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Abstract

The theory of queueing systems is traditionally considered as a branch of applied
probability. Hence the toolkit used in the analysis of queueing system draws heavily on
the theory of stochastic processes. Many problems in the area of queueing networks,
however, are of algorithmic nature, and thus require algorithmic/complexity theoretic
approaches. In this tutorial we will discuss several such questions, ranging from some
older results on designing optimal control of queueing networks, to more recent results on
determining stability properties of queueing networks leading to the fascinating theory
of algorithmic undecidability (non-computability). We will illustrate these approaches
on a broad scope of models, including multiclass queueing networks, constrained random
walks and Skorokhod mapping problem, the latter arising in studying queueing networks
in the heavy traffic regime.
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1 Languages, algorithms and Turing Machine

We start by discussing the notions of “tractability” and “undecidability”. We formalize the
notion of the complexity of an algorithm for solving a problem and the question of what can
be solved, and what cannot.

A Turing machine (TM henceforth) is an abstract model of a general purpose computer
(similar to a finite automaton but with an infinite and unrestricted memory). They can be
classified as deterministic or nondeterministic.

Turing Machines (TM). A Turing machine is a 7-tuple [Sip97],
(S,Σ,Γ, δ, q0, qaccept, qreject), where S,Σ,Γ are all finite sets and

1. S is the set of states,

2. Σ is the input alphabet not containing the special BLANK symbol,

3. Γ is the tape alphabet which is defined to be Σ plus the special BLANK symbol.

4. δ : S × Γ → S × Γ× {L,R} is the transition function. Here L and R wills stand
for ”move left” and ”move right” commands.

5. q0 ∈ S is the start state, qaccept ∈ S is the accept state and qreject ∈ S is the reject
state.

Given this Turing Machine operates as follows. It begins with state q0. The infinite
tape contains a sequence of elements of σ followed by an infinite sequence of BLANKs.
For example, say Σ = {a, b, c} and S = {q0, q1, qaccept, qreject}. Then the tape configura-
tion can be a, a, a, b, a, c, c, a, a, BLANK,BLANK,BLANK, . . .. A reading/writing
device, called HEAD sits on top of the first symbol which in our case happens to be a.
To indicate this we write ∗a, a, a, b, a, c, c, a, a, BLANK,BLANK,BLANK, . . . (star
in front of the first symbol). At every moment of time the TM looks into the current
state and the current element of Γ, and uses the δ function to update. Specifically, it
uses δ to update the state to a new state, rewrite the current element of Γ by a new
element of Γ and uses L and R to decide whether to move to the left or to the right.
See Figure 1.

Say in our example, δ : (q0, a) = (q1, b, R). Then the state becomes q1, the
first symbol becomes b and the HEAD is on top of the second symbol. We obtain
b, ∗a, a, b, a, c, c, a, a, BLANK,BLANK,BLANK, . . .. We continue this process until
either we reach state qaccept, in which case we stop and output ACCEPT, or reach state
qreject, in which case we stop and output REJECT. If neither of the terminating states
qaccept, qreject is reached, the TM runs forever.

The sequence a, a, a, b, a, c, c, a, a, BLANK,BLANK,BLANK, . . . is what we call
problem instance. Any countable set A of instances (strings) is called language, which
for us means a collection of instances satisfying some properties. Every instance comes
with either YES label or NO label and the corresponding subsets are denoted AY ES
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Figure 1: Illustration of a Turing Machine.

and ANO. For example a language can be encoding collection of connected graphs.
Given a language we say that a given Turing Machine is an Algorithm for A if for
every sequence in AY ES the TM stops after finite time and outputs ACCEPT, and
for every sequence in ANO the TM stops after finite time and outputs REJECT. Thus
TM is capable of determining in finite time whether we have an instance satisfying
the needed property, for example whether the given graph is connected. Namely, A is
a family of graphs, AY ES is the family of connected graphs and ANO is the family of
unconnected graphs.

Nondeterministic Turing Machines (NTM). We will not be working with this
notion a lot, but I still provide it for reference. The transition function for NTM has
the form δ : S × Γ → P(S × Γ × {L,R}). In a DTM, the set of rules prescribes at
most one action to be performed for any given situation. A NTM, by contrast, may
have a set of rules that prescribes more than one action for a given situation.

