
Static and Dynamic Hot-Potato Packet Routing in Communication

Networks

David Gamarnik ∗ Maxim Sviridenko †

Abstract

We consider a problem of scheduling packets in communication networks subject to the “hot
potato” restriction. In a static version, the problem is to route a set of packets in a communication
graph from the origins to destinations along the pre-specified paths in minimal (makespan) time
subject to the “hot potato” constraint that no packets wait in the intermediate nodes of their cor-
responding paths. In a dynamic version, the packets are injected over time by an adversary and the
problem is to construct a stable schedule which satisfies the “hot potato” requirement. For the static
version of the problem we prove that the ratio between the optimal makespan time and the natural
lower bound - congestion asymptotically does not exceed O(

√
m) when the total number of packets

diverges to infinity, where m is the number of edges in the graph. We complement this result with an
instance of the problem for which this ratio is achieved. We also provide a complete classification of
graphs for which this ratio is asymptotically equal to one. Our results have immediate ramifications
to the dynamic version of the problem in terms of maximal arrival rates for which there exist a stable
“hot potato” scheduling policy against an arbitrary adversary.

1 Introduction

1.1 Model description

The focus of this paper is scheduling of packets in digital communication networks subject to the “hot
potato” (“no wait in transit”) constraint. The communication network is assumed to be an undirected
graph. Each packet is assigned to a simple path that has to be followed in order to get from the origin
node to the destination node. Only one packet can cross any given edge at a time in one direction
(but two can cross in opposite directions simultaneously) and the crossing time is equal to one unit of
time. Once the packet starts moving along its preassigned path it has to get to the destination without
stopping - no queueing is allowed in the intermediate nodes. This restriction on the packet routing
is known as “hot potato” or “no wait” routing. We consider a static and dynamic versions of “hot
potato” scheduling problem. In a static version the goal is to bring all the packets from their origins to
the destinations in a minimal possible (makespan) time so that the “hot potato” restriction is honored.
Specifically, the start times need to be specified for every individual packet so that after the start times
the packets will reach their destinations without the conflict with other packets.

In a dynamic version the packets are injected into the network by an adversary. Each injected
packet has a specified path it needs to follow. The packets are initially stored in the buffers of their
origins. Once they start moving, the packets need to proceed to their destination subject to “hot
potato” constraint - no intermediate queuing is allowed. The goal is to construct an online scheduling

∗IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA. Email address: gamarnik@watson.ibm.com
†IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA. Email address: sviri@us.ibm.com

1

policy which guarantees finite bounds on the queue size at the origination buffers. The injection of the
packets by an adversary is assumed to be subject to the following restriction: for every time t and edge
e the total number of packets injected over time interval [0, t) that contain e on their path is at most
rt + B for some fixed parameters r,B ≥ 0. A necessary condition for existence of a stable scheduling
policy is r ≤ 1. This is an adversarial queuing model introduced first by Borodin et al. [8]. Our
only additional assumption is the “hot potato” constraint. Our goal is to understand the effect of this
additional assumption. Specifically we are interested in values of r ≤ 1 for which a stable scheduling
policy exists. This value naturally depends on the communication graph.

It turns out that the static and dynamic versions of “hot potato” scheduling problem are intimately
connected to each other and this connection will be demonstrated later in the paper.

1.2 Related work

Our work lies in the intersection of three somewhat independent streams of research in the theoretical
computer science and operations research areas. The first is a line of work on (static) “hot potato”
packet routing problem in graphs and “no wait” scheduling problems in machine scheduling literature.
“Hot potato” routing has been mostly considered in adaptive version where the scheduler is free to
choose the paths for packets (as opposed to our non-adaptive case when scheduler only chooses the
starting time and the paths are fixed). Both adaptive and non-adaptive versions are known to be NP-
complete and most of the research is focused on obtaining algorithms with some level of approximation
to the optimality. Hot potato routing problem was first proposed by Baran [5] and the variety of papers
were written on the subject later. Most of the algorithms considered assume some specific structure of
the graph like mesh or torus. For a survey of papers on hot potato routing see [14].

In scheduling literature the “no wait” term is usually used instead of “hot potato”, but approximately
optimal algorithms are also the focus of the research. For a survey on scheduling with “no wait”
constraint see [13].

