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Introduction

In this chapter we will examine how we can generalize the idea of transforming a time

series in an alternative representation, such as the Fourier (frequency) domain, to facili-

tate systematic methods of either removing (filtering) or adding (interpolating) data. In

particular, we will examine the techniques of Principal Component Analysis (PCA) using

Singular Value Decomposition (SVD), and Independent Component Analysis (ICA). Both

of these techniques utilize a representation of the data in a statistical domain rather than

a time or frequency domain. That is, the data is projected onto a new set of axes that

fulfill some statistical criterion, which imply independence, rather than a set of axes that

represent discrete frequencies such as with the Fourier transform.

Another important difference between these statistical techniques and Fourier-based tech-

niques is that the Fourier components onto which a data segment is projected are fixed,

whereas PCA- or ICA-based transformations depend on the structure of the data being ana-

lyzed. The axes onto which the data are projected are therefore discovered. If the structure

of the data changes over time, then the axes onto which the data is projected will change

too.

Any projection onto another space is essentially a method for separating the data out into

separate sources which will hopefully allow us to see important structure in a particu-

lar projection. For example, by calculating the power spectrum of a segment of data, we

hope to see peaks at certain frequencies. The power (amplitude squared) along certain

frequency vectors is therefore high, meaning we have a strong component in the signal
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at that frequency. By discarding the projections that correspond to the unwanted sources

(such as the noise or artifact sources) and inverting the transformation, we effectively per-

form a filtering of the signal. This is true for both ICA and PCA as well as Fourier-based

techniques. However, one important difference between these techniques is that Fourier

techniques assume that the projections onto each frequency component are independent

of the other frequency components. In PCA and ICA we attempt to find a set of axes which

are independent of one another in some sense. We assume there are a set of independent

sources in the data, but do not assume their exact properties. (Therefore, they may overlap

in the frequency domain in contrast to Fourier techniques.) We then define some measure

of independence and attempt to decorrelate the data by maximizing this measure. Since

we discover, rather than define the the axes, this process is known as blind source separa-
tion. The sources are the data projected onto the discovered axes. For PCA the measure

we use to discover the axes is variance and leads to a set of orthogonal axes (because the

data is decorrelated in a second order sense and the dot product of any of the axes is zero).

For ICA this measure is based on non-Gaussianity (such as kurtosis1 - see � 12.4.2) and the

axes are not necessarily orthogonal. Kurtosis is the fourth moment (mean, variance, and

skewness are the first three) and is a measure of how non-Gaussian a distribution is. Our

assumption is that if we maximize the non-Gaussianity of a set of signals, then they are

maximally independent. (This comes from the central limit theorem; if we keep adding

independent signals together, we will eventually arrive at a Gaussian distribution.) If we

break a Gaussian-like observation down into a set of non-Gaussian mixtures, each with dis-

tributions that are as non-Gaussian as possible, the individual signals will be independent.

Therefore, kurtosis allows us to separate non-Gaussian independent sources, whereas vari-

ance allows us to separate independent Gaussian noise sources.

This simple idea, if formulated in the correct manner, can lead to some surprising results,

as you will discover in the applications section later in these notes and in the accompa-

nying laboratory. However, we shall first map out the mathematical structure required to

understand how these independent sources are discovered and what this means about our

data. We shall also examine the assumptions we must make and what happens when these

assumptions break down.

12.1 Signal & noise separation

In general, an observed (recorded) time series comprises of both the signal we wish to an-

alyze and a noise component that we would like to remove. Noise or artifact removal often

comprises of a data reduction step (filtering) followed by a data reconstruction technique

(such as interpolation). However, the success of the data reduction and reconstruction

steps is highly dependent upon the nature of the noise and the signal.

By definition, noise is the part of the observation that masks the underlying signal we wish

1a measure of how wider or narrower a distribution is than a Gaussian
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to analyze2, and in itself adds no information to the analysis. However, for a noise signal

to carry no information, it must be white with a flat spectrum and an autocorrelation

function (ACF) equal to an impulse3. Most real noise is not really white, but colored

in some respect. In fact, the term noise is often used rather loosely and is frequently

used to describe signal contamination. For example, muscular activity recorded on the

electrocardiogram (ECG) is usually thought of as noise or artifact. However, increased

muscle artifact on the ECG actually tells us that the subject is more active than when little

or no muscle noise is present. Muscle noise is therefore a source of information about

activity, although it reduces the amount of information about the cardiac cycle. Signal

and noise definitions are therefore task-related and change depending on the nature of the

information you wish to extract from your observations.

Table 1 illustrates the range of signal contaminants for the ECG4. We shall also exam-

ine the statistical qualities of these contaminants in terms of their probability distribution

functions (PDFs) since the power spectrum of a signal is not always sufficient to charac-

terize a signal. The shape of a PDF can be described in terms of its Gaussianity, or rather,

departures from this idealized form (which are therefore called super- or sub-Gaussian).

The fact that these signals are not Gaussian turns out to be an extremely important qual-

ity, which is closely connected to the concept of independence, which we shall exploit to

separate contaminants form the signal

Although noise is often modeled as Gaussian white noise5, this is often not the case. Noise

is often correlated (with itself or sometimes the signal), or concentrated at certain values.

For example, 50Hz or 60Hz mains noise contamination is sinusoidal, a waveform that

spends most of its time at the extreme values (near its turning points). By considering

departures from the ideal Gaussian noise model we will see how conventional techniques

can under-perform and how more sophisticated (statistical-based) techniques can provide

improved filtering.

We will now explore how this is simply another form of data reduction (or filtering)

through projection onto a new set of axes or basis functions followed by data recon-

struction through projection back into the original space. By reducing the number of basis

functions we filter the data (by discarding the projections onto axes that are believed to

correspond to noise). By projecting from a reduced set of basis functions (onto which the

data has been compressed) back to the original space, we perform a type of interpolation

(by adding information from a model that encodes some of our prior beliefs about the

underlying nature of the signal or is derived from a data set).

2it lowers the SNR!
3Therefore, no one-step prediction is possible. This type of noise can be generated in MATLAB with the

���������
	 function.
4Throughout this chapter we shall use the ECG as a descriptive example because it has easily recognizable

(and definable) features and contaminants.
5generated in MATLAB by the function ����������
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Qualities � Frequency Time

Contaminant
�

Range duration

50 or 60HZ Powerline Narrowband 50 Continuous

or ������� Hz

Movement Baseline Narrowband Transient or

Wander ( 	���
� Hz) Continuous

Muscle Noise Broadband Transient

Electrical Interference Narrowband Transient or

Continuous

Electrode pop Narrowband Transient

Observation noise Broadband Continuous

Quantization noise Broadband Continuous

Table 1: Contaminants on the ECG and their nature.

Figure 1: 10 seconds of 3 Channel ECG. Note the high amplitude movement artifact in the

first two seconds and the ������� second. Note also the QRS-like artifacts around 2.6 and 5.1

seconds

TIME (S) �
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12.2 Matrix transformations as filters

The simplest filtering of a time series involves the transformation of a discrete one dimen-

sional ( ��� � ) time series �����	� , consisting of 
 points such that �����	���������������������
 
 
������ � ,

into a new representation, !"�#�%$&���'$(�)�'$(� 
 
 
*$(���+� . If �����	�,��-.� �/� �0� 
 
 
1��
2� is a column vec-

tor6 that represents a channel of ECG, then we can generalize this representation so that� channels of ECG 3 , and their transformed representation 4 are given by

35�
6777
8

�9�+� �9�%� :�:�: �9�<;����� ���+� :�:�: ���=;
...

...
...���>�?���@� :�:�:A���B;

CEDDD
F � 4G�

6777
8

$&�+� $&�%� :�:�: $&�<;$(��� $(�+� :�:�: $(�=;
...

...
...$/�>�H$/�@� :�:�:I$/�B;

CEDDD
F (1)

Note that we will adopt the convention throughout this chapter (and in the accompanying

laboratory exercises) that all vectors are written in lower-case bold and are column vectors,

and all matrices are written in upper-case bold type. The 
 points of each of the � signal

channels form 
 JK� matrices (i.e. the signal is � -dimensional with 
 samples for each

vector). An ( � JL� ) transformation matrix M can then be applied to 3 to create the

transformed matrix 4 such that 4KNK�OM�3PN 
 (2)

The purpose of a transformation is to map (or project) the data into another space which

serves to highlight patterns in the data and identify interesting projections. To filter the

data we discard the noise, or ‘uninteresting’ parts of the signal (which are masking the

information we are interested in). This amounts to a dimensionality reduction, as we are

discarding the dimensions (or subspace) that corresponds to the noise.

In general, transforms can be categorized as orthogonal or biorthogonal transforms. For

orthogonal transformations, the transformed signal is same length ( 
 ) as the original and

the energy of the data is unchanged. An example of this is the Discrete Fourier trans-

form (DFT) where the same signal is measured along a new set of perpendicular axes

corresponding to the coefficients of the Fourier series (see chapter 4). In the case of the

DFT with QR�S
 frequency vectors, we can write Eq. 2 as 4UTV�XW ;Y�Z � M�T Y 3 Y whereM�T Y �O[]\]^ � _`T Y�a ; , or equivalently

M �
6777
8

[ \]^ � _ [ \]^cb _ :�:�: [ \]^ � _�;[]\]^=b _ []\]^ed _ :�:�: []\]^=b _�;
...

...
...[]\]^ � _`� []\]^=b _�� :�:�:X[]\]^ � _��B;

C DDD
F 
 (3)

For biorthogonal transforms, the angles between the axes may change and the new axes are

not necessarily perpendicular. However, no information is lost and perfect reconstruction

of the original signal is still possible (using 3 � �OM \gf 4 � ).