Example. Let us build a Turing machine which determines whether a given sequence
of letters a is even. We set Σ = {a},S = {q0, q1, qaccept, qreject}. Set

δ(q0, a) = (q1, a, R),

δ(q1, a) = (q0, a, R),

δ(q0, Blank) = (qaccept, ·, ·),
δ(q1, Blank) = (qreject, ·, ·),

We do not define δ on states qaccept, qreject as on these states the TM stops. For the same
reason we have dots in the last two cases. Now it is easy to see that if we have a string
a, a, · · · , a, BLANK,BLANK, · · · , then the TM will end in qaccept if the number of
a-s in the string is even, and ends in qreject otherwise.

Exercise. Show that TM M recognizes the language consisting of all strings of zeros
whose length is a power of 2: A = {02n | n ≥ 0}.
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2 Complexity Classes

Based on the amount of time and space that problems require to be computed on a
Turing Machine, various complexity classes can be defined.

P is the class of languages that are decidable in polynomial time by a Turing
Machine, whereas NP is the class of languages that are decidable in polynomial time on
a Non-deterministic TM. Polynomiality is measured in terms of the size of the instance
which is defined to be the length of the string in A. So in our example of strings of
a-s, the running time of the algorithm is the same as the length of the string, so it is
linear and therefore polynomial time algorithm. An example of a problem in P is the
Shortest Path problem: given a graph G = (V,E) and two nodes u, v find the shortest
path from u to v. Another example is Maximum Matching Problem: given a graph G
find the cardinality of a largest matching. To be exact, the decision problem which is in
P is given a graph G and number K determine whether there exists a matching of size
at least K. Examples of problems in NP include various combinatorial optimization
problems such as Independent Set (IS), CLIQUE, SUBSET-SUM and many others.
Independent set of a graph G = (V,E) is a set of nodes I ⊂ V such for no pair of
nodes i, j ∈ I is an edge, that is (i, j) /∈ E.

PSPACE is the class of languages that are decidable in polynomial space by a
TM. Examples include the so-called True Fully Quantified Boolean Formula. Finally,
EXPTIME is the class of languages that are decidable in exponential time on a DTM.
The hierarchy is,

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE (1)

Another important and relevant for us complexity class is #P . Intuitively this class
corresponds to problems which can be counted by non-deterministic TM. Example of
a problem in #P is the problems of counting the number of independent sets in the
graph. To be exact given a graph G = (V,E) and number K determine whether the
number of independent sets in G is at most K. A major open question along with
whether P = NP is whether P = #P , namely problems in #P can be solved using
deterministic TM which run in polynomial time.

NP-hard. NP-Hard in computational complexity theory, is a class of problems that
are, informally, “at least as hard as the hardest problems in NP”.

• A problem H is NP-hard if and only if there is an NP-complete problem L that is
polynomial time Turing-reducible to H (i.e., L ≤ TH). In other words, L can be
solved in polynomial time by an oracle machine with an oracle for H. Informally,
we can think of an algorithm that can call such an oracle machine as a subroutine
for solving H, and solves L in polynomial time, if the subroutine call takes only
one step to compute.

• Alternatively, a problem H is NP-hard if all problems in NP are polynomial time
reducible to it.
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Figure 2: Illustration of P, NP and
Undecidable.

Figure 3: Hierarchy of various com-
plexity classes.

NP-hard problems may be of any type: decision problems, search problems, or opti-
mization problems. The NP-hard nomenclature is sort of misleading because NP-Hard
problems are not necessarily in NP. Nonetheless, this notation is well-itched into the
research community and unlikely to be changed.

EXP-hard. In computational complexity theory, the complexity class EXPTIME
(sometimes called EXP) is the set of all decision problems solvable by a Deterministic
Turing Machine in O(2p(n)) time, where p(n) is a polynomial function of n, and n is
the length of the input.

A decision problem is EXPTIME-complete if it is in EXPTIME, and every problem
in EXPTIME has a polynomial-time many-one reduction to it. In other words, there is
a polynomial-time algorithm that transforms instances of one to instances of the other
with the same answer. Problems that are EXPTIME-complete might be thought of
as the hardest problems in EXPTIME. Notice that although we don’t know if NP is
a subset of P or not, we do know that EXPTIME-complete problems are not in P ; it
has been proven that these problems cannot be solved in polynomial time, by the time
hierarchy theorem.

