Singular Value Decomposition &
Independent Component Analysis
for Blind Source Separation

©G.D. Clifford

April 1, 2005

Introduction

In this chapter we will examine how we can generalize the idea of transforming a time series in an alternative representation, such as the Fourier (frequency) domain, to facilitate systematic methods of either removing (filtering) or adding (interpolating) data. In particular, we will examine the techniques of Principal Component Analysis (PCA) using Singular Value Decomposition (SVD), and Independent Component Analysis (ICA). Both of these techniques utilize a representation of the data in a statistical domain rather than a time or frequency domain. That is, the data is projected onto a new set of axes that fulfill some statistical criterion, which imply independence, rather than a set of axes that represent discrete frequencies such as with the Fourier transform.

Another important difference between these statistical techniques and Fourier-based techniques is that the Fourier components onto which a data segment is projected are fixed, whereas PCA- or ICA-based transformations depend on the structure of the data being analyzed. The axes onto which the data are projected are therefore discovered. If the structure of the data changes over time, then the axes onto which the data is projected will change too.

Any projection onto another space is essentially a method for separating the data out into separate sources which will hopefully allow us to see important structure in a particular projection. For example, by calculating the power spectrum of a segment of data, we hope to see peaks at certain frequencies. The power (amplitude squared) along certain frequency vectors is therefore high, meaning we have a strong component in the signal
at that frequency. By discarding the projections that correspond to the unwanted sources (such as the noise or artifact sources) and inverting the transformation, we effectively perform a filtering of the signal. This is true for both ICA and PCA as well as Fourier-based techniques. However, one important difference between these techniques is that Fourier techniques assume that the projections onto each frequency component are independent of the other frequency components. In PCA and ICA we attempt to find a set of axes which are independent of one another in some sense. We assume there are a set of independent sources in the data, but do not assume their exact properties. (Therefore, they may overlap in the frequency domain in contrast to Fourier techniques.) We then define some measure of independence and attempt to decorrelate the data by maximizing this measure. Since we discover, rather than define the the axes, this process is known as blind source separation. The sources are the data projected onto the discovered axes. For PCA the measure we use to discover the axes is variance and leads to a set of orthogonal axes (because the data is decorrelated in a second order sense and the dot product of any of the axes is zero). For ICA this measure is based on non-Gaussianity (such as kurtosis\footnote{a measure of how wider or narrower a distribution is than a Gaussian} - see §12.4.2) and the axes are not necessarily orthogonal. Kurtosis is the fourth moment (mean, variance, and skewness are the first three) and is a measure of how non-Gaussian a distribution is. Our assumption is that if we maximize the non-Gaussianity of a set of signals, then they are maximally independent. (This comes from the central limit theorem; if we keep adding independent signals together, we will eventually arrive at a Gaussian distribution.) If we break a Gaussian-like observation down into a set of non-Gaussian mixtures, each with distributions that are as non-Gaussian as possible, the individual signals will be independent. Therefore, kurtosis allows us to separate non-Gaussian independent sources, whereas variance allows us to separate independent Gaussian noise sources.

This simple idea, if formulated in the correct manner, can lead to some surprising results, as you will discover in the applications section later in these notes and in the accompanying laboratory. However, we shall first map out the mathematical structure required to understand how these independent sources are discovered and what this means about our data. We shall also examine the assumptions we must make and what happens when these assumptions break down.

12.1 Signal & noise separation

In general, an observed (recorded) time series comprises of both the signal we wish to analyze and a noise component that we would like to remove. Noise or artifact removal often comprises of a data reduction step (filtering) followed by a data reconstruction technique (such as interpolation). However, the success of the data reduction and reconstruction steps is highly dependent upon the nature of the noise and the signal.

By definition, noise is the part of the observation that masks the underlying signal we wish
to analyze, and in itself adds no information to the analysis. However, for a noise signal to carry no information, it must be white with a flat spectrum and an autocorrelation function (ACF) equal to an impulse. Most real noise is not really white, but colored in some respect. In fact, the term noise is often used rather loosely and is frequently used to describe signal contamination. For example, muscular activity recorded on the electrocardiogram (ECG) is usually thought of as noise or artifact. However, increased muscle artifact on the ECG actually tells us that the subject is more active than when little or no muscle noise is present. Muscle noise is therefore a source of information about activity, although it reduces the amount of information about the cardiac cycle. Signal and noise definitions are therefore task-related and change depending on the nature of the information you wish to extract from your observations.

Table 1 illustrates the range of signal contaminants for the ECG. We shall also examine the statistical qualities of these contaminants in terms of their probability distribution functions (PDFs) since the power spectrum of a signal is not always sufficient to characterize a signal. The shape of a PDF can be described in terms of its Gaussianity, or rather, departures from this idealized form (which are therefore called super- or sub-Gaussian). The fact that these signals are not Gaussian turns out to be an extremely important quality, which is closely connected to the concept of independence, which we shall exploit to separate contaminants from the signal.

Although noise is often modeled as Gaussian white noise, this is often not the case. Noise is often correlated (with itself or sometimes the signal), or concentrated at certain values. For example, 50Hz or 60Hz mains noise contamination is sinusoidal, a waveform that spends most of its time at the extreme values (near its turning points). By considering departures from the ideal Gaussian noise model we will see how conventional techniques can under-perform and how more sophisticated (statistical-based) techniques can provide improved filtering.

We will now explore how this is simply another form of data reduction (or filtering) through projection onto a new set of axes or basis functions followed by data reconstruction through projection back into the original space. By reducing the number of basis functions we filter the data (by discarding the projections onto axes that are believed to correspond to noise). By projecting from a reduced set of basis functions (onto which the data has been compressed) back to the original space, we perform a type of interpolation (by adding information from a model that encodes some of our prior beliefs about the underlying nature of the signal or is derived from a data set).

2It lowers the SNR!
3Therefore, no one-step prediction is possible. This type of noise can be generated in MATLAB with the `rand()` function.
4Throughout this chapter we shall use the ECG as a descriptive example because it has easily recognizable (and definable) features and contaminants.
5generated in MATLAB by the function `randn()`
Qualities →
<table>
<thead>
<tr>
<th>Contaminant ↓</th>
<th>Frequency Range</th>
<th>Time duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 or 60HZ Powerline</td>
<td>Narrowband 50 or 60 ± 2 Hz</td>
<td>Continuous</td>
</tr>
<tr>
<td>Movement Baseline Wander</td>
<td>Narrowband (< 0.5Hz)</td>
<td>Transient or Continuous</td>
</tr>
<tr>
<td>Muscle Noise</td>
<td>Broadband</td>
<td>Transient</td>
</tr>
<tr>
<td>Electrical Interference</td>
<td>Narrowband</td>
<td>Transient or Continuous</td>
</tr>
<tr>
<td>Electrode pop</td>
<td>Narrowband</td>
<td>Transient</td>
</tr>
<tr>
<td>Observation noise</td>
<td>Broadband</td>
<td>Continuous</td>
</tr>
<tr>
<td>Quantization noise</td>
<td>Broadband</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

Table 1: Contaminants on the ECG and their nature.

Figure 1: 10 seconds of 3 Channel ECG. Note the high amplitude movement artifact in the first two seconds and the 10^{th} second. Note also the QRS-like artifacts around 2.6 and 5.1 seconds
12.2 Matrix transformations as filters

The simplest filtering of a time series involves the transformation of a discrete one dimensional \((N = 1) \) time series \(x[m] \), consisting of \(M \) points such that \(x[m] = \{x_1, x_2, x_3, ..., x_M\}^T \), into a new representation, \(y = \{y_1, y_2, y_3, ..., y_M\}^T \). If \(x[m] \) \((t = 1, 2, ..., M) \) is a column vector\(^6\) that represents a channel of ECG, then we can generalize this representation so that \(N \) channels of ECG \(X \), and their transformed representation \(Y \) are given by

\[
X = \begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1N} \\
 x_{21} & x_{22} & \cdots & x_{2N} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{M1} & x_{M2} & \cdots & x_{MN}
\end{bmatrix}, \quad Y = \begin{bmatrix}
 y_{11} & y_{12} & \cdots & y_{1N} \\
 y_{21} & y_{22} & \cdots & y_{2N} \\
 \vdots & \vdots & \ddots & \vdots \\
 y_{M1} & y_{M2} & \cdots & y_{MN}
\end{bmatrix}
\] (1)

Note that we will adopt the convention throughout this chapter (and in the accompanying laboratory exercises) that all vectors are written in lower-case bold and are column vectors, and all matrices are written in upper-case bold type. The \(M \) points of each of the \(N \) signal channels form \(M \times N \) matrices (i.e. the signal is \(N \)-dimensional with \(M \) samples for each vector). An \((N \times N) \) transformation matrix \(W \) can then be applied to \(X \) to create the transformed matrix \(Y \) such that

\[
Y^T = WX^T.
\] (2)

The purpose of a transformation is to map (or project) the data into another space which serves to highlight patterns in the data and identify interesting projections. To filter the data we discard the noise, or ‘uninteresting’ parts of the signal (which are masking the information we are interested in). This amounts to a dimensionality reduction, as we are discarding the dimensions (or subspace) that corresponds to the noise.

In general, transforms can be categorized as orthogonal or biorthogonal transforms. For orthogonal transformations, the transformed signal is same length \((M) \) as the original and the energy of the data is unchanged. An example of this is the Discrete Fourier transform (DFT) where the same signal is measured along a new set of perpendicular axes corresponding to the coefficients of the Fourier series (see chapter 4). In the case of the DFT with \(k = M \) frequency vectors, we can write Eq. 2 as \(Y_k = \sum_{n=1}^{N} W_{kn}X_n \) where \(W_{kn} = e^{-j2\pi kn/N} \), or equivalently

\[
W = \begin{bmatrix}
 e^{-j2\pi} & e^{-j4\pi} & \cdots & e^{-j2\pi N} \\
 e^{-j4\pi} & e^{-j8\pi} & \cdots & e^{-j4\pi N} \\
 \vdots & \vdots & \ddots & \vdots \\
 e^{-j2\pi M} & e^{-j4\pi M} & \cdots & e^{-j2\pi MN}
\end{bmatrix}.
\] (3)

For biorthogonal transforms, the angles between the axes may change and the new axes are not necessarily perpendicular. However, no information is lost and perfect reconstruction of the original signal is still possible (using \(X^T = W^{-1}Y^T \)).

\(^6\)In Matlab the command \([M N]=\text{size}(x)\) gives a dimension of \(N = 1 \) and a length equal to \(M \) for a column vector \(x \).
Transformations can be further categorized as as either **lossless** (so that the transformation can be reversed and the original data restored exactly) or as **lossy**. When a signal is filtered or compressed (through downsampling for instance), information is often lost and the transformation is not invertible. In general, lossy transformations involve a non-invertible transformation of the data using a transformation matrix that has at least one column set to zero. Therefore there is an irreversible removal of some of the data and this corresponds to a mapping to a lower number of dimensions.

