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C H A P T E R 6

Nonlinear Filtering Techniques

Patrick E. McSharry and Gari D. Clifford

6.1 Introduction

The ECG is routinely used to provide important clinical information. In practice,
the utility of any diagnosis based on the ECG relies on the quality of the available
signal. A typical ECG recorded in a clinical environment may be corrupted by one or
more of the following: (1) electrical interference from surrounding equipment such
as the effect of the electrical mains supply; (2) analog-to-digital conversion; and (3)
movement and muscle artifacts. In order to employ the ECG signal for facilitating
medical diagnosis, filtering techniques may be employed to clean the signal, thereby
attempting to remove the distortions caused by these various sources of noise.

Many techniques for filtering are based on a spectral decomposition of the
signal (see [1]). Such techniques include notch filters for removing the effect of the
electrical mains supply, and both low and high bandpass filters for removing noise
that is localized in particular regions of the frequency spectrum. These techniques all
rely on the principle of linear superposition and there is a fundamental assumption
that the underlying signal and the noise are active in different parts of the frequency
spectrum. Section 3.1 provides a description of these techniques.

Linear filtering techniques are of limited use in cases where both the noise and
signal occupy similar regions of the frequency domain. This restriction motivates
the use of nonlinear filtering methods that do not rely on the linear assumptions un-
derlying spectral analysis. In this chapter, three nonlinear techniques are described.
These are (1) nonlinear noise reduction (NNR) [2], (2) independent component
analysis (ICA) [3], and (3) model-based filtering [4]. For simplicity, these methods
are demonstrated using univariate signals. Each of these techniques can easily be
extended to multivariate signals arising from multiple leads and this will generally
provide better performance.

Accurate metrics for evaluating the effectiveness of filtering techniques applied
to the ECG are difficult to define due to the inherently complicated structure of
the noise and the absence of knowledge about the underlying dynamical processes.
Without having access to a noise-free ECG signal, the fact that the true under-
lying dynamics of a real ECG can never be known implies that one cannot dis-
tinguish between the clean ECG signal and the many sources of noise that can
occur during recording in a clinical environment. While the availability of biomed-
ical databases [5] provides a useful benchmark for comparing different techniques,
this approach can never truly distinguish between noise and signal. ECGSYN, a
dynamical model for generating ECG signals with known temporal and spectral
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characteristics and prespecified average morphology [6] is used to compare and
evaluate these techniques under a range of different conditions (see Section 4.3.2
for further details of ECGSYN).

The layout of the chapter is as follows. Section 6.2 provides an overview of
nonlinear dynamics and the application of this theory to signals known as nonlin-
ear time series analysis or nonlinear signal processing. This section describes how
to reconstruct a multidimensional state space using a univariate signal and calculate
nonlinear descriptive statistics such as Lyapunov exponents, correlation dimension,
and entropy. The associated discussion also describes how to test the significance of
these statistics and how failure to do so can lead to erroneous conclusions. Section
6.3 discusses the different forms of noise that affect the ECG and suggests differ-
ent metrics for evaluating filtering techniques. Section 6.4 describes and compares
two empirical filtering techniques, NNR and a state space implementation of ICA.
Section 6.5 gives details of two model-based filtering approaches using ECGSYN
to provide constraints on the underlying ECG signal; the first uses a nonlinear least
squares parameter estimation technique and the second uses an extended Kalman
filter.

These approaches illustrate different paradigms for utilizing nonlinear methods
for filtering the ECG. Statistical techniques such as PCA and ICA make statistical as-
sumptions about the relationship between the signal and the noise in a reconstructed
state space. In contrast, the model-based approach makes an explicit assumption
concerning the underlying structure of the ECG signal and this is encoded in a dy-
namical model such as ECGSYN. Nonlinear techniques are then used to find an
optimal fit of this model to the data. For this reason, the model-based approach is
tailor-made for ECG signals.

6.2 Nonlinear Signal Processing

Chaotic dynamics provide one possible explanation for the different complex and
erratic patterns that appear in a large number of observed signals. Chaos refers
to the existence of behavior so unpredictable as to appear random because of the
inherent sensitivity to small perturbations in the initial conditions. This suggests
that many complex systems could possibly be described by low-dimensional de-
terministic mathematical models. Although many real-world systems are undoubt-
edly nonlinear (a necessary but not sufficient condition for chaos), in practice, the
quality of recorded signals is usually better suited to traditional linear analyses.
Despite the fact that there is very little evidence of chaos in real systems, the field
of nonlinear dynamics can help improve our understanding of many complicated
systems [7]. The recent proliferation of high-speed computers and cheap storage for
large databases suggests that the construction of data-driven nonlinear models is
now feasible and that such developments have the potential to make a substantial
contribution to science. Nonlinear signal processing relates to the data analysis that
is required to construct, estimate, and evaluate these nonlinear models. The decision
to pursue nonlinear models brings many challenges. As traditional techniques based
on normal distributions and least squares are no longer valid, new techniques for
parameter estimation [8] and model evaluation [9] are required.
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6.2.1 State Space Reconstruction

Reconstructing a state space using an observed time series is usually the first step in
building a model for describing nonlinear dynamics. Suppose that the underlying
system dynamics of the ECG evolve on an attractor A according to G : A → A. Let τs

be the sampling time of the recorded signal s(t) that provides discrete observations,
sn = s(nτs). It is possible to construct a replica state space using a delay vector
reconstruction [10–12] of the observations sn defined by

sn = [
sn, sn+d . . . , sn+(m−1)d

] ∈ �m (6.1)

where m is the reconstruction dimension and τd = dτs is the time delay. In order to
reconstruct the dynamics, G, of the system state space using a data-driven model,
F : Φ(A) → Φ(A), it is necessary to ensure that the mapping Φ : A → Φ(A) provides
a faithful representation of the system’s attractor.

Mathematical theory can be used to describe the conditions under which it
should be possible to obtain a faithful representation of the underlying dynamics.
This states that the reconstruction dimension, m, should satisfy m > 2D0 where D0

is the box-counting dimension [11, 13]. Unfortunately this theory is of little help
when faced with noisy data of finite duration—the challenge of most interesting
signal processing problems. For example, while the choice of τd is irrelevant in the
theory, it is extremely important in practice. One approach for selecting τd is to
identify the first minimum in the mutual information of the signal [14]. Another
approach is based on a geometric interpretation of the reconstruction [15].