The second relevant line of research is asymptotically optimal scheduling and routing algorithms
(without hot potato constraint) pioneered by Sevastjanov [15] and extended in a variety of contexts
in [6],[7]. In a pioneering paper [15] showed that the ratio C∗/Lmax converges to one when the total
number of jobs in the scheduling system diverges to infinity. We will show that this fails to hold when
the hot potato constraint is present and the ratio can take a variety of values depending on the structure
of the graph.

The third line of research is the study adversarial queuing networks initiated by Borodin et al. [8]
and followed by several other works [3], [2],[4] [12],[1],[11],[10]. Simple stable scheduling policies were
constructed in [3] and [10] which achieve stability as long as the arrival rate r ≤ 1. We will show in this
paper that this fails to hold in most of the networks if hot potato constraint on the schedule needs to
be satisfied.

1.3 Our results

Our analysis of the static hot potato scheduling problem starts with introduction of an important notion
- relative congestion of the graph. This is simply the maximal value of of the ratio C∗/Lmax over the
family of all instances for a given graph, when the total number of packets in the network diverges to
infinity. Here again C∗ is the optimal makespan time for hot potato scheduling and Lmax is the maximal
congestion. Defined in this way, the relative congestion is a property of the graph itself. In Section 2 we
prove that the relative congestion of every graph is at most O(

√
m), where m is the number of edges,

and we construct an example to show that this bound is tight. We then completely characterize graphs
for which the value of the relative congestion is equal to one. Specifically, we prove that the relative

2

congestion is equal to one if and only if the graph is a star tree, i.e. a tree that contains only one node
with the degree three or higher, or if the graph is a cycle. We close the section by analyzing relative
congestion on trees. We prove that it always lies in the interval [1, 2] by constructing an algorithm
which achieves ratio C(algorithm)/Lmax ≤ 2. We also provide an example of a tree for which the
relative congestion is at least 7/6 > 1 and conjecture that for certain trees it can be equal to 2.

The implications of the results above to adversarial queuing networks are discussed in Section 3.
We first provide a simple proof r = 1/relative congestion is the maximal arrival rate for which there
exists a stable schedule. In particular, using the result of Section 2, a stable scheduling policy exists
for every graph if the arrival rate r ≤ c/

√
m for a certain universal constant c. Also for a some other

universal constant c′ > c and for a certain family of graphs a stable policy cannot exist if r = c′/
√

m.
We conclude in Section 4 with some open questions and conjectures.

2 Static hot potato routing

An instance of a (static) hot potato scheduling problem is given as a graph G = (V, E) and a vector
of nonnegative integers x = (xp)p∈P . Here V and E are the sets of nodes and edges of the graph,
respectively, P is the collection of all simple paths and xp is understood as the number of packets that
need to be processed along the path p. Once the packet reaches the end node of its path p it disappears
from the network. We recall that the crossing time for a packet of any given edge is one time unit
and only one packet can cross an edge at a time. Let C∗ = C∗(x), x ∈ Z |P|+ be the minimal time
to bring all the packets from origins to destinations so that the hot potato condition is satisfied. Let
Lmax = Lmax(x) denote the maximal congestion for the instance (V,E, x). That is

Lmax = max
e∈E

∑
p:e∈p

xp. (1)

Trivially, Lmax ≤ C∗. The following definition is the key to the rest of the paper.

Definition 1 Given a graph G let

α(G) = lim sup
||x||1→∞

C∗(x)
Lmax(x)

. (2)

The value α(G) is defined to be a relative congestion of the graph G.

2.1 Relative congestion for general graphs

The value α(G) is a well-defined function of the graph G. In the absence of the hot potato constraints
on the optimal makespan time C∗ the Sevastjanov’s theorem [15] proves that C∗ ≤ Lmax + |E|4 even
for the more general job shop scheduling problem. Specifically, C∗ ≈ Lmax when x is large and α(G)
is trivially equal to one. Thus α(G) takes nontrivial values only when the hot potato constraint is
enforced.

Since Lmax is an easily computed quantity, knowing α(G) amounts to knowing the asymptotic value
of the optimal hot potato makespan time when the total number of packets is large. We now present
our first main result of this section.