In the following sections we will study two transformation techniques Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Both techniques attempt to find an independent set of vectors onto which we can transform the data. The data projected (or mapped) onto each vector is the independent source. The basic goal in PCA is to *decorrelate* the signal by projecting the data onto *orthogonal* axes. However, ICA results in a biorthogonal transform of the data and the axes are not necessarily orthogonal. Both PCA and ICA can be used to perform lossy or lossless transformations by multiplying the recorded (observation) data by a separation or *demixing* matrix. Lossless PCA and ICA both involve projecting the data onto a set of axes which are determined by the nature of the data, and are therefore methods of **blind source separation** (BSS). (*Blind* because the axes of projection and therefore the sources are determined through the application of an internal measure and without the use of any prior knowledge of the data structure.)

However, once we have discovered the basis functions of the independent axes in the data and have separated them out by projecting the data onto these axes, we can then use these techniques to filter the data. By setting columns of the PCA and ICA separation matrices that correspond to unwanted sources to zero, we produce noninvertible matrices\(^7\). If we then *force* the inversion of the separation matrix\(^8\) and transform the data back into the original observation space, we can remove the unwanted source from the original signal. Figure 2 illustrates the BSS paradigm for filtering whereby we have \(N\) unknown sources in an unknown *source space* which are linearly mixed and transformed into an *observation space* where we record them. We then attempt to discover the sources or the inverse of the mixing matrix and use this to transform the data back into an estimate of our source space. After identifying the sources of interest and discarding those that we do not want (by altering the inverse of the demixing matrix to have columns of zeros for the unwanted sources), we reproject the data back into the observation space using the inverse of the altered demixing matrix.

We shall also see how the sources that we discover with PCA have a specific ordering according to the energy along each axis for a particular source. This is because we look for the axis along which the data has maximum variance (and hence energy or power\(^9\)). If the signal to noise ratio (SNR) is greater than unity, the signal of interest is therefore confined to the first few components. However, ICA allows us to discover sources by measuring

\(^7\)For example, a transformation matrix \([1 \ 0; \ 0 \ 0]\) is **noninvertible**, or **singular** \(\text{inv}(\begin{bmatrix} 1 & 0; & 0 & 0 \end{bmatrix}) = \begin{bmatrix} \text{inf} & \text{inf}; & \text{inf} & \text{inf} \end{bmatrix} \text{ in Matlab}\) and multiplying a two dimensional signal by this matrix performs a simple reduction of the data by one dimension.

\(^8\)using a pseudo-inversion technique such as Matlab’s pinv; \(\text{pinv}(\begin{bmatrix} 1 & 0; & 0 & 0 \end{bmatrix}) = \begin{bmatrix} 1 & 0; & 0 & 0 \end{bmatrix}\).

\(^9\)all are proportional to \(x^2\)
a relative cost function between the sources that is dimensionless. There is therefore no relevance to the order of the columns in the separated data and often we have to apply further signal-specific measures, or heuristics, to determine which sources are interesting.

12.3 Principal Component Analysis

In the case of the Fourier transform, the basis functions for the new representation are predefined and assumed to be independent, whereas with PCA the representation, or the basis functions, are found in the data by looking for a set of basis functions that are independent. That is, the data undergoes a decorrelation using variance as the metric. The basis functions are independent in a second order sense and are orthogonal (the dot product of the axes, and the cross-correlation of the projections is close to zero).

The basic idea in the application of PCA to a data set, is to find the component vectors \(y_1, y_2, ..., y_N \) that they explain the maximum amount of variance possible by \(N \) linearly transformed components. PCA can be defined in an intuitive way using a recursive formulation. The direction of the first principal component \(v_1 \) is found by passing over the data and attempting to maximize the value of \(v_1 = \arg \max_{\|v\|=1} E\{(v_1^T X)^2\} \). where \(v_1 \) is the same length \(M \) as the data \(X \). Thus the first principal component is the projection on the direction in which the variance of the projection is maximized. Each of the remaining \(N - 1 \) principal components are found by repeating this process in the remaining orthogonal subspace (which reduces in dimensionality by one for each new component we discover). The principal components are then given by \(y_i = v_i^T X \ (i = 1, ..., N) \), the projection of \(X \) onto each.

Although the basic goal in PCA is to decorrelate the signal by performing an orthogonal projection, we often reduce the dimension of the data from \(N \) to \(p \ (p < N) \) to remove unwanted components in the signal. It can be shown that the PCA representation is an optimal linear dimension reduction technique in the mean-square sense [1]. One important application of this technique is for noise reduction, where the data contained in the last \(N - p \) components is assumed to be mostly due to noise. Another benefit of this technique is that a projection into a subspace of a very low dimension, for example two or three, can be useful for visualizing multidimensional or higher order data.

In practice, the computation of the \(v_i \) can be simply accomplished using the sample covariance matrix \(C = X^T X \). The \(v_i \) are the eigenvectors of \(C \) (an \(M \times M \) matrix) that correspond to the \(N \) eigenvalues of \(C \). A method for determining the eigenvalues in this manner is known as Singular Value Decomposition (SVD), which is described below. SVD is also known as the (discrete) Karhunen-Loève transform, or the Hotelling transform (see Appendix 12.9.1).
Figure 2: The general paradigm of Blind Source Separation for filtering. Given some unknown matrix of sources \mathbf{Z} which is mixed by some linear stationary matrix of constants \mathbf{A}, our sources are projected from a source space to an observation space. Our observations, \mathbf{X}, are then transposed back into a space that is an estimate of the source space to give $\hat{\mathbf{Z}}$. We then reduce the dimensionality of the estimated source space, by discarding the sources that correspond to noise or unwanted artifacts by setting $N - p$ columns of \mathbf{W}^{-1} to zero (to give \mathbf{W}^{-1}_p) and reprojecting back into the observation space. The resulting matrix of filtered observations is \mathbf{X}_{filt}. The filtered observation space and original observation space are the same, but the data projected into them is filtered and unfiltered respectively. In the case of PCA, the sources are the columns of \mathbf{U}, and can are equivalent to $\mathbf{X}(\mathbf{S}\mathbf{V}^T)^{-1}$ (see § 12.3.1, Eq. 4). Reducing the dimensionality of \mathbf{S} to have only p non-zero columns, the filtered observations can be reconstructed by evaluating $\mathbf{X}_{filt} = \mathbf{U}\mathbf{S}_p\mathbf{V}^T$. In the case of ICA, \mathbf{X} can multiplied by the demixing matrix \mathbf{W}, to reveal the estimates of the sources, $\mathbf{Y} = \hat{\mathbf{Z}}$. Columns of \mathbf{W}^{-1} can be set to zero to remove the ‘noise’ sources and the filtered data are reconstructed using $\mathbf{X}_{filt} = \mathbf{W}^{-1}_p\mathbf{Y}$.

12.3.1 Method of SVD

To determine the principal components of a multi-dimensional signal, we can use the method of Singular Value Decomposition. Consider a real $M \times N$ matrix X of observations which may be decomposed as follows;

$$X = USV^T$$ \hspace{1cm} (4)

where S is an M non-square matrix with zero entries everywhere, except on the leading diagonal with elements s_i arranged in descending order of magnitude. Each s_i is equal to $\sqrt{\lambda_i}$, the square root of the eigenvalues of $C = X^TX$. A stem-plot of these values against their index i is known as the singular spectrum. The smaller the eigenvalues are, the less energy along the corresponding eigenvector there is. Therefore, the smallest eigenvalues are often considered to be due to noise. The columns of V is an $N \times N$ matrix of column vectors which are the eigenvectors of C. The $M \times M$ matrix U is the matrix of projections of X onto the eigenvectors of C [2]. If a truncated SVD of X is performed (i.e. we just retain the most significant p eigenvectors)10, then the truncated SVD is given by $Y = US_pV^T$ and the columns of the $M \times N$ matrix Y are the noise-reduced signal (see Figure 3).

A routine for performing SVD is as follows:

1. Find the N non-zero eigenvalues, λ_i of the matrix $C = X^TX$ and form a non-square diagonal matrix S by placing the square roots $s_i = \sqrt{\lambda_i}$ of the N eigenvalues in descending order of magnitude on the leading diagonal and setting all other elements of S to zero.

2. Find the orthogonal eigenvectors of the matrix X^TX corresponding to the obtained eigenvalues, and arrange them in the same order. this ordered collection of column-vectors forms the matrix V.

3. Find the first N column-vectors of the matrix U: $u_i = s_i^{-1}Xv_i \ (i = 1 : N)$. Note that s_i^{-1} are the elements of S^{-1}.

4. Add the rest of $M - N$ vectors to the matrix U using the Gram-Schmidt orthogonalization process (see appendix 12.9.2).

12.3.2 Eigenvalue decomposition - a worked example

To find the singular value decomposition of the matrix

$$X = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$ \hspace{1cm} (5)

10in practice choosing the value of p depends on the nature of the data, but is often taken to be the knee in the eigenspectrum (see 12.3.3) or as the value where $\sum_{i=1}^{p} s_i > \alpha \sum_{i=1}^{N} s_i$ and α is some fraction ≈ 0.95
first we find the eigenvalues, \(\lambda \), of the matrix

\[
C = X^T X = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}
\]

in the usual manner by letting

\[
Cv = \lambda v = 0
\]

so \((C - \lambda I) = 0 \) and

\[
\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = 0
\]

Evaluating this determinant and solving this characteristic equation for \(\lambda \), we find \((2 - \lambda)^2 - 1 = 0\), and so \(\lambda_1 = 3 \) and \(\lambda_2 = 1 \). Next we note the number of nonzero eigenvalues, \(r \), of the matrix \(X^T X \): \(r = 2 \). Then we find the orthonormal eigenvectors of the matrix \(X^T X \) corresponding to the eigenvalues \(\lambda_1 \) and \(\lambda_2 \) by solving for \(v_1 \) and \(v_2 \) using \(\lambda_1 \) and \(\lambda_2 \) and in \((C - \lambda I)v = 0 \) ...

\[
v_1 = \begin{bmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}, \quad v_2 = \begin{bmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix}, \quad (7)
\]

forming the matrix

\[
V = [v_1 \, v_2] = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \quad (8)
\]

where \(v_1 \) and \(v_2 \) are normalized to unit length. Next we write down the singular value matrix \(S \) which is a diagonal matrix composed of the square roots of the eigenvalues of \(C = X^T X \) arranged in descending order of magnitude.

\[
S = \begin{bmatrix} s_1 & 0 \\ 0 & s_2 \end{bmatrix} = \begin{bmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{bmatrix} = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{1} \end{bmatrix} \quad (9)
\]

