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Abstract

We consider the following long-range percolation model: an undirected graph with the node set
{0, 1, . . . , N}d, has edges (x,y) selected with probability ≈ β/||x − y||s if ||x − y|| > 1, and with
probability 1 if ||x−y|| = 1, for some parameters β, s > 0. This model was introduced by Benjamini
and Berger [2], who obtained bounds on the diameter of this graph for the one-dimensional case d = 1
and for various values of s, but left cases s = 1, 2 open. We show that, with high probability, the
diameter of this graph is Θ(log N/ log log N) when s = d, and, for some constants 0 < η1 < η2 < 1,
it is at most Nη2 when s = 2d, and is at least Nη1 when d = 1, s = 2, β < 1 or when s > 2d. We also
provide a simple proof that the diameter is at most logO(1) N with high probability, when d < s < 2d,
established previously in [2].

1 Introduction

Long-range percolation is a model in which any two elements x, y of some (finite or countable) metric
space are connected by edges with some probability, inverse proportional to the distance between the
points. The motivation for studying this model is dual. First, it naturally extends a classical percolation
models on a lattice, by adding edges between non-adjacent nodes with some positive probability. The
questions of existence of infinite components were considered specifically by Schulman [8], Aizenman
and Newman [1] and Newman and Schulman [7], where the metric space is Z and edges (i, j) ∈ Z2 are
selected with probability β/|i − j|s for some parameters β, s. Existence of such an infinite component
with positive probability usually implies its existence with probability one, by appealing to Kolmogorov’s
0−1 law. It was shown in [7] and in [1] respectively, that percolation occurs if s = 2, β > 1 and (suitably
defined) short range probability is high enough, and does not occur if s = 2, β ≤ 1, for any value of the
short range probability.

The second motivation for studying long-range percolation is modelling social networks, initiated
by Watts and Strogatz [9]. They considered a random graph model on integer points of a circle, in
which neighboring nodes are always connected by an edge, and, in addition, each node is connected
to a constant number of other nodes uniformly chosen from a circle. Their motivation was a famous
experiment conducted by Milgram [6], which essentially studied the diameter of the “social acquain-
tances” network and introduced the notion of “six degrees of separation”. Watts and Strogatz argued
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that their graph provides a good model for different types of networks, not only social networks (world
wide web, power grids), and showed that the diameter of their random graph is much smaller than the
size of the graph. This model was elaborated later by Kleinberg [5], who considered a model similar to a
long-range percolation model on a two-dimensional grid, although the work was concerned mostly with
algorithmic questions of constructing simple decentralized algorithms for finding short paths between
the nodes.

The present paper is motivated by a recent work by Benjamini and Berger [2]. They consider a one-
dimensional long-range percolation model in which the nodes are elements of a finite circle {0, 1, . . . , N}.
An edge (i, j) exists with probability one if |i−j| = 1, and with probability 1−exp(−β/|i−j|s) otherwise,
for some parameters β, s, here the distance | · | is taken with respect to a circle. Since for large |i− j|,
1−exp(−β/|i−j|s) ≈ β/|i−j|s, this model is closely related to the infinite percolation model on Z, with
an important distinction, however. The graph is finite and, since neighboring nodes are connected with
probability one, the graph is connected. Thus, the percolation question is irrelevant as such; rather,
as in models of “social networks”, the diameter of the graph is of interest. It is shown in [2] that the
diameter of the circle graph above is, with high probability, a constant, when s < 1; is O(logδ N), for
some δ > 1, when 1 < s < 2; and is linear Θ(N), when s > 2. These results apply immediately to
a graph on an interval {0, 1, . . . , N}. A multidimensional version of this problem with a graph on a
node set {0, 1, . . . , N}d was also considered by Benjamini, et al in [3], who showed that the diameter is
dd/(d − s)e when s < d. The critical cases s = 1, 2 were left open in [2] and the authors conjectured
that the diameter is Θ(log N) when s = 1, and Θ(Nη) for some 0 < η < 1, when s = 2. In addition,
the authors conjectured that, for the case 1 < s < 2, Θ(logδ N) is also a lower bound for some δ > 1.
In other words, the system experiences a phase transition at s = 1 and s = 2. Recently Biskup [4]
proved that for the case 1 < s < 2 the diameter is indeed Θ(logδ N) for some constant δ which Biskup
computes explicitly.