6In h �jilk �nm the command ophUq`r`s]t�uwv`x �<y 	 gives a dimension of z#{}| and a length equal to ~ for a

column vector y .
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Transformations can be further categorized as as either lossless (so that the transformation

can be reversed and the original data restored exactly) or as lossy. When a signal is filtered

or compressed (through downsampling for instance), information is often lost and the

transformation is not invertible. In general, lossy transformations involve a non-invertible

transformation of the data using a transformation matrix that has at least one column set

to zero. Therefore there is an irreversible removal of some of the data and this corresponds

to a mapping to a lower number of dimensions.

In the following sections we will study two transformation techniques Principal Compo-

nent Analysis (PCA) and Independent Component Analysis (ICA). Both techniques attempt

to find an independent set of vectors onto which we can transform the data. The data pro-

jected (or mapped) onto each vector is the independent source. The basic goal in PCA is

to decorrelate the signal by projecting the data onto orthogonal axes. However, ICA results

in a biorthogonal transform of the data and the axes are not necessarily orthogonal. Both

PCA and ICA can be used to perform lossy or lossless transformations by multiplying the

recorded (observation) data by a separation or demixing matrix. Lossless PCA and ICA

both involve projecting the data onto a set of axes which are determined by the nature of

the data, and are therefore methods of blind source separation (BSS). (Blind because the

axes of projection and therefore the sources are determined through the application of an

internal measure and without the use of any prior knowledge of the data structure.)

However, once we have discovered the basis functions of the independent axes in the data

and have separated them out by projecting the data onto these axes, we can then use these

techniques to filter the data. By setting columns of the PCA and ICA separation matrices

that correspond to unwanted sources to zero, we produce noninvertible matrices7. If we

then force the inversion of the separation matrix8 and transform the data back into the

original observation space, we can remove the unwanted source from the original signal.

Figure 2 illustrates the BSS paradigm for filtering whereby we have � unknown sources

in an unknown source space which are linearly mixed and transformed into an observation

space where we record them. We then attempt to discover the sources or the inverse of

the mixing matrix and use this to transform the data back into an estimate of our source

space. After identifying the sources of interest and discarding those that we do not want

(by altering the inverse of the demixing matrix to have columns of zeros for the unwanted

sources), we reproject the data back into the observation space using the inverse of the

altered demixing matrix.

We shall also see how the sources that we discover with PCA have a specific ordering

according to the energy along each axis for a particular source. This is because we look for

the axis along which the data has maximum variance (and hence energy or power9). If the

signal to noise ratio (SNR) is greater than unity, the signal of interest is therefore confined

to the first few components. However, ICA allows us to discover sources by measuring

7For example, a transformation matrix [1 0; 0 0] is noninvertible, or singular ( u ��� � o ��������� r 	 so
	 ��� 	 ��� � 	 ��� 	 ��� r in h �ni k �nm ) and multiplying a two dimensional signal by this matrix performs a simple

reduction of the data by one dimension.
8using a pseudo-inversion technique such as h �ni k �nm� t�� u ��� ; � u ��� � o ��������� r 	 sOo ��������� r .
9all are proportional to �

�
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a relative cost function between the sources that is dimensionless. There is therefore no

relevance to the order of the columns in the separated data and often we have to apply

further signal-specific measures, or heuristics, to determine which sources are interesting.

12.3 Principal Component Analysis

In the case of the Fourier transform, the basis functions for the new representation are

predefined and assumed to be independent, whereas with PCA the representation, or

the basis functions, are found in the data by looking for a set of basis functions that are

independent. That is, the data undergoes a decorrelation using variance as the metric.

The basis functions are independent in a second order sense and are orthogonal (the dot

product of the axes, and the cross-correlation of the projections is close to zero).

The basic idea in the application of PCA to a data set, is to find the component vectors !�� ,!�� ,..., ! ; that they explain the maximum amount of variance possible by � linearly trans-

formed components. PCA can be defined in an intuitive way using a recursive formulation.

The direction of the first principal component � � is found by passing over the data and

attempting to maximize the value of � � ���������	��
����� Z �����0��� � � 3 � ��� . where � � is the same

length 
 as the data 3 . Thus the first principal component is the projection on the direc-

tion in which the variance of the projection is maximized. Each of the remaining ��� �
principal components are found by repeating this process in the remaining orthogonal sub-

space (which reduces in dimensionality by one for each new component we discover). The

principal components are then given by !�� ������ 3 ( ��� �/� 
 
 
 �w� ), the projection of 3 onto

each.

Although the basic goal in PCA is to decorrelate the signal by performing an orthogonal

projection, we often reduce the dimension of the data from � to � (� 	 � ) to remove

unwated components in the signal. It can be shown that the PCA representation is an op-

timal linear dimension reduction technique in the mean-square sense [1]. One important

application of this technique is for noise reduction, where the data contained in the last��� � components is assumed to be mostly due to noise. Another benefit of this technique

is that a projection into a subspace of a very low dimension, for example two or three, can

be useful for visualizing multidimensional or higher order data.

In practice, the computation of the ��� can be simply accomplished using the sample co-

variance matrix ! �?3 � 3 . The �"� are the eigenvectors of ! (an 
 J 
 matrix) that

correspond to the � eigenvalues of ! . A method for determining the eigenvalues in this

manner is known as Singular Value Decomposition (SVD), which is described below. SVD

is also known as the (discrete) Karhunen-Loève transform, or the Hotelling transform (see

Appendix 12.9.1).
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Figure 2: The general paradigm of Blind Source Separation for filtering. Given some

unknown matrix of sources � which is mixed by some linear stationary matrix of constants�
, our sources are projected from a source space to an observation space. Our observations,3 , are then transposed back into a space that is an estimate of the source space to give�

� . We then reduce the dimensionality of the estimated source space, by discarding the

sources that correspond to noise or unwanted artifacts by setting ��� � columns of M \ �
to

zero (to give M \ �� ) and reprojecting back into the observation space. The resulting matrix

of filtered observations is 3�� ��� � . The filtered observation space and original observation

space are the same, but the data projected into them is filtered and unfiltered respectively.

In the case of PCA, the sources are the columns of � , and can are equivalent to 3 �
	�� N � \gf
(see � 12.3.1, Eq. 4). Reducing the dimensionality of 	 to have only � non-zero columns,

the filtered observations can be reconstructed by evaluating 3� ��� � ����	���� N . In the case

of ICA, 3 can multiplied by the demixing matrix M , to reveal the estiamtes of the sources,4G� �
� . Columns of M \ �

can be set to zero to remove the ‘noise’ sources and the filtered

data are reconstructed using 3� ��� � � M \gf� 4
.
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12.3.1 Method of SVD

To determine the principal components of a multi-dimensional signal, we can use the

method of Singular Value Decomposition. Consider a real 
 J�� matrix 3 of observations

which may be decomposed as follows;

3#� ��	�� � (4)

where 	 is an 
 non-square matrix with zero entries everywhere, except on the leading

diagonal with elements � � arranged in descending order of magnitude. Each � � is equal to� � � , the square root of the eigenvalues of ! � 3 � 3 . A stem-plot of these values against

their index � is known as the singular spectrum. The smaller the eigenvalues are, the less

energy along the corresponding eigenvector there is. Therefore, the smallest eigenvalues

are often considered to be due to noise. The columns of � is an �IJ � matrix of column

vectors which are the eigenvectors of ! . The 
#J 
 matrix � is the matrix of projections of3 onto the eigenvectors of ! [2]. If a truncated SVD of 3 is performed (i.e. we just retain

the most significant � eigenvectors)10, then the truncated SVD is given by 4 � ��	 � � �
and the columns of the 
 JK� matrix 4 are the noise-reduced signal (see Figure 3).

A routine for performing SVD is as follows:

1. Find the � non-zero eigenvalues,
� � of the matrix ! �O3 N 3 and form a non-square

diagonal matrix 	 by placing the square roots � � � � � � of the � eigenvalues in

descending order of magnitude on the leading diagonal and setting all other elements

of 	 to zero.

2. Find the orthogonal eigenvectors of the matrix 3 N 3 corresponding to the obtained

eigenvalues, and arrange them in the same order. this ordered collection of column-

vectors forms the matrix � .

3. Find the first � column-vectors of the matrix � : � � � � \ �� 3 �"� � � � ��� � � . Note that� \ �� are the elements of 	 \ �
.

4. Add the rest of 
 � � vectors to the matrix � using the Gram-Schmidt orthogonal-

ization process (see appendix 12.9.2).

12.3.2 Eigenvalue decomposition - a worked example

To find the singular value decomposition of the matrix

3 �
68 � �
� �
� �

CF (5)

10in practice choosing the value of � depends on the nature of the data, but is often taken to be the knee

in the eigenspectrum (see 12.3.3) or as the value where �
	������ ����� ���������� � and � is some fraction ����� �! 
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first we find the eigenvalues,
�
, of the matrix

! � 3 N 3#� � � �
� ���

in the usual manner by letting

! � � � � � � (6)

so � ! � ��� � � � and ���� � � �
�

� � � �
���� � �

Evaluating this determinant and solving this characteristic equation for
�
, we find � ���� � � � � � � , and so

� � ��� and
� � � � . Next we note the number of nonzero eigenvalues,� , of the matrix 3 N 3 : � � � . Then we find the orthonormal eigenvectors of the matrix	 � 	 corresponding to the eigenvalues

� � and
� � by solving for � f and ��
 using

� � and
� �

and in � !�� ��� � � � � ...