Examples of EXP-Complete problems : evaluating a position in generalized chess,
Checkers, Go, and as we will see optimal control of closed queueing networks.
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3 Undecidability

In computability theory and computational complexity theory, an undecidable prob-
lem is a decision problem for which it is impossible to construct a an algorithm
(Turing Machine) that always leads to a correct yes-or-no answer. The
most famous example of an undecidable problem is the so-called Halting Problem
which we discuss below. Other examples include PCP (Post Correspondence Prob-
lem), Hilbert’s tenth problem, that is whether a Diophantine equation (multivariable
polynomial equation) has a solution in integers, and many others. There is a wealth of
interesting undecidable problem and I recommend a recent article [GS10] for a non-
technical survey of the topic, and [BT00] for a technical survey of hard and undecidable
problems in the area of control theory.

One way to get some intuition behind the concept of undecidability is perhaps to
make a comparison with the classification problem in learning. Consider the classifi-
cation problems which are decidable by the set of linear classifiers. For a particular
dataset, one can think of the set of all linear classifiers as the set of admissible functions
from which a mapping to YES/NO is desired. There exist datasets for which there
does not exist a mapping from this class of functions to correct YES/NO answers.
Thus, these datasets are undecidable by the class of linear classifiers. In a similar
vein, one can think of the class of functions induced by the set of Turing machines.
Consequently, the set of problems for which there is a mapping from the TM induced
functions to YES/NO answers are decidable and those for which there cannot exist a
mapping are undecidable.

Alan Turing proved in 1936 his famous Halting Problem theorem, which roughly
speaking says that an algorithm running that solves the halting problem for all possible
program-input pairs cannot exist. That is there is no algorithm which when takes a
pair of string and TM needs to output whether the TM will halt on this string, cannot
exist. Hence, the halting problem is undecidable. The proof of the undecidability of
the halting problem uses a technique called diagonalization, which was also used by
George Cantor in 19th century to prove that the set of real values is uncountable. We
now provide a brief overview of the proof idea.

Theorem 1. The following language which we call HALTING PROBLEM is undecid-
able:

ATM = {(M,w)| w is a string, M is a TM, and M accepts w} (2)

Proof. We assume that ATM is decidable and obtain a contradiction. Suppose that H
is a TM which is a decider for ATM, i.e.,

H(⟨M,w⟩) =

{
accept, if M accepts w,

reject, if M does not accept w.

We construct a new TM D with H as a subroutine with the following mechanics on
input ⟨M⟩, where M is a TM. Here ⟨M⟩ is a description of the TM M written using
some appropriate alphabet Γ.
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• Run H on input ⟨M, ⟨M⟩⟩.

• Output the opposite of what H outputs; i.e., if H accepts, reject and if H rejects,
accept.

In summary,

D(⟨M⟩) =

{
accept, if M rejects ⟨M⟩,
reject, if M accepts ⟨M⟩.

Now, when D is run with its own description:

D(⟨D⟩) =

{
accept, if D does not accept ⟨D⟩,
reject, if D accepts ⟨D⟩.

This is a contradiction, therefore, neither TM D nor TM H can exist.

Here is an illustration of the same argument.

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ . . .

M1 a a
M2 a a
M3 a a
...

Table 1: Entry i, j is “a” if Mi accepts ⟨Mj⟩.

Table 2 contains the results of running H on inputs corresponding to Table 1.

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ . . .

M1 a r a r
M2 r a a r
M3 a a r r
... r r r r

Table 2: Entry i, j is the value of H on ⟨Mi, ⟨Mj⟩⟩.

Since, H and D are TMs, they must occur amongst M1,M2, . . .. Since, D computes
the opposite of the diagonal entries, the contradiction occurs at the point of question
mark.
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⟨M1⟩ ⟨M2⟩ ⟨M3⟩ . . . ⟨D⟩
M1 a r a r
M2 r a a r

M3 a a r r
...

... r r r r
D . . . ?

Table 3: If D is in the figure, a contradiction occurs at ?.