In this work we consider a multidimensional version of the problem. Our graph has a node set
{0, 1, . . . , N}d and edges are selected randomly using a long-range percolation β/||x − y||s law. We
obtain upper and lower bounds on the diameter for the regimes s = d, d < s < 2d, s = 2d and s > 2d.
This corresponds to regimes s = 1, 1 < s < 2, s = 2, s > 2 for the one-dimensional case. We show that,
with high probability, for s = d, the diameter of this graph is Θ(log N/ log log N); for d < s < 2d the
diameter is at most logδ N for some constant δ > 1; and for s = 2d, the diameter is at most Nη2 , for some
constant 0 < η2 < 1. We also prove a lower bound Nη1 , η1 < 1 on the diameter, which holds with high
probability but only when d ≥ 1, s > 2d or d = 1, s = 2, β < 1. We do not have lower bounds for other
cases. Note that our lower bound for s > 2d is weaker than known linear lower bound when d = 1. We
conjecture that the linear lower bound holds for general dimensions. Our results, when applied to the
one-dimensional case, support bounds conjectured in [2] for the case s = 2 and disprove it for the case
s = 1. As we mentioned above, the upper bound logδ N for the case d < s < 2d was proven in [2] for the
one-dimensional case. It was pointed to the authors that the proof extends to a multidimensional case
as well. We provide here an alternative proof which seems simpler. Summarizing the results of present
paper and of [2], the diameter of the long-range percolation graph in one-dimensional case experiences
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a phase transition at s = 1, 2 and has a qualitatively different values for s < 1; s = 1; 1 < s < 2; s = 2
and β < 1; s > 2. Whether the same holds true for general dimensions (whether s = d, s = 2d are the
only critical values) remains to be seen. Our results only partially support this conjecture.

2 Model and the main result

Our model is a random graph G = G(N) on a node set [N ]d ≡ {0, 1, . . . , N}d - integral points of
the d-dimensional cube with side length N . Let ||x|| denote an L1 norm in the space Zd. That is
||x|| =

∑d
i=1 |xi|. Nodes x,y ∈ [N ]d are connected with probability 1 if ||x − y|| = 1, and, otherwise,

with probability 1 − exp(− β
||x−y||s ), where β > 0, s > 0 are some fixed parameters. Let D(N) denote

the (random) diameter of the graph G(N), and let P (N) denote the (random) length of a shortest path
between nodes 0 ≡ (0, . . . , 0) and N = (N, . . . , N). For any x,y ∈ [N ]d let also P (x,y) denote the
length of a shortest path between nodes x,y in the graph G(N). Our main result is as follows.

Theorem 2.1 There exist constants C1, C2, Cs > 0, δ > 1, 0 < η1 < η2 < 1, which in general depend
on s, β and on dimension d such that

1. limN→∞ Prob{D(N) ≥ Nψ} = 1, for any s > 2d, ψ < s−2d
s−d−1 .

2. limN→∞ Prob{D(N) ≤ Nη2} = 1, for s = 2d and
limN→∞ Prob{D(N) ≥ Nη1} = 1, for d = 1, s = 2, β < 1.

3. limN→∞ Prob{Cs log N ≤ D(N) ≤ logδ N} = 1, for d < s < 2d.

4. limN→∞ Prob{C1 log N
log log N ≤ D(N) ≤ C2 log N

log log N } = 1, for s = d.

As we mentioned above, it was shown in [3] that the diameter is, with high probability, dd/(d− s)e,
when s < d. Also part 3 of the theorem above was proven by Benjamini and Berger in [2] for the one-
dimensional case. They also pointed out to the authors that their proof holds for a multidimensional
case as well. We provide here a simpler proof. Throughout the paper we use standard notations
f = O(g), f = Ω(g), f = Θ(g), f = o(g), which mean respectively that for two functions f(N), g(N),
f(N) ≤ C1g(N), f(N) ≥ C2g(N), C3g(N) ≤ f(N) ≤ C4g(N), f(N)/g(N) → 0, for some constants
Ci, i = 1, 2, 3, 4 which in general depend on β, s, but do not depend on N . Also, throughout the paper
[n]d denotes an integral cube {0, 1, . . . , n}d for any nonnegative integer n. The logarithmic function is
always assumed to be with the base e.