Recalling that the inverse of a matrix \(B \) with elements \(b_{ij} \) is given by

\[
B^{-1} = \frac{1}{\det|B|} \begin{bmatrix} b_{22} & -b_{21} \\ -b_{12} & b_{11} \end{bmatrix} \quad (10)
\]

and so

\[
S^{-1} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \end{bmatrix} \quad (11)
\]

and we can find the first two columns of \(U \), using the relation

\[
u_1 = s_1^{-1} X v_1 = \frac{\sqrt{3}}{3} \begin{bmatrix} 1 & 1 & \frac{k_3}{k_2} \\ 0 & 1 & \frac{k_6}{k_3} \end{bmatrix} = \begin{bmatrix} \frac{k_6}{3} \\ \frac{k_6}{6} \end{bmatrix}
\]
Using the Gram-Schmidt process (see appendix 12.9.2) we can calculate the third and remaining orthogonal column of \(\mathbf{U} \) to be

\[
\mathbf{u}_3 = \begin{bmatrix} \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{3}}{3} \\ -\frac{\sqrt{3}}{3} \end{bmatrix}.
\]

Hence

\[
\mathbf{U} = [\mathbf{u}_1 \mathbf{u}_2 \mathbf{u}_3] = \begin{bmatrix}
\frac{\sqrt{3}}{3} & 0 & \frac{\sqrt{3}}{3} \\
\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} \\
\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3}
\end{bmatrix}
\]

and the singular value decomposition of the matrix \(\mathbf{X} \) is

\[
\mathbf{X} = \mathbf{U} \mathbf{S} \mathbf{V}^T = \begin{bmatrix}
\frac{\sqrt{3}}{3} & 0 & \frac{\sqrt{3}}{3} \\
\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} \\
\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3}
\end{bmatrix} \begin{bmatrix}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\
\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\
\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3}
\end{bmatrix}
\]

12.3.3 SVD filtering - a practical example using the ECG

We will now look at a more practical (and complicated) illustration. SVD is a commonly employed technique to compress and/or filter the ECG. In particular, if we align \(N \) heartbeats, each \(M \) samples long, in a matrix (of size \(M \times N \)), we can compress it down (into an \(M \times p \) matrix, using only the first \(p \ll N \) principal components. If we then reconstruct the data by inverting the reduced rank matrix, we effectively filter the original data.

Fig. 3a is a set of 64 heart beat waveforms which have been cut into one-second segments (with a sampling frequency \(F_s = 200\text{Hz} \)), aligned by their R-peaks and placed side-by-side to form a \(200 \times 8 \) matrix. The data is therefore 8-dimensional and an SVD will lead to 8 eigenvectors. Fig. 3b is the eigenspectrum obtained from SVD\(^{11}\). Note that most of the power is contained in the first eigenvector. The knee of the eigenspectrum is at the second principal component. Fig. 3c is a plot of the reconstruction (filtering) of the data using just the first eigenvector\(^ {12}\). Fig. 3d is the same as Fig. 3c, but the first two eigenvectors have been used to reconstruct the data. The data in Fig. 3d is therefore noisier than that in Fig. 3c.

Note that \(\mathbf{S} \) derived from a full SVD (using Matlab’s \texttt{svd()}) is an \textit{invertible} matrix, and no information is lost if we retain all the principal components. In other words, we recover the

\(^{11}\text{In Matlab:} \quad [\mathbf{U} \mathbf{S} \mathbf{V}] = \text{svd(data)}; \quad \text{stem(diag(S))} \)

\(^{12}\text{In Matlab:} \quad [\mathbf{U} \mathbf{S} \mathbf{V}] = \text{svds(data, 1)}; \quad \text{mesh(U*S*V')} \)
Figure 3: SVD of eight R-peak aligned P-QRS-T complexes; a) in the original form with a large amount of in-band noise, b) eigenspectrum of decomposition, c) reconstruction using only the first principal component, d) reconstruction using only the first two principal components.
original data by performing the multiplication USV^T. However, if we perform a truncated SVD (using \texttt{svds()} then the inverse of S ($\texttt{inv}(S)$) does not exist. The transformation that performs the filtering is \textbf{noninvertible} and information is lost because S is \textbf{singular}.

From a data compression point of view, SVD is an excellent tool. If the eigenspace is known (or previously determined from experiments), then the N-dimensions of data can in general be encoded in only p-dimensions of data. So for M sample points in each signal, an $M \times N$ matrix is reduced to an $M \times p$ matrix. In the above example, retaining only the first principle component, we achieve a compression ration of $8 : 1$. Note that the data is encoded in the U matrix and so we are only interested in the first p columns. The eigenvalues and eigenvectors are encoded in S and V matrices, and therefore an additional p scalar values are required to encode the relative energies in each column (or signal source) in U. Furthermore, if we wish to encode the eigenspace onto which the data in U is projected, we require an additional N^2 scalar values (the elements of \mathbf{V}).

It should be noted that the eigenvectors are likely to change13, based upon heart-rate dependent beat-to-beat morphology changes (because the cardiac conduction speed changes at different heart rates) and the presence of abnormal beats.

In order to find the global eigenspace for all beats, we need to take a large, representative set of heartbeats14 and perform SVD upon this [3]. Projecting each new beat onto these \textit{globally derived} basis functions leads to a filtering of the signal that is essentially equivalent to passing the P-QRS-T complex through a set of trained weights of a multi-layer perceptron (MLP) neural network (see [4]appendix 12.9.3). Abnormal beats or artifacts erroneously detected as normal beats will have abnormal eigenvalues (or a highly irregular structure when reconstructed by the MLP). In this way, beat classification can be performed. It should be noted however, that in order to retain all the subtleties of the QRS complex, at least 5 eigenvectors are required (and another five for the rest of the beat). At a sampling frequency of F_s Hz and an average beat-to-beat interval of RR^{av} (or heart rate of $60/RR^{\text{av}}$) the compression ratio is $F_s \cdot RR^{\text{av}} \cdot \frac{(M-p)}{p} : 1$ where M is the number of samples in each segmented heart beat and p is the number of principal components being used.

13since they are based upon the morphology of the beats, they are also lead-dependent
14that is, $N >> 8$
12.4 Independent Component Analysis for source separation and filtering

Using SVD we have seen how we can separate a signal into a subspace that is signal and a subspace that is essentially noise. This is done by assuming that only the eigenvectors associated with the \(p \) largest eigenvalues represent the signal, and the remaining \((M - p) \) eigenvalues are associated with the noise subspace. We try to maximize the independence between the eigenvectors that span these subspaces by requiring them to be orthogonal. However, the differences between signals and noise are not always clear, and orthogonal subspaces may not be the best way to differentiate between the constituent sources in a measured signal.

In this section we will examine how choosing a measure of independence other than variance can lead to a more effective method for separating signals. A particularly intuitive illustration of the problem of source separation through discovering independent sources, is known as the Cocktail Party Problem.

12.4.1 Blind Source Separation; the Cocktail Party Problem

The Cocktail Party Problem is a classic example of Blind Source Separation (BSS), the separation of a set of observations into the constituent underlying (statistically independent) source signals. The Cocktail Party Problem is illustrated in Fig. 4. If each of the \(J \) voices you can hear at a party are recorded by \(N \) microphones, the recordings will be a matrix composed of a set of \(N \) vectors, each of which is a (weighted) linear superposition of the \(J \) voices. For a discrete set of \(M \) samples, we can denote the sources by an \(N \times M \) matrix, \(\mathbf{Z} \), and the \(N \) recordings by an \(N \times M \) matrix \(\mathbf{X} \). \(\mathbf{Z} \) is therefore transformed into the observables \(\mathbf{X} \) (through the propagation of sound waves through the room) by multiplying it by a \(N \times J \) mixing matrix \(\mathbf{A} \) such that \(\mathbf{X} = \mathbf{A} \mathbf{Z} \). (Recall Eq. 2 in §12.2.) Figure 4 illustrates this paradigm where sound waves from \(J = 3 \) independent speakers (\(z_1, z_2 \) and \(z_3 \) left) are superimposed (center), and recorded as three mixed source vectors with slightly different phases at three spatially separated but otherwise identical microphones.

In order for us to ‘pick out’ a voice from an ensemble of voices in a crowded room, we must perform some type of BSS to recover the original sources from the observed mixture. Mathematically, we want to find a demixing matrix \(\mathbf{W} \), which when multiplied by the recordings \(\mathbf{X} \), produces an estimate \(\mathbf{Y} \) of the sources \(\mathbf{Z} \). Therefore \(\mathbf{W} \) is a set of weights (approximately\(^{15}\)) equal to \(\mathbf{A}^{-1} \). One of the key methods for performing BSS is known as Independent Component Analysis (ICA), where we take advantage of (an assumed) linear independence between the sources.

An excellent interactive example of the cocktail party problem can be found at

\(^{15}\)depending on the performance details of the algorithm used to calculate \(\mathbf{W} \)
Figure 4: The Cocktail Party Problem: sound waves from $J = 3$ independent speakers (z_1, z_2 and z_3 left) are superimposed at a cocktail party (center), and are recorded as three mixed source vectors, x_1, x_2 and x_3 on $N = 3$ microphones (right). The $J \times M$ observations (or recordings), X of the underlying sources, Z, are a linear mixture of the sources, such that $X = AZ$, where A is a $N \times J$ linear mixing matrix. An estimate Y, of the $J \times M$ sources Z, is made by calculating a demixing matrix W, which acts on X such that $Y = WX = \hat{Z}$ and $W \approx A^{-1}$.
The reader is encouraged to experiment with this URL at this stage. Initially you should attempt to mix and separate just two different sources, then increase the complexity of the problem adding more sources. Note that the relative phases of the sources differ slightly for each recording (microphone) and that the separation of the sources may change in order and volume. The reason for this is explained in the following sections.

12.4.2 Higher order independence: ICA

Independent Component Analysis is a general name for a variety of techniques which seek to uncover the independent source signals from a set of observations that are composed of linear mixtures of the underlying sources. Consider X_{jn} to be a matrix of J observed random vectors, A a $N \times J$ mixing matrix and Z, the J (assumed) source vectors such that

$$X^T = AZ^T$$ (12)

Note that here we have chosen to use the transposes of X and Z to retain dimensional consistency with the PCA formulation in § 12.3, Eq. 4. ICA algorithms attempt to find a separating or demixing matrix W such that

$$Y^T = WX^T$$ (13)

where $W = \hat{A}^{-1}$, an approximation of the inverse of the original mixing matrix, and $Y^T = \hat{Z}^T$, an $M \times J$ matrix, is an approximation of the underlying sources. These sources are assumed to be statistically independent (generated by unrelated processes) and therefore the joint PDF is the product of the densities for all sources:

$$P(Z) = \prod p(z_i)$$ (14)

where $p(z_i)$ is the PDF of the i^{th} source and $P(Z)$ is the joint density function.