4 Intractability of performance analysis and optimization of
queuing networks

4.1 The Complexity of Optimal Queueing Network Control by Papadim-
itriou and Tsitsiklis [PT94]

The authors in [PT94] prove that the problem of optimal control (routing and sequenc-
ing) of a network of queues is EXP-complete and therefore, provably intractable. A
weaker result is also established for the restless bandit problem, namely, it is PSPACE-
hard.

A finite set of servers S and a finite set C of customer classes. For each class c ∈ C,
we are given the identity σ(c) ∈ S and the mean service time µ(c). The service times
are assumed to be exponentially distributed i.i.d. The set C is partitioned into two
subsets R and D. ∀c ∈ D, we are given a set N(c) ∈ C. ∀c ∈ R, the new class c

′
is

determined at random according to given probabilities pcc′ .

The queueing network described here is closed. This means that there is a fixed set
of jobs permanently trapped in the system. The state is: a) how many customers of
each class are present in the system, and b) the class of the customer (if any) served
at each server. A policy is a rule for making decisions for routing of jobs in classes C
and servicing jobs in all classes. We consider the family of non-preemptive policies.
Namely, we servers cannot interrupt servicing one job and start servicing another job.
Thus service decisions are made only after service completions. We assume that idling
is allowed. Let aπc (t) be the number of class c service completions until time t.

Jπ = lim sup
t→∞

1

t

∑
c∈C

w(c)E[aπc (t)], (3)

Goal. Goal is to find a policy that maximizes Jπ. Formally, the problem is given a
rational number K, decide whether there exists a policy π for which Jπ > K.

Theorem 2. NETWORK OF QUEUES problem is EXP-complete.

This theorem was proved via reduction from the so-called STOCHASTIC IN-
PLACE ACCEPTANCE problem. We skip details of the problem statement and the

9



reduction.

4.2 Restless Bandit problem

RESTLESS BANDITS.We are given nMarkov chains (bandits)Xi(t), i = 1, . . . , n, t =
0, 1, . . . that evolve on a finite state space S = {1, . . . ,M}. At each time t, bandit i(t)
is played. For i = i(t), Xi(t + 1) is determined according to a transition probability
matrix P and all other i according to some other transition probability matrix Q. We
incur a cost:

C(t) = c(Xi(t)) +
∑
i ̸=i(t)

d(Xi(t)), (4)

We are interested in finding a policy with minimal average expected cost.

MULTI-ARMED BANDIT. Special case of the above in which we have Q = I and
d = 0 (bandits not played do not move and do not incur any costs).

In the same paper [PT94] the following result is established.

Theorem 3. RESTLESS BANDITS with deterministic transition rules is PSPACE-
hard.

4.3 Performance of wireless networks

We now use #P complexity class to establish intractability of the performance analysis
of some loss networks which one can think of idealized wireless network. Consider a
wireless communication network as a graph G = (V,E). Every node i ∈ V of the
graph is associated with a rate νi, Poisson process corresponding to wireless calls
corresponding to some fixed frequency h. The wireless call is accepted if and only if
there are no prior wireless calls originating from this node and furthermore, no (graph-
theoretic) neighbors of i have calls in progress. The latter requirement is to ensure that
calls using the same frequency h should not interfere and a link between two nodes
means the two nodes are within the interference proximity range. Assume each call
on node i has an exponentially distributed length with rate equal to unity (assumed
for simplicity, though since we will establish certain hardness result, this restriction is
strength not a weakness of the assumption). If the arriving call cannot be accepted,
it is dropped. It is not hard to see then that the set I(t) of calls in progress at time
t is an independent set in G. Using the reversibility theory, it one can show that the
stationary distribution π exists, is unique and has the following simple product form.
For every independent set I,

Pπ(I) = Z−1
∏
i∈I

νi,
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where Z is the normalizing constant defined by

Z =
∑
I

∏
i∈I

νi,

where the sum is over all independent sets. This explicit form of the stationary dis-
tribution is deceiving, as in order to compute it we need to compute Z which involves
a sum of potentially exponentially many independent sets in G. Thus we formulate
the following decision problem which we call Performance of Loss Network : given a
graph G = (V,E), rates νi, i ∈ V and number K, determine if Z ≤ K. Considering
the special case νi = 1, we see that Z is nothing else but the number of independent
sets in our communication graph G. We obtain

Theorem 4. The problem Performance of Loss Network is #P -complete.