� f � �� ��� ���� � ��
.� �� ��� � ���� � (7)

forming the matrix

��� � � f ��
)�� �� �� � ��� �� � � ���� (8)

where � f and ��
 are normalized to unit length. Next we write down the singular value

matrix 	 which is a diagonal matrix composed of the square roots of the eigenvalues of

! � 3 N 3 arranged in descending order of magnitude.

	 �
68 � � �
� � �
� �

CF �
68�� � � �e� �

� � � � ���
� �

CF �
68
� � �
�

�
�

� �

CF 
 (9)

Recalling that the inverse of a matrix � with elements � � ^ is given by� \ � � �� [)-������ � �w�+� ���w���
���)�%� �)�+��� (10)

and so

	 \ � � �� � � � �
�

� � � (11)

and we can find the first two columns of � , using the relation

� f � � \ �� 3 � f � � �� 6
8 � �
� �
� �

C
F �� ��� �� � �

67
8 � !�� !!� !!

C D
F
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and

� 
@� � \ �� 3 ��
@�
68 � �
� �
� �

CF  � ��� � �� � �
68 �
� � ��� ��

CF 


Using the Gram-Schmitd process (see appendix 12.9.2) we can calculate the third and

remaining orthogonal column of � to be

� � �
67
8 � ��� � ��� � ��

CED
F 


Hence

�#� � � � � � � �'��
67
8 � !� � � ��� !! � �� \ � ��� !! \ � �� \ � ��

CED
F

and the singular value decomposition of the matrix 3 is

3 � ��	�� NK�
67
8 � !� � � ��� !! � �� \ � ��� !! \ � �� \ � ��

C D
F

6
8
� � �
� �
� �

C
F �� �� � ��� �� \ � �� �

12.3.3 SVD filtering - a practical example using the ECG

We will now look at a more practical (and complicated) illustration. SVD is a commonly

employed technique to compress and/or filter the ECG. In particular, if we align � heart-

beats, each 
 samples long, in a matrix (of size 
SJ � ), we can compress it down (into an
 J � ) matrix, using only the first � 	 	2� principal components. If we then reconstruct

the data by inverting the reduced rank matrix, we effectively filter the original data.

Fig. 3a is a set of 64 heart beat waveforms which have been cut into one-second segments

(with a sampling frequency
��� � ����� Hz), aligned by their R-peaks and placed side-by-side

to form a �����	J�� matrix. The data is therefore 8-dimensional and an SVD will lead to 8

eigenvectors. Fig. 3b is the eigenspectrum obtained from SVD11. Note that most of the

power is contained in the first eigenvector. The knee of the eigenspectrum is at the second

principal component. Fig. 3c is a plot of the reconstruction (filtering) of the data using

just the first eigenvector12. Fig. 3d is the same as Fig. 3c, but the first two eigenvectors

have been used to reconstruct the data. The data in Fig. 3d is therefore noisier than that

in Fig. 3c.

Note that 	 derived from a full SVD (using Matlab’s ���
	��� ) is an invertible matrix, and no

information is lost if we retain all the principal components. In other words, we recover the

11In h �ji k ��m : o�������r`s]t ����� ���ni�� 	 � t i x�� � � u ����� � 	 	
12In h �ji k ��m : o�������r`s]t ��� t � � �ji���� � 	 � �/x t�� � ���������  	
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Figure 3: SVD of eight R-peak aligned P-QRS-T complexes; a) in the original form with a

large amount of in-band noise, b) eigenspectrum of decomposition, c) reconstruction using

only the first principal component, d) reconstruction using only the first two principal

components.
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original data by performing the multiplication ��	�� � . However, if we perform a truncated

SVD (using ���
	�� �� ) then the inverse of 	 (
��� � ���� ) does not exist. The transformation that

performs the filtering is noninvertible and information is lost because 	 is singular.

From a data compression point of view, SVD is an excellent tool. If the eigenspace is

known (or previously determined from experiments), then the � -dimensions of data can

in general be encoded in only � -dimensions of data. So for 
 sample points in each signal,

an 
 J � matrix is reduced to an 
 J � matrix. In the above example, retaining only

the first principla component, we achieve a compression ration of � � � . Note that the

data is encoded in the � matrix and so we are only interested in the first � columns.

The eigenvalues and eigenvectors are encoded in 	 and � matrices, and therefore an

additional � scalar values are required to encode the relative energies in each column (or

signal source) in � . Furthermore, if we wish to encode the eigenspace onto which the data

in � is projected, we require an additional � �
scalar values (the elements of � ).

It should be noted that the eigenvectors are likely to change13, based upon heart-rate de-

pendent beat-to-beat morphology changes (because the cardiac conduction speed changes

at different heart rates) and the presence of abnormal beats.

In order to find the global eigenspace for all beats, we need to take a large, representative

set of heartbeats14 and perform SVD upon this [3]. Projecting each new beat onto these

globally derived basis functions leads to a filtering of the signal that is essentially equiv-

alent to passing the P-QRS-T complex through a set of trained weights of a multi-layer

perceptron (MLP) neural network (see [4]appendix 12.9.3). Abnormal beats or artifacts

erroneously detected as normal beats will have abnormal eigenvalues (or a highly irreg-

ular structure when reconstructed by the MLP). In this way, beat classification can be

performed. It should be noted however, that in order to retain all the subtleties of the QRS

complex, at least 5 eigenvectors are required (and another five for the rest of the beat).

At a sampling frequency of
� �

Hz and an average beat-to-beat interval of ���	��
 (or heart

rate of �����������
 ) the compression ratio is
� � :�������
@: � � \ �� � � � where 
 is the number of

samples in each segmented heart beat and � is the number of principal components being

used.

13since they are based upon the morphology of the beats, they are also lead-dependent
14that is, z � ���
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12.4 Independent Component Analysis for source separation and fil-

tering

Using SVD we have seen how we can separate a signal into a subspace that is signal and

a subspace that is essentially noise. This is done by assuming that only the eigenvectors

associated with the � largest eigenvalues represent the signal, and the remaining ( 
 � � )
eigenvalues are associated with the noise subspace. We try to maximize the independence

between the eigenvectors that span these subspaces by requiring them to be orthogonal.

However, the differences between signals and noise are not always clear, and orthogonal

subspaces may not be the best way to differentiate between the constituent sources in a

measured signal.

In this section we will examine how choosing a measure of independence other than vari-

ance can lead to a more effective method for separating signals. A particulary intuitive

illustration of the problem of source separation through discovering independent sources,

is known as the Cocktail Party Problem.

12.4.1 Blind Source Separation; the Cocktail Party Problem

The Cocktail Party Problem is a classic example of Blind Source Separation (BSS), the sep-

aration of a set of observations into the constituent underlying (statistically independent)

source signals. The Cocktail Party Problem is illustrated in Fig. 4. If each of the � voices

you can hear at a party are recorded by � microphones, the recordings will be a matrix

composed of a set of � vectors, each of which is a (weighted) linear superposition of the �
voices. For a discrete set of 
 samples, we can denote the sources by an �KJ 
 matrix, � ,

and the � recordings by an �IJ 
 matrix 3 . � is therefore transformed into the observ-

ables 3 (through the propagation of sound waves through the room) by multiplying it by

a � J�� mixing matrix
�

such that 35� � � . (Recall Eq. 2 in � 12.2.) Figure 4 illustrates

this paradigm where sound waves from � � � independent speakers ( ��� , � � and � � left) are

superimposed (center), and recorded as three mixed source vectors with slightly different

phases at three spatially separated but otherwise identical microphones.

In order for us to ‘pick out’ a voice from an ensemble of voices in a crowded room, we

must perform some type of BSS to recover the original sources from the observed mixture.

Mathematically, we want to find a demixing matrix M , which when multiplied by the

recordings 3 , produces an estimate 4 of the sources � . Therefore M is a set of weights

(approximately15) equal to
� \gf . One of the key methods for performing BSS is known

as Independent Component Analysis (ICA), where we take advantage of (an assumed)

linear independence between the sources.

An excellent interactive example of the cocktail party problem can be found at

15depending on the performance details of the algorithm used to calculate �
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Figure 4: The Cocktail Party Problem: sound waves from � � � independent speakers

( � � , � � and � � left) are superimposed at a cocktail party (center), and are recorded as

three mixed source vectors, � � , ��� and ��� on � � � microphones (right). The �RJ 

observations (or recordings), 3 of the underlying sources, � , are a linear mixture of the

sources, such that 3H� � � , where
�

is a � J�� linear mixing matrix. An estimate 4 , of

the � J 
 sources � , is made by calculating a demixing matrix M , which acts on 3 such

that 4G�OM�3 � �
� and M �

� \gf .
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�������������
	�	�	��� � � ����������� � �������������� � � � �������������� � � �����!����� ��� " � � ��
# �
The reader is encouraged to experiment with this URL at this stage. Initially you should

attempt to mix and separate just two different sources, then increase the complexity of the

problem adding more sources. Note that the relative phases of the sources differ slightly

for each recording (microphone) and that the separation of the sources may change in

order and volume. The reason for this is explained in the following sections.