Theorem 2.1 For any graph G, α(G) ≤ √|E|. There exists a graph for which α(G) ≥ √|E|/(4
√

2).

3

Proof. First we prove that α(G) ≤ √|E| by explicitly constructing an algorithm with makespan
time C ≤ Lmax

√|E| + F where F is a value depending only on number of edges in G and number of
different paths used by packets in an instance. We first process all the packets with paths p having
length |p| ≥ √|E|. Denote these paths by p1, p2, . . . , pM . We schedule the corresponding packets
as follows. Send the xp1 packets of the path p1 at times 0, 1, . . . , xp1 . It takes xp1 + |p1| − 1 time
units to process these packets and clearly the process satisfies hot potato constraint. Then we process
xpi , i = 2, 3, . . . ,M packets for the path pi in the interval [

∑i−1
j=1(xpj + |pj | − 1),

∑i
j=1(xpj + |pj | − 1)]

similarly. Again, this schedule is hot potato. Finally, we process the remaining packets with path lengths
smaller than

√|E| using a greedy algorithm as follows. Sort all the packets in an arbitrary order. Fix
any packet f and assume that all the previous packets are already scheduled. We send packet f at the
earliest possible time so that it does no conflict with previously scheduled packets. That is if f uses
the path p = {e1, e2, . . . , ek}, 1 ≤ k ≤ √|E| − 1 then we find the smallest time t so that edge ei is clear
during the interval [t + i− 1, t + i] for all i = 0, 1, . . . , k.

We analyze the makespan time Ĉ of this algorithm. Suppose the packet flast scheduled at the latest
time uses the path p = {e1, e2, . . . , ek} with |k| < √|E|. That is this packet was sent at time Ĉ−k. Then
for every t < Ĉ−k some edge ei, 1 ≤ i ≤ k processes some other packet during the interval [t+i−1, t+i].
Each edge ei can process at most Lmax packets. Therefore the maximal such t is Lmaxk ≤ Lmax

√|E|.
Suppose now that packet flast uses path p = {e1, e2, . . . , ek} with |k| ≥ √|E| then by construction of the
algorithm the length of the schedule Ĉ is at most

∑M
j=1(xpj + |pj |−1). For any t ≤ Ĉ−1 let w(t) be the

total number of edges that processed packets during the time interval [t, t + 1]. Let W (t) ≡ ∑t
τ=0 w(τ)

be the total “work” done in the system by time t. Note that for every i = 1, 2, . . . , M we have
W (

∑i
j=1(xpj + |pj | − 1)) −W (

∑i−1
j=1(xpj + |pj | − 1)) is at least |pi|xpi , since during this interval each

edge of the path pi processed xpi packets. We conclude that W (Ĉ) ≥ ∑M
i=1 |pi|xpi ≥

√|E|∑M
i=1 xpi .

On the other hand W (Ĉ)/|E| is the average work per edge and cannot exceed Lmax. Combining,∑M
i=1 xpi ≤ Lmax

√|E| or Ĉ =
∑M

j=1(xpj + |pj | − 1) ≤ Lmax

√|E| + ∑M
j=1(|pj | − 1). Finally, note that

Lmax →∞ as
∑

i=1 xpi . We conclude that α(G) ≤ √|E|.
We now construct an example of a graph for which α(G) =

√|E|. The graph G = (V, E) is
a grid [0, 2n] × [−n + 1, n], see Figure 1. We now identify a set of n paths p1, . . . , pn as follows.
Path p1 is a straight line from (0, 0) to (0, 2n), i.e {(0, 0), (1, 0), (2, 0), . . . , (2n, 0)}. The path pk, k =
2, 3, . . . , n consists of three consecutive paths: {(k − 1,−k + 1), (k − 1,−k + 2), . . . , (k − 1, 0)}, {(k −
1, 0), (k, 0), (k, 1), (k+1, 1) . . . , (2k−2, k−1)} and {(2k−2, k−1), (2k−1, k−1), (2k, k−1), . . . , (2n, k−1)}.
Note that for every 1 ≤ k < l ≤ n the paths pk and pl have exactly one common edge ((l − 1 + (k −
1), k− 1), (l− 1 + (k− 1), k)). and both of them have lengths l− 1 + 2(k− 1) before the common edge.
Therefore, for every t we cannot send packets along the paths pk and pl simultaneously. To complete
the construction, suppose we have x packets to process for each path pk, k = 1, 2, . . . , n, where x is a
large integer. Then Lmax = 2x. Let C∗ be the optimal hot potato makespan time. By the argument
above, at most one packet can be sent at any time t. Therefore C∗ ≥ nx = (n/2)Lmax. Finally note
that for our grid graph |E| = 8n2. Therefore C∗ ≥ 1