A variant of this theorem and many extensions was established by Louth, Mitzen-
macher and Kelly [LMF94]. Analysis of wireless networks using independent sets prob-
lem and its variants is a very active area of research now [SS],[MSZ06],[UNS09],[STT]

5 Constrained homogeneous random walks and undecidabil-
ity

Let us now introduce a much simpler variant of the Turing Machine and Halting
Problem which will be useful for our analysis of constrained random walks, queueing
networks and Skorokhod problem.

5.1 Counter Machine and Halting Problem

A Counter Machine which we define below is a deterministic computing machine which
is a simplified version of a Turing Machine A Counter Machine is described by 2
counters R1, R2 and a finite collection of states S = {1, 2, . . . ,m}. Each counter Ri

contains some nonnegative integer in its register. Depending on the current state
i ∈ S and depending on whether the content of the registers is positive or zero, the
Counter Machine is updated as follows: the current state i is updated to a new state
j ∈ S and one of the counters has its number in the register incremented by one,
decremented by one or no change in the counters occurs. More specifically, a Counter
Machine is a pair (S = {1, . . . ,m},Γ). where Γ is configuration update function
Γ : S × {0, 1}2 → S × {(−1, 0), (0,−1), (0, 0), (1, 0), (0, 1)}. A configuration of a
Counter Machine is an arbitrary triplet (i, z1, z2) ∈ S × Z2

+. A configuration (i, z1, z2)
is updated as follows. Given (i, z1, z2) suppose Γ(i,1{z1 > 0},1{z2 > 0}) = (i′, 1, 0).
Then the current state is changed from i to i′, the content of the first counter is
incremented by one and the second counter does not change: z′1 = z1 + 1, z′2 = z2. We
will also write Γ : (i, z1, z2) → (i′, z1 + 1, z2). Suppose, on the other hand, Γ(i,1{z1 >
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0},1{z2 > 0}) = (i′,−1, 0). Then the current state becomes i′, z′1 = z1 − 1, z′2 = z2.
Similarly, if Γ(i,1{z1 > 0},1{z2 > 0}) = (i′, 0, 1) or Γ(i,1{z1 > 0},1{z2 > 0}) =
(i′, 0,−1), the new configuration becomes (i, z1, z2+1) or (i′, z1, z2−1), respectively. If
Γ(i,1{z1 > 0},1{z2 > 0}) = (i′, 0, 0) then the state is updated to i′, but the contents
of the counters do not change. It is assumed that the configuration update function
Γ is consistent in the sense that it never attempts to decrement a counter which is
equal to zero. The present definition of a Counter Machine can be extended to the one
which incorporates more than two counters, but such an extension is not needed for
our purposes.

Given an initial configuration (i0, z01 , z
0
2) ∈ S×Z2

+ the Counter Machine uniquely de-
termines the subsequent configurations (i1, z11 , z

1
2), (i

2, z21 , z
2
2), . . . , (i

t, zt1, z
t
2), . . . .We fix

a certain configuration (i∗, z∗1 , z
∗
2) ∈ S×Z2

+ and call it the halting configuration. If this
configuration is reached then the process halts and no additional updates are executed.
The following theorem establishes the undecidability (also called non-computability)
of the halting property. It is a classical result and can be found in [Hoo66].

Theorem 5. Given a Counter Machine (S,Γ), initial configuration (i0, z01 , z
0
2) and

the halting configuration (i∗, z∗1 , z
∗
2), the problem of determining whether the halting

configuration is reached in finite time (the Halting Problem) is undecidable. Without
the loss of generality it may be assumed that z∗1 = z∗2 = 0.

5.2 Constrained Random Walk.

Constrained random walks in non-negative orthant Zd
+ are generalization of stochastic

processes arising in studying certain types of queueing systems. Consider, for example,
a multiclass queueing network with exponentially distributed interarrival times, ser-
vice times, and probabilistic routing where each server uses a preemptive static buffer
priority policy as a scheduling rule (see Section 4 as well as [Dai95],[DW96],[GKR09]
for formal definitions of multiclass queueing networks). The vector of queue length
Q(t) observed at event times (arrivals or service completions) is a Markov chain
in Zd

+, where d is the number of classes. It has the property that the transition
probabilities depend only on which buffers are empty and which buffers are non-
empty, but does not depend on the actual size of queues in buffers. This moti-
vates the following definition which goes back to the papers by Malyshev and his
co-authors [Mal72b],[Mal72a],[Men74],[Mal93],[FMM95].