The basic idea of ICA is to apply operations to the observed data X^T, or the de-mixing matrix, W, and measure the independence between the output signal channels, (the columns of Y^T) to derive estimates of the sources, (the columns of Z^T). In practice, iterative methods are used to maximize or minimize a given cost function such as mutual information, entropy or the fourth order moment, kurtosis, a measure of non-Gaussianity. (see § 12.4.2). We shall see later how entropy-based cost functions are related to kurtosis and therefore all of the cost functions are a measure of non-Gaussianity to some extent\(^{16}\). From the Central Limit Theorem\(^{[5]}\), we know that the distribution of a sum of independent random variables tends toward a Gaussian distribution. That is, a sum of two independent random variables usually has a distribution that is closer to Gaussian than the

\(^{16}\)The reason for choosing between different cost functions is not always made clear, but computational efficiency and sensitivity to outliers are among the concerns. See § 12.5.
two original random variables. In other words, independence is non-Gaussianity. In ICA, if we wish to find independent sources, we must find a demixing matrix W that maximizes the non-Gaussianity of each source. It should also be noted at this point that determining the number of sources in a signal matrix is outside the scope of this chapter17, and we shall stick to the convention $J \equiv N$, the number of sources equals the dimensionality of the signal (the number of independent observations). Furthermore, in conventional ICA, we can never recover more sources than the number of independent observations ($J \neq N$), since this is a form of interpolation and a model of the underlying source signals would have to be used. (In terms of §12.2, we have a subspace with a higher dimensionality than the original data18.

The essential difference between ICA and PCA is that PCA uses variance, a second order moment, rather than kurtosis, a fourth order moment, as a metric to separate the signal from the noise. Independence between the projections onto the eigenvectors of an SVD is imposed by requiring that these basis vectors be orthogonal. The subspace formed with ICA is not necessarily orthogonal and the angles between the axes of projection depend upon the exact nature of the data used to calculate the sources.

The fact that SVD imposes orthogonality means that the data has been decorrelated (the projections onto the eigenvectors have zero covariance). This is a much weaker form of independence than that imposed by ICA19. Since independence implies uncorrelatedness, many ICA methods constrain the estimation procedure such that it always gives uncorrelated estimates of the independent components. This reduces the number of free parameters, and simplifies the problem.

Gaussianity We will now look more closely at what the kurtosis of a distribution means, and how this helps us separate component sources within a signal by imposing independence. The first two moments of random variables are well known; the mean and the variance. If a distribution is Gaussian, then the mean and variance are sufficient characterize variable. However, if the PDF of a function is not Gaussian then many different signals can have the same mean and variance. (For instance, all the signals in Fig. 6 have a mean of zero and unit variance.)

Recall from chapter 10 that the mean (central tendency) of a random variable x, is defined to be

$$\mu_x = E\{x\} = \int_{-\infty}^{+\infty} xp_x(x)dx$$ \hspace{1cm} (15)

where $E\{}$ is the expectation operator, $p_x(x)$ is the probability that x has a particular value. The variance (second central moment), which quantifies the spread of a distribution is given by

$$\sigma_x^2 = E\{(x - \mu_x)^2\} = \int_{-\infty}^{+\infty} (x - \mu_x)^2 p_x(x)dx$$ \hspace{1cm} (16)

17See articles on relevancy determination [6, 7]

18There are methods for attempting this type of analysis; see [8, 9, 10, 11, 12, 13, 14, 15]

19Orthogonality implies independence, but independence does not necessarily imply orthogonality
and the square root of the variance is equal to the standard deviation, \(\sigma \), of the distribution. By extension, we can define the \(N^{th} \) central moment to be

\[
v_n = E\{(x - \mu_x)^n\} = \int_{-\infty}^{+\infty} (x - \mu_x)^n p_x(x) \, dx
\]

(17)

The third moment of a distribution is known as the skew, \(\zeta \), and characterizes the degree of asymmetry about the mean. The skew of a random variable \(x \) is given by \(\zeta_3 = E\{(x - \mu_x)^3\}/\sigma^3 \). A positive skew signifies a distribution with a tail extending out toward a more positive value and a negative skew signifies a distribution with a tail extending out toward a more negative (see Fig. 5a).

The fourth moment of a distribution is known as kurtosis and measures the relative peakedness of flatness of a distribution with respect to a Gaussian (normal) distribution. See Fig. 5b. It is defined in a similar manner to be

\[
\kappa = \zeta_4 = \frac{E\{(x - \mu_x)^4\}}{\sigma^4}
\]

(18)

Note that the kurtosis of a Gaussian is equal to 3 (whereas the first three moments of a distribution are zero)\(^{20}\). A distribution with a positive kurtosis (> 3 in Eq. (20)) is termed leptokurtic (or super Gaussian). A distribution with a negative kurtosis (< 3 in Eq. (20)) is termed platykurtic (or sub Gaussian). Gaussian distributions are termed mesokurtic.

Note also that kurtosis is normalized by dividing the central moments by appropriate powers of \(\sigma \) to make them dimensionless.

These definitions are however, for continuously valued functions. In reality, the PDF is often difficult or impossible to calculate accurately and so we must make empirical approximations of our sampled signals. The standard definitions of the mean of a vector \(\mathbf{x} \) with \(M \) values (\(\mathbf{x} = [x_1, x_2, \ldots, x_M] \))

\[
\mu_x = \frac{1}{M} \sum_{i=1}^{M} x_i
\]

the variance of \(\mathbf{x} \) is

\[
\sigma^2(\mathbf{x}) = \frac{1}{M} \sum_{i=1}^{M} (x_i - \mu_x)^2
\]

and the skewness is given by

\[
\zeta(\mathbf{x}) = \frac{1}{M} \sum_{i=1}^{M} \left[\frac{x_i - \mu_x}{\sigma} \right]^3
\]

(19)

\(^{20}\)The proof of this is left to the reader, but noting that the general form of the normal distribution is

\[
p_x(x) = \frac{e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}}
\]

should help. Note also then, that the above definition of kurtosis (and Eq. (20)) sometimes has an extra \(-3\) term to make a Gaussian have zero kurtosis, such as in Numerical Recipes in C. Note that Matlab uses the convention without the \(-3\) term and therefore Gaussian distributions have a \(\kappa = 3 \). This convention is used in the laboratory assignment that accompanies these notes.
The empirical estimate of kurtosis is similarly defined by

$$\kappa(x) = \frac{1}{M} \sum_{i=1}^{M} \left(\frac{x_i - \mu_x}{\sigma} \right)^4$$

(20)

Fig. 6 illustrates the time series, power spectra and distributions of different signals and noises found in the ECG recording. From left to right: (i) the underlying Electrocardiogram signal, (ii) additive (Gaussian) observation noise, (iii) a combination of muscle artifact (MA) and baseline wander (BW), and (iv) powerline interference; sinusoidal noise with $f \approx 33\text{Hz} \pm 2\text{Hz}$. Note that all the signals have significant power contributions within the frequency of interest ($< 40\text{Hz}$) where there exists clinically relevant information in the ECG. Traditional filtering methods therefore cannot remove these noises without severely distorting the underlying ECG.

12.4.3 ICA for removing noise on the ECG

Figure 7 illustrations power of ICA to remove artifacts from the ECG. Here we see 10 seconds of 3 leads of ECG before and after ICA decomposition (upper and lower graphs respectively), the upper plot (a) is the same data as in Fig. 1. Note that ICA has separated out the observed signals into three specific sources; 1b) The ECG, 2b) High kurtosis transient (movement) artifacts, and 2c) Low kurtosis continuous (observation) noise. In particular, ICA has separated out the in-band QRS-like spikes that occurred at 2.6 and 5.1 seconds. Furthermore, time-coincident artifacts at 1.6 seconds that distorted the QRS complex, were extracted, leaving the underlying morphology intact.

Relating this to the cocktail party problem, we have three speakers in three locations. First
Figure 6: time Series, power spectra and distributions of different signals and noises found on the ECG. From left to right: (i) the underlying Electrocardiogram signal, (ii) additive (Gaussian) observation noise, (iii) a combination of muscle artifact (MA) and baseline wander (BW), and (iv) powerline interference; sinusoidal noise with $f \approx 33Hz \pm 2Hz$.
and foremost we have the series of cardiac depolarization/repolarization events corresponding to each heartbeat, located in the chest. Each electrode is roughly equidistant from each of these. Note that the amplitude of the third lead is lower than the other two, illustrating how the cardiac activity in the heart is not spherically symmetrical.

However, we should not assume that ICA is a panacea to cure all noise. In most situations, complications due to lead position, a low signal-noise ratio, and positional changes in the sources cause serious problems. Section 12.8 addresses many of the problems in employing ICA, using the ECG as a practical illustrative guide.

It should also be noted that the ICA decomposition does not necessarily mean the relevant clinical characteristics of the ECG have been preserved (since our interpretive knowledge of the ECG is based upon the observations, not the sources). Therefore, in order to reconstruct the original ECGs in the absence of noise, we must set to zero the columns of the demixing matrix that correspond to artifacts or noise, then invert it and multiply by the decomposed data to ‘restore’ the original ECG observations. An example of this using the data in Fig. 1 and Fig. 7 are presented in Fig. 8. In terms of Fig. 2 and our general ICA formulism, the estimated sources \hat{Z} (Fig. 7b) are recovered from the observation X (Fig. 7a) by estimating a demixing matrix W. It is no longer obvious which lead the underlying source (signal 1 in Fig. 7b) corresponds to. In fact, this source does not correspond to any clinical lead at all, just some transformed combination of leads. In order to perform a diagnosis on this lead, the source must be projected back into the observation domain by inverting the demixing matrix W. It is at this point that we can perform a removal of the noise sources. Columns of W^{-1} that correspond to noise and/or artifact (signal 2 and signal 3 on Fig. 7b in this case) are set to zero ($W^{-1} \rightarrow W_p^{-1}$), where the number of non-noise sources, $p = 1$), and the filtered version of each clinical lead of X, is reconstructed in the observation domain using $X_{filt} = W_p^{-1}Y$ to reveal a cleaner 3-lead ECG (Fig. 8).
Figure 7: 10 seconds of 3 Channel ECG a) before ICA decomposition and b) after ICA decomposition. Plot a is the same data as in Fig. 1. Note that ICA has separated out the observed signals into three specific sources; 1 b) The ECG, 2 b) High kurtosis transient (movement) artifacts, and 2 c) Low kurtosis continuous (observation) noise.

Figure 8: Data from Fig. 1 after ICA decomposition, (Fig 7) and reconstruction. See text for explanation.
12.5 Different methods for performing ICA - choosing a cost function

Although the basic idea behind ICA is very simple, the actual implementation can be formulated from many perspectives.

- Maximum likelihood (MacKay [16], Pearlmutter & Parra [17], Cardoso [18], Girolami & Fyfe [19])
- Higher order moments and cumulant (Comon [20], Hyvärinen & Oja [21],)
- Maximization of information transfer (Bell & Sejnowski [22], Amari et al. [23]; Lee et al. [24])
- Negentropy maximization (Girolami & Fyfe [19])
- Nonlinear PCA (Karhunen et al. [25, 26], Oja et al. [27])

All the above methods use separation metrics (or cost functions) that are essentially equivalent to measuring the non-Gaussianity of the estimated sources. The actual implementation can involve either a manipulation of the output data, Y, or a manipulation of the demixing matrix, W. In the remainder of section 12.5 we will examine three common cost functions, negentropy, mutual information and the log likelihood and a method for using them to determine the elements of W; gradient descent.