The fact the value of D0 is unknown a priori implies that m must also be
estimated. One technique for estimating m is known as the method of false nearest
neighbors [16]. This method determines a sufficient value for m by varying the
size of m and monitoring the number of false nearest neighbors associated with
areas of the reconstructed state space that have self-intersections. Unfortunately, the
detection of false nearest neighbors is subject to the choice of an arbitrary constant
that varies with location in state space. By testing for consistency between the model
dynamics and the observational uncertainty while incorporating the variation of the
local instabilities of the nonlinear dynamics throughout state space, it is possible to
calculate a robust estimate for the minimum value of m [9]. In practice, if the state
space reconstruction is one component of a technique with an obvious application,
such as the case of filtering, then it is advisable to determine values for τd and m by
optimizing the accuracy of the filtering technique. This is possible when using the
synthetic ECG signals generated by ECGSYN.

6.2.2 Lyapunov Exponents

The best known hallmark of chaotic dynamics is perhaps the inherent unpredictabil-
ity of the future despite the fact that the underlying system has to obey deter-
ministic equations of motion. This unpredictability may be quantified through the
increasing average forecast error that results from larger prediction lead times. Such
sensitive dependence on initial condition describes the inherent instability of the so-
lutions that generate this unpredictability; two nearby initial conditions will, on
average, diverge over time. Although many linear systems give rise to a slow rate of
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divergence, it is the exponential divergence in nonlinear systems that is characteristic
of chaotic systems.

A deterministic dynamical system may be described by a discrete map, xn+1 =
F(xn) where xn ∈ �m. The evolution of an infinitesimal uncertainty, ε0, in the initial
condition, x0, over a finite number of time steps, k, is given by εk = M(x0, k)ε0,
where M(x0, k) is the linear tangent propagator formed by the product of the Jaco-
bians along the k steps of the trajectory M(x0, k) = J(xk−1)J(xk−2) . . . J(x0).

The linear dynamics that describe the evolution of the uncertainty quantified
by εk may be analyzed using the singular value decomposition (SVD), M = UΣVT,
where the columns of the orthogonal matrix U(V) are the left (right) singular vec-
tors, respectively, and the entries of the diagonal matrix Σ are the singular values,
σi (x0, k), which are usually ranked in decreasing order [17]. The finite time Lya-
punov exponents [18, 19] are defined as

λ
(k)
i (x0) = 1

k
log2 σi (x0, k), i = 1, 2, . . . , m (6.2)

and depend on both the initial condition, x0, and the number of steps, k. The
first finite time Lyapunov exponent λ

(k)
1 (x0) describes the maximum possible linear

growth over the time k for which the linear propagator was defined. The Lyapunov
exponents, �i , are defined by taking the limit as k goes to infinity,

�i = lim
k→∞

λ
(k)
i (x0), i = 1, 2, . . . , m (6.3)

A system is said to be chaotic if the leading Lyapunov exponent, �1, is positive,
whereas a negative value indicates the existence of a stable fixed point. Indeed,
the Lyapunov spectrum provides a means of classifying the dynamics of a system
which could be useful for diagnosing dynamical diseases where transitions between
stable and oscillatory behavior can indicate changes from health to illness or vice
versa [20].

A number of approaches are available for estimating Lyapunov exponents
[21–24]. By calculating the finite time Lyapunov exponents, one can monitor the
convergence as a function of the amount of data available [19]. Confidence in-
tervals should be calculated if one wishes to establish whether or not a system is
chaotic [25]. In the case of an observed signal, it is advisable to first check for the
existence of exponential growth. The combined effects of small data sets and noisy
observations mean that it is difficult to calculate reliable estimates from signals.
Techniques which specifically aim to calculate the maximal Lyapunov exponent for
real signals [26, 27] are available from the TISEAN package [28].

6.2.3 Correlation Dimension

A number of different approaches, both dynamical and geometrical, exist for es-
timating the number of active degrees of freedom in a given system. Techniques
for estimating fractal dimensions have received a lot of attention. The motivation
for this has been the realization that if a system is governed by low-dimensional
deterministic dynamics, then a model with only a few degrees of freedom exists.
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The ability to obtain accurate estimates has proven difficult. It is advisable that such
dimension estimates should be supported by a quantification of the confidence in
the estimate. In practice, it may be easier to construct a low-dimensional model
from the data than to obtain a direct estimate of the underlying system’s dimension.

The box-counting dimension of a self-similar point set is calculated by counting
the number of hyper-cubes M(ε) of side ε required to cover the set, then for a self-
similar set M(ε) ∝ ε−D0 as ε → 0 and

D0 = lim
ε→0

ln M(ε)
ln(1/ε)

(6.4)

Renyi [29] defined a family of generalized dimensions which differ in the way
regions with different densities are weighted, thereby giving more weight to regions
which are visited more frequently and thus contain larger fractions of the measure.
These Renyi dimensions, Dq, are a decreasing function of q: Dq1 ≤ Dq2 if q1 > q2.
A measure for which Dq varies with q is called a multifractal measure [30].

The correlation dimension, D2, may be estimated from experimental data and
used to suggest a suitable reconstruction dimension, m, since D2 ≤ D0. D2 reflects
how the probability that the distance between two randomly chosen points will
be less than ε, scales as a function of ε. For a finite sequence of points {xi }N

i=1, a
quantify known as the correlation integral measures the fraction of pairs of points
(xi , x j ) whose distance is smaller than ε [31],

C(ε, N) = 2
N(N − 1)

N−1∑
i=1


 N∑

j=i+1

�
(
ε − ||xi − x j ||

) (6.5)

where � is the Heaviside step function: �(x) = 0 if x ≤ 0 and �(x) = 1 if x > 0.
If this correlation integral scales as a power law, C ∼ εD2 , then

D2 = lim
ε→0

lim
N→∞

d ln C(ε, N)
d ln ε

(6.6)

For recorded signals, it is generally difficult to identify a scaling region since the
finite sample size, N, places a lower bound on ε. Furthermore the finite accuracy
of the measurements and the sparseness of near neighbors limits the calculation of
C when ε is small.

Interpreting estimates of D2 is also complicated by the fact that infinite di-
mensional stochastic signals can lead to finite and low-dimensional dimension es-
timates [32]. In addition, estimates for C can be biased by temporal correlations
as small spatial distances between pairs of points may arise simply because the
difference between their times of observation was small. Restricting attention to
pairs of points separated by a specific temporal window may help to reduce this
problem [32]. In practice, this problem of spatio-temporal correlations will always
be present and the best approach is to use a space-time-separation diagram to test
when sufficient data are not available [33].

