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8.1 Introduction

The respiratory signal is usually recorded with techniques like spirometry, pneu-
mography, or plethysmography. These techniques require the use of cumbersome
devices that may interfere with natural breathing, and which are unmanageable in
certain applications such as ambulatory monitoring, stress testing, and sleep stud-
ies. Nonetheless, the joint study of the respiratory and cardiac systems is of great
interest in these applications and the use of methods for indirect extraction of respi-
ratory information is particularly attractive to pursue. One example of application
would be the analysis of the influence of the respiratory system in heart rate vari-
ability (HRV) during stress testing, since it has been observed that the power in
the very high frequency band (from 0.4 Hz to half the mean heart rate expressed
in Hz) exhibits potential value in coronary artery disease diagnosis [1], and HRV
power spectrum is dependent on respiratory frequency. Another field of application
would be sleep studies, since the diagnosis of apnea could be based on fewer and
simpler measurements, like the ECG, rather than on the polysomnogram, which is
expensive to record.

It is well known that the respiratory activity influences electrocardiographic
measurements in various ways. During the respiratory cycle, chest movements and
changes in the thorax impedance distribution due to filling and emptying of the
lungs cause a rotation of the electrical axis of the heart which affects beat mor-
phology. The effect of respiration-induced heart displacement on the ECG was first
studied by Einthoven et al. [2] and quantified in further detail in [3, 4]. It has been
experimentally shown that “electrical rotation” during the respiratory cycle is
mainly caused by the motion of the electrodes relative to the heart, and that tho-
racic impedance variations contribute to the electrical rotation just as a second-order
effect [5].

Furthermore, it is well known that respiration modulates heart rate such that
it increases during inspiration and decreases during expiration [6, 7]. It has also
been shown that the mechanical action of respiration results in the same kind of
frequency content in the ECG spectrum as does HRV [8].

Figure 8.1 displays an ECG lead as well as the related heart rate (HR) and
respiratory signals in which the ECG amplitude is modulated with a frequency
similar to that of the respiratory signal. It seems that the ECG amplitude modulation
is not in phase with the respiratory signal. It can also be seen that the HR and the
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Figure 8.1 Simultaneous ECG lead V5 (top), HR (middle), and respiration (bottom) signals.
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Figure 8.2 Magnitude squared coherence |r‘( f)|2 between HR and respiratory signals of Figure 8.1.
The largest value of |T'( f)|2 is located around 0.3 Hz.

respiratory signal fluctuate at a similar frequency. Figure 8.2 displays the magnitude
squared coherence between HR and respiratory signal. The magnitude squared
coherence is defined as being a measure of the correlation between two signals at a
given frequency [9]. It can be seen that the largest value is located around 0.3 Hz,
meaning that the signals are strongly correlated at this frequency.

Several studies have developed signal processing techniques to extract respira-
tory information from the ECG, so-called ECG-derived respiratory (EDR) informa-
tion. Some techniques are based on respiration-induced variations in beat-to-beat
morphology [5, 10-24], while others attempt to extract respiratory information
from the HR [25-27].

The first EDR method based on morphologic variations dates back to 1974
when Wang and Calvert [10] proposed a model for the mechanics of the heart with
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respect to respired air volume of the lungs, and a technique for monitoring respira-
tory rate and depth using the vectorcardiogram (VCG). Later, Pinciroli et al. [11]
and Moody et al. [5] proposed algorithms which exploit variations in the direction
of the heart’s electrical axis. Recently, the respiratory frequency was obtained as the
dominant frequency of the estimated rotation angles of the electrical axis [22]; this
method was later extended to handle noisy exercise ECGs [28]. Variations in the
inertial axes and center of gravity of QRS-VCG loops were also used to estimate the
respiratory signal [23]. For single-lead recordings, amplitude modulation of ECG
waves has been used to derive a respiratory signal, especially in the context of sleep
apnea studies [14, 18, 24]. Yet another approach to the EDR problem has been
to apply a bandpass filter to the single-lead ECG, selecting the usual respiratory
frequency band from 0.2 to 0.4 Hz [20].

Some methods derive respiratory information solely from the HR series. The
respiratory frequency was estimated from the RR interval series using singular value
decomposition (SVD) to track the most important instantaneous frequencies of the
interval series [25]. Some years later, the respiratory frequency present in the HR
series was derived using the S-transform [26]. Respiratory frequency patterns were
derived from the RR interval series using autoregressive (AR) model-based methods
in stationary [29] and nonstationary situations [27].

There are also some methods which derive the respiratory signal using both beat
morphology and HR information. The cross-power spectrum of the EDR signals
obtained from morphologic variations and HR was used to enhance the respiratory
frequency [22]. Another approach was to use an adaptive filter so as to enhance the
respiration-related common component present in the EDR signals derived from
beat morphology and HR [30].

In this chapter the estimation of respiratory frequency from the ECG will be
addressed. Algorithms deriving a respiratory signal from the ECG, so-called EDR
algorithms, are presented, as well as the signal preprocessing needed for their proper
performance. Electrocardiogram-derived respiration algorithms may be divided into
three categories: Section 8.2 presents EDR algorithms based on beat-to-beat mor-
phologic variations (which can be applied to single- or multilead ECGs), Section 8.3
describes EDR algorithms based on HR information, and Section 8.4 describes EDR
algorithms using both beat morphology and HR information. One of the main inter-
ests in deriving the EDR signal is the estimation of respiratory frequency. Therefore,
spectral analysis of the previously derived EDR signals is described in Section 8.5
and related estimation of the respiratory frequency. The general procedure to esti-
mate the respiratory frequency from the ECG is summarized in Figure 8.3.

In order to evaluate and compare the performance of the EDR algorithms, the
derived respiratory information should be compared to respiratory information
simultaneously recorded. Performance measurements may vary depending on the
particular goal for which the EDR algorithm is applied. For example, the respira-
tory frequency estimated from the ECG can be compared to that estimated from a
simultaneously recorded respiratory signal, considered as gold standard [28]. When
simultaneous recordings of ECG and respiratory signal are unavailable, an alterna-
tive is the design of a simulation study, where all signal parameters can be controlled
and compared to the derived ones. This approach is described in Section 8.6.
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Figure 8.3 Block diagram of the estimation of the respiratory frequency from the ECG.