12.5.1 Negentropy instead of kurtosis as a cost function

Although kurtosis is theoretically a good measure of non-Gaussianity, it is disproportionately sensitive to changes in the distribution tails. Therefore, other measures of independence are often used. Another important measure of non-Gaussianity is given by \textit{negentropy}. Negentropy is often a more robust (outlier insensitive) method for estimating the fourth moment. Negentropy is based on the information-theoretic quantity of (differential) entropy. The more random (i.e. unpredictable and unstructured the variable is) the larger its entropy. More rigorously, entropy is closely related to the coding length of the random variable, in fact, under some simplifying assumptions, entropy is the coding length of the random variable. The entropy H is of a discrete random variable y with probability distribution $P(y)$ is defined as

$$H(y) = - \sum_i P(y = a_i) \log_2 P(y = a_i)$$ \hspace{1cm} (21)

where the a_i are the possible values of y. This definition can be generalized for continuous-valued random variables and vectors, in which case it is called differential entropy. The differential entropy H of a random vector y with a probability density function $P(y)$ is defined as
\[H(y) = - \int P(y) \log_2 P(y) \, dy. \]

(22)

A fundamental result of information theory is that a Gaussian variable has the largest entropy among all random variables of equal variance. This means that entropy could be used as a measure of non-Gaussianity. In fact, this shows that the Gaussian distribution is the “most random” or the least structured of all distributions. Entropy is small for distributions that are clearly concentrated on certain values, i.e., when the variable is clearly clustered, or has a PDF that is very “spikey”.

To obtain a measure of non-Gaussianity that is zero for a Gaussian variable and always nonnegative, one often uses a slightly modified version of the definition of differential entropy, called **negentropy**. Negentropy, \(J \), is defined as follows

\[
J(y) = H(y_G) - H(y)
\]

(23)

where \(y_G \) is a Gaussian random variable of the same covariance matrix as \(y \). Due to the above-mentioned properties, negentropy is always non-negative, and it is zero if and only if \(y \) has a Gaussian distribution. Negentropy has the additional interesting property that it is constant for a particular vector which undergoes an invertible linear transformations, such as in the ICA mixing-demixing paradigm.

The advantage of using negentropy, or, equivalently, differential entropy, as a measure of non-Gaussianity is that it is well justified by statistical theory. In fact, negentropy is in some sense the optimal estimator of non-Gaussianity, as far as statistical properties are concerned. The problem in using negentropy is, however, that it is computationally very difficult. Estimating negentropy using the definition would require an estimate (possibly nonparametric) of the probability density function. Therefore, simpler approximations of negentropy are used. One such approximation actually involves kurtosis:

\[
J(y) \approx \frac{1}{12} E\{y^3\}^2 + \frac{1}{48} \kappa(y)^2
\]

(24)

but this suffers from the problems encountered with kurtosis. Another estimate of negentropy involves entropy:

\[
J(y) \approx [E\{g(y)\} - E\{g(\eta)\}]
\]

(25)

where \(\eta \) is a zero mean unit variance Gaussian variable and the function \(g \) is some non-quadratic functions which leads to the approximation always being non-negative (or zero if \(y \) has a Gaussian distribution). \(g \) is usually taken to be \(\frac{1}{\alpha} \ln \cosh(\alpha y) \) or \(g(y) = -e^{-y^2/2} \) with \(\alpha \) some constant \(1 \leq \alpha \leq 2 \). If \(g(y) = y \), Eq. 25 degenerates to the definition of kurtosis.

\(J(y) \) is then the cost function we attempt to minimize between the columns of \(Y \). We will see how to minimize a cost function to calculate the demixing matrix in section 12.6.
12.5.2 Mutual Information based ICA

Using the concept of differential entropy, we define the mutual information (MI) \mathcal{I} between M (scalar) random variables, y_i, $i = 1 \ldots M$ as follows

$$\mathcal{I}(y_1, y_2, \ldots, y_M) = \sum_{i=1}^{M} H(y_i) - H(y).$$ \hspace{1cm} (26)

MI is a measure of the (in-)dependence between random variables. MI is always non-negative, and zero if and only if the variables are statistically independent. MI therefore takes into account the whole dependence structure of the variables, and not only the covariance (as is the case for PCA).

Note that for an invertible linear transformation $Y = WX$,

$$\mathcal{I}(y_1, y_2, \ldots, y_M) = \sum_{i=1}^{M} H(y_i) - H(x_i) - \log_2 \|W\|.$$ \hspace{1cm} (27)

If we constrain the y_i to be uncorrelated and have unit variance $E\{y^T y\} = WE\{x^T x\} W^T = I$. This implies that $\|I\| = 1 = (\|W E\{x^T x\} W^T\|) = \|W\| \|E\{x^T x\}\| \|W^T\|$ and hence $\|W\|$ must be constant. If y_i has unit variance, MI and negentropy differ only by a constant, and a sign;

$$\mathcal{I}(y_1, y_2, \ldots, y_m) = c - \sum_{i=1}^{M} \mathcal{J}(y_i)$$ \hspace{1cm} (28)

where c is a constant. This shows the fundamental relationship between MI and negentropy and hence with kurtosis.

Since MI is a measure of the mutual information between two functions, finding a W which minimises \mathcal{I} between the columns of Y in the transformation $Y = WX$ leads to method for determining the independent components (sources) in our observations X.

12.5.3 Maximum Likelihood

Independent component analysis can be thought of as a statistical modeling technique that makes use of latent variables to describe a probability distribution over the observables. This is known as generative latent variable modeling and each source is found by deducing its corresponding distribution. Following MacKay [16], we can model the J observable vectors $\{x_j\}_{j=1}^J$ as being generated from latent variables $\{z_i\}_{i=1}^N$ via a linear mapping W with elements w_{ij}. Note that the transpose of w_{ij} is written w_{ji}. To simplify the derivation we assume the number of sources equals the number of observations ($N = J$), and the data is then defined to be, $D = \{X\}_{m=1}^M$, where M is the number of samples in each of the J observations. The latent variables are assumed to be independently distributed with marginal distributions $P(z_i) \equiv p_i(z_i)$ p_i the assumed probability distributions of the latent variables.
Given \(A = W^{-1} \), the probability of the observables \(X \) and the hidden variables \(Z \) is

\[
P(\{X\}_{m=1}^{M}, \{Z\}_{m=1}^{M}|W) = \prod_{m=1}^{M} [P(x^m|z^m, W)P(z^m)]
\]

\[
= \prod_{m=1}^{M} \left[\left(\prod_{j=1}^{N} (x_j^m - \sum_i w_{ji} z_i^m) \right) \left(\prod_i p_i(z_i^m) \right) \right].
\]

Note that for simplicity we have assumed that the observations \(X \) have been generated without noise\(^{21}\). If we replace the term \(x_j - \sum_i w_{ji} z_i \) by a (noise) probability distribution over \(x_j \) with mean \(\sum_i w_{ji} z_i \) and a small standard deviation, the identical algorithm results [16].

To calculate \(w_{ij} \), the elements of \(W \) we can use the method of gradient descent which requires the optimization of a dimensionless objective function \(L(W) \), of the parameters (the weights) The sequential update of the elements of the mixing matrix, \(w_{ij} \), are then computed as

\[
\Delta w_{ij} = \eta \frac{\partial L}{\partial w_{ij}}
\]

where \(\eta \) is the learning rate\(^{22}\).

The cost function \(L(W) \) we wish to minimize to perform ICA (to maximize independence) is the **log likelihood function**

\[
\log_2 (P(X|W)) = \log_2 \left(\prod_{m=1}^{M} P(x^m|W) \right)
\]

which is the natural log of a product of the (independent) factors each of which is obtained by marginalizing over the latent variables. \(L(W) \) can be used to ‘guide’ a gradient descent of the elements of \(W \), as we shall see in the next section.

\(^{21}\)This leads to the Bell-Sejnowski algorithm [16, 22].

\(^{22}\)which can be fixed or variable to aid convergence depending on the form of the underlying source distributions.
12.6 Optional: Gradient descent to determine the de-mixing matrix W

(for the avid reader only)

In this section we will see how to implement the gradient descent to minimize the cost function which maximizes the independence of our source estimates. By way of example, we will continue with the maximum likelihood approach detailed above in § 12.5.3.

Recalling that for scalars $\int ds \delta(x - vs)f(s) = \frac{1}{|v|} f(x / v)$ and adopting a conventional index summation such that $w_{ji}z_i^m = \sum_i w_{ji}z_i^m$, a single factor in the likelihood is given by

$$P(x^m|W) = \int d^N z^m P(x^m|z^m, W) P(z^m)$$

$$= x^m \prod_j \delta(x_j^n - w_{ji}z_i^m) \prod_i p_i(z_i^m)$$

$$= \frac{1}{|\det W|} \prod_i p_i(w_{ij}^{-1} x_j)$$

which implies

$$\log_2 P(z^m|W) = \log_2 \det W + \sum_i \log_2 p_i(w_{ij} x_j).$$

We shall then define

$$\frac{\partial}{\partial w_{ij}} \log_2 \det W = w_{ij}^{-1} = a_{ij}$$

$$\frac{\partial}{\partial w_{ji}} w_{kl}^{-1} = -w_{kj}^{-1} w_{il}^{-1} = -a_{kj} a_{il}$$

$$\frac{\partial}{\partial a_{ij}} g = -w_{ji} \left(\frac{\partial}{\partial w_{ki}} g \right) w_{li}$$

with g some arbitrary function, a_{ij} representing the elements of A, $a_i \equiv a_{ij} x_j$ and $f_a(a_i) \equiv d \log_2 p_i(a_i) / da_i$. f_a indicates in which direction a_i needs to change to make the probability of the data greater. Using equations 39 and 40 we can obtain the gradient of w_{ji}

$$\frac{\partial}{\partial w_{ji}} \log_2 P(x^m|W) = -a_{ij} - a_i f_a a_{i\ell}$$

where ℓ is a dummy index. Alternatively, we can take the derivative with respect to a_{ij}

$$\frac{\partial}{\partial a_{ij}} \log_2 P(x^m|W) = w_{ji} + x_j f_a$$

27
If we choose W so as to ascend this gradient, we obtain precisely the learning algorithm from Bell and Sejnowski [22] ($\Delta W \propto W^{T-1} + z^T$). A detailed mathematical analysis of gradient descent/ascent and its relationship to neural networks and PCA are given in Appendix 12.9.3. (Treat this as optional reading).

In practice, the choice of the nonlinearity, f_a, in the update equations for learning W is heavily dependent on the distribution of the underlying sources. For example, if we choose a traditional tanh nonlinearity ($f_i(a_i) = -\tanh(\beta a_i)$), with β a constant initially equal to unity, then we are implicitly assuming the source densities are heavier tailed distributions than Gaussian ($p_i(z_i) \propto 1/\cosh(z_i) \propto 1/(e^{zi} + e^{-zi})$, $z_i = f(a_i)$, with $f_a = -\tanh(a_i)$). Varying β reflects our changing beliefs in the underlying source distributions. In the limit of large β, the nonlinearity becomes a step function and $p_i(z_i)$ becomes a biexponential distribution ($p_i(z_i) \propto e^{-|z|}$). As β tends to zero, $p_i(z_i)$ approach more Gaussian distributions.