3 Case s > 2d. Lower bound

In this section we show that,with high probability, the diameter of the graph G(N) is at least essentially
N

s−2d
s−d−1 . As we noted, for the one dimensional case d = 1 this is weaker than the existing linear lower

bound Ω(N) ([2]).
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Proof of Theorem 2.1, Part 1: We fix a constant ψ < s−2d
s−d−1 . For any k > N1−ψ let L(k) be

the total number of edges between pairs of points at distance exactly k. We will now show that if
ψ < (s − 2d)/(s − d − 1) then

∑
k>N1−ψ kL(k) ≤ dN/2, with high probability. Since ||N|| = dN ,

then this would imply that, with high probability, any path between 0 and N would contain at least
dN/(2N1−ψ) = (dNψ)/2 edges and the proof would be completed. For a fixed pair of nodes x,y at
a distance k, the probability that the edge between them exist is 1 − exp(−β/ks) ≤ β/ks, where we
use exp(−βx) ≥ 1 − βx for all 0 ≤ x ≤ 1. For a fixed node x there are Θ(kd−1) nodes y which are at
distance k from x; also there are Nd choices for the node x. Combining E[L(k)] = O(Ndkd−1(β/ks)).
Then ∑

k>N1−ψ

kE[L(k)] = O(βNd
∑

k>N1−ψ

kd−s) = O(NdN (1−ψ)(d−s+1)).

For the given choice of ψ, we have d + (1 − ψ)(d − s + 1) < 1 and the value above is o(N). Using
Markov’s inequality, we obtain

Prob{
∑

k>N1−ψ

kL(k) > N/2} ≤ o(N)
(N/2)

= o(1).

2

4 Case s = 2d.

4.1 Upper bound

In this subsection we prove that when s = 2d, there exists a constant 0 < η < 1, which depends
on β and d, such that with high probability D(N) ≤ Nη. To this end we first establish an upper
bound on maxx,y∈[N ]d E[P (x,y)] and then use this bound to obtain a polynomially small bound on
Prob{D(N) > Nη} for some constant η < 1.

Proof of Theorem 2.1, Part 2:
We first assume that N is a power of 3 : N = 3m, for some integer m > 0, and then consider the

general case. For any fixed integer n let R(n) = maxx,y∈[n]d E[P (x,y)]. That is, R(n) is the maximum
over expected lengths of shortest paths between all the pairs of points in the cube [n]d. We obtain an
upper bound on R(N) by relating it to R(N/3). Divide the cube [N ]d into 3d subcubes of the type
Ii1...id ≡

∏d
j=1[ij

N
3 , (ij + 1)N

3 ], 0 ≤ ij ≤ 2. Each cube has a side length N/3 (which is integer since N is
a power of three). We say that two such cubes are neighboring if they have at least a common node.
For example [0, N/3]d and [N/3, 2N/3]d are neighboring through a corner node (N/3, . . . , N/3). We
now fix a pair of points x,y ∈ [N ]d and estimate P (x,y) by considering two cases.

1. x,y belong to the same subcube I = Ii1...id . The length of a shortest path between these two
points using edges of [N ]d is not bigger than the length of the shortest path between same points
but using only edges of the subcube I. Therefore E[P (x,y)] ≤ R(N/3).
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2. x,y belong to different subcubes I, I ′. Let E = E(I, I ′) be the event “there exists at least one edge
between some nodes v ∈ I,v′ ∈ I ′”. The probability that E occurs is at least 1 − exp(−β(N

3 +
1)2d/(dN)2d) since there are (N

3 +1)d nodes in each cube, and the largest possible distance between
them is dN . In particular, Prob{E} is not smaller than a certain constant δ > 0, independent
of N . We now estimate E[P (x,y)] conditioned on E and Ē . Given that E occurs, select an edge
(v,v′) between the cubes I, I ′. Then

E[P (x,y)|E ] ≤ E[P (x,v)|E ] + E[P (v′,y)|E ] + 1

Note, however, that edges within each cube I, I ′ are selected independently from edges between
cubes and specifically are independent from the event E . Therefore, since x,v belong to the same
cube, E[P (x,v)|E ] ≤ R(N/3). Similarly, E[P (v′,y)|E ] ≤ R(N/3). We conclude E[P (x,y)|E ] ≤
2R(N/3) + 1. Now, suppose E does not occur. Select a cube I ′′ which is a neighboring cube for
cubes I, I ′ (it is easy to see that such a cube exists). Specifically, let z(z′) be the nodes shared by
cubes I and I ′′ (I ′ and I ′′). Then arguing as above E[P (x,y)|Ē ] ≤ E[P (x, z)|Ē ] + E[P (z, z′)|Ē ] +
E[P (z′,y)|Ē ] ≤ 3R(N/3). Combining, we obtain

E[P (x,y)] ≤ (2R(N/3)+1)Prob{E}+3R(N/3)(1−Prob{E}) = (3−Prob{E})R(N/3)+Prob{E} ≤

(3− δ)R(N/3) + 1.