8.2 EDR Algorithms Based on Beat Morphology

Several methods have been proposed to derive the respiratory signal from the ECG
using beat-to-beat morphologic variations. The underlying idea behind these meth-
ods is that the electrical axis of the heart changes its direction during the respiratory
cycle due to motion of the electrodes relative to the heart and heterogeneous vari-
ations in the thorax impedance caused by the filling and emptying of the lungs.
Therefore, the EDR signal may be estimated from the fluctuations of the heart’s
electrical axis. The way to estimate variations in axis direction is what mainly dif-
fers from one method to another.

In this section, three different types of EDR algorithms based on beat mor-
phology are described, namely those based on wave amplitudes (Section 8.2.1),
the multilead QRS area (Section 8.2.2) and the QRS-VCG loop alignment
(Section 8.2.3). Amplitude EDR algorithms can be applied to single-lead ECGs
while the multilead QRS area and the QRS-VCG loop alignment methods require
at least two orthogonal leads.

Adequate performance of an EDR algorithm requires certain types of prepro-
cessing of the raw ECG. First of all, QRS complexes must be detected and clustered
based on their morphology, since only beats with the dominant morphology should
be analyzed. The dominant morphology is the one corresponding to the largest class,
whose beats typically originate from the sinoatrial node. Baseline wander should
be attenuated in order not to introduce a rotation of the electrical axis unrelated
to respiration. Certain EDR algorithms, like the QRS-VCG loop alignment, require
VCG signals which, if unavailable, may have to be synthesized from the standard
12-lead ECG by means of the inverse Dower transformation [31]; see Appendix 8 A
for further details.

Additional preprocessing has been proposed to make the EDR algorithm robust
when processing noisy ECGs such as those recorded during exercise [28]. Noisy
beats can be substituted on a lead-by-lead basis using an exponentially updated
average beat. The idea is that excessive noise present in a single lead would mask
the rotation information present in the remaining leads. In such cases, the noisy beat
is substituted so that the rotation information of the remaining leads is preserved.
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Two different kinds of noise are common in ECGs: high-frequency (HF) noise mainly
due to muscle activity, and low-frequency (LF) noise due to remaining baseline
wander unattenuated by the preprocessing step. Consequently, a high frequency
SNR, SNR,;;, and a low-frequency SNR, SNR;, can be defined to determine beats
for substitution. The SNRy;; is defined as the ratio of the peak-to-peak amplitude in
an interval centered around the QRS mark, and the root-mean-square (RMS) value
of the HF noise in an HR-dependent interval following the QRS mark to avoid
QRS mediated HF components. The SNR;; is defined as the ratio of the peak-to-
peak amplitude of the exponentially updated average beat and the RMS value of
the residual ECG after average beat substraction and lowpass filtering computed
over the whole beat interval. Figure 8.4 displays an example of a noisy beat, the
exponentially updated average beat, the HF noise resulting from highpass filtering
the noisy beat with a cutoff frequency of 20 Hz, and the residual ECG after average
beat substraction and lowpass filtering with a cutoff frequency of 20 Hz. Beats
whose SNR;; is below a threshold, 1., or whose SNR,; is below another threshold,
N, are substituted by their corresponding averaged beats. Figure 8.5 displays a
VCG before and after substitution of noisy beats, as well as the estimated EDR
signals and related respiratory signal. The spectra obtained from the EDR signals
and the respiratory signal of Figure 8.5 are displayed in Figure 8.6. The substitution
of noisy beats improves the estimation of the respiratory frequency since the largest
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Figure 8.4 An example of (a) a noisy beat, (b) the exponentially updated average beat, (c) the HF
noise resulting from highpass filtering the noisy beat with a cutoff frequency of 20 Hz (the interval
over which the RMS is computed has been marked with a box), and (d) the residual ECG after average
beat substraction and lowpass filtering with a cutoff frequency of 20 Hz.
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Figure 8.5 The VCG leads (a) before and (b) after substitution of noisy beats. The EDR signals
(linear interpolation points have been used) estimated (c) before and (d) after substitution of noisy
beats, and (e) the related respiratory signal. Recordings were taken during a stress test. Substituted
beats in lead Y have been marked (x). The following parameter values are used: nyr = 20 and
N = 3.

peak of the EDR spectrum has been shifted such that it coincides with the largest
peak of the respiratory spectrum.

8.2.1 Amplitude EDR Algorithms

When only single-lead ECGs are available, amplitude modulation of the ECG waves
has been used to derive a respiratory signal, especially in the context of sleep apnea
studies. For example, the sum of the absolute R and S wave amplitudes is used
as a respiratory estimate in the detection of apneic events in infants [14]. Two
methods for deriving an EDR signal from single-lead ECG amplitudes have been
compared [18]: The amplitude of the R wave is measured either with respect to
the baseline or differentially with respect to the amplitude of the S wave for each
QRS complex. Both EDR signals are used to detect breaths using a peak detection
algorithm; the EDR signal based on the differential measure of the R wave amplitude
with respect to the S wave amplitude obtained higher sensitivity (77% compared
to 68%) and positive predictivity (56 % compared to 49%).

Alternatively, an EDR signal can be obtained from single-lead ECGs by calcu-
lating the area enclosed by the baseline-corrected ECG within a fixed interval of the
QRS complex. The area measurements have been found to be more stable and less
prone to noise than amplitude measurements [5]. Such an EDR signal has been used
in the detection of obstructive sleep apnea [21, 32]. The error between respiratory
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Figure 8.6 Power spectrum of the respiratory signal (solid line), and the EDR signals before (dotted
line) and after (dashed line) substitution of noisy beats in normalized units (N.U.).

rate extracted from such an EDR signal and from a simultaneous airflow signal was
reported to be —0.3 breaths per minute (—0.005 Hz) [32].

An EDR signal can also be obtained from the T wave rather than from the QRS
complex: the signal segment following each QRS complex is linearly detrended and
its average absolute value can be used as a sample of an EDR signal [17].

A different approach to the EDR problem is to filter the single-lead ECG with
a passband corresponding to the usual respiratory frequency band. For example,
the discrete wavelet transform has been applied to the single-lead ECG and the
scale corresponding to the frequency band 0.2 to 0.4 Hz can be selected as an
EDR signal [20]. Correlation coefficients between respiratory frequency extracted
from the EDR signal and from simultaneous airflow signal exceeding 0.9 were
reported.