12.4.2 Higher order independence: ICA

Independent Component Analysis is a general name for a variety of techniques which seek

to uncover the independent source signals from a set of observations that are composed

of linear mixtures of the underlying sources. Consider 3%$�& to be a matrix of � observed

random vectors,
�

a � J � mixing matrix and � , the � (assumed) source vectors such that

3 N � � � N (12)

Note that here we have chosen to use the transposes of 3 and � to retain dimensional

consistency with the PCA formulation in � 12.3, Eq. 4. ICA algorithms attempt to find a

separating or demixing matrix M such that

4 N � M�3 N (13)

where M � �� \ �
, an approximation of the inverse of the original mixing matrix, and 4 N ��

� N , an 
 J � matrix, is an approximation of the underlying sources. These sources are

assumed to be statistically independent (generated by unrelated processes) and therefore

the joint PDF is the product of the densities for all sources:

' �)(@� �+* � ��,�� � (14)

where � �-, � � is the PDF of the � ��� source and
' �)(@� is the joint density function.

The basic idea of ICA is to apply operations to the observed data 3 � , or the de-mixing ma-

trix, M , and measure the independence between the output signal channels, (the columns

of 4 � ) to derive estimates of the sources, (the columns of � � ). In practice, iterative

methods are used to maximize or minimize a given cost function such as mutual infor-

mation, entropy or the fourth order moment, kurtosis, a measure of non-Gaussianity.

(see � 12.4.2). We shall see later how entropy-based cost functions are related to kur-

tosis and therefore all of the cost functions are a measure of non-Gaussianity to some

extent16. From the Central Limit Theorem[5], we know that the distribution of a sum of

independent random variables tends toward a Gaussian distribution. That is, a sum of two

independent random variables usually has a distribution that is closer to Gaussian than the

16The reason for choosing between different cost functions is not always made clear, but computational
efficiency and sensitivity to outliers are among the concerns. See . 12.5.
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two original random variables. In other words, independence is non-Gaussianity. In ICA,

if we wish to find independent sources, we must find a demixing matrix M that maximizes

the non-Gaussianity of each source. It should also be noted at this point that determining

the number of sources in a signal matrix is outside the scope of this chapter17, and we shall

stick to the convention ��� � , the number of sources equals the dimensionality of the sig-

nal (the number of independent observations). Furthermore, in conventional ICA, we can

never recover more sources than the number of independent observations ( �
�� � ), since

this is a form of interpolation and a model of the underlying source signals would have

to be used. (In terms of � 12.2, we have a subspace with a higher dimensionality than the

original data18.)

The essential difference between ICA and PCA is that PCA uses variance, a second order

moment, rather than kurtosis, a fourth order moment, as a metric to separate the signal

from the noise. Independence between the projections onto the eigenvectors of an SVD is

imposed by requiring that these basis vectors be orthogonal. The subspace formed with

ICA is not necessarily orthogonal and the angles between the axes of projection depend

upon the exact nature of the data used to calculate the sources.

The fact that SVD imposes orthogonality means that the data has been decorrelated (the

projections onto the eigenvectors have zero covariance). This is a much weaker form of

independence than that imposed by ICA19. Since independence implies uncorrelatedness,

many ICA methods constrain the estimation procedure such that it always gives uncorre-

lated estimates of the independent components. This reduces the number of free parame-

ters, and simplifies the problem.

Gaussianity We will now look more closely at what the kurtosis of a distribution means, and

how this helps us separate component sources within a signal by imposing independence.

The first two moments of random variables are well known; the mean and the variance. If

a distribution is Gaussian, then the mean and variance are sufficient characterize variable.

However, if the PDF of a function is not Gaussian then many different signals can have the

same mean and variance. (For instance, all the signals in Fig. 6 have a mean of zero and

unit variance.

Recall from chapter 10 that the mean (central tendency) of a random varaible � , is defined

to be � � � � ��� � � ���
	\ 	 � � � ���� d � (15)

where � � � is the expextation operator, � � � �� is the probability that � has a particular value.

The variance (second central moment), which quatifies the spread of a distribution is given

by � �� � ���0���	� � � � � � � ���
	\ 	 ���	� � � � � � � � �� d � (16)

17See articles on relevancy determination [6, 7]
18There are methods for attempting this type of analysis; see [8, 9, 10, 11, 12, 13, 14, 15]
19Orthogonality implies independence, but independence does not necessarily imply orthogonality
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and the square root of the variance is equal to the standard deviation,

�
, of the distribution.

By extension, we can define the � ��� central moment to be

� Y � � �0� �	� � � � Y � � ���
	\ 	 ��� � � � � Y � � ���� d � (17)

The third moment of a distribution is known as the skew,
�
, and characterizes the degree of

asymmetry about the mean. The skew of a random variable � is given by � � ������� � \	��
������ � .

A positive skew signifies a distribution with a tail extending out toward a more positive

value and a negative skew signifies a distribution with a tail extending out toward a more

negative (see Fig. 5a).

The fourth moment of a distribution is known as kurtosis and measures the relative peaked-

ness of flatness of a distribution with respect to a Gaussian (normal) distribution. See Fig.

5b. It is defined in a similar manner to be

� � � b � ���0��� � � � � b ��
b (18)

Note that the kurtosis of a Gaussian is equal to 3 (whereas the first three moments of a

distribution are zero)20. A distribution with a positive kurtosis (
� � in Eq. (20) ) is termed

leptokurtic (or super Gaussian). A distribution with a negative kurtosis ( 	 � in Eq. (20)

) is termed platykurtic (or sub Gaussian). Gaussian distributions are termed mesokurtic.

Note also that kkewness and kurtosis are normalized by dividing the central moments by

appropriate powers of

�
to make them dimensionless.

These definitions are however, for continuously valued functions. In reality, the PDF is

often difficult or impossible to calculate accurately and so we must make empirical ap-

proximations of our sampled signals. The standard definitions of the mean of a vector �
with 
 values ( �K� � ���n������� 
 
 
 �e���>� ) is � � � �


��
� Z � � �

the variance of � is � � ��� ��� �

��
� Z � � � �� � � � �

and the skewness is given by

� ��� � � �

��
� Z �
� � �� � �� � � (19)

20The proof of this is left to the reader, but noting that the general form of the normal distribution is

��������� {������! "�$#"% '&)( %+* %,$- ��. should help. Note also then, that the above definition of kurtosis (and Eq. (20) )

sometimes has an extra /10 term to make a Gaussian have zero kurtosis, such as in Numerical Recipes in C.

Note that Matlab uses the convention without the -3 term and therefore Gaussian distributions have a 2 {30 .
This convention is used in the laboratory assignment that accompanies these notes.
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Figure 5: Distributions with third and fourth moments [skewness, (a) and kurtosis (b)

respectively] that are significantly different from normal (Gaussian).

The empirical estimate of kurtosis is similarly defined by

� ������ �

��
� Z �
� � � � � �� � b (20)

Fig. 6 illustrates the time series, power spectra and distributions of different signals and

noises found in the ECG recording. From left to right: (i) the underlying Electrocardiogram

signal, (ii) additive (Gaussian) observation noise, (iii) a combination of muscle artifact

(MA) and baseline wander (BW), and (iv) powerline interference; sinusoidal noise with�
� 33Hz � 2Hz. Note that all the signals have significant power contributions within the

frequency of interest ( 	�� � Hz) where there exists clinically relevant information in the

ECG. Traditional filtering methods therefore cannot remove these noises without severely

distorting the underlying ECG.

12.4.3 ICA for removing noise on the ECG

Figure 7 illustrations power of ICA to remove artifacts from the ECG. Here we see 10

seconds of 3 leads of ECG before and after ICA decomposition (upper and lower graphs

respectively). the upper plot ( � ) is the same data as in Fig. 1. Note that ICA has sepa-

rated out the observed signals into three specific sources; 1b) The ECG, 2b) High kurtosis

transient (movement) artifacts, and 2c) Low kurtosis continuous (observation) noise. In

particular, ICA has separated out the in-band QRS-like spikes that occurred at 2.6 and

5.1 seconds. Furthermore, time-coincident artifacts at 1.6 seconds that distorted the QRS

complex, were extracted, leaving the underlying morphology intact.

Relating this to the cocktail party problem, we have three speakers in three locations. First
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Figure 6: time Series, power spectra and distributions of different signals and noises found

on the ECG. From left to right: (i) the underlying Electrocardiogram signal, (ii) additive

(Gaussian) observation noise, (iii) a combination of muscle artifact (MA) and baseline

wander (BW), and (iv) powerline interference; sinusoidal noise with
�

� � ��� ,������ , .
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and foremost we have the series of cardiac depolarization/repolarization events corre-

sponding to each heartbeat, located in the chest. Each electrode is roughly equidistant

from each of these. Note that the amplitude of the third lead is lower than the other two,

illustrating how the cardiac activity in the heart is not spherically symmetrical.

However, we should not assume that ICA is a panacea to cure all noise. In most situations,

complications due to lead position, a low signal-noise ratio, and positional changes in the

sources cause serious problems. Section 12.8 addresses many of the problems in employing

ICA, using the ECG as a practical illustrative guide.

It should also be noted that the ICA decomposition does not necessarily mean the relevant

clinical characteristics of the ECG have been preserved (since our interpretive knowledge

of the ECG is based upon the observations, not the sources). Therefore, in order to recon-

struct the original ECGs in the absence of noise, we must set to zero the columns of the

demixing matrix that correspond to artifacts or noise, then invert it and multiply by the

decomposed data to ‘restore’ the original ECG observations. An example of this using the

data in Fig. 1 and Fig. 7 are presented in Fig. 8. In terms of Fig. 2 and our general ICA

formulism, the estimated sources
�
� (Fig. 7b) are recovered from the observation 3 (Fig.