If we have no nonlinearity, $f_a(a_i) = -\kappa a_i$, the we are implicitly assuming a Gaussian distribution on the latent variables. However, it is well known [29, 4] that without a nonlinearity, the gradient descent algorithm leads to second order decorrelation. That is, we perform the same function as SVD. Equivalently, the Gaussian distribution on the latent variables is invariant under rotation of the latent variables, so there is no information to enable us to find a preferred alignment of the latent variable space. This is one reason why conventional ICA is only able to separate non-Gaussian sources.

It should be noted that the principle of covariance (consistent algorithms should give the same results independently of the units in which the quantities are measured) is not always true. One example is the popular steepest descent rule (see Eq. 31) which is dimensionally inconsistent; the left hand side has dimensions of $[w_i]$ and the right hand side has dimensions $[w]$, $L(W)$ is dimensionless).

One method for alleviating this problem is to precondition the input data (scaling it between ± 1). Another method is to decrease η at a rate of $1/n$ where n is the number of iterations through the backpropagation of the updates of the w_i. The Munro-Robbins theorem ([30] p.41) shows that the parameters will asymptotically converge to the maximum likelihood parameters since each data point receives equal weighting. If n is held constant then one is explicitly solving a weighted maximum likelihood problem with an exponential weighting of the data and the parameters will not converge to a limiting value.

The algorithm would be covariant if $\Delta w_i = \eta \sum_{i'} G_{ii'} \frac{\partial L}{\partial w_{i'}}$, where G is a curvature matrix with the i, i' element having dimensions $[w_i w_{i'}]$. It should be noted that the differential of the metric for the gradient descent is not linear (as it is for a least square computation), and so the space on which we perform gradient descent is not Euclidian. In fact, one must use the natural [23] or relative [31] gradient. See [16] and [23] for further discussion on this topic.
12.7 Applications of ICA

ICA has been used to perform signal separation in many different domains. These include:

- Blind source separation; Watermarking, Audio [32, 33], ECG, (Bell & Sejnowski [22], Barros et al. [34], McSharry et al. [13]), EEG (Mackeig et al. [35, 36],).
- Signal and image denoising (Hyvärinen - [37], medical (fMRI - [38]) ECG EEG (Mackeig et al. [35, 36])
- Modeling of the hippocampus and visual cortex (Lörincz, Hyvärinen [39])
- Feature extraction and clustering, (Marni Bartlett, Girolami, Kolenda [40])
- Compression and redundancy reduction (Girolami, Kolenda, Ben-Shalom [41])

12.8 Limitations of ICA - Stationary Mixing

ICA assumes a linear stationary mixing model (the mixing matrix is a set of constants independent of the changing structure of the data over time). However, for many applications this is only true from certain observation points or for very short lengths of time. For example, consider the earlier case of noise on the ECG. As the subject inhales, the chest expands and the diaphragm lowers. This causes the heart to drop and rotate slightly. If we consider the mixing matrix A to be composed of a stationary component A^s and a non-stationary component A^{ns} such that $A = A^s + A^{ns}$ then A^{ns} is equal to some constant (α) times one of the rotation matrices\(^{23}\) such as

$$A^{ns}(\theta) = \alpha \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta)t & -\sin(\theta)t \\ 0 & \sin(\theta)t & \cos(\theta)t \end{bmatrix},$$

where $\theta = 2\pi f_{res}$ and f_{res} is the frequency of respiration\(^{24}\). In this case, α will be a function of θ, the angle between the different sources (the electrical signals from muscle contractions and those from cardiac activity), which itself is a function of time. This is only true for small values of α, and hence a small angle θ, between each source. This is a major reason for the differences in effectiveness of ICA for source separation for different lead configurations.

12.9 Summary and further reading

The basic idea in this chapter has been to explain how we can apply a transformation to a set of observations in order to project them onto a set of basis functions that are in

\(^{23}\)see Eq. 114 in Appendix 12.9.5

\(^{24}\)assuming an idealized sinusoidal respiratory cycle
some way more informative than the observation space. This is achieved by defining some contrast function between the data in the projected subspace which is essentially a measure of independence. If this contrast function is second order (variance) then we perform decorrelation through PCA. If the contrast function is fourth order and therefore related to Gaussianity, then we achieve ICA. The cost function measured between the estimated sources that we use in the iterative update of the demixing matrix encodes our prior beliefs as to the non-Gaussianity (kurtosis) of the source distributions. The data projected onto the independent (source) components is as statistically independent as possible. We may then select which projections we are interested in and, after discarding the uninteresting components, invert the transformation to effect a filtering of the data.

ICA covers an extremely broad class of algorithms, as we have already seen. Lee et al. [42] show that different theories recently proposed for Independent Component Analysis (ICA) lead to the same iterative learning algorithm for blind separation of mixed independent sources. This is because all the algorithms attempt to perform a separation onto a set of basis functions that are in some way independent, and that the independence can always be recast as a departure from Gaussianity.

However, the concept of blind source separation is far more broad than this chapter reveals. ICA has been the fertile meeting ground of statistical modeling [43], PCA [44], neural networks [45], Independent Factor Analysis Wiener filtering [11], wavelets [46, 47, 48], hidden Markov modeling [49, 7, 50], Kalman filtering [51] and nonlinear dynamics [14, 52]. Many of the problems we have presented in this chapter have been addressed by extending the ICA model with these tools. Although these concepts are outside the scope of this course, they are currently the focus of interesting research. For further reading on ICA and related research, the reader is encouraged to browse at the following URLs:

http://www.cnl.salk.edu/
http://web.media.mit.edu/~paris/ica.html
http://www.robots.ox.ac.uk/~sjrob/
References

[50] Stephen WP. Hidden markov independent components for biosignal analysis. URL citeseer.ist.psu.edu/397426.html.

Appendix A:

12.9.1 Karhunen-Loéve or Hotelling Transformation

The Karhunen-Loéve transformation maps vectors \mathbf{x}^n in a d-dimensional space $(x_1, ..., x_d)$ onto vectors \mathbf{z}^n in an p-dimensional space $(z_1, ..., z_p)$, where $p < d$.

The vector \mathbf{x}^n can be represented as a linear combination of a set of d orthonormal vectors \mathbf{u}_i

$$\mathbf{x} = \sum_{i=1}^{d} z_i \mathbf{u}_i$$ \hspace{1cm} (44)

Where the vectors \mathbf{u}_i satisfy the orthonormality relation

$$\mathbf{u}_i \mathbf{u}_j = \delta_{ij}$$ \hspace{1cm} (45)

in which δ_{ij} is the Kronecker delta symbol.

This transformation can be regarded as a simple rotation of the coordinate system from the original x's to a new set of coordinates represented by the z's. The z_i are given by

$$z_i = \mathbf{u}_i^T \mathbf{x}$$ \hspace{1cm} (46)

Suppose that only a subset of $p \leq d$ basis vectors \mathbf{u}_i are retained so that we use only p coefficients of z_i. The remaining coefficients will be replaced by constants b_i so that each vector \mathbf{x} is approximated by the expression

$$\tilde{\mathbf{x}} = \sum_{i=1}^{p} z_i \mathbf{u}_i + \sum_{i=p+1}^{d} b_i \mathbf{u}_i$$ \hspace{1cm} (47)

The residual error in the vector \mathbf{x}^n introduced by the dimensionality reduction is given by

$$\mathbf{x}^n - \tilde{\mathbf{x}}^n = \sum_{i=p+1}^{d} (z_i - b_i) \mathbf{u}_i$$ \hspace{1cm} (48)

We can then define the best approximation to be that which minimises the sum of the squares of the errors over the whole data set. Thus we minimise

$$\xi_p = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=p+1}^{d} (z_i - b_i)^2$$ \hspace{1cm} (49)

If we set the derivative of ξ_p with respect to b_i to zero we find

$$b_i = \frac{1}{N} \sum_{n=1}^{N} z_i^n = \mathbf{u}_i^T \mathbf{\bar{x}}$$ \hspace{1cm} (50)
Where we have defined the vector \bar{x} to be the mean vector of the N vectors,

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x^n \quad (51)$$

We can now write the sum-of-squares-error as

$$\xi_p = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=p+1}^{d} (u_i^T (x^n - \bar{x}))^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} u_i^T \Sigma u_i \quad (52)$$

Where Σ is the covariance matrix of the set of vectors x^n and is given by

$$\Sigma = \sum_n (x^n - \bar{x})(x^n - \bar{x})^T \quad (53)$$

It can be shown (see Bishop [30]) that the minimum occurs when the basis vectors satisfy

$$\Sigma u_i = \lambda_i u_i \quad (54)$$

so that they are eigen vectors of the covariance matrix. Substituting (54) into (52) and making use of the orthonormality relation of (45), the error criterion at the minimum is given by

$$\xi_p = \frac{1}{2} \sum_{i=p+1}^{d} \lambda_i \quad (55)$$

Thus the minimum error is obtained by choosing the $d - p$ smallest eigenvalues, and their corresponding eigenvectors, as the ones to discard.

Appendix B:

12.9.2 Gram-Schmidt Orthogonalization Theorem

If $\{x_1, ..., x_m\}$ is a linearly independent vector system in the vector space with scalar product F, then there exists an orthonormal system $\{\varepsilon_1, ..., \varepsilon_m\}$, such that

$$\text{span}\{x_1, ..., x_m\} = \text{span}\{\varepsilon_1, ..., \varepsilon_m\}. \quad (56)$$

This assertion can be proved by induction. In the case $m = 1$, we define $\varepsilon_1 = x_1/\|x_1\|$ and thus $\text{span}\{x_1\} = \text{span}\{\varepsilon_1\}$. Now assume that the proposition holds for $m = i - 1$, i.e., there exists an orthonormal system $\{\varepsilon_1, ..., \varepsilon_{i-1}\}$, such that $\text{span}\{x_1, ..., x_{i-1}\} = \text{span}\{\varepsilon_1, ..., \varepsilon_{i-1}\}$. Then consider the vector

$$y_i = \lambda_1 \varepsilon_1 + ... + \lambda_{i-1} \varepsilon_{i-1} + x_i, \quad (57)$$
choosing the coefficients $\lambda_\nu, (\nu = 1 : i - 1)$ so that $y_i \perp \varepsilon_\nu (\nu = 1 : i - 1)$, i.e. $(y_i, \varepsilon_\nu) = 0$. This leads to the $i - 1$ conditions

$$\lambda_\nu (\varepsilon_\nu, \varepsilon_\nu) + (x_i, \varepsilon_\nu) = 0, \quad (\nu = 1 : i - 1). \quad (58)$$

Therefore,

$$y_i = x_i - (x_i, \varepsilon_1) \varepsilon_1 - ... - (x_i, \varepsilon_{i-1}) \varepsilon_{i-1}. \quad (59)$$