Due to the thorax anisotropy and its intersubject variability together with the
intersubject electrical axis variability, respiration may have a different effect on
different ECG leads, implying that the lead most influenced by respiration often
changes from subject to subject [33]. Single-lead EDR algorithms are reported to
work better if the lead axis is significantly different from the mean electrical axis
since a relatively larger EDR signal results in such cases. It has been experimentally
shown that respiration-related ECG changes are reflected primarily in the direction
(affected mainly by motion of the electrodes relative to the heart) and not in the
magnitude (affected mainly by thoracic impedance variations) of the mean electrical
axis; therefore, a lead perpendicular to the mean electrical axis would produce a
larger EDR signal than a parallel lead [5]. Principal component analysis may be
applied to the 12-lead ECG in order to obtain a virtual lead, linear combination of
the original ones, most influenced by respiration [32].
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8.2.2 Multilead QRS Area EDR Algorithm

In this method, the projection of the mean electrical axis on the plane defined
by two leads is considered. The variation in angle between this projection and a
reference lead is used as an estimate of the EDR signal [5]. The area of the ith
QRS complex, occurring at time instant ;, is computed over a fixed time interval
in each lead, thus being proportional to the projection of the mean electrical axis
on that lead. Consider the projection of the mean electrical axis on the plane jk,
defined by orthogonal leads j and k, at time instant #, which is denoted as the
vector m(t;),

1 ti+82 J
m(z) |2 cos(0;(2))dt
s L, I cos(ou(e) 1

- 8 + 61

1 1i+6; J
m(z)]l2 sin(6,x(2))dt
s L, Il singgile)

where m(¢) is the instantaneous projection of the electrical axis on the plane jk,
0;r(t) is the angle between m(t) and lead j, A;(#) represents the QRS area in lead
7, 81 and &, define the integration interval over which the mean is computed, and
the operator ||.||» denotes the Euclidean distance. The term [[m(z) ||, cos(;x(t)) rep-
resents the projection of m(t) on lead j, and ||m(z)||> sin(0jx(¢)) the projection of
m(¢) on lead k. The projection angle of the mean electrical axis on the plane jk with
respect to lead j, 6x(%), can be estimated as

0i(t;) = arctan( Ar(t;)/ A; (%)) (8.2)

See Figure 8.7. Finally, the fluctuations of the (%) series are used as an EDR
signal. The values of §; and &, depend on the application; they can be chosen so
as to comprise the whole QRS complex, a symmetric window around the QRS
fiducial point, or an asymmetric window in order to reduce the QRS morphologic
variations unrelated to respiration but related to other conditions such as exercise.
Figure 8.8 displays an example of the multilead QRS area EDR algorithm, where
the angle series Oyz(z) can be seen as well as the two orthogonal VCG leads Y and
Z and the related respiratory signal.

The multilead QRS area EDR algorithm has been further studied [13] and
applied in HRV analysis [12], sleep studies [19], and used for ambulatory monitor-
ing [16].

Using a similar principle, the areas of the QRS complexes in eight leads have
been used to define an EDR signal [15]. First, an eight-dimensional space is defined
by eigenvalue analysis of a learning set; then, each eight-dimensional QRS area
vector is projected onto the main direction, which is considered as particularly
sensitive to respiratory information, and then used as an EDR signal.

A different approach has been addressed to estimate the direction of the projec-
tion of the mean electrical axis on the plane defined by two orthogonal leads. The
least-squares (LS) straight line is computed which fits the projection of the VCG
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Figure 8.8 Multilead QRS area EDR algorithm: (a) leads Y and Z, (b) the estimated EDR signal
0y z(t), and (c) the related respiratory signal. Recordings were taken during a stress test. The param-
eter values used are: §1 = 60 ms, §, = 20 ms.
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on the plane defined by two leads. Then, the variations of the angle that forms the
LS fit with a reference direction constitutes the EDR signal [11]. It has been stated
that angles obtained from different pairs of orthogonal leads cannot be expected to
provide the same range of amplitude variation. Furthermore, the lead configuration
yielding the EDR signal with largest amplitude variation often changes from subject
to subject [33].

8.2.3 QRS-VCG Loop Alignment EDR Algorithm

This method is based on LS estimation of the rotation angles of the electrical axis
around the three-dimensional orthogonal axes between successive VCG loops and
a reference loop [22]. At each time instant #, the method performs minimization
of a normalized distance ¢ between a reference loop (Nx3 matrix Ygr, where the
columns contain the QRS complex of the X, Y, and Z leads) and each observed
loop ((N + 2A)x 3 matrix Y), with respect to rotation (3x3 matrix Q), amplitude
scaling (scalar y), and time synchronization (Nx (N + 2A) matrix J,) [34, 35]:

IYr — y]J- YQI%

Emin = MiN(g) = min 5 (8.3)
reQ | reQ  yJYQIR
where
Jr = [OAf'L' IOA+t] (84)

and N is the number of samples of the QRS complex analysis window. The param-
eter A denotes the number of symmetrically augmented samples which allow for
time synchronization with t = —A, ..., A. The dimensions of the 0o_;, 0a;;, and I
(identity) matrices are Nx (A —1), Nx(A+7), and Nx N, respectively. The operator
| - 1% denotes the Frobenius norm. For simplicity, the dependence on time instant
t; is omitted in the notation [i.e., ¢ = (), YR = Yr(%), Y = Y(;), Q = Q(%), and
y =v(&)]

The rotation matrix Q can be viewed as three successive rotations around each
axis (lead), defined by the rotation angles ¢x, ¢y, and ¢,

1 0 0 cos(¢py) 0 sin(¢y) cos(¢pz) sin(¢z) O
Q=10 cos(¢x) sin(¢x) 0 0 —sin(¢z) cos(¢z) 0
0 —sin(¢x) cos(¢px)| |—sin(¢py) 0 cos(¢y) 0 0 1
* sin(¢z) cos(dy) sin(¢y)
= |x * sin(¢x) cos(¢y)
* * * (8.5)

where the asterisk * denotes an omitted matrix entry.