7a) by estimating a demixing matrix M . It is no longer obvious which lead the underly-

ing source (singal 1 in Fig. 7b) corresponds to.In fact, this source does not correspond to

any clinical lead at all, just some tranformed combination of leads. In order to perform

a diagnosis on this lead, the source must be projected back into the observation domain

by inverting the demixing matrix M . It is at this point that we can perform a removal of

the noise sources. Columns of M \ �
that correspond to noise and/or artifact (signal 2 and

signal 3 on Fig. 7b in this case) are set to zero ( M \ � � MX\ �� ), where the number of non-

noise sources, � � � ), and the filtered version of each clinical lead of 3 , is reconstructed

in the observation domain using 3�� ��� � �RM \gf� 4 to reveal a cleaner 3-lead ECG (Fig. 8).
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Figure 7: 10 seconds of 3 Channel ECG � ) before ICA decomposition and
�

) after ICA

decomposition. Plot � is the same data as in Fig. 1. Note that ICA has separated out the

observed signals into three specific sources; 1
�

) The ECG, 2
�

) High kurtosis transient

(movement) artifacts, and 2 � ) Low kurtosis continuous (observation) noise.

Figure 8: Data from Fig. 1 after ICA decomposition, (Fig 7) and reconstruction. See text

for explanation.
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12.5 Different methods for performing ICA - choosing a cost function

Although the basic idea behind ICA is very simple, the actual implementation can be for-

mulated from many perspectives.

� Maximum likelihood (MacKay [16], Pearlmutter & Parra [17], Cardoso [18], Giro-

lami & Fyfe [19])

� Higher order moments and cumulant (Comon [20], Hyvärinen & Oja [21], )

� Maximization of information transfer (Bell & Sejnowski [22], Amari et al. [23]; Lee

et al. [24])

� Negentropy maximization (Girolami & Fyfe [19])

� Nonlinear PCA (Karhunen et al. [25, 26], Oja et al. [27])

All the above methods use separation metrics (or cost functions) that are essentially equiv-

alent to measuring the non-Gaussianity of the estimated sources. The actual implemen-

tation can involve either a manipulation of the output data, 4 , or a manipulation of the

demixing matrix, M . In the remainder of section 12.5 we will examine three common cost

functions, negentropy, mutual information and the log likelihood and a method for using

them to determine the elements of M ; gradient descent.

12.5.1 Negentropy instead of kurtosis as a cost function

Although kurtosis is theoretically a good measure of non-Gaussianity, it is disproportion-

ately sensitive to changes in the distribution tails. Therefore, other measures of indepen-

dence are often used. Another important measure of non-Gaussianity is given by negen-
tropy. Negentropy is often a more robust (outlier insensitive) method for estimating the

fourth moment. Negentropy is based on the information-theoretic quantity of (differen-

tial) entropy. The more random (i.e. unpredictable and unstructured the variable is) the

larger its entropy. More rigorously, entropy is closely related to the coding length of the

random variable, in fact, under some simplifying assumptions, entropy is the coding length

of the random variable. The entropy � is of a discrete random variable $ with probability

distribution
' ��$ � is defined as

� �%$ � ��� �
�

' ��$�� ����� ��� � � ' �%$�� � � � (21)

where the � � are the possible values of $ . This definition can be generalized for continuous-

valued random variables and vectors, in which case it is called differential entropy. The

differential entropy � of a random vector ! with a probability density function
' ��! � is

defined as
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� ��! � ��� � ' ��! � � � � � ' � ! � d ! 
 (22)

A fundamental result of information theory is that a Gaussian variable has the largest

entropy among all random variables of equal variance. This means that entropy could be

used as a measure of non-Gaussianity. In fact, this shows that the Gaussian distribution

is the “most random” or the least structured of all distributions. Entropy is small for

distributions that are clearly concentrated on certain values, i.e., when the variable is

clearly clustered, or has a PDF that is very “spikey”.

To obtain a measure of non-Gaussianity that is zero for a Gaussian variable and always

nonnegative, one often uses a slightly modified version of the definition of differential

entropy, called negentropy. Negentropy,
�

, is defined as follows

� � ! ��� � ��!��9� � � ��! � (23)

where !�� is a Gaussian random variable of the same covariance matrix as ! . Due to the

above-mentioned properties, negentropy is always non-negative, and it is zero if and only

if ! has a Gaussian distribution. Negentropy has the additional interesting property that

it is constant for a aprticular vector which undergoes an invertible linear transformations,

such as in the ICA mixing-demixing paradigm.

The advantage of using negentropy, or, equivalently, differential entropy, as a measure of

non-Gaussianity is that it is well justified by statistical theory. In fact, negentropy is in

some sense the optimal estimator of non-Gaussianity, as far as statistical properties are

concerned. The problem in using negentropy is, however, that it is computationally very

difficult. Estimating negentropy using the definition would require an estimate (possibly

nonparametric) of the probability desity function. Therefore, simpler approximations of

negentropy are used. One such approximation actually involves kurtosis:

� �%$ � �
�
� �
���l$ � � ��� �

���
� ��$ � � (24)

but this suffers from the problems encountered with kurtosis. Another estimate of negen-

tropy involves entropy: � ��$ � � � � ��� ��$ � � � � ��� �	� � � �]� (25)

where � is a zero mean unit variance Gaussian variable and the function � is some non-

quadratic functions which leads to the approximation always being non-negative (or zero

if $ has a Gaussian distribution). � is usually taken to be
�
 ���� ����� �	� $ � or � �%$ �>���.[]\�� ��

with � some constant ������� � . If � ��$ � �H$ , Eq. 25 degenerates to the definition of

kurtosis.

� �%$ � is then the cost function we attempt to minimize between the columns of 4 . We will

see how to minmize a cost function to calculate the demixing matrix in section 12.6.

24



12.5.2 Mutual Information based ICA

Using the concept of differential entropy, we define the mutual information (MI) � between
 (scalar) random variables, $�� , � � ��
 
 
 
 as follows

�@��$&����$(�`� 
 
 
 �'$(� ��� ��
� Z � � ��$ �p� � � ��! � 
 (26)

MI is a measure of the (in-) dependence between random variables. MI is always non-

negative, and zero if and only if the variables are statistically independent. MI therefore

takes into account the whole dependence structure of the variables, and not only the co-

variance (as is the case for PCA).

Note that for an invertible linear transformation 4H� M�3 ,

� �%$ �n�'$(�j� 
 
 
1�'$/��� � ��
� Z � � �%$�� � � � � � ��� � ��� � � �wM � 
 (27)

If we constrain the $�� to be uncorrelated and have unit variance � ��! N ! � � M�� ��� N � � M N� � . This implies that � � � � � �S� �wM�� ��� N � � M N �j�����wM � � � ��� N � � �wM N � and hence�wM � must be constant. If $ � has unit variance, MI and negentropy differ only by a constant,

and a sign;

� �%$ �n�'$(�)� 
 
 
1�'$�� � ��� � ��
� Z � � ��$ ��� (28)

where � is a constant. This shows the fundamental relationship between MI and negen-

tropy and hence with kurtosis.

Since MI is a measure of the mutual information between two functions, finding a M
which minimises � between the columns of 4 in the transformation 4G�RMG3 leads to

method for determining the independent components (sources) in our observations 3 .

12.5.3 Maximum Likelihood

Independent component analysis can be thought of as a statistical modeling technique that

makes use of latent variables to describe a probability distribution over the observables.

This is known as generative latent variable modeling and each source is found by deduc-

ing its corresponding distribution. Following MacKay [16], we can model the � observable

vectors ��� ^ ���^ Z � as being generated from latent variables �
, � � ;� Z � via a linear mapping M
with elements � � ^ . Note that the transpose of � � ^ is written � ^ � . To simplify the derivation

we assume the number of sources equals the number of observations ( � � � ), and the

data is then defined to be, � � �l3 �]�� Z � , where 
 is the number of samples in each of

the � observations. The latent variables are assumed to be independently distributed with

marginal distributions
' ��,���� � � �+��,��%�"� � the assumed probability distributions of the latent

variables.
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Given
� � M \ �

, the probability of the observables 3 and the hidden variables � is

' � �l3 � �� Z � ����� � �� Z ��� MA�A� �*
� Z � � ' � � � � � � ��MI� ' � � � �=� (29)

� �*
� Z �  � �*^ Z � � � �^ �

�
�
� ^ � , �� ��� �

*
�
� �+��, �� ��� � 
 (30)

Note that for simplicity we have assumed that the observations 3 have been generated

without noise21. If we replace the term � � ^ � W � � ^ � ,��%� by a (noise) probability distribution

over � ^ with mean W � � ^ � ,�� and a small standard deviation, the identical algorithm results

[16].

To calculate � � ^ , the elements of M we can use the method of gradient descent which

requires the optimization of a dimensionless objective function Ł ��MA� , of the parameters

(the weights) The sequential update of the elements of the mixing matrix, � � ^ , are then

computed as �
� � ^ � ��� Ł� � � ^ (31)

where � is the learning rate22.

The cost function Ł ��MI� we wish to minimize to perform ICA (to maximize independence)

is the log likelihood function

��� � � � ' �%3 � MI�e� � � � � �
� �*
� Z � ' ��� � � MA� � (32)

which is the natural log of a product of the (independent) factors each of which is obtained

by marginalizing over the latent variables. Ł � MI� can be used to ‘guide’ a gradient descent

of the elements of M , as we shall see in teh next section.

21This leads to the Bell-Sejnowski algorithm [16, 22].
22which can be fixed or variable to aid convergence depending on the form of the underlying source

distributions
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12.6 OPTIONAL: Gradient descent to determine the de-mixing matrix�
(for the avid reader only)

In this section we will see how to implememnt the gradient descent to minimize the cost

function which maximizes the independence of our source estimates. By way of example,

we will continue with the maximum likelihood approach detailed above in � 12.5.3.