An alternative approach employs a maximum likelihood estimate of D2 without
estimating the slope of the correlation integral directly [34]. This approach has been
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extended to provide a coherent estimate of D2, which is consistent with measures
at all smaller length scales [35]. When estimating D2 from recorded signals, it is
useful to know the rate of convergence of the estimate with the quantity of data,
N, so as to determine confidence intervals. There have been numerous attempts at
deriving a formula for determining the minimum length of the time series, Nmin,
required to obtain accurate dimension estimates, ranging from Nmin = 10D2/2 [36]
to Nmin = D42

2 [37]; see [25] for a discussion. For D2 = 10, approximations of the
amount of data required vary from 105 to 1042.

In practice, estimation of D2 is complicated by the fact that it is extremely
difficult to maintain suitable experimental conditions in order to collect a sufficient
quantity of data during a period when the underlying data generating process is
stationary. In addition, measurement errors also restrict the estimation of D2.

6.2.4 Entropy

Information theory provides a probabilistic approach to measuring the statistical
dependence between random variables. Let Xbe a random variable with probability
density function p(x). The information corresponding to a particular probability
p(x) is defined as − log p(x). This essentially implies that the more probable an
event, the less information it contains. The entropy of the distribution of X, a
measure of the uncertainty or disorder, is given as the average information in X:

H = −
∫

p(x) log p(x)dx (6.7)

The more erratic the observations of the variable X, the higher the entropy.
For example, consider a distribution such that X is uniformly distributed be-

tween 0 and 1. The integral in (6.7) may be evaluated by dividing the interval [0, 1]
into n segments of length ε = 1/n giving H(ε) = −∑n

i=1
1
n log ε = − log ε = log n.

This demonstrates that the larger n is, the more information is gained by knowing
that the variable X takes a value in some interval of length 1/n. Alternatively, if the
variable X always falls into one of the n intervals, all the probabilities will be zero
except for one which will be unity. In this case the entropy is given by H(ε) = 0. The
small value for the entropy indicates the certainty that the variable X will always
land in the same interval.

Similarly, for a sequence of n random variables, X1, . . . , Xn, the joint entropy
is given by

Hn =
∫

· · ·
∫

p(x1, . . . , xn) log p(x1, . . . , xn)dx1 . . . dxn (6.8)

where p(x1, . . . , xn) is the joint probability for the n variables X1, . . . , Xn. The
Kolmogorov-Sinai (KS) entropy measures the mean rate of creation of information
by measuring how much information each new observation brings. In practice,
given a signal recorded with a sampling time τs and a state space with dimension n
partitioned using a grid size ε, the KS entropy can be expressed as

HKS = lim
τs→0

lim
ε→0

lim
n→∞(Hn+1 − Hn) (6.9)
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In the case of a deterministic periodic systems, the KS entropy is zero because the
initial condition specifies all future states. In contrast, the KS entropy is maximum
for uncorrelated random processes because each new state is totally independent of
the previous states [38].

The estimation of entropy for recorded signals is complicated by the usual prob-
lems of small data and noisy signals. Approximate entropy (ApEn) was proposed as
a measure of system complexity and quantifies the unpredictability of fluctuations
in a time series [39]. The difficulty in estimating the entropy of short noisy time
series has motivated an alternative approach, known as sample entropy [40], with
the advantage of being less dependent on the length of the time series.

6.2.5 Nonlinear Diagnostics

Although the concept of using nonlinear statistics, such as D2 or �1, to categorize the
state of an observed system is appealing, one should be aware that this is complicated
by the previously discussed problems of obtaining accurate estimates. The ability to
measure the complexity of an observed system may be useful for classifying states
of health and disease and could form the basis of a diagnostic tool.

For clinical applications it is important to rule out simple linear statistics before
inventing complicated nonlinear measures. The possible existence of strong correla-
tions between simple linear statistics and their nonlinear counterparts suggests that
newly proposed statistics based on nonlinear dynamics should be tested against sim-
ple traditional benchmarks. Indeed, published results using the correlation integral
to forecast epileptic seizures from the electroencephalogram EEG were reproduced
using the variance of the EEG signal [41]. The fact that an increase in variance pro-
duces a decrease in the value of correlation integral implies that carefully designed
statistical tests with clinical relevance are required [42].

In practice, nonlinear statistics should only be evaluated on segments of data
that arise when the underlying dynamics are stationary. Application of a test for
stationarity to RR intervals [43] using 48-hour Holter recordings from 23 healthy
subjects during sinus rhythm demonstrated that while it was relatively easy to find
stationary periods containing 1,024 RR intervals, only a few stationary segments
of between 8,192 and 32,768 RR intervals were found [44]. Using statistical tests
based on the correlation dimension, the authors were able to reject the hypothesis
that the RR intervals represented a static transformation of a linear process and
found evidence for time irreversibility. These results suggest that heart rate variabil-
ity is driven by nonlinear processes and that the RR intervals may contain more
information than can be extracted by linear analyses in the time and frequency
domains.

Despite the drawbacks caused by the difficulty in estimating nonlinear statistics,
a number of techniques have been proposed in the field of biomedical research. Both
an effective correlation dimension [45] and a method based on the convergence and
divergence of short-term maximum Lyapunov exponents from adaptively selected
electrodes [46] have been used to provide predictions of epileptic seizures. Approx-
imate entropy has been used to discern changing complexity from relatively small
amounts of data arising from RR intervals [47]. Sample entropy [40] has also been
employed to explore the multiple time scales involved in physiological dynamics.
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A technique, known as multiscale entropy [48], can distinguish between RR inter-
vals from subjects within healthy and pathologic groups such as atrial fibrillation
and congestive heart failure.

Nonlinear dynamics has proven useful for constructing improved methods for
predictive recognition of patients threatened by sudden cardiac death [49]. Such
nonlinear methods have shown promise in classifying fatal cardiac arrhythmias
such as ventricular tachycardia (VT) and ventricular fibrillation (VF). In a study of
17 chronic heart failure patients before the onset of a life-threatening arrhythmia
and at a control time (without either VT or VF events), neither time nor frequency
domain statistics showed significant differences between the VT-VF and the control
time series, whereas methods based on symbolic dynamics and finite-time growth
rates were able to discriminate significantly between both groups [50].