The normalized distance ¢ is minimized by first finding estimates of ¥ and Q
for every value of T and then selecting that T for which & is minimum. For a fixed
value of 7, the optimal estimator of Q is given by [34]

Q. =V, U’ (8.6)
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where the matrices U, and V; contain the left and right singular vectors from the
SVD of Z, = Y}]J. Y. The estimate of y is then obtained by [35]

o tr(Yr'Yg)
7T (Y ITYQ,) 5.7

The parameters Q, and 7 are calculated for all values of 7, with Q resulting from
that t which yields the minimal error ¢. Finally, the rotation angles are estimated
from Q using the structure in (8.5) [22],

~

¢y = arcsin(q13) (8.8)
$x = arcsin (COZ(Z; Y)) (8.9)
b7 = arcsin (Coz(léy)> (8.10)

where the estimate gy denotes the (k,l) entry of Q.

In certain situations, such as during ischemia, QRS morphology exhibits long-
term variations unrelated to respiration. This motivates a continuous update of
the reference loop in order to avoid the estimation of rotation angles generated by
such variations rather than by respiration [28]. The reference loop is exponentially
updated as

Yr(i+1) =a¥Yr() + (1 —a)Y(i + 1) (8.11)

where i denotes the beat index at time instant # [i.e., Yr() = Yr(i) and Y(3) =
Y(i)]. The parameter « is chosen such that long-term morphologic variations are
tracked while adaptation to noise and short-term respiratory variations is avoided.
The initial reference loop Yr(1) can be defined as the average of the first loops
in order to obtain a reliable reference. Figure 8.9 displays lead X of Yg at the
beginning and peak exercise of a stress test, and illustrates the extent by which QRS
morphology may change during exercise.

An example of the method’s performance is presented in Figure 8.10 where
the estimated rotation angle series are displayed as well as the VCG leads and the
related respiratory signal.

Unreliable angle estimates may be observed at poor SNRs or in the presence of
ectopic beats, calling for an approach which makes the algorithm robust against
outlier estimates [28]. Such estimates are detected when the absolute value of the
angle estimates exceed a lead-dependent threshold n;(#) (j € {X, Y, Z}). The thresh-
old n;(#) is defined as the running standard deviation (SD) of the N, most recent
angle estimates, multiplied by a factor C. For i < N,, n;(#) is computed from the
available estimates. Outliers are replaced by the angle estimates obtained by reper-
forming the minimization in (8.3), but excluding the value of T which produced
the outlier estimate. The new estimates are only accepted if they do not exceed the
threshold n;(#); if no acceptable value of 7 is found, the EDR signal contains a gap
and the reference loop Yg in (8.11) is not updated. This procedure is illustrated by
Figure 8.11.
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Figure 8.9 The reference loop Yg (lead X) at onset (solid line) and peak exercise (dashed line) of a
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Figure 8.10 QRS-VCG loop alignment EDR algorithm: (a) the VCG leads, (b) the estimated EDR
signals (linear interpolation points have been used), and (c) the related respiratory signal. Recordings

were taken during a stress test. The following parameter values are used: N = 120 ms, A = 30 ms
in steps of T ms, and « = 0.8.
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Figure 8.11 The EDR signal ¢y(t) estimated (a) before and (b) after outlier correction/rejec-
tion. Dashed lines denote the running threshold ny(t). The parameter values used are N, = 50
and C = 5.

Although the QRS-VCG loop alignment EDR algorithm is developed for record-
ings with three orthogonal leads, it can still be applied when only two orthogonal
leads are available. In this case the rotation matrix Q would be 2 x 2 and represent
rotation around the lead orthogonal to the plane defined by the two leads.

Another approach to estimate the rotation angles of the electrical axis is by
means of its intrinsic components, determined from the last 30 ms of the QR segment
for each loop [10]. Using a similar idea, principal component analysis is applied to
measurements of gravity center and inertial axes of each loop [23]; for each beat
a QRS loop is constructed comprising 120 ms around the R peak and its center of
gravity is computed yielding three coordinates referred to the axes of the reference
system; the inertial axes in the space are also obtained and characterized by the
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three angles that each inertial axis forms with the axes of reference; finally, the
first principal component of the set of the computed parameters is identified as the
respiratory activity.

8.3 EDR Algorithms Based on HR Information

Certain methods exploit the HRV spectrum to derive respiratory information. The
underlying idea is that the component of the HR in the HF band (above 0.15 Hz)
generally can be ascribed to the vagal respiratory sinus arrhythmia. Figure 8.12 dis-
plays the power spectrum of a HR signal during resting conditions and 90° head-up
tilt, obtained by a seventh-order AR model. Although the power spectrum patterns
depend on the particular interactions between the sympathetic and parasympathetic
systems in resting and tilt conditions, two major components are detectable at low
and high frequencies in both cases. The LF band (0.04 to 0.15 Hz) is related to
short-term regulation of blood pressure whereas the extended HF band (0.15 Hz
to half the mean HR expressed in Hz) reflects respiratory influence on HR.

Most EDR algorithms based on HR information estimate the respiratory activ-
ity as the HF component in the HRV signal and, therefore, the HRV signal itself
can be used as an EDR signal. The HRV signal can be filtered (e.g., from 0.15 Hz to
half the mean HR expressed in Hz, which is the highest meaningful frequency since
the intrinsic sampling frequency of the HRV signal is given by the HR) to reduce
HRV components unrelated to respiration.

The HRYV signal is based on the series of beat occurrence times obtained by a
QRS detector. A preprocessing step is needed in which QRS complexes are detected
and clustered, since only beats from sinus rhythm (i.e., originated from the sinoatrial
node) should be analyzed. Several definitions of signals for representing HRV have
been suggested, for example, based on the interval tachogram, the interval function,
the event series, or the heart timing signal; see [36] for further details on different
HRYV signal representations.

The presence of ectopic beats, as well as missed or falsely detected beats, re-
sults in fictitious frequency components in the HRV signal which must be avoided.
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Figure 8.12 Power spectrum of a HR signal during resting conditions (left) and 90° head-up tilt
(right).
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A method to derive the HRV signal in the presence of ectopic beats based on the
heart timing signal has been proposed [37].

8.4 EDR Algorithms Based on Both Beat Morphology
and HR

Some methods derive respiratory information from the ECG by exploiting beat
morphology and HR [22, 30]. A multichannel EDR signal can be constructed with
EDR signals obtained both from the EDR algorithms based on beat morphology
(Section 8.2) and from HR (Section 8.3). The power spectra of the EDR signals
based on beat morphology can be crosscorrelated with the HR-based spectrum in
order to reduce components unrelated to respiration [22].