We conclude, R(N) = maxx,y∈[N ]d E[P (x,y)] ≤ (3 − δ)R(N/3) + 1. Applying this bound m − 1 =
log N/ log 3− 1 times, we obtain

R(N) ≤ (3− δ)m−1R(3) +
m−2∑

i=0

(3− δ)i = O((3− δ)m) = O(N
log(3−δ)

log 3 ),

Note, α ≡ log(3− δ)/ log 3 < 1. We obtain R(N) = O(Nα) for some α < 1.
In order to generalize the bound for all N , it is tempting to argue that R(N) ≤ R(3m) as long

as N ≤ 3m. This would require proving a seemingly obvious statement that R(n) is a non-decreasing
function of n. While this is most likely correct, proving it does not seem to be trivial. Instead, we proceed
as follows. Let m be such that 3m ≤ N < 3m+1. We cover the cube [N ]d with 3d cubes Ii, i = 1, . . . , 3d

with side length 3m, with a possible overlapping. Specifically, Ii ⊂ [N ]d and ∪iIi = [N ]d. Let x,y ∈ [N ]d
be arbitrary. Find cubes Ii1 , Ii2 , Ii3 such that x ∈ Ii1 ,y ∈ Ii3 and Ii1 ∩Ii2 6= ∅, Ii2 ∩Ii3 6= ∅. Let z1, z2 be
some nodes lying in these intersections. Then E[P (x,y)] ≤ E[P (x, z1)] + E[P (z1, z2)] + E[P (z2,y)] =
O((3m)α), where the last equality follows since pairs (x, z1), (z1, z2), (z2,y) lie within cubes Ii1 , Ii2 , Ii3

respectively and each of them has a side length 3m. But 3m ≤ N . We conclude E[P (x,y)] = O(Nα)
and R(N) = maxx,y E[P (x,y)] = O(Nα).

We now finish the proof of part 2, upper bound, by obtaining a similar bound on the diameter D(N).
Fix an arbitrary 0 < ε, γ < 1 such that α + ε < 1 and ε− d(1− γ) > 0. Divide the cube [N ]d into equal
subcubes Ii1...id =

∏d
j=1[ijN

γ , (ij +1)Nγ ], 0 ≤ ij ≤ N1−γ , each with side length Nγ . The total number
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of subcubes is Nd(1−γ). Fix any such cube I and let x(I) be its lower corner (the node with smallest
possible coordinates). We showed above E[P (0,x(I))] ≤ O(Nα), from which, using Markov inequality,

Prob{P (0,x(I)) ≥ Nα+ε} = O(
Nα

Nα+ε
) = O(

1
N ε

).

Then

Prob{max
I

P (0,x(I)) ≥ Nα+ε} = O(
Nd(1−γ)

N ε
) = O(

1
N ε−d(1−γ)

).

On the other hand for every cube I and every x ∈ I we have trivially, P (x,x(I)) ≤ dNγ . Since
D(N) ≤ 2 supx∈[N ]d

P (0,x), then

Prob{D(N) ≥ 2(dNγ + Nα+ε)} = O(
1

N ε−d(1−γ)
) = o(1).

We take η = max{γ, α + ε} < 1 and obtain Prob{D(N) ≥ 4dNη} = o(1). This completes the proof of
the upper bound. 2

4.2 Lower bound

The proof of the lower bound for the one-dimensional case d = 1, s = 2, β < 1 is similar to the proof
for the case s > 2, from [2] and uses the notion of a cut point. We first show that E[D(N)] ≥ Nη for
a certain constant 0 < η < 1, for large N . Then we show that this bound holds with high probability.
Given a node 1 ≤ i ≤ N − 1, we call it a cut node if there are no edges which go across i. Namely,
i is a cut point if edges (j, k) do not exist for all j < i < k. The probability that i is a cut node
is exp(−β

∑
j<i<k

1
|j−k|2 ) ≥ exp(−β

∑
1≤n≤N

n−1
n2 ) = Θ( 1

Nβ ). Then the expected number of cuts is
Ω(N1−β) (which will be helpful to us only if β < 1). But the shortest path P (N) and as a result the
diameter D(N) are not smaller than the number of cuts. Taking η < 1 − β, we obtain the bound
E[D(N)] ≥ Nη for large N .