Markov chain Q(t), t = 1, 2, . . . has a nonnegative orthant Zd
+ as its state space.

For each Λ ⊂ {1, 2, . . . , d}, let ZΛ be the corresponding face:

ZΛ = {(z1, . . . , zd) ∈ Zd
+ : zi > 0 for i ∈ Λ, zi = 0 for i /∈ Λ}. (5)

The transition probabilities depend entirely on the face, which the random walk cur-
rently belongs to, and the transition vectors have at most unit length in max norm.∑

∆∈{−1,0,1}d
p(Λ,∆) = 1, (6)
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This is motivated by the fact that the queue length change at most by one at the
transition epochs. Given a current state Q(t), the next state is chosen to be Q(t) +∆
with probability p(Λ,∆), if the state Q(t) belongs to the face ZΛ. The following
variation, called deterministic homogeneous walk in a nonnegative orthant, is one for
which p(Λ,∆) ∈ {0, 1} will be important for us.

For a given initial state Q(0), the constrained random walk is defined to be stable if

there exists some C > 0 such that the random walk visits the set {z ∈ Zd
+ :

∑d
i=1 zi ≤

C} i.o. w.p 1. and the expectation of the time intervals between the visits is finite.
Namely, the walk is stable if it contains positive recurrent states. It is easy to see
that if the walk is deterministic, then stability is equivalent to the condition that
supt ∥Q(t)∥1 < ∞, where ∥Q(t)∥1 =

∑
1≤i≤d Qi(t) (in fact any norm can be used in

this definition).

The following result was established in [Gam02].

Theorem 6. Stability of a deterministic homogeneous walk in Zd
+ is undecidable.

Proof. We prove the theorem by a simple reduction from a counter machine. CM
(S,Γ) with initial configuration (s0, z01 , z

0
2) and halting configuration (s∗, 0, 0), we will

construct a deterministic walk that has dynamics very similar to the dynamics of
a counter machine. Subsequently, if we had an algorithm for checking stability of
a deterministic walk we could use this algorithm for checking whether the counter
machine halts.

Let S = {1, 2, . . . ,m} and let i∗ ∈ {1, 2, . . . ,m} be the halting state. That is the
halting configuration is (i∗, 0, 0, ). Our deterministic walk has a state space Zm+2

+ .
The first m coordinates will be used to encode the states of the counter machine. We
encode the state i ∈ S by an m-dimensional unit vector ei. The last two coordinates
contain the values of the counters of the counter machine. Thus, the configuration
(i, z1, z2) corresponds to the following state q = (q1, . . . , qm+2) ∈ Zm+2

+ of the walk:
qi = 1, qm+1 = z1, qm+2 = z2, and qj = 0 for all other coordinates j.

We now describe the transition vectors ∆ for each face ZΛ of the state space Zm+2
+ .

• Suppose Λ = {i,m+ 1,m+ 2} for some i ∈ {1, 2, . . . ,m}. Suppose Γ(i, (1, 1)) =
(j, (1, 0)) and i ̸= j. Namely, the state needs to become j, the first counter
needs to increment by one and the second counter needs to remain the same.
Then we set ∆i(Λ) = −1,∆j(Λ) = 1,∆m+1(Λ) = 1, and ∆k(Λ) = 0 for all
other k. This simply means that if the current state Q(t) of the walk encodes a
state i and both coordinates m + 1,m + 2 correspond to positive contents, then
Q(t+1) = Q(t)+∆(Λ) will encode the state j, and the coordinate m+1 increases
its value by 1. If i = j, then we set ∆m+1(Λ) = 1,∆i(Λ) = 0 for all other i. This
corresponds to the case when the state i does not change.

• If Λ = {i,m + 1} or Λ = {i,m + 2} or Λ = {i}, we construct ∆(Λ) similarly by
applying the rule Γ to (i, (1, 0)), (i, (0, 1)) and (i, (0, 0)) respectively. Specifically,
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for Λ = {i∗} we put ∆(Λ) = 0, meaning that once the configuration (i∗, 0, 0) is
reached the walk will remain in this state forever.