A different approach is to use an adaptive filter which enhances the common
component present in two input signals while attenuating uncorrelated noise. It
was mentioned earlier that both ECG wave amplitudes and HR are influenced
by respiration, which can be considered the common component. Therefore, the
respiratory signal can be estimated by an adaptive filter applied to the series of RR
intervals and R wave amplitudes [30]; see Figure 8.13(a). The series a,(i) denotes
the R wave amplitude of the ith beat and is used as the reference input, whereas
rr(i) denotes the RR interval series and is the primary input. The filter output
7(7) is the estimate of the respiratory activity. The filter structure is not symmetric
with respect to its inputs. The effectiveness of the two possible input configurations
depends on the application [30]. This filter can be seen as a particular case of
a more general adaptive filter whose reference input is the RR interval series 77 ()
and whose primary input is any of the EDR signals based on beat morphology, ¢;(7)
(j=1,...,]), or even a combination of them; see Figure 8.13(b). The interchange
of reference and primary inputs could be also considered.
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ali) 4 f B
- el(i) adaptivé

f filter
/ , , % } .
adaptive ' / / r

rr(i) filter r@ —
// g (i) %ﬂzftlve
(@ (b)

Figure 8.13 Adaptive estimation of respiratory signal. (a) The reference input is the R wave ampli-
tude series a,(i), the primary input is the RR interval series rr(i), and the filter output is the estimate
of the respiratory signal r(i). (b) The reference input is the RR interval series rr(i) and the primary
input is a combination of different EDR signals based on beat morphology e;(i), j = 1,...,/, ]
denotes the number of EDR signals; the filter output is the estimate of the respiratory signal r(i).
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8.5 Estimation of the Respiratory Frequency

In this section the estimation of the respiratory frequency from the EDR signal,
obtained by any of the methods previously described in Sections 8.2, 8.3, and 8.4,
is presented. It may comprise spectral analysis of the EDR signal and estimation of
the respiratory frequency from the EDR spectrum.

Let us define a multichannel EDR signal e (t;), where j =1,..., J,i =1,..., L,
J denotes the number of EDR signals, and L the number of samples of the EDR
signals. For single-lead EDR algorithms based on wave amplitudes (Section 8.2.1)
and for EDR algorithms based on HR (Section 8.3), ] = 1. For EDR algorithms
based on multilead QRS area (Section 8.2.2) or on QRS-VCG loop alignment (Sec-
tion 8.2.3), the value of | depends on the number of available leads. The value
of | for EDR algorithms based on both beat morphology and HR depends on the
particular choice of method.

Each EDR signal can be unevenly sampled, ¢;(z), as before, or evenly sampled,
ej(n), coming either from interpolating and resampling of ¢;(#;) or from an EDR
signal which is intrinsically evenly sampled. The EDR signals coming from any
source related to beats could be evenly sampled if represented as a function of beat
order or unevenly sampled if represented as function of beat occurrence time ¢;, but
which could become evenly sampled when interpolated. An EDR signal based on
direct filtering of the ECG is evenly sampled.

The spectral analysis of an evenly sampled EDR signal can be performed using
either nonparametric methods based on the Fourier transform or parametric meth-
ods such as AR modeling. An unevenly sampled EDR signal may be interpolated
and resampled at evenly spaced times, and then processed with the same methods as
for an evenly sampled EDR signal. Alternatively, an unevenly sampled signal may
be analyzed by spectral techniques designed to directly handle unevenly sampled
signals such as Lomb’s method [38].

8.5.1 Nonparametric Approach

In the nonparametric approach, the respiratory frequency is estimated from the
location of the largest peak in the respiratory frequency band of the power spectrum
of the multichannel EDR signal, using the Fourier transform if the signal is evenly
sampled or Lomb’s method if the signal is unevenly sampled.

In order to handle nonstationary EDR signals with a time-varying respiratory
frequency, the power spectrum is estimated on running intervals of T; seconds,
where the EDR signal is assumed to be stationary. Individual running power spec-
tra of each EDR signal e;(#) are averaged in order to reduce their variance. For
the jth EDR signal and kth running interval of T;- second length, the power spec-
trum S;k( f) results from averaging the power spectra obtained from subintervals
of length T, seconds (T,, < T;) using an overlap of T,,/2 seconds. A T;-second
spectrum is estimated every # seconds. The variance of S;( f) is further reduced
by “peak-conditioned” averaging in which selective averaging is performed only
on those S; 1( f) which are sufficiently peaked. Here, “peaked” means that a cer-
tain percentage (&) of the spectral power must be contained in an interval centered
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around the largest peak f,(7, k), otherwise the spectrum is omitted from averaging.
In mathematical terms, peak-conditioned averaging is defined by

Li—1

Sk =D xikaSipa(f), k=1,2,... (8.12)

1=0 j=1

where the parameter L¢ denotes the number of T;-second intervals used for comput-
ing the averaged spectrum Si( f). The binary variable x;  indicates if the spectrum
Sik(f) is peaked or not, defined by

1P,>&
— > 8.13
Xik {O otherwise ( )

where the relative spectral power P;; is given by

(14+u) fp(7,k)
/( S f)df

1—p) fp(),k)

fmax (k)
/0 S;l f)df

1

Pir=

(8.14)

where the value of f,,x(k) is given by half the mean HR expressed in Hz in the kth
interval and u determines the width of integration interval.

Figure 8.14 illustrates the estimation of the power spectrum S; x( f) using dif-
ferent values of T,,. It can be appreciated that larger values of T, yield spectra
with better resolution and, therefore, more accurate estimation of the respiratory
frequency. However, the respiratory frequency does not always correspond to a
unimodal peak (i.e., showing a single frequency peak), but to a bimodal peak,

g \
i \ .
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' AN 7\ >~
\.\_:.\_/' \_
0.5 0.7 0.9

Frequency f (Hz)

Figure 8.14 The power spectrum §; () computed for T, = 4 seconds (dashed line), 12 seconds
(dashed/dotted line), and 40 seconds (solid line), using T; = 40 seconds.
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sometimes observed in ECGs recorded during exercise. In such situations, smaller
values of T,, should be used to estimate the gross dominant frequency.