We now complete the proof, by showing that the lower bound holds with high probability. Divide
the interval [N ] into N

2
3 intervals I1, I2, . . . , I

N
2
3

each of length N
1
3 . For each interval Ii and each

x ∈ Ii, we say that x is a local cut point if it is a cut point with respect to just the graph induced by
vertices from Ii. We showed above that the expected number of local cut points in the interval Ii is at
least |Ii|η = N

η
3 , for any η < 1 − β and for all i. Let C(Ii) be the number of local cut points in the

interval Ii. We now show that, with high probability, at least one of the intervals has at least (1/2)N
η
3

local cut points. Note {C(Ii)}
1≤i≤N

2
3

are independent from each other. We have E[C(Ii)] ≥ N
η
3 . Also

Var(C(Ii)) ≤ |Ii|2 = N
2
3 . Applying Chebyshev’s inequality, we have

Prob{
∑

i

C(Ii)/N
2
3 <

1
2
N

η
3 } ≤ Var(Ii)

1
2N

η
3 N

2
3

= O(
1

N
η
3

),

Therefore, with high probability, at least one of the intervals contains at least (1/2)N
η
3 local cut points.

We denote this interval by Ii∗ . Let us estimate the number of edges between Ii∗ and [N ] \ Ii∗ . Note
that in defining interval Ii∗ with many local cut points, we only considered edges within intervals Ii.
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Note also, that for each k ≥ 1 there are at most 2k edges of length k between Ii∗ and its complement.
Then, the expected number of edges between Ii∗ and [N ] \ Ii∗ is at most

N∑

k=1

2k(1− exp(− β

k2
)) + O(1) = O(

N∑

k=1

β

k
) = O(log N),

where we use exp(−βx) ≥ 1 − βx for all x ∈ [0, 1]. Using Markov’s inequality, the probability that
the number of edges between Ii∗ and its complement is bigger than log2 N is at most O(1/ log N). We
conclude that with high probability there are at most log2 N edges between Ii∗ and its complement.
Since the number of local cuts in Ii∗ is Ω(N

η
3 ) then there are two local cuts i1, i2, such that the interval

[i1, i2] contains at least Ω(N
η
3 / log2 N) = Ω(N

η
4 ) local cuts and no outside edges are connected to

nodes in interval [i1, i2]. Let the number of local cuts in [i1, i2] be L. We take the (1/3)L-th and the
(2/3)L-th local cut in this interval. By construction, the shortest path between these local cuts is at
least (1/3)L = Ω(N

η
4 ). We conclude, D(N) = Ω(N

η
4 ), with high probability. 2

5 Case d < s < 2d.

The lower bound D(N) ≥ Cs log N was proven to hold with high probability in [2] for the case d = 1,
using branching theory and the fact that for each node, the expected number of its neighbors is a
constant. The proof extends easily to all dimensions d. We now focus on an upper bound. Our proof
is similar to the one in [2] and is based on renormalization technique, although our analysis is simpler.

Proof of Theorem 2.1, Part 3: We have d < s < 2d. Let us fix α < 1 such that 2dα > s. Split
the cube [N ]d into equal subcubes Ii1...id ≡

∏d
j=1[ijdNαe, (ij + 1)dNαe − 1] with side length dNαe. If

N/dNαe is not an integer then we make the cubes containing nodes (. . . , N, . . .) overlap partially with
some other cubes. In the following we drop the rounding d·e for simplicity, the argument still holds.
Consider the following event E1: “there exist two cubes I, I ′ such that no edge exists between points
x ∈ I and y ∈ I ′”. Each resulting cube I = Ii1...id we split further into subcubes with side length Nα2

.
We consider the event E2: “there exist a cube I with side length Nα and its two subcubes I1, I2 with
side length Nα2

, such that no edge exists between points in I1 and I2”. We continue this process m

times, obtaining in the end cubes with side length Nαm
. Assume that none of the events E1, E2, . . . , Em

occurs. We claim that then the diameter of our original graph is at most 2m+1Nαm
. In fact, since event

E1 does not occur any two points x,y ∈ [N ]d are connected by a path with length at most 2D̄(Nα) + 1,
where D̄(Nα) is the (random) largest diameter of the cubes Ii1...id with side length Nα. Similarly, since
event E2 does not occur, D̄(Nα) ≤ 2D̄(Nα2

) + 1, where D̄(Nα2
) is the largest diameter of the subcubes

with side length Nα2
, obtained in second stage. In the end we obtain that the diameter of our graph

satisfies D(N) ≤ 2mD(Nαm
) + 2m ≤ 2m+1dNαm

, since trivially, D(Nαm
) ≤ dNαm

. We now show that
for a certain value of m, which depends on N , this upper bound on the diameter D(N) is at most logδ N

for some constant δ > 1 and simultaneously, the probability Prob{∧m
r=1Ēr} → 1, as N →∞. For a given

cube with side length Nαr−1
and its two given subcubes with side length Nαr

, the probability that no
edges exist between these two subcubes is at most exp(−βN2dαr

/(dN)sαr−1
) = exp(−Θ(Nαr−1(2dα−s))),
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since there are N2dαr
pairs of points considered and the largest distance among any two of them is

dNαr−1
. Since there are at most N2d pairs of such subcubes, then the probability of the event Er is

bounded above by N2d exp(−Θ(Nαr−1(2dα−s))). We conclude

Prob{∨m
r=1Er} ≤

m∑

r=1

N2de−Θ(Nαr−1(2dα−s)) ≤ mN2de−Θ(Nαm(2dα−s)).