Recalling that for scalars � � ��� ������� � � � � � � � �� ��� � ��� �	� � and adopting a conventional index

summation such that � ^ � , �� � W � � ^ � , �� , a single factor in the likelihood is given by

' � � � � MA�A� � � ; � � ' � � � � � � ��MI� ' � � � � (33)

� � � * ^
� � � �^ � � ^ � � �� � *

�
� �+� � �� � (34)

� ���
��� M � * � ���=� � \ �� ^ � ^ � (35)

(36)

which implies
� � � � ' � � � � MI� � ��� � � 
��� M � � � � � � � ���=� � � ^ � ^ � 
 (37)

We shall then define �� � ^ �
� � � � 
��� M � � \ �� ^ � ��� ^ (38)�� � ^ � � \ �T � � � � \ �T ^ � \ ���� � � � T ^ ����� (39)�� ��� ^ � � � � ^ �

� �� � T � ��� � � � (40)

(41)

with � some arbitrary function, � � ^ representing the elements of
�

, � � � ��� ^ � ^ and
�	� � ��� � �� ��� � � � �+� ���%� � � � � . �	� indicates in which direction � � needs to change to make the probability

of the data greater. Using equations 39 and 40 we can obtain the gradient of � ^ ��� � ^ �
� � � � ' � � � � MI� � � ��� ^ � ��� �	��� ��� � ^ (42)

where ��� is a dummy index. Alternatively, we can take the derivative with respect to � � ^�� ��� ^ ��� � � ' ��� � � MA� � � ^ � � � ^ �	� (43)
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If we choose M so as to ascend this gradient, we obtain precisely the learning algorithm

from Bell and Sejnowski [22] (

� M ��M ��\ � � �/� � ). A detailed mathematical analysis

of gradient descent/ascent and its relationship to neural networks and PCA are given in

Appendix 12.9.3. (Treat this as optional reading).

In practice, the choice of the nonlinearity,
� �

, in the update equations for learning M is

heavily dependent on the distribution of the underlying sources. For example, if we choose

a traditional � � � � nonlinearity (
� �=� � ���.� � � � � � � � ��� � ), with

�
a constant initially equal to

unity, then we are implicitly assuming the source densities are heavier tailed distributions

than Gaussian (� �=�-,������ � �  ����� �-,������ � � �<[���� � [�� ,��%� , ,��.� �	� � ����� , with
�	� � � - ���
	 � � �<� ).

Varying
�

reflects our changing beliefs in the underlying source distributions. In the limit

of large
�

, the nonlinearity becomes a step function and � �+��,��%� becomes a biexponential

distribution (� �=�-,�������[ \ � � � ). As
�

tends to zero, � �+��,�� � approach more Gaussian distribu-

tions.

If we have no nonlinearity,
� � � ����� � � � ��� , the we are implicitly assuming a Gaussian

distribution on the latent variables. However, it is well known [29, 4] that without a

nonlinearity, the gradient descent algorithm leads to second order decorrelation. That is,

we perform the same function as SVD. Equivalently, the Gaussian distribution on the latent

variables is invariant under rotation of the latent variables, so there is no information to

enable us to find a preferred alignment of the latent variable space. This is one reason why

conventional ICA is only able to separate non-Gaussian sources.

It should be noted that the principle of covariance (consistent algorithms should give

the same results independently of the units in which the quantities are measured) is not

always true. One example is the popular steepest descent rule (see Eq. 31) which is

dimensionally inconsistent; the left hand side has dimensions of � � � � and the right hand

side has dimensions � � � � ( � ��MI� is dimensionless).

One method for alleviating this problem is to precondition the input data (scaling it be-

tween � � ). Another method is to decrease � at a rate of � �� where � is the number of

iterations through the backpropagation of the updates of the � � . The Munro-Robbins theo-

rem ([30] p.41) shows that the parameters will asymptotically converge to the maximum

likelihood parameters since each data point receives equal weighting. If � is held constant

then one is explicitly solving a weighted maximum likelihood problem with an exponential

weighting of the data and the parameters will not converge to a limiting value.

The algorithm would be covariant if

�
� �,� � W � ��� � � �������� � , where

�
is a curvature matrix

with the ��� � � element having dimensions � � � � �� � . It should be noted that the differential of

the metric for the gradient descent is not linear (as it is for a least square computation),

and so the space on which we perform gradient descent is not Euclidian. In fact, one must

use the natural [23] or relative [31] gradient. See [16] and [23] for further discussion on

this topic.

28



12.7 Applications of ICA

ICA has been used to perform signal separation in many different domains. These include:

� Blind source separation; Watermarking, Audio [32, 33], ECG, (Bell & Sejnowski [22],

Barros et al. [34], McSharry et al. [13]), EEG (Mackeig et al. [35, 36], ).

� Signal and image denoising (Hyvärinen - [37] ), medical (fMRI - [38]) ECG EEG

(Mackeig et al. [35, 36])

� Modeling of the hippocampus and visual cortex (Lörincz, Hyvärinen [39])

� Feature extraction and clustering, (Marni Bartlett, Girolami, Kolenda [40])

� Compression and redundancy reduction (Girolami, Kolenda, Ben-Shalom [41])

12.8 Limitations of ICA - Stationary Mixing

ICA assumes a linear stationary mixing model (the mixing matrix is a set of constants

independent of the changing structure of the data over time). However, for many applica-

tions this is only true from certain observation points or for very short lengths of time. For

example, consider the earlier case of noise on the ECG. As the subject inhales, the chest

expands and the diaphragm lowers. This causes the heart to drop and rotate slightly. If

we consider the mixing matrix
�

to be composed of a stationary component
� �

and a

non-stationary component
� Y �

such that
� � � � � � Y �

then
� Y �

is equal to some constant

( � ) times one of the rotation matrices23 such as

� Y � ���(��� �
6
8 � � �
�
 ��� ���(�=- � ����� ���/�=-

�
��� � ���(�=-  ��� ���/�+-

C
F �

where �"� ��� ���
	 � � and
���
	 � � is the frequency of respiration24. In this case, � will be a

function of � , the angle between the different sources (the electrical signals from muscle

contractions and those from cardiac activity), which itself is a function of time. This is

only true for small values of � , and hence a small angle � , between each source. This is a

major reason for the differences in effectiveness of ICA for source separation for different

lead configurations.

12.9 Summary and further reading

The basic idea in this chapter has been to explain how we can apply a transformation

to a set of observations in order to project them onto a set of basis functions that are in

23see Eq. 114 in Appendix 12.9.5
24assuming an idealized sinusoidal respiratory cycle
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some way more informative than the observation space. This is achieved by defining some

contrast function between the data in the projected subspace which is essentially a measure

of independence. If this contrast function is second order (variance) then we perform

decorrelation through PCA. If the contrast function is fourth order and therefore related

to Gaussianity, then we achieve ICA. The cost function measured between the estimated

sources that we use in teh iterative update of the demixing matrix encodes our prior beliefs

as to the non-Gaussianity (kurtosis) of the source distributions. The data projected onto

the independent (source) components is as statistically independent as possible. We may

then select which projections we are interested in and, after discarding the uniteresting

components, invert the transformation to effect a filtering of the data.

ICA covers an extremely broad class of algorithms, as we have already seen. Lee et al. [42]

show that different theories recently proposed for Independent Component Analysis (ICA)

lead to the same iterative learning algorithm for blind separation of mixed independent

sources. This is because all the algorithms attempt to perform a separation onto a set of

basis functions that are in some way independent, and that the independence can always

be recast as a departure from Gaussianity.

However, the concept of blind source separation is far more broad than this chapter reveals.

ICA has been the fertile meeting ground of statistical modeling [43], PCA [44], neural

networks [45], Independent Factor Analysis Wiener filtering [11], wavelets [46, 47, 48],

hidden Markov modeling [49, 7, 50], Kalman filtering [51] and nonlinear dynamics [14,

52]. Many of the problems we have presented in this chapter have been addressed by

extending the ICA model with these tools. Although these concepts are outside the scope

of this course, they are currently the focus of interesting research. For further reading on

ICA and related research, the reader is encouraged to browse at the following URLs:

�������������
	�	�	��� � � � � � � ��� � 	 � ��������������
	�������� � 	 � � ��� � ��� � 	 � ��� � � � � � � � �� �)����� ��������������
	�	�	�������� �
� � ����� � �� ����� ��� � � � ��� �
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Appendix A:

12.9.1 Karhunen-Loéve or Hotelling Transformation

The Karhunen-Loéve transformation maps vectors � Y
in a
�
-dimensional space �����w� 
 
 
1��� � �

onto vectors � Y in an � -dimensional space �-,(��� 
 
 
 � , � � , where � 	
�
.

The vector � Y
can be represented as a linear combination of a set of

�
orthonormal vectors

���
� � ��

� Z � ,�� � � (44)

Where the vectors � � satisfy the orthonormality relation

��� � ^ � � � ^ (45)

in which � � ^ is the Kronecker delta symbol.