4
√

2

√|E|Lmax or α(G) ≥ 1
4
√

2

√|E|. This completes
the proof of the theorem. 2

2.2 Characterization of graphs with α(G) = 1

Since the value of α(G) can be very large for general graphs it is natural to ask for which graphs G
the lower bound α(G) ≥ 1 is achieved? We now provide a complete classification of such graphs and in
particular show that for most of the graphs the inequality is strict.

4

Theorem 2.2 Given a graph G suppose α(G) = 1. Then either G is a simple cycle or G is a tree with
at most one node with degree three or higher.

Proof. Part I. We first prove that α(G) = 1 for the two types of graphs mentioned above. Suppose
G = {v1, v2, . . . , vn} is a cycle. That is E = {(v1, v2), (v2, v3), . . . , (vn, v1)}. Note that the problem is
decomposable into two subproblems for packets going clock-wise and counter-clock-wise respectively,
since these packets do not interfere. We show that for each individual problem there exist a schedule
with makespan time Lmax+n−1 where Lmax is the congestion for the subproblem. Specifically, consider
packets going counter-clock-wise. Let xj be the set of packets originating at the vertex vj , j = 1, . . . , n.
At time 0 start one packet p0j for all nonempty sets xj , j = 1, . . . , n then delete these packets from the
sets of available packets, i.e. xj = xj \ p0j . Then for every time t and every j we send a packet from
the current set xj if and only if the edge (vj , vj+1) is not occupied during [t, t + 1] by some previously
scheduled packet. We delete the sent packet from xj .

Clearly, this schedule is hot potato. Moreover, every packet from the set xj can be delayed at most
Lmax − 1 times, since the congestion of the edge (vj , vj+1) is at most Lmax. Since every path has path
length at most n− 1, then the length of this schedule is at most Lmax + n− 2. 2

Lemma 2.3 Let G be a star tree depicted on Figure 2. That is G is an arbitrary tree with exactly one
node w having degree three or larger. Then α(G) = 1.

Proof. Given an instance x = (xp)p∈P we first modify this instance in a way which can only worsen
the optimal makespan time. First we extend all the branches of the star to the length jmax of the longest
branch. Then for every edge (v, v′) which has congestion smaller than maximal Lmax, we add dummy
packets crossing only (v, v′) to make the congestion equal to Lmax. Finally, for every two packets that
use consecutive non-overlapping paths of the form {v1, v2, . . . , vj} and {vj , vj+1, . . . , vk} we create a
single packet which uses a concatenated path {v1, v2, . . . , vk}. In the modified version all the packets
start and end in the leafs of the tree or in w. For all such packets we extend their paths by creating
dummy branches, so that in the result all the packets start and end in the leafs of the modified tree.

Let v1, v2, . . . , vN be the set of all (real and dummy) leafs of our graph. Consider an N×N bipartite
graph on the set of nodes v1

1, . . . , v
1
N , v2

1, . . . , v
2
N with the following edges. For each packet which uses

a path {vi, . . . , w, . . . , vj}, 1 ≤ i, j ≤ N construct an edge (v1
i , v

2
j) in the bipartite graph. We obtain

a multigraph since different packets can have the same path. From the construction, the degree of
every node vr

i , r = 1, 2, i = 1, 2, . . . , N is at most Lmax. It is a well-known fact in graph theory that
a bipartite multigraph with maximal degree ∆ has a legal edge coloring in ∆ colors and there is a
polynomial time algorithm for finding such coloring (see for example [9]). Note that each color class is
a matching in bipartite graph. We denote these matchings by M1, . . . , MLmax (in our case ∆ = Lmax)
and construct the schedule as follows. Consider all the packets which correspond to the matching M1.
We send all these packets at time 0. In general, for every time t = 0, 1, 2, . . . , Lmax − 1 we send packets
corresponding to the matching Mt at time t. For every time t ≥ jmax the edges of the form (w, v) will
be processing during [t, t+1] packets sent at time t−jmax, that is, packets from Mt−jmax . Since Mt−jmax

is a matching, at most one packet requires any individual edge (w, v). Clearly, no conflicts will occur in
this schedule for other edges and the makespan time is Lmax + 2jmax − 1. We conclude that α(G) = 1.
2

