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Abstract

We consider the travelling salesman problem (TSP) problem on (the metric completion of) 3-edge-connected cubic graphs.
These graphs are interesting because of the connection between their optimal solutions and the subtour elimination LP
relaxation. Our main result is an approximation algorithm better than the 3/2-approximation algorithm for TSP in general.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction In general the TSP problem is NP-complete and not
approximable to any constant. Even the metric variant
In this paper we consider the well-knovnavelling of TSP, where the edge weights 6 form a metric

salesman problerfT SP. Given a complete undirected  over the vertex set, is known to be MAXSNP-h§8il

graphG¢ = (V, E¢) with nonnegative edge weights, However, Christofide$5] introduced an elegant ap-

the goal is to find a shortest (according to the weights) proximation algorithm for metric TSP that produces

closed tour visiting each vertex exactly once. A closed a solution with an approximation factor 3/2. AlImost

tour visiting each vertex exactly once is also known three decades later, there is still no approximation al-

as aHamiltonian cycle gorithm with a better factor than Christofides’ 3/2 fac-
tor. A detailed survey of the results and the history of
TSP appears if7,6].
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each edge added is assigned the weight of the shortest This leads to the following conjecture with regard

path betweem andv. Since we only consider short-
est path metric completions in this paper, we will re-
fer to them as metric completions. In general, in this
paper we study the case whé&his a cubic 3-edge
connected graph an@. is its metric completion. All
edge weights of the original graph are 1.

One of the classical integer programming formula-
tions of the TSP problem is as follows:

min- Y Wi X 1)
(u,v)€E;
Z Xy =2 forallveV, )
(u,v)€E;
> xuw=2 forallg£scv, ©)
ueS,veV\s
X(u,v) € {0, 1} forallu,v e V. (4)

We denote optimal solutions of the above integer pro-
gram with 7 P* and its value withp;p+. As men-
tioned above, findind P* is NP-complete. Changing
requirement (4) to require thag, ,) >0 yields a linear
programming relaxation of the integer program also
known as thesubtour elimination relaxatiogSER for
short).

Despite the drawback that there are an exponential
number of constraints (of type (3)), SER can neverthe-
less be solved in polynomial time since each iteration
of the separation oracle is one mincut computation. We
denote withL P* the solution to SER and with; p«
its value. A measure for the quality of approximation
of an SER solution is the worst-case ratio (integrality

gap)
p = maxPAPX
PrLp*
wherep,px iS a value of an SER solution and the
maximum is over all instances of metric TSP.

The best-known upper bound to d§i®,11]shows
that p < 3/2. However, no example showingto be
3/2 is known. The well-known, and currently best,
lower bound orp appears irFig. 1 The full example
is a metric completion on this graph. To see th&@ 4
gap, setr,, ) to be 12 for the weight 2 edges in the
graph and,,,) to be 1 for the weight 1 edges. For all
other edges, sef, ) = 0. In Fig. 1 the optimal tour
is shown in the right-hand figure.

to p.

Conjecture. For metric TSRthe integrality gapp for
SER is4/3.

There have been numerous attempts to prove this
conjecture true; however, so far these attempts have
been unsuccessful. In fact, not only has the conjec-
ture not been proven so far, there has not even been
an improvement over the/2 factor. This has raised
the counterquestion: perhapg23is the best factor
achievable for the metric TSP problem. Or a some-
what milder variant of the question is, perhaps for
p=p;p+/pLp p=23/2 is the best achievable.

An optimal solution to the subtour elimination
LP is closely related tk-regular k-edge-connected
multigraphs in the following sense. Given an optimal
solution to the LP, we define the numk@rto be the
smallest common multiplier of the variableg for
all edgese, i.e. D satisfies that for each edge Dx
is integer. On the vertex s¥twe define a multigraph
with Dx} edges between verticas and v where
e = (u,v). This multigraph is D-regular and -
edge-connected by the constraints of the LP. Consider
the original graphs, which was later completed to a
metric as a TSP instance. Say the weights of all edges
were 1, i.e. it was unweighted. If the optimal value of
the LP wasn, i.e. G was “fractionally” Hamiltonian,
then it would be enough to find a tour of value
with « < 3/2 to improve on Cristofides algorithm for
that special (yet very general) case.

We consider probably the simplest class of graphs
satisfying the above properties, the cubic (that is,
3-regular) 3-edge-connected simple graphs with
weights 1. The metric completions of these graphs
have weights that can be substantially large. It is
easily seen thap; p~ = n on this class of graphs.
Indeed, consider the following solutiony, ,) = 2/3
if (u,v) € E andx, ), =0 otherwise. The feasibility
of this solution follows from the fact that graph is
cubic and 3-edge-connected. Since the value of this
solution isn andn is a trivial lower bound orp; p+,
this solution is optimal.