Let us fix a large constant C and take

m =
log log N − log log log N + log(2dα− s)− log C

log 1
α

= O(log log N).

A straightforward computation shows that for this value of m,

Prob{∨m
r=1Ēr} = O(e−Θ(logC N)). (1)

On the other hand, we showed above that, conditioned on event ∧rĒr, we have D(N) = O(2mdNαm
).

For our choice of m a simple calculation shows that αm log N = O(log log N) or Nαm
= logO(1) N . Also,

since m = O(log log N), then 2m = O(logO(1) N). This completes the proof. 2

In the course of the proof we established the following bound which follows immediately from (1).

Corollary 5.1 For any constant C, there exists a constant δ > 1 such that

Prob{D(N) > logδ N} ≤ O(e−Θ(logC N)).

6 Case s = d.

Proof of Theorem 2.1, Part 4: We first prove a lower bound. We show that D(N) ≥ (d−ε) log N/ log log N

with high probability, for any constant 0 < ε < 1. Observe, that, for any 1 < k ≤ N and for each
node x ∈ [N ]d, there are Θ(kd−1) nodes at distance k from x. Each such node is connected to x with
probability 1− exp(−β/kd) ≤ β/kd. (We used exp(−βx) ≥ 1−βx for all x ∈ [0, 1]). Then the expected
number of nodes connected to x by an edge is at most O(1)+O(

∑
1≤k≤dN (kd−1/kd)) = O(log N). Then,

the total expected number of nodes which are reachable from x by paths with length ≤ m is at most
cm logm N , for some constant c. We denote the number of such nodes B(m). Using Markov’s inequality

Prob{B(m) ≥ Nd} ≤ E[B(m)]
Nd

≤ cm logm N

Nd
→ 0

if m = (d − ε) log N/ log log N . Therefore, with probability tending to one, the diameter D(N) is
Ω(log N/ log log N).

We now focus on a more difficult part – the upper bound. The proof is fairly technical, but is
based on a simple observation which we present now. We have already noted that any fixed node z,
in particular, node N = (N,N, . . . , N), has in expectation Θ(log N) neighbors. We will show later in
the formal proof that this actually holds with high probability. Consider a subcube I = [0, N/ logc N ]d

for a certain constant c. Let y be a neighbor of x. The probability that y has no neighbors in I is
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at most exp(−βNd/(ddNd logcd N)), since the largest possible distance is dN and the number of nodes
in I is Nd/ logcd N . Then probability that none of the Θ(log N) neighbors of N is connected to some
node of I by a path of length ≤ two is at most exp(−βNd log N/(ddNd logcd N)) = exp(−Θ(log1−cd N)).
If c < 1/d then this quantity converges to zero. Therefore, with high probability N is connected to
some node X1 ∈ I by a path of length 2. Applying this argument for X1 we find a node X2 which is
connected to X1 by a path of length two and such that all the coordinates of X2 are at most N/ log2c N .
Continuing m times we will obtain that N is connected by a path of length O(m) to some node Xm

with all the coordinates ≤ N/ logcm N . Taking m = O(log N/ log log N) we will obtain that, with high
probability, N is connected to 0 by a path of length ≤ O(m). We now formalize this intuitive argument.

We fix an arbitrary node z0 ∈ [N ]d. Consider all the paths (x,y, z0) with length two, which end in
node z0. That is edges (x,y), (y, z0) exist. Let X1 = argmin||x||, where the minimum is taken over all
such paths. In other words, X1 is the smallest, in norm, node connected to z0 via a path of length at
most 2. Note, X1 is random and ||X1|| ≤ ||z0||, as z0 is connected to itself by a path of length two.
Similarly, let X2 < X1 be the smallest, in norm, node, connected to X1 via a path of length 2. We
continue this procedure for m (to be defined later) steps and obtain a (random) node Xm.

Lemma 6.1 For any constantly large integer c, if m = (2d + 2) · 2c+1 log N/ log log N , then the bound
||Xm|| ≤ exp((log N)d/2c

) holds with probability at least 1− 1/N2d.