Estimation of the respiratory frequencyf, (k) as the largest peak of Si( f) comes
with the risk of choosing the location of a spurious peak. This risk is, however, con-
siderably reduced by narrowing down the search interval to only include frequencies
in an interval of 28 ; Hz centered around a reference frequency f,(k): [ fu(k) — &7,
fw(k) + 8¢]. The reference frequency is obtained as an exponential average of
previous estimates, using

fulk+1) = Bfu(k) + (1 = BIf (k) (8.15)

where B denotes the forgetting factor. The procedure to estimate the respiratory
frequency is summarized in Figure 8.15.

Respiratory frequency during a stress test has been estimated using this pro-
cedure in combination with both the multilead QRS area and the QRS-VCG loop
alignment EDR algorithms, described in Sections 8.2.2 and 8.2.3, respectively [28].
Results are compared with the respiratory frequency obtained from simultaneous
airflow respiratory signals. An estimation error of 0.022+0.016 Hz (5.9+£4.0%)
is achieved by the QRS-VCG loop alignment EDR algorithm and of 0.076+0.087
Hz (18.84+21.7%) by the multilead QRS area EDR algorithm. Figure 8.16 displays
an example of the respiratory frequency estimated from the respiratory signal and
from the ECG using the QRS-VCG loop alignment EDR algorithm. Lead X of the
observed and reference loop are displayed at different time instants during the stress
test.

8.5.2 Parametric Approach

Parametric AR model-based methods have been used to estimate the respiratory
frequency in stationary [29] and nonstationary situations [27, 39]. Such methods
offer automatic decomposition of the spectral components and, consequently, es-
timation of the respiratory frequency. Each EDR signal e;(n) can be seen as the
output of an AR model of order P,

ej(n) =—ajej(n—1)—---—a;pej(n— P)+v(n) (8.16)

where 7 indexes the evenly sampled EDR signal, a; 1, ..., a; p are the AR parame-
ters, and v(n) is white noise with zero mean and variance o2. The model transfer
function is

1 1 1

Hi(z) = = = (8.17)
] P _ P _
Aj(z)  Ygajz Tlpmi(1 =227
S1,k(f)
Peak- <
EDR ej(t,) : L Sk(f) Peak 2
. . ditioned B —

ECG—> aigorithm > PSD 51,k() gsgra;gne location fr(®)

Figure 8.15 Block diagram of the estimation of respiratory frequency. PSD: power spectral density.
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Figure 8.16 The respiratory frequency estimated from the respiratory signal (f;, small dots) and
from the ECG (f,, big dots) during a stress test using QRS-VCG loop alignment EDR algorithm. Lead
X of the observed (solid line) and reference (dotted line) loop are displayed above the figure at
different time instants. Parameter values: T, = 40 seconds, t; = 5 seconds, T,, = 12 seconds, L = 5,
w=05=035p8=0.738 =02Hz and f,(1) = argmaxg ;s o4 (S1(1)).

where a; o = 1 and the poles z; , appear in complex-conjugate pairs since the EDR
signal is real. The corresponding AR spectrum can be obtained by evaluating the
following expression for z = e/®,

o? o?

AR A T I (1 =22 (1 — 2,2)

Si(2) = (8.18)

It can be seen from (8.18) that the roots of the polynomial A;(z) and the spectral
peaks are related. A simple way to estimate peak frequencies is by the phase angle
of the poles z; ,,

N 1 S(Z/,p)
fl"p = Z arctan <m> . f; (8.19)

where f; is the sampling frequency of e (7). A detailed description on peak frequency
estimation from AR spectrum can be found in [36]. The selection of the respiratory
frequency f, from the peak frequency estimates f i,p depends on the chosen EDR
signal and the AR model order P. An AR model of order 12 has been fitted to a HRV
signal and the respiratory frequency estimated as the peak frequency estimate with
the highest power lying in the expected frequency range [27]. Another approach has
been to determine the AR model order by means of the Akaike criterion and then to
select the central frequency of the HF band as the respiratory frequency [29]. Results
have been compared to those extracted from simultaneous strain gauge respiratory
signal and a mean error of 0.4140.48 breaths per minute (0.007+0.008 Hz) has
been reported.
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Figure 8.17 Respiratory frequency during a stress test, estimated from the respiratory signal (f;,

dotted) and from the HRV signal (f,, solid) using seventh-order AR modeling. The parameter values
used are: P =7, T, = 60 seconds, and t; = 5 seconds.

Figure 8.17 displays an example of the respiratory frequency during a stress
test, estimated both from an airflow signal and from the ECG using parametric AR
modeling. The nonstationarity nature of the signals during a stress test is handled
by estimating the AR parameters on running intervals of T; seconds, shifted by
seconds, where the EDR signal is supposed to be stationary, as in the nonparametric
approach of Section 8.5.1. The EDR signal in this case is made to be the HRV signal
which has been filtered in each interval of T; second duration using a FIR filter with
passband from 0.15 Hz to the minimum between 0.9 Hz (respiratory frequency is
not supposed to exceed 0.9 Hz even in the peak of exercise) and half the mean HR
expressed in Hz in the corresponding interval. The AR model order has been set to
P = 7, as in Figure 8.12. The peak frequency estimate f i,p with the highest power
is selected as the respiratory frequency f, in each interval.

The parametric approach can be applied to the multichannel EDR signal in a
way similar to the nonparametric approach of Section 8.5.1. Selective averaging can
be applied to the AR spectra S;(z) of each EDR signal e;(#), and the respiratory
frequency can be estimated from the averaged spectrum in a restricted frequency
interval. Another approach is the use of multivariate AR modeling [9] in which
the cross-spectra of the different EDR signals are exploited for identification of the
respiratory frequency.

8.5.3 Signal Modeling Approach

In Sections 8.5.1 and 8.5.2, nonparametric and parametric approaches have been
applied to estimate the respiratory frequency from the power spectrum of the EDR
signal. In this section, a different approach based on signal modeling is considered
for identifying and quantifying the spectral component related to respiration.
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The evenly sampled EDR signal e;(#n) is assumed to be the sum of K complex
undamped exponentials, according to the model

K
ej(n) = b (8.20)
k=1

where b, denotes the amplitude and w; denotes the angular frequency. Since e;(7)
is a real-valued signal, it is necessary that the complex exponentials in (8.20) occur
in complex-conjugate pairs (i.e., K must be even). The problem of interest is to
determine the frequencies of the exponentials given the observations e;(#), and to
identify the respiratory frequency, f,.