Part II. We now turn to the proof of the second part. We show that for both of the graphs G = Gbug

and G = Gglass depicted on a Figure 2, α(G) > 1. The extension of the constructions below to trees
with two or more nodes with degree at least three and to graphs containing a cycle with extension is
simple and is omitted in the interest of space.

5

Lemma 2.4 For the graph Gbug on Figure 2, α(Gbug) ≥ 7/6.

Proof. In the graph Gbug we create packets requesting six paths: p1 = {v4, w2, w1, v2}, p2 =
{v3, w2, w1, v1}, p3 = {v2, w1, w2, v4}, p4 = {v1, w1, w2, v3}, p5 = {v1, w1, v2, }, p6 = {v4, w2, v3}. For each
path we have x packets where x is a large integer. It is easy to check that the maximal congestion
is Lmax = 2x. We now prove that any feasible hot potato schedule has length at least 7/3x. Let
us add a node v1

1 and edge (v1, v
1
1) to the graph and let us suppose that packets using path p5 start

in fact from v1
1. If we had a schedule for the original problem we can easily convert this schedule to

the new problem by sending packets using p5 one time unit earlier. This clearly does not create a
conflict and increases the makespan time at most by one. Let T be a makespan time of any feasible
schedule. It easy to check that no four packets can be sent simultaneously, because these packets must
use different paths and because of the conflict of these paths. Let T3 be the number of times that
three packets were sent simultaneously and let T2 be the number of times two or one or none packets
were sent simultaneously. Then T2 + T3 = T and 3T3 + 2T2 ≥ 6x. Note that a packet with path p1

cannot be sent simultaneously with packets using paths p2, p5 or p6 because of the conflicts on edges
(w1, w2), (w1, v2) and (v4, w2) respectively. Note also that packets using paths p3 and p4 cannot be sent
simultaneously because of the conflict on edge (w1, w2). We conclude that a packet using path p1 can
be sent simultaneously with at most one other packet. Since we have x packets using p1 then T2 ≥ x.
Then we obtain 3T3 + 3T2 ≥ 6x + T2 ≥ 6x + x. Since T = T3 + T2 is the length of the schedule, then
T ≥ 7/3x = 7/6Lmax. 2

Lemma 2.5 For the graph Gglass on Figure 2, α(Gglass) ≥ 7/6.

Proof. In this graph we create x packets for each of the following six paths p1 = {v1, v2, v3, v4}, p2 =
{v4, v2, v3}, p3 = {v2, v4, v3}, p4 = {v1, v2, v4}, p5 = {v4, v3, v2, v1}, p6 = {v3, v4, v2, v1}. Then Lmax = 2x.
We now show that any feasible makespan time has length at least 7/3x. First we create nodes v1

3, v
2
3, v

4
1

with edges (v3, v
1
3), (v

1
3, v

2
3), (v4, v

1
4). Packets following paths p5 and p6 initiate in v2

3 and v3
41 respectively

in the new graph. As discussed in the proof of Lemma 2.4, it suffices to consider this case. Let T be
a feasible makespan time. It is easy to check that no four packets can be sent simultaneously. Let T3

be the number of times that three packets were sent simultaneously and let T2 be the number of times
that two or one or no packets were sent simultaneously. Then T3 + T2 = T and 3T3 + 2T2 ≥ 6x. A
simple check shows that if three packets are sent simultaneously, then none of this packets uses path p1.
Since we have x packets using this path, then T2 ≥ x. Then 3T3 + 3T2 = 6x + T2 ≥ 6x + x. Therefore
T = T3 + T2 ≥ (7/3)x = (7/6)Lmax. We proved α(Gglass) ≥ 7/6. 2

This completes the proof of Theorem 2.2. 2

2.3 Greedy algorithm for trees

In this subsection we analyze the value of α(G) when G is a tree. We already showed in the previous
subsection that α(G) > 1 for all trees with two or more nodes having degree ≥ 3. We now construct an
upper bound.