This transformation can be regarded as a simple rotation of the coordinate system from

the original x’s to a new set of coordinates represented by the z’s. The , � are given by

,��9� � � � � (46)

Suppose that only a subset of � � � basis vectors � � are retained so that we use only �
coefficients of , � . The remaining coefficients will be replaced by constants � � so that each

vector � is approximated by the expression

��V� ��
� Z � ,�� � � �

��
� Z�� � � � � ��� (47)

The residual error in the vector � Y
introduced by the dimensionality reduction is given by

� Y � �� Y � ��
� Z�� � � �-,�� � � � � ��� (48)

We can then define the best approximation to be that which minimises the sum of the

squares of the errors over the whole data set. Thus we minimise

� � � �
�

;�
Y�Z �

��
� Z�� � � ��,�� � � �%� � (49)

If we set the derivative of
� � with respect to � � to zero we find

� � � ��
;�

Y�Z � , Y� � � � ���� (50)
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Where we have defined the vector �� to be the mean vector of the � vectors,

��K� ��
;�

Y�Z � � Y
(51)

We can now write the sum-of-squares-error as

� � � �
�

;�
Y�Z �

��
� Z�� � � � � � � ��� Y � �� ��� �

� �
�

;�
Y�Z � � � ��� ��� (52)

Where � is the covariance matrix of the set of vectors � Y
and is given by

� � �
Y � � Y � �� �j��� Y � �� � � (53)

It can be shown (see Bishop [30]) that the minimum occurs when the basis vectors satisfy

� � � � � � ��� (54)

so that they are eigen vectors of the covariance matrix. Substituting (54) into (52) and

making use of the orthonormality relation of (45), the error criterion at the minimum is

given by

� � � �
�

��
� Z�� � �

� � (55)

Thus the minimum error is obtained by choosing the
� � � smallest eigenvalues, and their

corresponding eigenvectors, as the ones to discard.

Appendix B:

12.9.2 Gram-Schmidt Orthogonalization Theorem

If ��� f � 
 
 
 ����� � is a linearly independent vector system in the vector space with scalar prod-

uct
�

, then there exists an orthonormal system ���&��� 
 
 
 ��� � � , such that

� � � � ��� f � 
 
 
1����� � � � � ��� ��� ��� 
 
 
1��� � � 
 (56)

This assertion can be proved by induction. In the case �#� � , we define �&���O� f � �w� f � and

thus � � ��� ��� f � � � � ��� ��� � � . Now assume that the proposition holds for �#� � � � , i.e., there

exists an orthonormal system ���&�'� 
 
 
1��� � \ � � , such that � � ��� ��� f � 
 
 
 ����� \gf � � � � ��� ��� ��� 
 
 
1��� � \ � � .
Then consider the vector

!��g� � �	� � � 
 
 
 � � � \ �	� � \ � � ����� (57)
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choosing the coefficients
��� �l� � � � � � � �l� so that !�� � �

� � � � � � � � �l� , i.e. � !��%� � � � � � .
This leads to the � ��� conditions

��� � � � � � � � � � ���%� � � �I� � � (58)��� � � ��������� � � � � � � � ��� �l� 

Therefore, !���� ��� �O��������� �e� � � ��
 
 
 �R��������� � \ �e�	��� \ � 
 (59)

Now we choose ��� �2!�� � �w!�� � . Since �
��� � � ��� ��� f � 
 
 
1����� \gf � � � � � ��� � �l� , we get, by the

construction of the vectors ! � and � � , ( ��� � � � � � ��� f � 
 
 
1����� � ). Hence

� � ��� ��� �w� 
 
 
1��� � �	� � � � � ��� f � 
 
 
1����� � 
 (60)

From the representation of the vector ! � we can see that ��� is a linear combination of the

vectors � ��� 
 
 
1��� � . Thus � � � � ��� f � 
 
 
1����� �
� � � � � ��� ��� 
 
 
1��� � � (61)

and finally, � � � � ��� f � 
 
 
1����� � � � � ��� ��� ��� 
 
 
1��� � � (62)

An example

Given a vector system ��� f ����
]����� � in 	b , where� f � � � � � �]� � , � 
@� � � � � �]� � , ���B� � � ��� �j� � ,

such that 35� � � f ��
)���`� N we want to find such an orthogonal system ���&����� �`��� � � , for which

� � ��� ��� f ��� 
/����� � � � � ��� ��� �n��� �)� �]� � 

To apply the orthogonalization process, we first check the system ��� f ����
(�e��� � for linear

independence. Next we find

� � � � f � �w� f � � � �� �
� ��

�
� � � 
 (63)

For !�
 we get

!�
 � ��
 �O����
/� � �c� � � ����� � ���]� � � �
�
�
��
�
� ��

�
� � � ��� � ��� �]� � 
 (64)

Since �w!�
 � � � , � � �R!�
 � �w!�
 � ��� � � � �]� � . The vector !�� can be expressed in the form

!��@� ��� � � ��� ��� �c� � � � � ��� ��� ��� � �,��� � � � �)� � � � : � ��
�
�

��
�
� � � � � :l� � ��� �]� � ��� � � � �)� � 


(65)

Therefore,

�]� �O!�� ���w!�� � � � � � � �j� � 
 (66)
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Appendic C:

12.9.3 Gradient descent, neural network training and PCA

This appendix is intended to give the reader a more thorough understanding of the inner

workings of gradient descent and learning algorithms. In particular, we will see how

the weights of a neural network are essentailly a matrix that we train on some data by

minmising or maximising a cost function through gradient descent. If a multi-layered

perceptron (MLP) neural network is auto-associative (it has as many output nodes as input

nodes), then we essentially have the same paradigm as Blind Source Separation. The only

difference is the cost function.

This appendix describes relevant aspects of gradient descent and neural network theory.

The error back-propagation algorithm is derived from first principles in order to lay the

ground-work for gradient descent training an auto-associative neural network.

The neuron

The basic unit of a neural network is the neuron. It can have many inputs � and its output

value, $ , is a function,
�
, of all these inputs. Figure 9 shows the basic architecture of a

neuron with three inputs.

�

�

�

���
���

� �
� �

� �
� ���
	


 
 
 
 
 
 
 
�� 	

���
���
�9�

�� �
� �
� �

$

Figure 9: The basic neuron

For a linear unit, the function
�
, is the linear weighted sum of the inputs, sometimes known

as the activation � , in which case the output is given by

$�� ��� �
�
� � � � (67)

For a nonlinear unit, a nonlinear function
�
, is applied to the linearly weighted sum of

inputs. This function is often the sigmoid function defined as

�	� � �&��� �
� � [ \ � (68)
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The output of a non-linear neuron is then given by

$ � � � �0� �
�
� � � ��� � (69)

If the outputs of one layer of neurons are connected to the inputs of another layer, a neural

network is formed.

Multi-layer networks

The standard MLP consists of three layers of nodes, the layers being interconnected via

synaptic weights � � ^ and � ^ T as shown in Figure 10. The input units simply pass all of the

input data, likewise the non-linear output units of the final layer receive data from each of

the units in the hidden layer. Bias units (with a constant value of ��
 � ), connect directly via

bias weights to each of the neurons in the hidden and output layers (although these have

been omitted from the diagram for clarity).

�

�

�

�

�

�

�

�

�

�

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

$ � � ^ $ ^ � �	� � � ^ � � T $(T � �	� � � T��Input units Output units

Hidden units
� � ^

� ^ T
Layer � Layer � Layer Q

Figure 10: Schematic of a 5-3-2 multi-layer perceptron. Bias units and weights are omitted

for clarity.

Learning algorithm - Gradient descent

The input data used to train the network, now defined as $�� for consistency of notation, is

fed into the network and propagated through to give an output $/T given by

$]T � � � � � ^ � ^ T �	� � � � � � ^ $ �p��� (70)

Note that our � ’s are now $ � ’s and our sources are $ ^ (or $]T if multi-layered network is

used). During training, the target data or desired output, -eT , which is associated with

40



the training data, is compared to the actual output $ T . The weights, � ^ T and � � ^ , are then

adjusted in order to minimise the difference between the propagated output and the target

value. This error is defined over all training patterns, � , in the training set as

� � �
�
�
;

�
T � �	� � � ^ � ^ T � � � � � � � ^ $ �� �e� � - � T � � (71)

Note that in the case of ML-BSS the target is one of the other output vectors (source

estimates) and the error function
�
, is the log likelihood. We must therefore sum

�
over all

the possible pairs of output vectors.

Error back-propagation

The squared error,
�
, can be minimised using the method of gradient descent [30]. This

requires the gradient to be calculated with respect to each weight, � � ^ and � ^ T . The weight

update equations for the hidden and output layers are given as follows:

� ��� � � �^ T � � ��� �^ T � � � �� � ^ T (72)

� ��� � � �� ^ � � ��� �� ^ � � � �� � � ^ (73)

The full derivation of the calculation of the partial derivatives,
���
��� � �

and
���
���

���
, is given in

Appendix 12.9.4. Using equations 112 and 104 we can write:

� ��� � � �^ T � � ��� �^ T � � � T)$ ^ (74)

� ��� � � �� ^ � � ��� �� ^ � � � ^ $ � (75)

where � is the learning rate and � ^ and � T are given below:� T.� �%$(T � -=T��c$]T/� � � $(T)� (76)� ^ � �
T � T � ^ Tj$ ^ � � � $ ^ � (77)

For the bias weights, the $ � and $ ^ in the above weight update equations are replaced by

unity.

Training is an iterative process (repeated application of equations 74 and 75) but, if con-

tinued for too long, the network starts to fit the noise in the training set and that will have

a negative effect on the performance of the trained network on test data. The decision on
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when to stop training is of vital importance but is often defined when the error function

(or it’s gradient) drops below some predefined level. The use of an independent validation

set is often the best way to decide on when to terminate training (see Bishop [30] p262

for more details). However, in the case of an auto-asscociative network, no validation set

is required and the training can be terminated when the ratio of the variance of the input

and ouput data reaches a plateau. (See [53, 54] ).