Now we choose $\varepsilon_i = y_i/\|y_i\|$. Since $\varepsilon_\nu \in \text{span}\{x_1, \ldots, x_{i-1}\} (\nu = 1 : i - 1)$, we get, by the construction of the vectors y_i and ε_i, $(\varepsilon_i \in \text{span}\{x_1, \ldots, x_i\})$. Hence

$$\text{span}\{\varepsilon_1, \ldots, \varepsilon_i\} \subset \text{span}\{x_1, \ldots, x_i\}. \quad (60)$$

From the representation of the vector y_i we can see that x_i is a linear combination of the vectors $\varepsilon_1, \ldots, \varepsilon_i$. Thus

$$\text{span}\{x_1, \ldots, x_i\} \subset \text{span}\{\varepsilon_1, \ldots, \varepsilon_i\} \quad (61)$$

and finally,

$$\text{span}\{x_1, \ldots, x_i\} = \text{span}\{\varepsilon_1, \ldots, \varepsilon_i\} \quad (62)$$

An example

Given a vector system $\{x_1, x_2, x_3\}$ in \mathbb{R}^4, where

$x_1 = [1 0 1 0]^T, x_2 = [1 1 1 0]^T, x_3 = [0 1 0 1]^T,$

such that $X = [x_1 x_2 x_3]^T$ we want to find such an orthogonal system $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$, for which

$$\text{span}\{x_1, x_2, x_3\} = \text{span}\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}.$$

To apply the orthogonalization process, we first check the system $\{x_1, x_2, x_3\}$ for linear independence. Next we find

$$\varepsilon_1 = x_1/\|x_1\| = \left[\frac{1}{\sqrt{2}} \ 0 \ rac{1}{\sqrt{2}} \ 0 \right]^T.$$ \quad (63)

For y_2 we get

$$y_2 = x_2 - (x_2, \varepsilon_1) \varepsilon_1 = [1 1 1 0]^T - \sqrt{2} \left[\frac{1}{\sqrt{2}} \ 0 \frac{1}{\sqrt{2}} 0 \right]^T = [0 1 0 0]^T. \quad (64)$$

Since $\|y_2\| = 1$, $\varepsilon_2 = y_2/\|y_2\| = [0 1 0 0]^T$. The vector y_3 can be expressed in the form

$$y_3 = x_3 - (x_3, \varepsilon_1) \varepsilon_1 - (x_3, \varepsilon_2) \varepsilon_2 = [0 1 0 1]^T - 0 \cdot \left[\frac{1}{\sqrt{2}} \ 0 \frac{1}{\sqrt{2}} 0 \right]^T - 1 \cdot [0 1 0 0]^T = [0 0 0 1]^T. \quad (65)$$

Therefore,

$$\varepsilon_3 = y_3/\|y_3\| = [0 0 0 1]^T.$$ \quad (66)
Appendix C:

12.9.3 Gradient descent, neural network training and PCA

This appendix is intended to give the reader a more thorough understanding of the inner workings of gradient descent and learning algorithms. In particular, we will see how the weights of a neural network are essentially a matrix that we train on some data by minimising or maximising a cost function through gradient descent. If a multi-layered perceptron (MLP) neural network is auto-associative (it has as many output nodes as input nodes), then we essentially have the same paradigm as Blind Source Separation. The only difference is the cost function.

This appendix describes relevant aspects of gradient descent and neural network theory. The error back-propagation algorithm is derived from first principles in order to lay the ground-work for gradient descent training an auto-associative neural network.

The neuron

The basic unit of a neural network is the neuron. It can have many inputs x and its output value, y, is a function, f, of all these inputs. Figure 9 shows the basic architecture of a neuron with three inputs.

![Figure 9: The basic neuron](image)

For a linear unit, the function f, is the linear weighted sum of the inputs, sometimes known as the activation a, in which case the output is given by

$$y = a = \sum_{i} w_i x_i$$

(67)

For a nonlinear unit, a nonlinear function f, is applied to the linearly weighted sum of inputs. This function is often the sigmoid function defined as

$$f_a(a) = \frac{1}{1 + e^{-a}}$$

(68)
The output of a non-linear neuron is then given by

\[y = f_a\left\{\left(\sum_i w_i x_i\right)\right\} \]

(69)

If the outputs of one layer of neurons are connected to the inputs of another layer, a neural network is formed.

Multi-layer networks

The standard MLP consists of three layers of nodes, the layers being interconnected via synaptic weights \(w_{ij} \) and \(w_{jk} \) as shown in Figure 10. The input units simply pass all of the input data, likewise the non-linear output units of the final layer receive data from each of the units in the hidden layer. Bias units (with a constant value of 1.0), connect directly via bias weights to each of the neurons in the hidden and output layers (although these have been omitted from the diagram for clarity).

![Figure 10: Schematic of a 5-3-2 multi-layer perceptron. Bias units and weights are omitted for clarity.](image)

Learning algorithm - Gradient descent

The input data used to train the network, now defined as \(y_i \) for consistency of notation, is fed into the network and propagated through to give an output \(y_k \) given by

\[y_k = f_a\left(\sum_j w_{jk} f_a\left(\sum_i w_{ij} y_i\right)\right) \]

(70)

Note that our \(x \)'s are now \(y_i \)'s and our sources are \(y_j \) (or \(y_k \) if multi-layered network is used). During training, the target data or desired output, \(t_k \), which is associated with
the training data, is compared to the actual output y_k. The weights, w_{jk} and w_{ij}, are then adjusted in order to minimise the difference between the propagated output and the target value. This error is defined over all training patterns, N, in the training set as

$$\xi = \frac{1}{2} \sum_N \sum_k (f_a(\sum_j w_{jk} f_a(\sum_i w_{ij} y_i^p)) - t_k^p)^2$$

(71)

Note that in the case of ML-BSS the target is one of the other output vectors (source estimates) and the error function ξ, is the log likelihood. We must therefore sum ξ over all the possible pairs of output vectors.

Error back-propagation

The squared error, ξ, can be minimised using the method of gradient descent [30]. This requires the gradient to be calculated with respect to each weight, w_{ij} and w_{jk}. The weight update equations for the hidden and output layers are given as follows:

$$w_{jk}^{(\tau+1)} = w_{jk}^{(\tau)} - \eta \frac{\partial \xi}{\partial w_{jk}}$$

(72)

$$w_{ij}^{(\tau+1)} = w_{ij}^{(\tau)} - \eta \frac{\partial \xi}{\partial w_{ij}}$$

(73)

The full derivation of the calculation of the partial derivatives, $\frac{\partial \xi}{\partial w_{ij}}$ and $\frac{\partial \xi}{\partial w_{jk}}$, is given in Appendix 12.9.4. Using equations 112 and 104 we can write:

$$w_{jk}^{(\tau+1)} = w_{jk}^{(\tau)} - \eta \delta_k y_j$$

(74)

$$w_{ij}^{(\tau+1)} = w_{ij}^{(\tau)} - \eta \delta_j y_i$$

(75)

where η is the learning rate and δ_j and δ_k are given below:

$$\delta_k = (y_k - t_k) y_k (1 - y_k)$$

(76)

$$\delta_j = \sum_k \delta_k w_{jk} y_j (1 - y_j)$$

(77)

For the bias weights, the y_i and y_j in the above weight update equations are replaced by unity.

Training is an iterative process (repeated application of equations 74 and 75) but, if continued for too long, the network starts to fit the noise in the training set and that will have a negative effect on the performance of the trained network on test data. The decision on
when to stop training is of vital importance but is often defined when the error function (or its gradient) drops below some predefined level. The use of an independent validation set is often the best way to decide on when to terminate training (see Bishop [30] p262 for more details). However, in the case of an auto-associative network, no validation set is required and the training can be terminated when the ratio of the variance of the input and output data reaches a plateau. (See [53, 54]).

Auto-associative networks

An auto-associative network has as many output nodes as input nodes and can be trained using an objective cost function measured between the inputs and outputs; the target data is simply the input data. Therefore, no labelling of the training data is required. An auto-associative neural network performs dimensionality reduction from \(D \) to \(p \) dimensions \((D > p) \) and then projects back up to \(D \) dimensions, as shown in figure 11. PCA, a standard linear dimensionality reduction procedure is also a form of unsupervised learning [30]. In fact, the number of hidden-layer nodes \(\text{dim}(y_j) \) is usually chosen to be the same as the number of principal components, \(p \), in the data (see § 12.3.1), since (as we shall see later) the first layer of weights performs PCA if trained with a linear activation function. The full derivation of PCA, given in Appendix 12.9.1, shows that PCA is based on minimising a sum-of-squares error cost function.

![Figure 11: Layout of a D-p-D auto-associative neural network.](image)

Network with linear hidden layer and output units

Since \(y_k = a_k \)

\[
\frac{\partial y_k}{\partial a_k} = 1 \tag{78}
\]

the expression for \(\delta_k \) reduces to

\[
\delta_k = \frac{\partial \xi}{\partial a_k} \frac{\partial y_k}{\partial y_k} \frac{\partial y_k}{\partial a_k} = (y_k - t_k) \tag{79}
\]
Similarly for δ_j:

$$
\delta_j = \frac{\partial \xi}{\partial a_j} = \frac{\partial \xi}{\partial a_k} \frac{\partial a_k}{\partial y_j} \frac{\partial y_j}{\partial a_j} = \sum_k \delta_k w_{jk}
$$

(80)

Linear activation functions perform PCA

The two layer auto-associative MLP with linear hidden units and a sum-of-squares error function used in the previous section, learns the principal components for that data set. PCA can of course be performed and the weights can be calculated directly by computing a matrix pseudo-inverse [30], and this shall reduce ‘training time’ significantly. Consider Eq. (71) where the activation function is linear ($f_a = 1$) for the input and hidden layers;

$$
\xi = \frac{1}{2} \sum_{n=1}^{N} \sum_{j=1}^{p} \left(\sum_{i=0}^{D} y_i^n w_{ij} - t_j^n \right)^2
$$

(81)

where p is the number of hidden units. If this expression is differentiated with respect to w_{ij} and the derivative is set to zero the usual equations for least-squares optimisation are given in the form

$$
\sum_{n=1}^{N} \left(\sum_{j=0}^{D} y_i^n w_{\ell,j} - t_{\ell}^n \right) y_i^n = 0
$$

(82)

which is written in matrix notation as

$$(Y^T Y)W^T = Y^T T
$$

(83)

y has dimensions $N \times D$ with elements y_i^n where N is the number of training patterns and D the number of input nodes to the network (the length of each ECG complex in our examples given in the main text). W has dimension $p \times D$ and elements w_{ij} and T has dimensions $N \times p$ and elements t_{ℓ}^n. The matrix $(y^T y)$ is a square $p \times p$ matrix which may be inverted to obtain the solution

$$W^T = Y^T T
$$

(84)

where Y^T is the $(p \times N)$ pseudo-inverse of Y and is given by

$$Y^T = (Y^T Y)^{-1} Y^T
$$

(85)

Note that in practice $(Y^T Y)$ usually turns out to be near-singular SVD is used to avoid problems caused by the accumulation of numerical roundoff errors.

