conventional noise / signal separation technique

Singular Value Decomposition

Decompose observation X=AZ into....
X=UsvT

S is a diagonal matrix of singular values with
elements arranged in descending order of
magnitude (the singular spectrum)

The columns of V are the eigenvectors of C=XTX
(the orthogonal subspace ... dot(v,v;)=0) ... they
‘demix’ or rotate the data

U is the matrix of projections of X onto the
eigenvectors of C ... the ‘source’ estimates




Singular Value Decomposition

Decompose observation X=AZ into....
X=USVT
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Eigenspectrum of decomposition

S = singular matrix ... zeros except on the leading diagonal

S, (i=)) are the eigenvalues™

Placed in order of descending magnitude

Correspond to the magnitude of projected data along each eigenvector
Eigenvectors are the axes of maximal variation in the data

[stem(diag()."2) FEigenspectrum=

Plot of eigenvalues
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Variance = power

y (analogous to Fourier
: ] [ components in power spectra)
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SVD: Method for PCA

A routine for performing SVD is as follows:

. Find the N non-zera eigenvalues, A, of the matrix € = X" X and form s SquAre
diagonal mawrix 8 by placing the square roots A of the N ei; 1es in
descending order of magnitude on the leading diagonal and setting all other elements
of 8 to zero.

ind the orthogonal eigenvectors of the matrix XX corresponding to the obtained
eigenvalues, and arrange them in the same order. this ordered collection of column-
vectors forms the matrix V.

3. Find the first ¥ column-vectors of the matrix Uz u, = &7 'Xv; (i = 1 : N}, Note that
are the elements of §'.
4. Add the rest of M — V vectors o the matrix U using the Gram-Schmidt orthogonal-

ization process (see appendix 15.9.2).




SVD noise/signal separation

To perform SVD filtering of a signal, use a truncated SVD
decomposition (using the first p eigenvectors)

Y=US VT

[Reduce the dimensionality of the data by discarding noise projections S, ;=0
Then reconstruct the data with just the signal subsapce]

Most of the signal is
contained in the first few
principal components.

l Discarding these and

L projecting back into the
original observation space
effects a noise-filtering or a
noise/signal separation
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iiginal joint POF with Principal companerts
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Independent Component Analysis

As in PCA, we are looking for N different vectors onto
which we can project our observations to give a set of N

maximally independent signals (sources)

output data (discovered sources) dimensionality =
dimensionality of observations

Instead of using variance as our independence measure
(i.e. decorrelating) as we do in PCA, we use a measure of

how statistically independent the sources are.




ICA: The basic idea ...

Assume underlying source signals (Z) are independent.
Assume a linear mixing matrix (A)... X7=AZT
in order to find Y (=Z), find W, (A1) ...
YT=WXT
How? Initialise W & iteratively update W to minimise or

maximise a cost function that measures the (statistical)
independence between the columns of the Y.

Non-Gaussianity = statistical independence?

From the Central Limit Theorem,
- add enough independent signals together, — Gaussian PDF

Sources, Z —_ :
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Recap: Moments of a distribution
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Higher order moments (3" -skewness)
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Skewness

Negative Positive
/-

Higher order moments (4™-kurtosis)

] M Lo— i 3
h{x] S g = T
M o
i=1
Gaussians are mesokurtic with x =3
Kurtosis
SubGaussian (Il;{iﬁl?u‘zic) (Ll)e;ﬁmflﬁﬁc) SuperGaussian
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Non-Gaussianity = statistical independence?

Central Limit Theorem: add enough independent signals together,
— Gaussian PDF (K =3)

.. make data components non-Gaussian to find independent sources
Sources, Z L :
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Recall — trying to estimate W

Assume underlying source signals (Z) are independent.
Assume a linear mixing matrix (A)... X7=AZT
in order to find Y (=Z), find W, (A1) ...

YT=WXT

Initialise W & iteratively update W with gradient descent
to maximise kurtosis.

Gradient descent to find W
* Given a cost function, &, we update each
element of W (w;) at each step, 7,

”‘\I.T"r']J ”‘17] 0 a{f
ki K dw;
* ... and recalculate cost function
* (nis the learning rate (~ 0.1), and speeds up
convergence.)

Weight updates to find: w _ | ! 3 ]
(Gradient ascent) =2 =1
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10



Gradient descent

min (Ul Y160 | e= max

Gradient Descent

* Cost function, &, can be maximum « or
minimum 1/x

{7) d\(

1) = w,! — —
ij i dw;;

g=min (U], Vo) | = max

Gradient descent example

 Imagine a 2-channel ECG, comprised of two sources;

— Cardiac )
— Noise b . [ it
A A

...and SNR=1 =
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Iteratively update W and measure x

Wieigts. Kartons an separated duts ot each itpeation
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Iteratively update W and measure x

Wieigts. Kartons an separated duts ot each itpeation
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Iteratively update W and measure x

Wieigts. Kartons an separated duts ot each itpeation
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Iteratively update W and measure x
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Maximized « for non-Gaussian signal
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Outlier insensitive
ICA cost functions

Measures of statistical independence

In general we require a measure of statistical independence which
we maximise between each of the N components.