6.3 Evaluation Metrics

Noise usually describes the uncertainty in the data resulting from measurement er-
rors or specifically the part of the data that does not directly reflect the underlying
system of interest. Sources of noise commonly encountered in the ECG include (1)
electrical interference, (2) analog-to-digital conversion, and (3) movement or mus-
cle artifacts. There is an important difference between observational uncertainty
and dynamical uncertainty. Observational uncertainty refers to measurement errors
which are independent of the dynamics. Sources include finite precision measure-
ments, truncation errors, and missing data (both temporal and spatial). In contrast,
dynamical uncertainty refers to external fluctuations interacting with and changing
internal variables in the underlying system. Dynamical uncertainty includes para-
metrical and structural uncertainty, both of which lead to model error. An example
of dynamical uncertainty is where a parameter value, assumed constant in the equa-
tions describing the underlying dynamics, was actually varying during the time when
the data were being recorded. In short, observational uncertainty obscures the state
vectors whereas dynamical uncertainty changes the actual dynamics.

In the following, only the effects of noise due to observational uncertainty are
considered. Let τs be the sampling time of the recorded signal so that the observed
time series is yn = y(nτs). A simple description of observational uncertainty is
provided by additive measurement error where the observed time series is

yn = xn + εn (6.10)

xn is the true state vector and εn represents the unobserved measurement error. This
measurement error term is usually described by a random variable, for example an
identically and normally distributed (IND) process, ε ∼ N(0, σ 2

noise), where σ 2
noise

is the variance of the noise. If the variance of the signal is σ 2
signal, then the SNR is

defined as

γ = σsignal

σnoise
(6.11)
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After employing a particular technique for cleaning a noisy dataset, a perfor-
mance metric is required to assess its failure or success. Let the cleaned signal be zn.
Following Schreiber and Kaplan [2], a noise reduction factor is defined as

χ =
√

〈yn − xn〉2

〈zn − xn〉2
(6.12)

where 〈·〉 denotes the average calculated by summing over the observed time series,
indexed by n. The value of χ provides a measure of the degree by which the RMS
error is reduced. Unlike the investigation of Schreiber and Kaplan [2], the ECG
model may be used to obtain a truly noise-free signal xn so that the value of χ may
be viewed as the actual noise reduction factor and not merely a lower bound. The
higher the value of χ , the better the noise reduction procedure, whereas χ = 1
indicates no improvement since similar accuracy could have been achieved by using
the noisy signal, yn, instead of zn.

An alternative measure of noise reduction performance is given by a measure
of the linear correlation between the cleaned signal, zn, and the original noise-free
signal, xn. The cross-correlation coefficient ρ between xn and zn is given by [51]

ρ = 〈[xn − µx][zn − µz]〉
σxσz

(6.13)

where µx and σx are the mean and standard deviation of xn, and µz and σz are the
mean and standard deviation of zn. A value of ρ ∼ 1 reflects a strong correlation,
ρ ∼ −1 implies a strong anticorrelation, and ρ ∼ 0 indicates that xn and zn are
uncorrelated. This means that a value of ρ = 1 suggests that the noise reduction
technique has removed all the noise from the observed signal.

6.4 Empirical Nonlinear Filtering

The ability to reconstruct a multidimensional state spaces from a univariate signal
means that a number of multivariate techniques can now be applied. In the follow-
ing, nonlinear noise reduction and independent component analysis are described.
The two techniques are then employed to filter a synthetic ECG signal with known
characteristics produced by ECGSYN. The performance is measured as a function
of the SNR using both the noise reduction factor and the correlation between the
cleaned signal and the original noise-free signal.

6.4.1 Nonlinear Noise Reduction

The ECG signal cannot be classified as either periodic or deterministically chaotic.
Although the dynamics of the cardiac interbeat interval time series is similar to a
1/ f -like noise process [52, 53], midway between the complete randomness of white
noise and the much smoother Brownian motion, the ECG signal displays limited
predictability over times less than one heartbeat since each beat contains the familiar
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P wave, QRS complex, and T wave. Schreiber and Kaplan [2] successfully applied
a technique, originally constructed for removing noise from chaotic signals [54],
to ECG signals. This short-term predictability may be used to reduce measurement
errors by a local geometric method. The basic idea behind nonlinear noise reduction
(NNR) is to use the manifold of the underlying dynamical system to project out the
noise. This may be achieved by using a local linear model to predict a particular
point in the state space while using its neighbors to construct a local linear map.

Following [2], consider a state space reconstruction with dimension m and
time delay d, such that the underlying noise-free time series xn is described by the
evolution of a deterministic dynamical system,

xn = f (xn−md, . . . , xn−2d, xn−d) (6.14)

By rewriting the dynamics represented by (6.14) in the implicit form of

g(xn−md, . . . , xn−d, xn) = 0 (6.15)

it is apparent that the noise-free dynamics are constrained to an m-dimensional
hypersurface. While this is only approximately true for the observed noisy time
series, yn = xn + εn, one can still attempt to estimate the noise-free value xn from
the noisy yn by projecting them onto the subspace spanned by the filtered data
expressed through (6.15). The objective is to estimate this subspace from the noisy
data while assuming that the observed time series lies close to a low-dimensional
manifold. NNR relies on the assumption that the signal lies on a manifold with
dimension less than m+ 1, and that the variance of the noise is smaller than that of
the signal.

In order to calculate a noise-free estimate for a particular reconstructed state
vector, yn, its local neighborhood is defined; let Bn denote the indices of the set of
points that form this neighborhood, yj , j ∈ Bn, and |Bn| be the number of neighbors.
The mean value, µyi , of each coordinate, i = 0, . . . , m, is given by

µyi = 1
|Bn|

∑
k∈|Bn|

yk−(m+i)d (6.16)

The covariance matrix, Ci j , of the points in the neighborhood, Bn ∈ �m+1, is

Ci j = 1
|Bn|

∑
k∈|Bn|

yk−(m+i)d yk−(m+ j)d − µyi µyj (6.17)

and its eigenvectors give the principal axes of an ellipsoid that approximates this
cloud of neighbors. Corrections based on the first and last coordinates in the delay
vector may be penalized by using a diagonal weight matrix, R, to transform the
covariance matrix, �i j = RiiCi j Rj j , where R00 = Rmm � 1 and all other diagonal
values are equal to one [7]. The Qorthonormal eigenvectors of the matrix, �i j , with
the smallest eigenvectors are called eq for q = 1, . . . , Q. A projection matrix, Pi j ,
may be defined as

Pi j =
Q∑

q=1

eq,i eq, j (6.18)
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so that the ith component of the correction vector, cn, is given by

cn,i = 1
Rii

m∑
j=0

Pi j Rj j (µyj − yn−(m+ j)d) (6.19)

This correction vector can then be added to each reconstructed state vector in order
to move it towards the manifold spanned by the m + 1 − Q largest eigenvectors.
The role of the penalty matrix, R, is to force the two largest eigenvalues to lie in
the subspace spanned by the first and second coordinates of the reconstructed state
space and ensures that the correction vector will not have any components in these
directions. Following this procedure, given that each scalar observation occurs in
m + 1 different reconstructed state vectors, this will provide as many suggested
corrections. Taking the average of all these corrections gives the overall correction
used for filtering the time series.