Theorem 2.6 For every tree G, α(G) ≤ 2.

Proof. We construct the following simple greedy algorithm. Choose any node r of the given tree
as a root node. We say that a node is on level i if the distance in the tree from the node to the root is
equal to i. Greedy algorithm schedules packets level by level starting from the root. On the first phase
the algorithm chooses unscheduled packets intersecting root one by one in any order and starts them

6

in the schedule as soon as possible without conflicts with already scheduled packets. Let p be the last
packet scheduled on the first phase we claim that it starts no later than 2Lmax− 2. Assume that packet
p does not start or end at the root. Let dp be the distance between the starting vertex of the packet p
and the root and let v1p and v2p be vertices in the path corresponding to p just before and after root,
respectively. If p starts in some time moment T then for all integers t ∈ [0, T −1] either the edge (v1p, r)
is busy in time interval [t + dp− 1, t + dp] or the edge (r, v2p) is busy in time interval [t + dp, t + dp + 1].
Since Lmax is an upper bound on number of packets intersecting any edge there are at most Lmax − 1
starting points t in interval [0, T] such that we cannot start p at time t because the edge (v1p, r) is busy
in time interval [t+ dp− 1, t+ dp], analogously there at most Lmax− 1 ”bad” starting points t such that
edge (r, v2p) is busy in time interval [t + dp, t + dp + 1]. Therefore, T ≤ 2Lmax − 2. Similarly, if packet
p starts or ends at the root then in the greedy schedule p starts no later then Lmax − 1. On the phase
l the algorithm greedily schedules all unscheduled packets intersecting vertices on the level l − 1. The
algorithm takes unscheduled packets intersecting nodes on level l in any order and schedules them as
soon as possible. The argument similar with the one for the first phase works also for phase l. So, all
packets in the greedy schedule start no later than 2Lmax − 2 and therefore the overall makespan of the
schedule is at most 2Lmax − 2 + dmax where dmax is a length of the longest path in the tree. 2

The above analysis clearly can be improved for the greedy algorithm applied to instances such that
all packets travel either up or down, i.e. there are no packets intersecting some node traveling from
higher levels and going to higher levels again. For such instances we can prove that all packets will start
no later than Lmax − 1.

3 Stable hot potato scheduling policies in adversarial queueing net-
works

Given a graph G let r(G) denote the maximal value of an arrival rate r ≤ 1 for which there exists a
stable hot potato schedule for every adversarial arrival of packets. That is for every pattern of arrivals
there exists a hot potato scheduling policy such that the queue length (at the initial nodes of the packet
paths) are uniformly bounded by some constant C. Note: we do not know whether this maximal value
r(G) is achieved. It is possible that for every r < r(G) there exists a stable policy, but no stable policy
exists for some arrival pattern with r = r(G). First of all we prove a lower bound on r(G).

Theorem 3.1 For every graph G, r(G) ≥ 1/α(G), i.e. for all r < 1/α(G) there exists a stable hot
potato schedule in G for every adversarial arrival of packets.

Proof. We prove the theorem by constructing the policy explicitly from static optimal schedules.
The policy is of the batch clearing type and is very similar to the one used in [10] for stable adaptive
routing of packets. For every path p ∈ P let xp(0) denote the number of packets which require path p
and which are present in the system at time t = 0. Let x(0) = (xp(0))p∈P . By definition, there exists
a hot potato schedule of these packets with makespan time T1 ≡ α(G)Lmax(x(0)) + o(Lmax(x(0))),
where Lmax(x(0)) is the maximal congestion corresponding to the vector of packets x(0). We schedule
these initial x(0) packets optimally ignoring the packets that arrived later. Let x(T1) = (xp(T1)) be
the packets present at time T1. We repeat the procedure. In general, given that T0 = 0, T1, . . . , Tk are
defined for some k, let x(Tk) denote the packets present in the system at time Tk. We process these
packets optimally ignoring the later arriving packets. The processing will end in some time Tk+1 ≤
Tk + α(G)Lmax(x(Tk)) + o(Lmax(x(Tk))), where Lmax(x(Tk)) is the maximal congestion corresponding
to the instance x(Tk). We then repeat. Let us prove the stability of this scheduling policy. Note that