Before we prove the lemma, let us show how it is used to prove the result. We invoke part 3
of Theorem 2.1, which we proved in the previous section. Choose a constant integer c such that
2c/d ≥ 2δ, where δ > 1 is a constant from part 3 of Theorem 2.1. Applying part 3 of Theorem 2.1,
the diameter of the cube [exp((log N)d/2c

)]d is at most ((log N)d/2c
)δ ≤ log

1
2 N = o(log N/ log log N)

with high probability. In particular supx:||x||≤exp((log N)d/2c
) P (0,x) = o(log N/ log log N) with high

probability. By the conclusion of the lemma, with probability at least 1 − O(1/N2d), each fixed
node z0 ∈ [N ]d is connected to some node Xm with ||Xm|| ≤ exp((log N)d/2c

) by a path of length
m = O(log N/ log log N). Then, with probability at least 1−O(1/Nd), all the nodes z0 ∈ [N ]d are con-
nected to some corresponding nodes Xm ∈ [exp((log N)d/2c

)]d by a path of length O(log N/ log log N).
Combining, we obtain that supz0∈[N ]d

P (0, z0) = O(log N/ log log N) with probability at least 1− o(1).
But D(N) ≤ 2 supz0∈[N ]d

P (0, z0). 2

Proof of Lemma 6.1: We fix a node x with ||x|| ≤ ||z0||, fix 1 ≤ r ≤ m and consider Xr conditioned
on event Xr−1 = x (assume X0 = z0). Our goal for the remaining part is the following

Lemma 6.2 If ||x|| > exp((log N)
d
2c ), then

E
[
||Xr||

∣∣∣Xr−1 = x
]
≤ O(

||x||
(log N)1/2c+1 ). (2)

In other words, at each step r = 1, 2, . . . , m, the expected value of ||Xr|| decreases by a factor of
O( 1

(log N)1/2c+1 ), provided that ||Xr−1|| is still bigger than exp((log N)
d
2c ).

9



Proof. Let B(x) be the total number of nodes which are connected to Xr−1 = x and which have a
norm smaller than ||x||. Note, that for each such node y, ||y− x|| ≤ ||y||+ ||x|| < 2||x||. We first show
that with probability at least 1 − O( 1

(log N)d/2c ), the equality B(x) = Ω(log ||x||) holds. For any fixed
k ≤ ||x|| there are Θ(kd−1) nodes y which for which ||y − x|| = k and ||y|| < ||x||. Each such node is
connected by an edge to x with probability 1− exp(−β/kd). Then

E[B(x)] =
∑

0≤k≤||x||
(1− exp(−βΘ(kd−1)

kd
)) = Θ(log ||x||).

Let c1 < c2 be constants, such that c1 log ||x|| ≤ E[B(x)] ≤ c2 log ||x||. We now estimate the second
moment

E[B2(x)] = E[B(x)] +
∑

y1 6=y2,||y1||,||y2||<||x||
(1− exp(− β

||y1 − x||))(1− exp(− β

||y2 − x||)) ≤

E[B(x)] +
∑

||y1||,||y2||<||x||
(1− exp(− β

||y1 − x||))(1− exp(− β

||y2 − x||)) =

E[B(x)] + (E[B(x)])2.

It follows, Var(B(x)) ≤ E[B(x)]. Using Chebyshev’s inequality,

Prob{B(x) ≤ (1/2)c1 log ||x||} ≤ Prob{|B(x)− E[B(x)]| ≥ (1/2)c1 log ||x||} ≤
Var(B(x))

(1/4)c2
1 log2 ||x|| ≤

c2 log ||x||
(1/4)c2

1 log2 ||x|| = O(
1

log ||x||) ≤ O(
1

(log N)d/2c ), (3)

where the last inequality follows from the assumption ||x|| > exp((log N)d/2c
) of the lemma. Let

V (x) = {z : ||z|| ≤ ||x||
(log N)1/2c+1 }.

In particular, |V (x)| = Θ(||x||d/(log N)d/2c+1
). Suppose y, ||y|| < ||x|| is any node connected by an

edge to x (if any exist). Note that the distance between y and any node in V (x) is smaller than 3||x||.
Then, the probability that y has no nodes in V (x) connected to it by an edge is at most

exp(− βΘ(||x||d)
(log N)d/2c+1 ||x||d ) = exp(− Θ(1)

(log N)d/2c+1 ).

By (3), with probability at least 1−O( d
(log N)1/2c ), x has Ω(log ||x||) nodes y, ||y|| < ||x|| connected to it.