Non-Gaussianity is one approximation, but sensitive to small
changes in the distribution tail.

Other measures include:
« Mutual Information 7,
« Entropy (Negentropy, 7 )... and

« Maximum (Log) Likelihood t(w)

(Note: all are related to &)

Entropy-based cost function

Kurtosis is highly sensitive to small changes in distribution tails.
A more robust measures of Gaussianity is based on differential

entropy H(y),
Hy) ff’fy“ug_ Ply)dy

. negentropy:
J(.Y) - H(y_r,mm.-c] - H(.Y]'
where'y,,,, is a Gaussian variable with the same covariance matrix
asy. J(y) can be estimated from kurtosis ...
1
48
Entropy: measure of randomness- Gaussians are maximally random

T )
J(y) 'F-"-{.nr"}' + —nfy)®
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Minimising Mutual Information

Mutual information (MI) between two vectors x and y :
I=H +H,-H,
always non-negative and zero if variables are independent ...
therefore we want to minimise MI.
MI can be re-written in terms of negentropy ...
Hs as s i) = €= 3 J ()
=1

where ¢ is a constant.
... differs from negentropy by a constant and a sign change

Independent source discovery using
Maximum Likelihood

Generative latent variable modelling N observables, X ...
from A sources, z; through a linear mapping W=w;;

Latent variables assumed to be independently distributed

/L

ihe;

Find elements of W by gradient ascent Ay, =
- iterative update by

where 7 is some learning rate (const) ... and
E(W)|is our objective cost function, the log likelihood

log, P(x™|A) = log, det A + E log, pi(a:x;)
1

The cocktail party problem
revisited

... some real examples using ICA
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Observations

Separation of mixed observations into source estimates is excellent
... apart from:

® Order of sources has changed
* Signals have been scaled

Why? ... In X"=AZT, insert a permutation matrix B ...

XT=ABB-1Z7 = B-1ZT ... = sources with different col. order.

= sources change by a scaling A— AB

... ICA solutions are order and scale independent because x is
dimensionless

Separation of sources in the ECG
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Transformation inversion for filtering

« Problem - can never know if sources are really
reflective of the actual source generators - no gold
standard

« De-mixing might alter the clinical relevance of
the ECG features

« Solution: ldentify unwanted sources, set
corresponding (p) columns in W- to zero (W,!),
then multiply back through to remove ‘noise’
sources and transform back into original
observation space.

Transformation inversion for filtering

A svhy' 1 S|NIT -— PCA
! Wy Wy = ICA
X\ .’r}_"-
—|_- |x —| bt
Source Observation Estimated Filtered
Space Space Source Oibservation
Space Space
() Criginal ECG
1 [ 1 | | | 1 | \ | | 1
X FINPRRY VEF. PRUEY BEVY | PPy I Y | PV RPN /S R WY Y
skt A e sty
7 ] T w0
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* PCA is good for Gaussian noise separation
* ICA is good for non-Gaussian ‘noise’ separation
* PCs have obvious meaning - highest energy components

* ICA - derived sources : arbitrary scaling/inversion & ordering
.... need energy-independent heuristic to identify signals / noise

* Order of ICs change - IC space is derived from the data.
- PC space only changes if SNR changes.

* ICA assumes linear mixing matrix

* ICA assumes stationary mixing

» De-mixing performance is function of lead position

* ICA requires as many sensors (ECG leads) as sources

* Filtering - discard certain dimensions then invert transformation
* In-band noise can be removed - unlike Fourier!

Fetal ECG lab preparation

Electrodes 2, 3 & 4

Ground Electrode

Ekectrode 1 {common}
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Fetal abdominal recordings

Maternal

M QRS
l N
|
M'T' ""“HW“"“‘ A -fﬁ
IR
¢ Maternal ECG is much larger in amplitude Fetal QRS

» Maternal and fetal ECG overlap in time domain
» Maternal features are broader, but
* Fetal ECG is in-band of maternal ECG
(they overlap in freq domain)
* 5 second window ... Maternal HR=72 bpm / Fetal HR = 156bpm

MECG & FECG spectral properties

Fetal QRS power region

—— ECG Envelope
== Movement Artifact
= QRS Complex
A ——— P &T Waves
= Muscle Noise
Baseline Wander
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