Thus, to improve the bound on the value of the op-
timal Hamiltonian cycle, it is enough to prove that
there is a Hamiltonian cycle of weight at mast in
G for . < 3/2. In this paper, we design a polynomial
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Fig. 1. An example for whictp is 4/3.

time algorithm which finds a Hamiltonian cycle @ Also say we have a spanning trée= (V, E) on

of weight at most(3/2 — 5/389n. Approximation al- a connected grapB. We call the multigrapiV, E),

gorithms with performance guarantees better theh 3  where E’ contains two copies of each edge Bf a

(or even PTASes) for other special classes of metric double spanning treé\Ve say that welouble Twhen

spaces can be found [t—3,8] we take a double spanning tree according to

There are several directions for possible improve- A cycle covelis a collection of node disjoint cycles

ments of our results. It is conceivable that the im- covering all nodes in a graph. The following result

provements over /2 approximations can be obtained from 1891 is due to Petersdf]. Its proof can be

for generalr-regular graphs. Another possibility is to  found in Behzad, Chartrand and Lesniak-Fo§4ér

obtain improved results for sparse graphs, say graphs

with maximum degree 3. At this point, we cannot even Lemma 1 (Petersenf9]). LetG=(V, E) be a2-edge-

lift the 3-connectivity restriction. connected cubic graph. The edge set E can be parti-
tioned into a perfect matching M and a cycle cover C

2. Preliminaries Note that both problems of finding a perfect match-
ing and finding a cycle cover are polynomially solv-

Consider a cubic 3-edge-connected graphand able. Using this result we show the following lemma.

the corresponding complete weighted graph Any

Hamiltonian cycle inG corresponds to some closed Lemma 2. LetG=(V, E) be a3-edge-connected cu-

path in G of the same weight that visits all vertices bic graph. The edge set E can be partitioned into a

at least once and, conversely, any such path corre-perfect matching M and a triangle-free cycle cover C

sponds to a Hamiltonian cycle ;. of the same (that is a cycle cover which does not contain cycles of

weight. Therefore, our original problem of finding length3).

a shortest Hamiltonian cycle i6; can be reformu-

lated as the problem of finding an Eulerian multi- Proof. We prove the lemma by induction on the size

graph with a minimum number of edges on the vertex of the graptG. If |V|=4 the lemmais trivial. Assume

setV using edges fronG only (possibly more than  we proved it for all graph& with | V| <n—2 (note that

once). |V| must be even). Consider a gra@twith |V|=n. If
Let G = (V, E) be a graph andZ’ C E be a col- G does not contain triangles, then by Lemma 1 graph
lection of edges. LeV, ..., Vi be a partition of the G can be split into a cycle coveZ (which must be

vertices according to the connected components of triangle-free) and a matchirg. Otherwise, letE’ be

(V, E’). The contractionof G according toE’ is a an arbitrary triangle and l&&* be the contraction db
multigraphG* = (V*, E*), whereV* = {Vq, ..., Vi} according tat’. G* is still cubic and 3-edge-connected
and E* contains an edgéV;, V;) for each original and has: — 2 vertices, and therefore can be splitinto a
edge(u, v) ¢ E' whereu € V; andv € V;. Note that matching and a triangle-free cycle cov@rNote that
there is a one—one correspondence between the edgei general when contracting 6*, parallel edges, and

of E’ from G and the edge£* from G*. Also note hence loops, may be created. However, siGds 3-

that there may be parallel edgesGif. edge-connected this does not happen. The contracted
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triangle E’ belongs to some cycle of length at least
[>4in C. If we uncontractt’, we can add two edges
from E’ to the cycle and get a cycle of lengtht 2

in the original graphG. The remaining edge of the
triangle E’ is added to the matching.[]

3. The TSP approximation algorithm
3.1. Algorithm outline

The algorithm we present utilizes the partition of
the edge seE into M U C implied by Lemma 2. (We
will be interested inC only and not inM.) C, the
cycle cover, is triangle-free. Hence, each cycl€iis
of length at least four. Obviously, if there is exactly
one cycle in the cycle cover, this is a Hamiltonian
cycle and we are done. Likewise, if all the cycles are
relatively large then transforming it into a Hamiltonian
cycle can be done at a small “cost”. The algorithm
considers two cases. In the first a large fraction of the
cycles are of size 5 or greater (we call this the high-five
property—to be defined later). If the cycle cowis
high-five then we can benefit from the fact that there

D. Gamarnik et al. / Operations Research Letters 33 (2005) 467—-474

Let us choose a partition of the edge et M UC
according to Lemma 2. We will be interested in the
cycle coverC. We first consider the situation whéh
is high-five and then the, more difficult case, when
is not high-five. Finally we choose theas a suitable
tradeoff between the high-five and non high-five cycle
covers as a result we will prove the following theorem.

Theorem 3. Given an arbitrary cubic 3-edge-
connected graptthe metric completion of this graph
contains a Hamiltonian cycle of weight at most
(3/2—-5/389n.

3.3. High-five cycle covers

When the cycle coveC is high-five, it is straight-
forward to show that an improvement over thg23
Christofides’ approximation can be obtained. This im-
provement is dependent a@rand is as follows.