7

for every path p, xp(Tk+1)− xp(Tk) is the number of packets that arrived in [Tk, Tk+1) and that require
path p. Then, by definition, for every edge e

∑
p:e∈p

(xp(Tk+1)− xp(Tk)) ≤ r(Tk+1 − Tk).

It follows,
Lmax(x(Tk+1)) ≤ r(Tk+1 − Tk) ≤ rα(G)Lmax(x(Tk)) + o(Lmax(x(Tk))).

By assumption rα(G) < 1. It follows that, for some large constant C > 0, if Lmax(x(Tk)) > C, then

Lmax(x(Tk+1)) < Lmax(x(Tk)).

We conclude that the sequence Lmax(x(Tk)) is bounded. Since
∑

p xp(Tk) ≤ |E|Lmax(x(Tk)), then x(Tk)
is bounded as well. Finally, for every time t, xp(t) ≤ xp(Tk+1) where k is the unique integer for which
Tk ≤ t < Tk+1. Therefore x(t) = (xp(t)) is bounded as well. This proves r(G) ≥ 1/α(G). 2

We now want to prove that it is sufficient to construct an infinite series of instances for the static
problem such that optimal makespan is at least αLmax to prove that any scheduling policy with r > 1/α
is unstable. We prove this statement under some reasonable assumptions on the infinite series of
instances. Given a set of paths p1, . . . , pn and a set of integers a1, . . . , an consider static hot potato
routing problem with γai packets using path pi, i = 1, 2, . . . , n, where γ is a large constant. We say
that γ is a multiplicity of the instance. Let Lmax(γ) be the maximal congestion of the instance with
multiplicity γ. Observe, that Lmax(γ) = γLmax(1). We say that an instance (p1, . . . , pn, a1, . . . , an) is
a high multiplicity example for the static hot potato routing problem if for any γ ≥ γ(G), it has an
optimal makespan C∗ ≥ αLmax(γ) where γ(G) is some big constant. Note that all examples constructed
in this paper are high multiplicity examples.

Theorem 3.2 If there exists a high multiplicity example for the static hot potato routing in graph G
then the dynamic hot potato routing problem is unstable in G for every r > 1/α.

Proof. Assume that r = (1+ε)/α for some small positive constant ε. We should built an adversary
strategy such that the length of queues in the system is increasing over time no matter which hot potato
scheduling policy is used. Assume that the adversary injects packets of type i regularly at intervals 1/ri

where
ri =

air

Lmax(1)
,

i.e. during any time interval of length ∆ the adversary injects ri∆ packets of type i. The edge rate for
this adversary is maxe

∑
i:e∈pi

ri = r since maxe
∑

i:e∈p ai = Lmax(1).
Consider sufficiently big time interval [0, T] such that the number of packets of each type inserted

to the system is much bigger then |E| and γ(G). We now will estimate the queue length at time T . Let
γ be a number such that αLmax(γ − 1) ≤ T < αLmax(γ). Since Lmax(γ) = γLmax(1) we know that the
number of packets of type i injected to the system is

riT ≥ air

Lmax(1)
· αLmax(γ − 1) = (1 + ε)ai(γ − 1).

For any schedule in time interval [0, T] there exists a type i′ such that the total number of packets of
this type processed in this time interval is at most ai′γ since if for all types i we processed more than
aiγ packets then the length of such schedule C∗ ≥ αLmax(γ) > T . Therefore, the queue length on step
T is at least

(1 + ε)ai′(γ − 1)− ai′γ − |E(G)| = εai′γ − εai′ − |E(G)| = Ω(γ)

8

since |E(G)| packets can be started before T but not finished yet. Therefore the queue length is
increasing over time. 2

Note, that the theorem above does not prove that r(G) ≤ 1/α(G), since the existence of a high-
multiplicity example is essential.