• Finally we set ∆(Λ) = 0 for all other Λ.

With this set of transition vectors ∆(Λ), if Q(t) ∈ ZΛ and Q(t) encodes the current
configuration (st, zt1, z

t
2) of the counter machine, then Q(t+ 1) = Q(t) +∆(Λ) encodes

the updated configuration (st+1, zt+1
1 , zt+1

2 )

Finally, let us show that if we had an algorithm E for checking stability of a de-
terministic homogeneous walk, we would have an algorithm for checking whether a
counter machine halts on a given initial configuration (s0, z01 , z

0
2). Given a counter

machine, construct a deterministic walk with initial state and transition rules as de-
scribed above. Suppose we have an algorithm for checking the stability of this walk.
We now construct an algorithm for solving the Halting Problem as follows. If the walk
is unstable, we declare the counter machine nonhalting. This is accurate, because if it
were halting, then the walk would end up in a “trapping” face ZΛ with Λ = {i∗} and
would stay in the same state forever.

If, on the other hand, the walk is determined to be stable, then we simply follow
the dynamics of our counter machine until either it halts or a certain configuration is
repeated, i.e., for some t1 < t2 (s

t1 , zt11 , z
t1
2 ) = (st2 , zt21 , z

t2
2 ). By stability, the content of

the counters in the counter machine remains bounded as a function of time, so some
configuration must be repeated at some point. If this is the terminating configura-
tion, then we declare the Counter Machine halting. If it is not, then we know that
the Counter Machine will be repeating a cycle containing the repeated configuration
indefinitely, and we declare the Counter Machine non-halting. We have constructed
an algorithm for determining whether our Counter Machine halts, which is a contra-
diction.

6 Multiclass Queueing Networks (MQNET) and undecidabil-
ity

The authors [GK07] show that characterizing stable queueing networks is an algo-
rithmically undecidable problem for the case of nonpreemptive static buffer priority
scheduling policies and deterministic interarrival and service times.

6.1 Mqnet Setting

Deterministic Multiclass Queueing Network. Collection of J service nodes,
S1, . . . , SJ , and N job classes, 1, . . . , N . Each node is assumed to be single-server type
and can process at most one job at a time. Class i has buffer i with capacity Bi which
can be finite or infinite. Qi(t) is the queue length corresponding to class i.
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Each class i is associated with an external arrival process Ai(0, t). In particular
deterministic class-dependent arrivals occur at nai + b, n = 0, 1, . . .) which arrived
externally to the buffer Bi during [0, t]. Routing of jobs is done by a zero-one N ×N
sub-stochastic matrix R. Here ∀i, l, Ri,l = 1, if every job which completes service in
class i at some time t is immediately routed to buffer Bl after the service completion
and Ri,l = 0 is otherwise.

Static Buffer Priority Scheduling Policy. For each server Sj, a permutation θj
of the elements belonging to Sj is fixed. ∀t corresponding to service completion in Sj,
the server Sj finds the index i ∈ Sj with the smallest value θj(i) such that Qi(t) > 0,
selects the job in the head of this queue and begins working on it. The vector θ = (θj),
1 ≤ j ≤ J , then completely specifies the scheduling policy.

A queueing network described by servers Sj, 1 ≤ j ≤ J , classes i = 1, 2, . . . , N , the
routing matrix R. interarrival times ai, delays bi and service times mi will be denoted
by Q.

The key differences in the setting of this queueing system from the NETWORK OF
QUEUES in Section 4 is: i) the setting here is not closed ; and ii) there is no routing
here, i.e., each the sub-stochastic matrix exactly determines the next customer class
for after each service; and iii) there is no question of control in the current. On the
other hand there is a stability question in the current setting.

Definition 6.1. A triplet (Q,Π, Q(0)) is defined to be stable if

sup
s≥0

∑
1≤i≤N

Qi(s) < ∞ (7)

A queueing network Q together with the scheduling policy Π is defined to be stable if
(Q,Π, Q(0)) is stable for every Q(0).

The following theorem is established in [GKR09].

Theorem 7. The problem of characterizing stable queueing networks for the case of
nonpreemptive static buffer priority scheduling policies and deterministic interarrival
and service times is undecidable.
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