Auto-associative networks

An auto-associative network has as many output nodes as input nodes and can be trained

using an objective cost function measured between the inputs and ouputs; the target data

is simply the input data. Therefore, no labelling of the training data is required. An auto-

associative neural network performs dimensionality reduction from � to � dimensions

( � � � ) and then projects back up to � dimensions, as shown in figure 11. PCA, a standard

linear dimensionality reduction procedure is also a form of unsupervised learning [30]. In

fact, the number of hidden-layer nodes ( dim( $ ^ ) ) is usually chosen to be the same as the

number of principal components, � , in the data (see � 12.3.1), since (as we shall see later)

the first layer of weights performs PCA if trained with a linear activation function. The

full derivation of PCA, given in Appendix 12.9.1, shows that PCA is based on minimising a

sum-of-squares error cost function.

�

�

�

�

�

�

� � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � �

� � � � � � � �
� � � � � � � �

� � � � � � � �

� � � � � � � �

��$ � ���

��$�� ���

��$(T����

��$]Tj���

��$ ^ � �

��$ ^ �%�
Input units Output units

Hidden units

� � ^ � ^ T

Figure 11: Layout of a � -� - � auto-associative neural network.

Network with linear hidden layer and output units

Since $(T � � T � $(T� � T � � (78)

the expression for � T reduces to

� T � � �� � T � � �� $(T 
 � $(T� � T ���%$]T � -=T�� (79)
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Similarly for � ^ : � ^ � � �� � ^ � � �� � T 
 � � T� $ ^ 
 � $ ^� � ^ � �
T � T � ^ T (80)

Linear activation functions perform PCA

The two layer auto-associative MLP with linear hidden units and a sum-of-squares error

function used in the previous section, learns the principal components for that data set.

PCA can of course be performed and the weights can be calculated directly by computing

a matrix pseudo-inverse [30], and this shall reduce ‘training time’ significantly. Consider

Eq. (71) where the activation function is linear (
� � � � ) for the input and hidden layers;

� � �
�

;�
Y�Z �

��

^ Z � �
��
� Z�� $ Y� � � ^ � - Y^ � � (81)

where � is the number of hidden units. If this expression is differentiated with respect to

� � ^ and the derivative is set to zero the usual equations for least-squares optimisation are

given in the form ;�
Y`Z � �

��
� � Z�� $ Y� � � � ^ � - Y^ �c$ Y� � � (82)

which is written in matrix notation as

��4 N 4V�=M N �R4 N � (83)

$ has dimensions � J � with elements $ Y� where � is the number of training patterns

and D the number of input nodes to the network (the length of each ECG complex in our

examples given in the main text). � has dimension � J � and elements � � ^ and � has

dimensions � J � and elements - Y^ . The matrix �%$ � $ � is a square �VJ � matrix which may

be inverted to obtain the solution M N � 4�� � (84)

where 4 � is the (� JV� ) pseudo-inverse of 4 and is given by

4�� � ��4 N 4V� \gf 4 N (85)

Note that in practice ��4 N 4 � usually turns out to be near-singular SVD is used to avoid

problems caused by the accumulation of numerical roundoff errors.

Consider � training patterns presented to the auto-associative MLP with � input and Q
output nodes ( � �}Q ) and � � � hidden nodes. For the � ��� ( �U� ��
 
 
*� ) input vector � � of the

��JK� ( ��� � ) real input matrix, 3 , formed by the � ( � -dimensional) training vectors, the

hidden unit output values are

	 ^ � � � MI� � � � � �
	=� (86)
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where MI� is the input-to-hidden layer ��J � weight matrix, �@�
	 is a rank-� vector of biases

and
�

is an activation function. The output of the auto-associative MLP can then be written

as $(T � MG��	 ^ � � � 	 (87)

where MG� is the hidden-to-output layer �PJ Q weight matrix and � � 	 is a rank- Q vector of

biases. Now consider the singular value decomposition of
	

, given by [2] as 3 �g� � � 	�� � N�
where

�
is an � J � column-orthogonal matrix, � is an � J � diagonal matrix with positive

or zero elements (the singular values) and � � is the transpose of an � J � orthogonal

matrix. The best rank-� approximation of 3 is given by [55] as M?��	 ^ � � $ 	�$ � N$ where

	 ^ ��� 	�$ � N$ � � 
 (88)

M 
@� � $�� \gf (89)

with � being an arbitrary non-singular �	J � scaling matrix. � ^ has ��J � elements, 	 ^ has

� J � elements and � � has � JV� elements. It can be shown that [29]

MA��� � \ �� � � N^ (90)

where MA� are the input-to-hidden layer weights and � is derived from a power series

expansion of the activation function,
� ���� � � � � � �=� for small � . For a linear activation

function, as in this application, � � � � , � � � � . The bias weights given in [29] reduce to

� �
	 � � � \ �� � � �^
�
� ��� � �^

�
� �

� � 	 � � � � � � � ^ � \ � � � � (91)

where

�
� � �; W ; � � , the average of the training (input) vectors and � is here set to be

the (�PJ � ) identity matrix since the output is unaffected by the scaling. Using equations

(86) to (91)

$]T � M���	 ^ � � � 	 (92)� � $�� \ � 	 ^ � � � 	� � $�� \ � � � �+� � � � �
	c� � � � 	� � $�� \ �� \ � � � �^ � �� � ^ � \ � � �^
�
� �

�
�

giving the output of the auto-associative MLP as

$(T � � $ �PN$ �%3 � � � � � � � 
 (93)

Equations (89), (90) and (91) represent an analytical solution to determine the weights of

the auto-associative MLP ‘in one pass’ over the input (training) data with as few as � � � �
�/� � � ��� �%� �+� multiplications [56]. We can see that M f �RM � $ is the matrix that rotates the

each of the data vectors � Y� �O$ Y� in 3 into the hidden data $ �� ^ , which are out � underlying

sources. M 
.�OM $
	 is the matrix that tranforms our sources back into the observation data

(the target data vectors W ; - Y� � �
). If � 	 � , we have discarded some of the possible

information sources and effected a filtering. In terms of PCA, M f � 	�� N � � � N and in

terms of BSS, M f � M .
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Appendix D:

12.9.4 Derivation of error back-propagation

The error � is given over all input patterns � by:

� � �
�
�
Y

�
T �%$ YT � - Y T � � (94)

Which may be written as:

� � �
�
�
Y

�
T � �	� � � ^ � ^ T � � � � � $ � � � ^ �e� � - Y T � � (95)

To calculate the update rules the gradient of the error with respect to the weights � � ^ and

� ^ T must be calculated. The update equations (96) (97) are given below, � is the learning

rate.

� ��� � � �^ T � � ��� �^ T � � � �� � ^ T (96)

� ��� � � �� ^ � � ��� �� ^ � � � �� � � ^ (97)

The calculation of the gradients is performed using simple chain rule partial differentia-

tion. � �� � ^ T � � �� $(T 
 � $(T� � T 
 � � T� � ^ T (98)

The input to the output units � T is given by

� T � �

^ $ ^ � ^ T (99)

From (94) and (99) we may write� �� $(T ����$(T � -=T`�n� � � T� � ^ T � $ ^ (100)

Since $(T is defined as $(T � �	� � � T�� � �
� � [ \ � � (101)

We may write � $]T� � T � �� � � � �
� � [ \ � � � � [ \ � �� � � [ \ � � � � � $]T/� � � $(T)� (102)
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Hence � �� � ^ T � ��$(T � -=T`�c$]T/� � � $]T`�=$ ^ (103)

Therefore we may write the � ^ T update as

� ��� � � �^ T � � ��� �^ T � � � T)$ ^ (104)

Where � T.� � �� $]T 
 � $(T� � T � � �� � T � �%$]T � -=T��=$(T(� � � $(T)� (105)

In order to calculate the � � ^ update equation the chain rule is applied several times, hence� �� � � ^ � � �� � ^ 
 � � ^� � � ^ (106)

� �� � � ^ � � �� � T 
 � T � � � T� $ ^ � 
 � $ ^� � ^ 
 � � ^� � � ^ (107)

From (99) � � T� $ ^ � �
T � ^ T (108)

The input to the hidden units is given by

� ^ � �
�

$ � � � ^ (109)

Hence � � ^� � � ^ � $ � (110)

By symmetry from (102) we have � $ ^� � ^ �O$ ^ � � � $ ^ � (111)

Therefore from (105),(108),(110) and (111) the update equation for the � � ^ weights is

given by

� ��� � � �� ^ � � ��� �� ^ � � � ^ $ � (112)

Where � ^ � � �� � ^ � �
T � T � ^ Tn$ ^ � � � $ ^ � (113)
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Appendix E:

12.9.5 Orthogonal rotation matrices

The classical (orthogonal) three-dimensional rotation matrices are

��� ���(� �
6
8 � � �
�
 ��� ���/� � ��� � ���(�

�
����� ���/�  ��� ���(�

C
F � ��� ���(� �

6
8  ��� ���(� �

����� ���/�
� � �

� ����� ���/� �
 ��� ���/�

C
F ��� ���/���

6
8  ��� ���/� � ����� ���/� ������ ���/�  ��� ���(� �

� � �

C
F �

(114)

where
��� ���/� , ��� ���/� and

��� ���(� produce rotations of a 3-D signal about the � -axis, $ -axis

and , -axis respectively.
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Appendix F: Definitions for slides

mean of the values �K�����9�n�����`� 
 
 
1�����>� ,
� � � �


��
� Z � � �

variance of � ,

� � ��� ��� �

��
� Z � � � �� � � � �

standard deviation (S.D.) of � , �
��� � � �

� �
skewness of � ,

� ��� � � �

��
� Z �
� � �� � �� � �

kurtosis of � ,

� � � ��� �

��
� Z �
� � �� � �� � b
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