Consider N training patterns presented to the auto-associative MLP with i input and k output nodes ($i = k$) and $j \leq i$ hidden nodes. For the n^{th} ($n = 1 \ldots N$) input vector x_i of the $i \times N$ ($N \geq i$) real input matrix, X, formed by the N (i-dimensional) training vectors, the hidden unit output values are

$$h_j = f(W_1 x_i + w_{1j})
$$

(86)
where W_1 is the input-to-hidden layer $i \times j$ weight matrix, w_{1b} is a rank-j vector of biases and f is an activation function. The output of the auto-associative MLP can then be written as

$$y_k = W_2 h_j + w_{2b}$$

(87)

where W_2 is the hidden-to-output layer $j \times k$ weight matrix and w_{2b} is a rank-k vector of biases. Now consider the singular value decomposition of X, given by [2] as $X = U_j S_j V_j^T$ where U is an $i \times i$ column-orthogonal matrix, S is an $i \times N$ diagonal matrix with positive or zero elements (the singular values) and V^T is the transpose of an $N \times N$ orthogonal matrix. The best rank-j approximation of X is given by [55] as

$$M^g \approx M$$

(88)

with M^g having J elements, M has J elements and V has $J \times V$ elements. It can be shown that [29]

$$W_1 = \alpha_1^{-1} F U_j^T$$

(90)

where W_1 are the input-to-hidden layer weights and α is derived from a power series expansion of the activation function, $f(x) \approx \alpha_0 + \alpha_1 x$ for small x. For a linear activation function, as in this application, $\alpha_0 = 0$, $\alpha_1 = 1$. The bias weights given in [29] reduce to

$$w_{1b} = -\alpha_1^{-1} F U_j^T \mu_X = -U_j^T \mu_X,$$

$$w_{2b} = \mu_X - \alpha_0 U_j F^{-1} = \mu_X$$

(91)

where $\mu_X = \frac{1}{N} \sum_N x_i$, the average of the training (input) vectors and F is here set to be the $(j \times j)$ identity matrix since the output is unaffected by the scaling. Using equations (86) to (91)

$$y_k = W_2 h_j + w_{2b}$$

(92)

$$= U_j F^{-1} h_j + w_{2b}$$

$$= U_j F^{-1} (W_1 x_i + w_{1b}) + w_{2b}$$

$$= U_j F^{-1} F U_j^T x_i - U_j F^{-1} U_j^T \mu_X + \mu_X$$

giving the output of the auto-associative MLP as

$$y_k = U_j U_j^T (X - \mu_X) + \mu_X.$$

(93)

Equations (89), (90) and (91) represent an analytical solution to determine the weights of the auto-associative MLP ‘in one pass’ over the input (training) data with as few as $Nj^3 + 6Nj^2 + O(Nj)$ multiplications [56]. We can see that $W_1 = W_{11}$ is the matrix that rotates the each of the data vectors $x_i^n = y_i^n$ in X into the hidden data y_j^n, which are out p underlying sources. $W_2 = W_{jk}$ is the matrix that transforms our sources back into the observation data (the target data vectors $\sum_N t_i^n = T$). If $p < N$, we have discarded some of the possible information sources and effected a filtering. In terms of PCA, $W_1 = SV^T = UU^T$ and in terms of BSS, $W_1 = W$.

44
Appendix D:

12.9.4 Derivation of error back-propagation

The error \(E \) is given over all input patterns \(p \) by:

\[
\xi = \frac{1}{2} \sum_n \sum_k (y^n_k - t^n_k)^2
\]
(94)

Which may be written as:

\[
\xi = \frac{1}{2} \sum_n \sum_k (f_a(\sum_j w_{jk} f_a(\sum_i y_i w_{ij})) - t^n_k)^2
\]
(95)

To calculate the update rules the gradient of the error with respect to the weights \(w_{ij} \) and \(w_{jk} \) must be calculated. The update equations (96) (97) are given below, \(\eta \) is the learning rate.

\[
w^{(\tau+1)}_{jk} = w^{(\tau)}_{jk} - \eta \frac{\partial \xi}{\partial w_{jk}}
\]
(96)

\[
w^{(\tau+1)}_{ij} = w^{(\tau)}_{ij} - \eta \frac{\partial \xi}{\partial w_{ij}}
\]
(97)

The calculation of the gradients is performed using simple chain rule partial differentiation.

\[
\frac{\partial \xi}{\partial w_{jk}} = \frac{\partial \xi}{\partial y_k} \frac{\partial y_k}{\partial a_k} \frac{\partial a_k}{\partial w_{jk}}
\]
(98)

The input to the output units \(a_k \) is given by

\[
a_k = \sum_j y_j w_{jk}
\]
(99)

From (94) and (99) we may write

\[
\frac{\partial \xi}{\partial y_k} = (y_k - t_k), \quad \frac{\partial a_k}{\partial w_{jk}} = y_j
\]
(100)

Since \(y_k \) is defined as

\[
y_k = f_a(a_k) = \frac{1}{1 + e^{-a_k}}
\]
(101)

We may write

\[
\frac{\partial y_k}{\partial a_k} = \frac{\partial}{\partial a_k} \left(\frac{1}{1 + e^{-a_k}} \right) = \frac{e^{-a_k}}{(1 + e^{-a_k})^2} = y_k (1 - y_k)
\]
(102)
Hence
\[\frac{\partial \xi}{\partial w_{jk}} = (y_k - t_k)y_k(1 - y_k)y_j \]
\hfill (103)

Therefore we may write the w_{jk} update as
\[w_{jk}^{(r+1)} = w_{jk}^{(r)} - \eta \delta_k y_j \]
\hfill (104)

Where
\[\delta_k = \frac{\partial \xi}{\partial y_k} \cdot \frac{\partial y_k}{\partial a_k} = \frac{\partial \xi}{\partial a_k} = (y_k - t_k)y_k(1 - y_k) \]
\hfill (105)

In order to calculate the w_{ij} update equation the chain rule is applied several times, hence
\[\frac{\partial \xi}{\partial w_{ij}} = \frac{\partial \xi}{\partial a_j} \cdot \frac{\partial a_j}{\partial w_{ij}} \]
\hfill (106)

\[\frac{\partial \xi}{\partial w_{ij}} = \frac{\partial \xi}{\partial a_k} \cdot \sum_k \left(\frac{\partial a_k}{\partial y_j} \cdot \frac{\partial y_j}{\partial a_j} \cdot \frac{\partial a_j}{\partial w_{ij}} \right) \]
\hfill (107)

From (99)
\[\frac{\partial a_k}{\partial y_j} = \sum_k w_{jk} \]
\hfill (108)

The input to the hidden units is given by
\[a_j = \sum_i y_i w_{ij} \]
\hfill (109)

Hence
\[\frac{\partial a_j}{\partial w_{ij}} = y_i \]
\hfill (110)

By symmetry from (102) we have
\[\frac{\partial y_j}{\partial a_j} = y_j(1 - y_j) \]
\hfill (111)

Therefore from (105),(108),(110) and (111) the update equation for the w_{ij} weights is given by
\[w_{ij}^{(r+1)} = w_{ij}^{(r)} - \eta \delta_j y_i \]
\hfill (112)

Where
\[\delta_j = \frac{\partial \xi}{\partial a_j} = \sum_k \delta_k w_{jk} y_j(1 - y_j) \]
\hfill (113)
Appendix E:

12.9.5 Orthogonal rotation matrices

The classical (orthogonal) three-dimensional rotation matrices are

\[
\begin{align*}
R_x(\theta) &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}, \\
R_y(\theta) &= \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}, \\
R_z(\theta) &= \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix},
\end{align*}
\]

(114)

where \(R_x(\theta), R_y(\theta)\) and \(R_z(\theta)\) produce rotations of a 3-D signal about the \(x\)-axis, \(y\)-axis and \(z\)-axis respectively.
Appendix F: Definitions for slides

mean of the values $x = [x_1, x_2, ..., x_M]$,

$$\mu_x = \frac{1}{M} \sum_{i=1}^{M} x_i$$

variance of x,

$$\sigma^2(x) = \frac{1}{M} \sum_{i=1}^{M} (x_i - \mu_x)^2$$

standard deviation (S.D.) of x,

$$\sigma(x) = \sqrt{\sigma^2}$$

skewness of x,

$$\zeta(x) = \frac{1}{M} \sum_{i=1}^{M} \left(\frac{x_i - \mu_x}{\sigma} \right)^3$$

kurtosis of x,

$$\kappa(x) = \frac{1}{M} \sum_{i=1}^{M} \left(\frac{x_i - \mu_x}{\sigma} \right)^4$$
$X^T = AZ^T$

$Y^T = WX^T$

$Y = \hat{Z}$

$W = \hat{A}^{-1}$

$$
\begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1N} \\
 x_{21} & x_{22} & \cdots & x_{2N} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{M1} & x_{M2} & \cdots & x_{MN}
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & \cdots & a_{M1} \\
 \vdots & \ddots \cdots \ddots \\
 a_{1N} & \cdots & a_{MN}
\end{bmatrix} \cdot
\begin{bmatrix}
 y_{11} & y_{12} & \cdots & y_{1N} \\
 y_{21} & y_{22} & \cdots & y_{2N} \\
 \vdots & \vdots & \cdots & \vdots \\
 y_{M1} & y_{M2} & \cdots & y_{MN}
\end{bmatrix}
$$

$$X^T = A \cdot Z^T$$

$$
\begin{bmatrix}
 y_{11} & y_{12} & \cdots & y_{1N} \\
 y_{21} & y_{22} & \cdots & y_{2N} \\
 \vdots & \vdots & \cdots & \vdots \\
 y_{M1} & y_{M2} & \cdots & y_{MN}
\end{bmatrix} =
\begin{bmatrix}
 w_{11} & \cdots & w_{M1} \\
 \vdots & \ddots \cdots \ddots \\
 w_{1N} & \cdots & w_{MN}
\end{bmatrix} \cdot
\begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1N} \\
 x_{21} & x_{22} & \cdots & x_{2N} \\
 \vdots & \vdots & \cdots & \vdots \\
 x_{M1} & x_{M2} & \cdots & x_{MN}
\end{bmatrix}
$$

$Y^T = W \cdot X^T$

FT: $Y_k = \sum_{n=1}^{N} W_{kn} X_n$ where $W_{kn} = e^{-j2\pi kn/N}$, or equivalently

$$W =
\begin{bmatrix}
 e^{-j2\pi} & e^{-j4\pi} & \cdots & e^{-j2\pi N} \\
 e^{-j4\pi} & e^{-j8\pi} & \cdots & e^{-j4\pi N} \\
 \vdots & \vdots & \ddots & \vdots \\
 e^{-j2\pi M} & e^{-j4\pi M} & \cdots & e^{-j2\pi MN}
\end{bmatrix}$$