In the case of data from a deterministic system, it may be beneficial to iterate this
process a number of times to clean the time series. For the ECG, where the signal is
only expected to lie close to a manifold, the best results are obtained using only one
iteration [2]. This type of filtering is nonlinear in the sense that the effective filter
given by the local linear map varies throughout state space depending on the local
dynamics. In particular it has the ability to remove noise from the recorded signal,
even in cases when the underlying signal and the noise overlap in the frequency
domain.

This NNR technique is available as nrlazy from the TISEAN software package
[28, 55], and it requires the choice of various parameters such as the reconstruction
dimension, m, the time delay, d, and the neighborhood radius, r . Using ECGSYN, it
is possible to generate noise-free artificial ECG signals such that the correct answer is
known a priori. Within this setting, it is possible to optimize the filtering procedure
by performing a thorough search of the parameter space required to implement
NNR.

6.4.2 State Space Independent Component Analysis

ICA is a statistical technique for decomposing a dataset into independent subparts
[3, 56]. Using the delay reconstruction described in Section 6.2.1, the observed
univariate ECG signal, yi = y(iτs), is transformed into an m × n matrix,

Y =




y1 y2 · · · yn

y1+d y2+d · · · yn+d
...

...
...

y1+(m−1)d y2+(m−1)d · · · yn+(m−1)d


 (6.20)

where each column of Y contains one reconstructed state vector as defined by (6.1)
with reconstruction dimension mand delay d. Note that the observed ECG signal, yi ,
is assumed to have a mean of 0 and a standard deviation of 1, achieved by removing
the mean, µy, of y and dividing by its standard deviation, σy. After application of
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the ICA algorithm, the resulting cleaned signal is rescaled by multiplying by σy and
adding µy so that it is compatible with yi .

In mathematical terms, the problem may be expressed as

Y = BX (6.21)

where X is an m×n matrix containing the independent source signals, B is the m×m
mixing matrix, and Y is an m × n matrix containing the observed (mixed) signals.
ICA algorithms attempt to find a separating or demixing matrix W such that

X = WY (6.22)

In practice, iterative methods are used to maximize or minimize a given cost function
such as mutual information, entropy, or the kurtosis (fourth-order cumulant), which
is given by

kurt(Y) = E{Y4} − 3(E{Y2})2 (6.23)

where E{Y} is the expectation of Y. The following analysis uses Cardoso’s multidi-
mensional ICA algorithm jadeR [3], which is based upon the joint diagonalization
of cumulant matrices, because it combines the benefits of both PCA and ICA to
provide a stable deterministic solution. (ICA suffers from a scaling and column or-
dering problem due to the indeterminacy of solution to scalar multipliers to and
column permutations of the mixing matrix.)

Most ICA methods assume there are at least as many independent measurement
sensors as the number of sources that one wishes to separate. Following James
et al. [56], ICA was applied to the embedding matrix Y, with the assumption of one
signal and one noise source. Cardoso’s jadeR algorithm was used for the ICA. An
estimate X̂ of the sources X was obtained from

X̂ = WY (6.24)

where X̂ is the ICA estimate of X. Note that due to the scaling and inversion
indeterminacy problem of ICA, both ± each row of X must be considered. The
scaling problem is addressed by multiplying by σy and adding µy. The row with the
highest correlation with the original noise-free signal is chosen as the best estimate,
z(t), of noise-free signal x(t).

6.4.3 Comparison of NNR and ICA

The performance of NNR and ICA was compared using a synthetic ECG signal
generated by ECGSYN. Both techniques were used to remove the distortions aris-
ing from a stochastic noise source. The noise was assumed to result from additive
measurement errors represented by a normal distribution with zero mean. Signal to
noise ratios of γ = 10, 5, 2.5 were considered. The effect of IND additive measure-
ment errors with γ = 10 on the ECG signal is shown in Figure 6.1.

The NNR technique produced optimal results for a delay of d = 1. For a signal
to noise ratio of γ = 10, NNR was first applied to a coarse range of values of
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Figure 6.1 ECG signal generated by ECGSYN using additive IND measurement errors with a signal-
to-noise ratio of γ = 10: (a) synthetic ECG signal with additive measurement noise, y(t); (b) noise-free
synthetic ECG signal, x(t); and (c) measurement errors ε(t).

m and r in order to illustrate how the performance of the technique varied with
these two parameters. This gave an optimal noise reduction factor of χ = 2.09 for
m = 16 and r = 0.08 (Figure 6.2). A closer examination of the dependence of χ

on m was obtained by taking a cross-section of the surface shown in Figure 6.2
at r = 0.08 where m was sampled at all integer values between 1 and 120. As
shown in Figure 6.3(a) there is a maximum noise reduction factor of χ = 2.2171
at m = 20. The various time series and the error involved in the noise reduction
process are illustrated in Figure 6.4. This shows that while the cleaned signal, z(t),
[Figure 6.4(c)] closely resembles the original noise-free signal, x(t), [Figure 6.4(b)],
there still remains considerable structure in the error, z(t)−x(t), [Figure 6.4(d)]. This
structure is particularly evident and appears larger around the QRS complex. As
pointed out by Schreiber and Kaplan [2], the NNR technique attempts to minimize
the resulting RMS error and does not directly aim to recover other key characteristics
of the ECG that may be of more clinical relevance to the physician. Despite this,
NNR does recover the peaks and troughs that define the morphology of the ECG.
Both the P waves and T waves are clearly visible in Figure 6.4(c) and their positions
and magnitudes remain faithful to that of the original noise free ECG shown in
Figure 6.4(b).