We conclude this section with the following corollary, the proof of which follows from Theorems
2.1, 2.2, 3.1, 3.2.

Corollary 3.3 1. For every graph G, r(G) = O(1√
|E(G)|). For a graph G = Ggrid, depicted on

Figure 1, r(G) = Ω(1√
|E(G)|).

2. Given a graph G, r(G) = 1 if and only if G is a cycle or G is a tree with at most one node having
degree ≥ 3.

4 Conclusions

We considered the problem of hot potato routing of communication packets in two cases: all the packets
are given at time zero (static version) and the packets arrive over time (dynamic version). For the static
version we proved that the natural lower bound optimal hot potato makespan time - maximal congestion
- may be very weak lower bound. Specifically, we showed that optimal makespan time is O(

√|E|) for
every instance, and for some instances this bound is achieved. We also provided a simple classification
of graphs for which optimal makespan time and maximal congestion have the same order of magnitude,
when the total number of packets diverges to infinity. Our results have implications in dynamic setting
in the sense of maximal arrival rates for which stable hot potato scheduling policy exists.

We conclude with the following set of open problems. Given a graph G can the relative congestion
α(G) be computed by any efficient means? Specifically, given a graph G and a value α can we check
efficiently whether α(G) ≤ α? We proved that if G is a tree then α(G) ≤ 2 and for some trees
α(G) > 7/6. We conjecture that for certain trees α(G) = 2. Closing this gap is an interesting open
problem. Better understanding of dynamic hot potato scheduling policies is also of interest.

References

[1] W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosen. Adaptive packet routing for bursty adver-
sarial traffic. Proc. 30th Ann. ACM Symposium on the Theory of Computing, 1998.

[2] M. Andrews. Instability of FIFO in session-oriented networks. Proc. 11th ACM-SIAM Symposium
on Discrete Algorithms, 2000.

[3] M. Andrews, B. Awerbuch, A. Fernandez, Jon Kleinberg, T. Leighton, and Z. Liu. Universal
stability results for greedy contention-resolution protocols. Proc. 37th IEEE Conf. on Foundations
of Computer Science, 1996.

[4] M. Andrews and L. Zhang. The effects of temporary sessions on network performance. Proc. 11th
ACM-SIAM Symposium on Discrete Algorithms, 2000.

[5] P. Baran. On distributed communications networks. IEEE Transactions on Communications, pages
1–9, 1964.

[6] D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithm for job shop scheduling and
packet routing. Journal of Algorithms, 33(2):296–318, 1999.

9

Figure 1: Graph [0, 2n]× [−n, n]. Paths p2 and p4.

[7] D. Bertsimas and J. Sethuraman. From fluid relaxations to practical algorithms for job shop
scheduling: the makespan objective. submitted.

[8] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Williamson. Adversarial queueing theory.
Proc. 28th ACM Symposium on Theory of Computing.To appear in Journal of the ACM, 1996.

[9] S. Fiorini and R. Wilson. Edge-colourings of graphs, volume distributed by Fearon-Pitman Pub-
lishers, Inc., Belmont, Calif. 1977.

[10] D. Gamarnik. Stability of adaptive and non-adaptive packet routing policies in adversarial queueing
networks. Proc. 31st ACM Symposium on Theory of Computing. To appear in SIAM Journal on
Computing, 1999.

[11] D. Gamarnik. Using fluid models to prove stability of adversarial queueing networks. IEEE Trans-
actions on Automatic Control, 4:741–747, 2000.

[12] A. Goel. Stability of networks and protocols in the adversarial queueing model for packet routing.
Proc. 10th ACM-SIAM Symposium on Discrete Algorithms, 1999.

[13] N. Hall and C. Sriskandarajah. A survey of machine scheduling problems with blocking and no-wait
in process. Operations Research, 4:510–525, 1996.

[14] A. Schuster. Bounds and analysis techniques for greedy hot-potato routing. Chapter 11, pages 283-
354. Optical interconnections and parallel processing:the interface. Kluwer Academic Publishers,
1997.

10

Figure 2: Graphs Gstar, Gbug, Gglass.

11

[15] S. V. Sevast’janov. On some geometric methods in scheduling theory: a survey. Discrete Applied
Math., 55:59–82, 1994.

12