Conditioned on this event, the probability that no node in V (x) is connected to x by a path of length
two is at most exp(− Ω(log ||x||)

(log N)d/2c+1 ). By assumption, ||x|| > exp((log N)
d
2c ) or log ||x|| > (log N)

d
2c , using

which, exp(− Ω(log ||x||)
(log N)d/2c+1 ) ≤ exp(−Ω((log N)d/2c+1

)). It follows, that the probability that no node in
V (x) is connected to x by a path of length two, is at most

O(
1

(log N)d/2c ) + exp(−Ω((log N)d/2c+1
)) = O(

1
(log N)d/2c ).
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Summarizing, conditioned on Xr−1 = x, the bound ||Xr|| ≤ ||x||
(log N)1/2c+1 holds with probability at least

1−O( d
(log N)1/2c ). On the other hand, with probability one ||Xr|| ≤ ||Xr−1||. We conclude

E
[
||Xr||

∣∣∣Xr−1 = x
]
≤ ||x||

(log N)1/2c+1 + O(
||x||

(log N)d/2c ) = O(
||x||

(log N)1/2c+1 ).

This completes the proof of Lemma 6.2. 2

We now complete the proof of Lemma 6.1. Note, that for any 2 ≤ r ≤ m, E[Xr|Xr−1,Xr−2, . . . ,X1] =
E[Xr|Xr−1]. We denote exp((log N)d/2c

) by α(N). We have,

Prob{||Xm|| > α(N)} =
∑

α(N)<||xm||≤||xm−1||<||z0||
Prob{Xm = xm|Xm−1 = xm−1}Prob{Xm−1 = xm−1} ≤

∑

α(N)<||xm||≤||xm−1||<||z0||
||xm||Prob{Xm = xm|Xm−1 = xm−1}Prob{Xm−1 = xm−1} ≤

∑

α(N)<||xm−1||<||z0||
E

[
||Xm||

∣∣∣Xm−1 = xm−1

]
Prob{Xm−1 = xm−1}.

But, using bound (2) of Lemma 6.2, we have E
[
||Xm||

∣∣∣Xm−1 = xm−1] ≤ O(||xm−1||/(log N)1/2c+1
), as

long as ||xm−1|| > α(N). We obtain

Prob{||Xm|| > α(N)} ≤ O(
1

(log N)1/2c+1 )
∑

α(N)<||xm−1||<||z0||
||xm−1||Prob{Xm−1 = xm−1} =

O(
1

(log N)1/2c+1 )
∑

α(N)<||xm−1||≤||xm−2||<||z0||
||xm−1||Prob{Xm−1 = xm−1|Xm−2 = xm−2}Prob{Xm−2 = xm−2} ≤

O(
1

(log N)1/2c+1 )
∑

α(N)<||xm−2||<||z0||
E

[
||Xm−1||

∣∣∣Xm−2 = xm−2

]
Prob{Xm−2 = xm−2} ≤

(
O(

1
(log N)1/2c+1 )

)2 ∑

α(N)<||xm−2||<||z0||
||xm−2||Prob{Xm−2 = xm−2},

where in the last inequality we used bound (2) of Lemma 6.2 again. Continuing this conditioning
argument m− 1 times, we obtain that for some constant C

Prob{||Xm|| > α(N)} ≤ Cm−1

(log N)
m−1

2c+1

||z0|| ≤ (log N)
1

2c+1 Cm

(log N)
m

2c+1
dN.

But, by assumption of the lemma, m = (2d+2)·2c+1 log N/ log log N , from which (log N)
1

2c+1 Cm = o(N)
and Prob{||Xm|| > α(N)} ≤ 1/N2d for large N . 2
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7 Concluding remarks and open questions

We considered a long-range percolation model on an graph with a node set {0, 1, . . . , N}d. Answering
some open questions raised by Benjamini and Berger in [2], we showed that if two nodes at a distance
r are connected by an edge with probability ≈ β/rs, then, with high probability, the diameter of this
graph is Θ( log N

log log N ) when s = d, and is at most Nη for some value η < 1, when s = 2d. We also proved
a lower bound Nη′ , η′ < 1 on the diameter for the cases d = 1, s = 2, β < 1 and s > 2d, d ≥ 1. Note
that for the case d = 1, s > 2 our bound is weaker than known linear lower bound Ω(N) established
in [2]. We conjecture that this linear lower bound holds for all dimensions d as long as s > 2d. Other
unanswered regimes are lower bounds for s = 2d and d = 1, s = 2, β > 1. It would also be interesting
to compute the limits D(N)

(log N/ log log N) → C and log D(N)/ log N → η or even show that these limits
actually exist when s = d, 2d respectively.

Acknowledgments. We wish to thank I. Benjamini and N. Berger for clarifying their work and
identifying several errors in an earlier version of this paper.
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