The NNR technique gave optimal results for neighborhoods of different sizes
depending on the signal to noise ratio: (1) r = 0.08 for γ = 10, (2) r = 0.175 for
γ = 5, and (3) r = 0.4 for γ = 2.5. Figure 6.3 shows both the noise reduction
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Figure 6.2 Noise reduction factor, χ , for different values of the reconstruction dimension, m, and
neighborhood size, r , using NNR applied to data with a signal-to-noise ratio of γ = 10.

Figure 6.3 Variation in (a) noise reduction factor, χ , and (b) correlation, ρ, with reconstruction
dimension, m, for NNR applied to data with signal to noise ratios of γ = 10 (•), γ = 5 (�), and
γ = 2.5 (�), having neighborhood sizes of r = 0.08,0.175,0.4, respectively.
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Figure 6.4 Illustration of NNR: (a) original noisy ECG signal, y(t); (b) underlying noise-free ECG,
x(t); (c) noise-reduced ECG signal, z(t); and (d) remaining error, z(t)−x(t). The signal-to-noise ratio
was γ = 10 and the NNR used parameters m = 20, d = 1, and r = 0.08.

factor, χ , and the correlation, ρ, as a function of the reconstruction dimension, m,
for signals having γ = 10, 5, 2.5. For γ = 10, maxima occur at χ = 2.2171 and
ρ = 0.9990, both with m = 20. For the intermediate signal to noise ratio, γ = 5,
maxima occur at χ = 2.6605 and ρ = 0.9972 with m = 20. In the case of γ = 2.5,
the noise reduction factor has a maximum, χ = 3.3996 at m = 100, whereas the
correlation, ρ = 0.9939, has a maximum at m = 68.

ICA gave best results for all signal to noise ratios for a delay of d = 1. As may be
seen from Figure 6.5, optimizing the noise reduction factor, χ , or the correlation, ρ,
gave maxima at different values of m. For γ = 10, the maxima were χ = 26.7265
at m = 7 and ρ = 0.9980 at m = 9. For the intermediate signal to noise ratio,
γ = 5, the maxima are χ = 18.9325 at m = 7 and ρ = 0.9942 at m = 9. Finally
for γ = 2.5, the maxima are χ = 10.8842 at m = 8 and ρ = 0.9845 at m = 11. A
demonstration of the effect of optimizing the ICA algorithm over either χ or ρ is
illustrated in Figure 6.6. While both the χ -optimized cleaned signal [Figure 6.6(b)]
and the ρ-optimized cleaned signal [Figure 6.6(d)] are similar to the original noise-
free signal [Figure 6.6(a)], an inspection of their respective errors, [Figure 6.6(c)]
and [Figure 6.6(e)], emphasizes their differences. The χ -optimized outperforms the
ρ-optimized in recovering the R peaks.

A summary of the results obtained using both the NNR and ICA techniques
are presented in Table 6.1. These results demonstrate that NNR performs better in
terms of providing a cleaned signal which is maximally correlated with the original
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Figure 6.5 Variation in (a) noise reduction factor, χ , and (b) correlation, ρ, for ICA with recon-
struction dimension, m, and delay, d = 1. The signal-to-noise ratios are γ = 10 (•), γ = 5 (�), and
γ = 2.5 (�).

Table 6.1 Noise Reduction Performance in Terms of Noise
Reduction Factor, χ , and Correlation, ρ, for Both NNR and
ICA for Three Signal-to-Noise Ratios, γ = 10,5,2.5

Method Measure γ = 10 γ = 5 γ = 2.5
NNR χ 2.2171 2.6605 3.3996
ICA χ 26.7265 18.9325 10.8842
NNR ρ 0.9990 0.9972 0.9939
ICA ρ 0.9980 0.9942 0.9845

noise-free signal, whereas ICA performs better in terms of yielding a cleaned signal
which is closer to the original noise-free signal, as measured by an RMS metric.

The decision between seeking an optimal χ or ρ depends on the actual appli-
cation of the ECG signal. If the morphology of the ECG is of importance and the
various waves (P, QRS, T) are to be detected, then perhaps a large value of ρ is of
greater relevance. In contrast, if the ECG is to be used to derive RR intervals for
generating an RR tachogram, then the location in time of the R peaks are required.
In this latter case, the noise reduction factor, χ , is preferable since it penalizes heav-
ily for large squared deviations and therefore will favor more accurate recovery of
extrema such as the R peak.

6.5 Model-Based Filtering

The majority of the filtering techniques presented so far involve little or no assump-
tions about the nature of either the underlying dynamics that generated the signal
or the noise that masks it. These techniques generally proceed by attempting to
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Figure 6.6 Demonstration of ICA noise reduction for γ = 10: (a) original noise-free ECG signal, x(t);
(b) χ -optimized noise-reduced signal, z1(t), with m = 7; (c) error, e1(t) = z1(t)−x(t); (d) ρ-optimized
noise-reduced signal, z2(t), with m = 8; and (e) error, e2(t) = z2(t)−x(t).

separate the signal and noise using the statistics of the data and often rely on a set
of assumed heuristics; there is no explicit modeling of any of the underlying sources.
If, however, a known model of the signal (or noise) can be built into the filtering
scheme, then it is likely that a more effective filter can be constructed.

The simplest model-based filtering is based upon the concept of Wiener filtering,
presented in Section 3.1. An extension of this approach is to use a more realistic
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model for the dynamics of the ECG signal that can track changes over time. The
advantage of such an approach is that once a model has been fitted to a segment of
ECG, not only can it produce a filtered version of the waveform, but the parameters
can also be used to derive wave onsets and offsets, compress the ECG, or classify
beats. Furthermore, the quality of the fit can be used to obtain a confidence measure
with respect to the filtering methods.

Existing techniques for filtering and segmenting ECGs are limited by the lack of
an explicit patient-specific model to help isolate the required signal from contam-
inants. Only a vague knowledge of the frequency band of interest and almost no
information concerning the morphology of an ECG are generally used. Previously
proposed adaptive filters [57, 58] require another reference signal or some ad hoc
generic model of the signal as an input.

6.5.1 Nonlinear Model Parameter Estimation

By employing a dynamical model of a realistic ECG, known as ECGSYN (described
in detail in Section 4.3.2), a tailor-made approach for filtering ECG signals is now
described.