A direct approach would be to set up a nonlinear LS minimization problem in
which the signal parameters b and w;, would be chosen so as to minimize

2
(8.21)

K
ej(n) — the“"k”
k=1

F

However, since nonlinear minimization is computationally intensive and cumber-
some, indirect approaches are often used. These are based on the fact that, in the
absence of noise and for the model in (8.20), e;(#7) is exactly predictable as a linear
combination of its K past samples,

e,-(n) = —ame,-(n — 1) — —ai,Kej(n — K), n= K, .. ,2K -1 (822)
which can be seen as an AR model of order K.

One such approach is due to Prony [40], developed to estimate the parameters
of a sum of complex damped exponentials. Our problem can be seen as a particular
case in which the damping factors are zero; further details on the derivation of
Prony’s method for undamped exponentials are found in [9].

A major drawback of Prony-based methods is the requirement of a priori knowl-
edge of the model order K (i.e., the number of complex exponentials). When it is
unknown, it must be estimated from the observed signal, for example, using tech-
niques similar to AR model order estimation.

Another approach to estimate the frequencies of a sum of complex exponentials
is by means of state space methods [41]. The EDR signal e;(7) is assumed to be
generated by the following state space model:

ej(n+1) =Fe;(n)

ej(n) =h'e;(n) (8.23)
where
_m a ... dg-—1 élK_
ejn=1) 10 0 0 @
ej(n—2) '
ei(n) / F=[0 1 ...0 0], h=|"| (824
ej(n— K) 0 0 1 0 ag
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It can be shown that the eigenvalues of the Kx K matrix F are equal to e/,
k=1,..., K, and thus the frequencies can be obtained once F is estimated from
data [41]. Then, respiratory frequency has to be identified from the frequency
estimates.

Such an approach has been applied to HR series to estimate the respiratory
frequency, considered as the third lowest frequency estimate [25]. Respiratory fre-
quency estimated is compared to that extracted from simultaneous respiratory
recordings. A mean absolute error lower than 0.03 Hz is reported during rest and
tilt-test. However, the method fails to track the respiratory frequency during exercise
due to the very low SNR.

8.6 Evaluation

In order to evaluate the performance of EDR algorithms, the derived respiratory
information should be compared to the respiratory information simultaneously
recorded. However, simultaneous recording of ECG and respiratory signals is diffi-
cult to perform in certain situations, such as sleep studies, ambulatory monitoring,
and stress testing. In such situations, an interesting alternative is the design of a
simulation study where all signal parameters can be controlled.

A dynamical model for generating simulated ECGs has been presented [42].
The model generates a trajectory in a three-dimensional state space with coordi-
nates (x,Y,z), which moves around an attracting limit cycle of unit radius in the
(x,y) plane; each cycle corresponds to one RR interval. The ECG waves are gen-
erated by attractors/repellors in the z direction. Baseline wander is introduced by
coupling the baseline value in the z direction to the respiratory frequency. The z
variable of the three-dimensional trajectory yields a simulated ECG with realistic
PQRST morphology. The HRV is incorporated in the model by varying the an-
gular velocity of the trajectory as it moves around the limit cycle according to
variations in the length of RR intervals. A bimodal power spectrum consisting
of the sum of two Gaussian distributions is generated to simulate a peak in the
LF band, related to short-term regulation of blood pressure, and another peak in
the HF band, related to respiratory sinus arrhythmia. An RR interval series with
the former power spectrum is generated and the angular velocity of the trajec-
tory around the limit cycle is defined from it. Time-varying power spectra can
be used to simulate respiratory signals with varying frequency. Observational un-
certainty is incorporated by adding zero-mean Gaussian noise. Simulated ECGs
generated by this model can be used to evaluate EDR algorithms based on HR
information (Section 8.3) and single-lead EDR algorithms based on the modu-
lation of wave amplitudes (Section 8.2.1). However, it is not useful to evaluate
multilead EDR algorithms based on estimating the rotation of the heart’s electrical
axis.

A simulation study to evaluate multilead EDR algorithms based on beat mor-
phology (Sections 8.2.2 and 8.2.3) on exercise ECGs has been presented [28]. The
study consists of a set of computer-generated reference exercise ECGs to which
noise and respiratory influence have been added.
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First, a noise-free 12-lead ECG is simulated from a set of 15 beats (templates)
extracted from rest, exercise, and recovery of a stress test using weighted averaging.
The HR and ST depression of each template is modified to follow a predefined
ST/HR pattern. The simulated signals result from concatenation of templates such
that HR and ST depression evolve linearly with time. Then, the VCG signal is
synthesized from the simulated 12-lead ECG.

In order to account for respiratory influence, the simulated VCG is transformed
on a sample-by-sample basis with a three-dimensional rotation matrix defined by
time-varying angles. The angular variation around each axis is modeled by the
product of two sigmoidal functions reflecting inhalation and exhalation [43], such
that for lead X,

> 1 1

oxin) = Zp_o X e D) T 4 el D) (8.25)
f(P) fs
Ai =20 s Ki =ki(p—1)+ ————,k;(0) =0.35f,
(p) 7 ki(p) =ki(p—1) f,(p—l)K() f;
f(P) fs
ho(p) = 1528 (o) =i (p— 1)+ — 1, (0) = 0.6 £,
(p) 7 ke(p) = ke(p—1) f,(p—l)K() f:
where 7 denotes sample index, p denotes each respiratory cycle index, ﬁp) and

ﬁp) are the duration of inhalation and exhalation, respectively, «;(p) and «.(p)
are the time delays of the sigmoidal functions, f; is the sampling rate, f,(p) is the
respiratory frequency, and ¢x is the maximum angular variation around lead X,
which has been set to 5°. The same procedure is applied to leads Y and Z, with
¢y = ¢z = x. To account for the dynamic nature of the respiratory frequency
during a stress test, the simulated respiratory frequency f,(p) follows a pattern
varying from 0.2 to 0.7 Hz, see Figure 8.18. A similar respiratory pattern has been
observed in several actual stress tests.

Finally, noise is added to the concatenated ECG signals, obtained as the resid-
ual between raw exercise ECGs and a running average of the heartbeats [1]. The
noise contribution to the VCG is synthesized from the 12-lead noise records. In
Figure 8.19 lead X of a simulated VCG is displayed during different stages of a
stress test. The simulation procedure is summarized in Figure 8.20.