The model parameters that are fit basically constitute a nondynamic version of
the model described in [6, 59] and add an extra parameter for each asymmetric
wave (only the T wave in the example given here). Each symmetrical feature of the
ECG (P,Q,R, and S) is described by three parameters incorporating a Gaussian
(amplitude ai , width bi ) and the phase θi = 2π/ti (or relative position with respect
to the R peak). Since the T wave is often asymmetric, it is described by the sum of
two Gaussians (and hence requires six parameters) and is denoted by a superscripted
− or + to indicate that they are located at values of θ (or t) slightly to either side of
the peak of the T wave (the original θT that would be used for a symmetric model).
The vertical displacement of the ECG, z, from the isoelectric line (at an assumed
value of z = 0) is then described by an ordinary differential equation,

ż(ai ,bi ,θi ) = −
∑

i∈{P,Q,R,S,T−,T+}
ai�θi exp

(
−�θ2

i

2b2
i

)
(6.25)

where �θi = (θ − θi )mod(2π ) is the relative phase. Numerical integration of (6.25)
using an appropriate set of parameter values, ai , bi , and θi , leads to the familiar
ECG waveform.

One efficient method of fitting the ECG model described above to an observed
segment of the signal s(t) is to minimize the squared error between s(t) and z(t).
This can be achieved using an 18-dimensional nonlinear gradient descent in the
parameter space [60]. Such a procedure has been implemented using two different
libraries, the Gnu Scientific Libraries (GSL) in C, and in Matlab using the function
lsqnonlin.m.

To minimize the search space for fitting the parameters, (ai , bi , and θi ), a sim-
ple peak-detection and time-aligned averaging technique is performed to form an
average beat morphology using at least the first 60 beats centred on their R peaks.
The template window length is unimportant, as long as it contains all the PQRST
features and does not extend into the next beat. This method, including outlier
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Figure 6.7 Original ECG, nonlinear model fit, and residual error.

rejection, is detailed in [61]. T − and T + are initialized ±40 ms either side of θT. By
measuring the heights, widths, and positions of each peak (or trough), good initial
estimates of the model parameters can be made. Figure 6.7 illustrates an example
of a template ECG, the resulting model fit, and the residual error.

Note that it is important that the salient features that one might wish to fit
(the P wave and QRS segment in the case of the ECG) are sampled at a high
enough frequency to allow them to contribute sufficiently to the optimization. In
empirical tests it was found that when Fs < 450 Hz, upsampling is required (using
an appropriate antialiasing filter). With Fs < 450 Hz there are often fewer than 30
sample points in the QRS complex and this can lead to some unrealistic fits that
still fulfill the optimization criteria.

One obvious application of this model-fitting procedure is the segmentation
of ECG signals and feature location. The model parameters explicitly describe the
location, height, and width of each point (θi , ai , and bi ) in the ECG waveform,
in terms of a well-known mathematical object, a Gaussian. Therefore, the feature
locations and parameters derived from these (such as the P, Q, and T onset and hence
the PR and QT interval) are easily extracted. Onsets and offsets are conventionally
difficult to locate in the ECG, but using a Gaussian descriptor, it is trivial to locate
these points as two or three standard deviations of bi from the θi in question.
Similarly, for ECG features that do not explicitly involve the P, Q, R, S, or T
points (such as the ST segment), the filtering aspect of this method can be applied.



P1: Shashi

August 24, 2006 11:46 Chan-Horizon Azuaje˙Book

190 Nonlinear Filtering Techniques

Furthermore, the error in the fitting procedure can be used to provide a confidence
measure for the estimates of any parameters extracted from the ECG signal.

A related application domain for this model-based approach is (lossy) com-
pression with a rate of (Fs/3k : 1) per beat, where k = n + 2m is the number of
features or turning points used to fit the heartbeat morphology (with n symmetric
and m asymmetric turning points). For a low Fs (≈ 128 Hz), this translates into a
compression ratio greater than 7:1 at a heart rate of 60 bpm. However, for high
sampling rates (Fs = 1, 024) this can lead to compression rates of almost 60:1.

Although classification of each beat in terms of the values of ai , bi , and θi is
another obvious application for this model, it is still unclear if the clustering of
the parameters is sufficiently tight, given the sympathovagal and heart-rate induced
changes typically observed in an ECG. It may be necessary to normalize for heart-
rate dependent morphology changes at least. This could be achieved by utilizing the
heart rate modulated compression factor α, which was introduced in [59]. However,
clustering for beat typing is dependent on population morphology averages for a
specific lead configuration. Not only would different configurations lead to different
clusters in the 18-dimensional parameter space, but small differences in the exact
lead placement relative to the heart would cause an offset in the cluster. A method
for determining just how far from the standard position the recording is, and a
transformation to project back onto the correct position would be required. One
possibility could be to use a procedure designed by Moody and Mark [62] for their
ECG classifier Aristotle. In this approach, the beat clusters are defined in a space
resulting from a Karhunen-Loève (KL) decomposition and therefore an estimate of
the difference between the classified KL-space and the observed KL-space is made.
Classification is then made after transforming from the observation to classification
space in which the training was performed. By measuring the distance between the
fitted parameters and pretrained clusters in the 18-dimensional parameter space,
classification is possible. It should be noted that, as with all classifiers, if an artifact
closely resembles a known beat, a good fit to the known beat will obviously arise.
For this reason, setting tolerances on the acceptable error magnitude may be crucial
and testing on a set of labeled databases is required.

By fitting (6.25) to small segments of the ECG around each QRS-detection fidu-
cial point, an idealistic (zero-noise) representation of each beat’s morphology may be
derived. This leads to a method for filtering and segmenting the ECG and therefore
accurately extracting clinical parameters even with a relatively high degree of noise
in the signal. It should be noted that since the model is a compact representation of
oscillatory signals with few turning points compared to the sampling frequency and
it therefore has a bandpass filtering effect leading to a lossy transformation of the
data into a set of integrable Gaussians distributed over time. This approach could
therefore be used on any band-limited waveform. Moreover, the error in each fit can
provide beat-by-beat confidence levels for any parameters extracted from the ECG
and each fit can run in real time (0.1 second per beat on a 3-GHz P4 processor).

The real test of the filtering properties is not the residual error, but how distorted
the clinical parameters of the ECG are in each fit. In Section 3.1, an analysis of the
sensitivity of clinical parameters to the color of additive noise and the SNR is given
together with an independent method for calculating the noise color and SNR. An
online estimate of the error in each derived fit can therefore be made. By titrating
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colored noise into real ECGs, it has been shown that errors in clinical parameters
derived from the model-fit method presented here are clinically insignificant in the
presence of high amounts of colored noise. However, clinical features that include
low-amplitude features such as the P wave and the ST level are more sensitive to
noise power and color. Future research will concentrate on methods to constrain
the fit for particular applications where performance is substandard.

An advantage of this method is that it leads to a high degree of compression and
may allow classification in the same manner as in the use of KL basis functions (see
Chapter 9). Although the KL basis functions offer a similar degree of compression
to the Gaussian-based method, the latter approach has the distinct advantage of
having a direct clinical interpretation of the basis functions in terms of feature
location, width, and amplitude. Using a Gaussian representation, onsets and offsets
of waves are easily located in terms of the number of standard deviations of the
Gaussian away from the peak of the wave.

6.5.2 State Space Model-Based Filtering

The extended Kalman filter (EKF) is an extension of the traditional Kalman filter
that can be applied to a nonlinear model [63, 64]. In the EKF, the full nonlinear
model is employed to evolve the states over time while the Kalman filter gain and the
covariance matrix are calculated from the linearized equations of motion. Recently,
Sameni et al. [65] used an EKF to filter noisy ECG signals using the realistic artificial
ECG model, ECGSYN described earlier in Section 2.2. The equations of motion
were first transformed into polar coordinates:

ṙ = r (1 − r )

θ̇ = ω (6.26)

ż = −
∑

i

ai�θi exp

(
−�θ2

i

2b2
i

)
− (z − z0)

Using this representation, the phase, θ , is given as an explicit state variable and r
is no longer a function of any of the other parameters and can be discarded. Using
a time step of size δt, the two-dimensional equations of motion of the system, with
discrete time evolution denoted by n, may be written as

θ (n + 1) = θ (n) + ωδt

z(n + 1) = z(n) −
∑

i

δtai�θi exp

(
−�θ2

i

2b2
i

)
+ ηδt

(6.27)

where �θi = (θ −θi )mod(2π ) and η is a random additive noise. Note that η replaces
the previous baseline wander term and describes all the additive sources of process
noise.

In order to employ the EKF, the nonlinear equations of motion must first be
linearized. Following [65], one approach is to consider θ and z as the underlying
state variables and the model parameters, ai , bi , θi , ω, η as process noises. Putting
all these together gives a process noise vector,

wn = [aP , . . . , aT, bP , . . . , bT, θP , . . . , θT, ω, η]† (6.28)
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with covariance matrix Qn = E{wnwn
†} where the subscript † denotes the trans-

pose.
The phase of the observations ψn, and the noisy ECG measurements sn are

related to the state vector by

[
ψn

sn

]
=
[
1 0

0 1

] [
θn

zn

]
+
[

ν(1)
n

ν(2)
n

]
(6.29)

where νn = [ν(1)
n , ν(2)

n ]† is the vector of measurement noises with covariance matrix
Rn = E{νnνn

†}.
The variance of the observation noise in (6.29) represents the degree of un-

certainty associated with a single observation. When Rn is high, the EKF tends to
ignore the observation and rely on the underlying model dynamics for its output.
When Rn is low, the EKF’s gain adapts to incorporate the current observations.
Since the 17 noise parameters in (6.28) are assumed to be independent, Qk and Rn

are diagonal. The process noise η is a measure of the accuracy of the model, and is
assumed to be a zero-mean Gaussian noise process.

Using this EKF formulation, Sameni et al. [65] successfully filtered a series
of ECG signals with additive Gaussian noise. An example of this can be seen in
Figure 6.8. Future developments of this model are therefore very promising, since the

Figure 6.8 Filtering of noisy ECG using EKF: (a) original signal; (b) noisy signal; and (c) denoised
signal.
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combination of a realistic model and a robust tracking mechanism make the concept
of online signal tracking in real time feasible. A combination of an initialization
with the nonlinear gradient descent method from Section 6.5.1 to determine initial
model parameters and noise estimates, together with subsequent online tracking,
may lead to an optimal ECG filter (for normal morphologies). Furthermore, the
ability to relate the parameters of the model to each PQRST morphology may lead
to fast and accurate online segmentation procedures.

6.6 Conclusion

This chapter has provided a summary of the mathematics involved in reconstructing
a state space using a recorded signal so as to apply techniques based on the theory of
nonlinear dynamics. Within this framework, nonlinear statistics such as Lyapunov
exponents, correlation dimension, and entropy were described. The importance of
comparing results with simple benchmarks, carrying out statistical tests and using
confidence intervals when conveying estimates was also discussed. This is important
when employing nonlinear dynamics as the basis of any new biomedical diagnostic
tool.

An artificial electrocardiogram signal, ECGSYN, with controlled temporal and
spectral characteristics was employed to illustrate and compare the noise reduc-
tion performance of two techniques, nonlinear noise reduction and independent
components analysis. Stochastic noise was used to create data sets with different
signal-to-noise ratios. The accuracy of the two techniques for removing noise from
the ECG signals was compared as a function of signal-to-noise ratio. The quality of
the noise removal was evaluated by two techniques: (1) a noise reduction factor and
(2) a measure of the correlation between the cleaned signal and the original noise-
free signal. NNR was found to give better results when measured by correlation. In
contrast, ICA outperformed NNR when compared using the noise reduction factor.
These results suggest that NNR is superior at recovering the morphology of the
ECG and is less likely to distort the shape of the P, QRS, and T waves, whereas
ICA is better at recovering specific points on the ECG such as the R peak, which is
necessary for obtaining RR intervals.

Two model-based filtering approaches were also introduced. These methods use
the dynamical model underlying ECGSYN to provide constraints on the filtered sig-
nal. A nonlinear least squares parameter estimation procedure was used to estimate
all 18 parameters required to specify the morphology of the ECG waveform. In
addition, an approach using the extended Kalman filter applied to a discrete two-
dimensional adaptation of ECGSYN in polar coordinates was also employed to
filter an ECG signal.

The correct choice of filtering technique depends not only on the character-
istics of the noise and signal in the time and frequency domains, but also on the
application. It is important to test a candidate filtering technique over a range of
possible signals (with a range of signal to noise ratios and different noise pro-
cesses) to determine the filter’s effect on the clinical parameter or attribute of
interest.
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