This simulation study has been used to evaluate the performance of the meth-
ods based on the multilead QRS area and the QRS-VCG loop alignment in es-
timating the respiratory frequency from the ECG [28]. An estimation error of
0.002+0.001 Hz (0.54+0.2%) is achieved by QRS-VCG loop alignment while an
error of 0.005+0.004 Hz (1.04+0.7%) is achieved by multilead QRS area. The
mean and the standard deviation of the estimated respiratory frequency by both
approaches are displayed in Figure 8.21.

This simulation study is not useful for evaluating EDR algorithms based on HR
information (Section 8.3) since respiratory influence only affects beat morphology
but not beat occurrence time. However, it can be easily upgraded to include respi-
ration effect on HR. For example, HR trends can be generated by an AR model like
those in Figure 8.12 whose HF peak is driven by respiratory frequency.
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Figure 8.18 Simulated respiratory frequency pattern.
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Figure 8.19 Simulated ECG signal at onset, peak exercise, and end of a stress test.

The above simulation designs can be seen as particular cases of a generalized
simulation used to evaluate EDR algorithms based on beat morphology (single-
or multilead) and EDR algorithms based on HR. First, beat templates are gen-
erated, either from a model [42] or from real ECGs [28]. The simulated ECG
signals result from concatenation of beat templates following RR interval series
with power spectrum such that the HF peak is driven by respiratory frequency.
Long-term variations of QRS morphology unrelated to respiration and due to phys-
iological conditions such as ischemia can be added to the simulated ECG signals.
The respiratory influence on beat morphology is introduced by simulating the rota-
tion of the heart’s electrical axis induced by respiration. Finally, noise is generated
either from a model [42] or from real ECGs [28] and added to the simulated ECGs.
The generalized simulation design is summarized in Figure 8.22.
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8.7 Conclusions

In this chapter, several EDR algorithms have been presented which estimate a res-
piratory signal from the ECG. They have been divided into three categories:

1. EDR algorithms based on beat morphology, namely, those based on ECG
wave amplitude, on multilead QRS area, and on QRS-VCG loop alignment
(Section 8.2);

2. EDR algorithms based on HR information (Section 8.3);

3. EDR algorithms based on both beat morphology and HR (Section 8.4).

The choice of a particular EDR algorithm depends on the application. In general,
EDR algorithms based on beat morphology are more accurate than EDR algorithms
based on HR information, since the modulation of HRV by respiration is sometimes
lost or embedded in other parasympathetic interactions.

Amplitude EDR algorithms have been reported to perform satisfactorily when
only single-lead ECGs are available, as is usually the case in sleep apnea monitor-
ing [14, 17, 18, 20, 21, 32]. When multilead ECGs are available, EDR algorithms
based on either multilead QRS area or QRS-VCG loop alignment are preferable.
The reason is that due to thorax anisotropy and its intersubject variability together
with the intersubject electrical axis variability, respiration influences ECG leads
in different ways; the direction of the electrical axis, containing multilead infor-
mation, is likely to better reflect the effect of respiration than wave amplitudes
of a single lead. In stationary situations, both multilead QRS area or QRS-VCG
loop alignment EDR algorithms estimate a reliable respiratory signal from the
ECG [5, 22]. However, in nonstationary situations, such as in stress testing, the
QRS-VCG loop alignment approach is preferred over the multilead QRS area [28].
Electrocardiogram-derived respiration algorithms based on both beat morphology
and HR may be appropriate when only a single-lead ECG is available and the res-
piration effect on that lead is not pronounced [30]. The power spectra of the EDR
signals based on morphology and HR can be cross-correlated to reduce spurious
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peaks and enhance the respiratory frequency. However, the likelihood of having
an EDR signal with pronounced respiration modulation is better when the signal
is derived from multilead ECGs; cross-correlation with the HR power spectrum
may in those situations worsen the results due to poor respiratory HR modula-
tion [22].

There are still certain topics in the EDR field which deserve further study. One is
the robustness of the EDR algorithms in different physiological conditions. In this
chapter, robustness to long-term QRS morphologic variations due to, for exam-
ple, ischemia, has been addressed. The study of nonunimodal respiratory patterns
should be considered when estimating the respiratory frequency from the ECG by
techniques like, for example, spectral coherence. Finally, one of the motivations
and future challenges in the EDR field is the study of the cardio-respiratory cou-
pling and its potential value in the evaluation of the autonomic nervous system
activity.
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Appendix 8A Vectorcardiogram Synthesis
from the 12-Lead ECG

Although several methods have been proposed for synthesizing the VCG from the
12-lead ECG, the inverse transformation matrix of Dower is the most commonly
used [31]. Dower et al. presented a method for deriving the 12-lead ECG from
Frank lead VCG [44]. Each ECG lead is calculated as a weighted sum of the VCG
leads X, Y, and Z using lead-specific coefficients based on the image surface data
from the original torso studies by Frank [45]. The transformation operation used
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to derive the eight independent leads (V1 to V6, I and II) of the 12-lead ECG from
the VCG leads is given by

[—0.515 0.157 —0.917]
0.044 0.164 —1.387
0.882 0.098 —1.277
s(n) = Dv(n), D= 1.213 0.127 —0.601 (A1)
1.125 0.127 —0.086
0.831 0.076 0.230
0.632 —0.235 0.059

| 0.235 1.066 —0.132

where s(n)=[Vi(n) Va(n) Vs(n) Va(n) Vs(n) Vs(n) 1(n) 11(n)]" and v(n)=[X(n) Y(n)
Z(n)]T contain the voltages of the corresponding leads, 7 denotes the sample index,
and D is called the Dower transformation matrix. From (8A.1) it follows that the
VCG leads can be synthesized from the 12-lead ECG by

v(n) = Ts(n) (8A.2)

where T = (DTD)~!'DT is called the inverse Dower transformation matrix and
given by

-0.172 —-0.074 0.122 0.231 0.239 0.194 0.156 —0.010
T=| 0.057 —0.019 —0.106 —0.022 0.041 0.048 —0.227 0.887 [(8A.3)
-0.229 -0.310 —0.246 —0.063 0.055 0.108 0.022 0.102