Lemma 4. If the cycle cover C is high-fiyéhen G
has a Hamiltonian cycle of weight at mo&/2 —
¢/10)n.

are many large (greater than length four) cycles and Proof. Let G’ be the contraction d& according tcC.

utilize this to find a Hamiltonian cycle at a “reduced
cost”.

The more difficult situation to handle is when the
cycle coverC is not high-five. HereC contains a lot
of cycles of length four. In this case we manipul&te
in a collection of rounds in order to transform it into
a Eulerian graph from which a Eulerian tour is taken.
This is the heart of the algorithm and can be done in
a manner that improves over the approximation factor
over 3/2.

3.2. The high-five property

Throughout the algorithm presentation we will work
with a constant, to be set at the end of the analysis.

Note that, as mentioned above, the larger the cycles in

C the closer they are to a “real” TSP. The following
definition captures the notion of having many larger
cycles.

The high-five propertyWe say that a cycle cover
has thehigh-five property if the cycles of length five
and more inC contain at leastn vertices, whera is
the number of vertices iN.

Let T be a spanning tree ai’. DoubleT to get7T’. We
outputG” =(V, CUT’). ClearlyG" is Eulerian since
it is connected and all vertices have even degree and
therefore it corresponds to a Hamiltonian cycleiia

We now estimate the number of edgesdfi. Let
V4 € V be the set of vertices covered by the cycles of
length 4 inC. SinceC satisfies the high-five property,
|V\ V4] > en and therefore the total weight of the tour
is estimated above by

[Val VA V4] 3 ¢
Al <[22\
n+2< + ) (2 10);1 O

4 5
3.4. Cycle covers that are not high-five

We now consider the case where the cycle caver
is not high-five, i.e. whenV\ V4| < en. Let C’ be the
edges ofC from cycles of length exactly 4. L&’ be
the contraction ofG according toC’. First of all we
claim thatG’ does not contain self-loops since other-
wise it would contain the subgraph froRig. 2 and
therefore would not be 3-edge-connected.(8a@on-
tains |Vy4|/4 vertices of degree four an@\ V| < en
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Fig. 3. A chain of 2-cycles.

Fig. 2. Impossible 4-cycle in a 3-edge-connected graph. o
are 2-cycle-saturated and hence not incident to any

other edges, implying that the cycle of 2-cycles is a
vertices of degree three. The total number of edges in component ofG”. However,G” is a connected graph

G'is (|Val + 3|V \Va])/2. (Fig. 3.
Denote withC” all 2-cycles on chains. For each
3.4.1. Eliminating isolated 2-cycles chain the 2 vertices, at either end, are not 2-cycle satu-

In the contracted grapti’ there are nodes that cor- rated and hence are incident to one or two other edges,
respond to a single node & and hence still have de-  thetail edges We remove the” and tail edges from
gree 3, and nodes that correspond to cycles of length G”. In the case where there is exactly one cycle of 2-
4 in C the cycle cover orG. It is easy to verify that  cycles, we letC” be a Hamiltonian cycle containing
these nodes have degree 4. Moreover we may haveone edge from each 2-cycle. In this case we remove
parallel edges irG’. the Hamiltonian path fronG”. After removing these

A 2-cycle is a graph consisting of two parallel edges. edgesG” does not contain 2-cycles anymore.

We call a 2-cycle isolated if it does not have a com-  We now (greedily) find any cycle iG”, delete its
mon vertex with another 2-cycle. For each isolated 2- edges and all edges incident to this cycle from the
cycle in G, delete one of the two parallel edges in graph and add the cycle t©’. We repeat this process
the 2-cycle (notice that we cannot have three parallel until the graphG” becomes acyclic.
edges inG’ since otherwisés would not be 3-edge- Let p be the number of steps (cycles and chains)
connected). LeG” be the new graph. Since isolated in the above process ant;, i = 1,..., p, be the
2-cycles do not touch each other the deleted edgesnumber of vertices in the chain or cycle defined in step
form a matching inG’ and therefore the total number i. At the end of the above algorithng;” contains at
of edges inG” is at least most|Va| /44 |V\Val — >_4_, L vertices that are not
isolated. Sinc&” is acyclic without parallel edges, i.e.
[Val + 3[VAVal _ [Val/4+ [V\Val aforest, there are at mdsty| /4+|V\Val—>_4_; Lk —

32‘/ 2 1 edges. For each cycle or chain of lendgthdeleted
= [Val +|V\Val. from G”, there are at mostZ3 edges deleted from
8 G” and therefore
3.4.2. Removing 2-cycle chains and cycles p 3|Vl

It is possible that irG” some 2-cycles share anode. 3 Z Li>—— +|V\ V4
However, no more than two 2-cycles may share a (=1 8
node, since the degree of verticesGti is at most 4.

In fact, a node incident on two 2-cycles has no other — (

p
|Val/4+V\Val = Y Ly — 1)

edges incident upon it. Such a node is said to be 2- k=1
cycle-saturatedSince each 2-cycle saturated node is |Val P
incident to exactly two 2-cycles, the 2-cycle-saturated > t > Lk

k=1

nodes form a collection of (disjoint) chains (of 2-
cycles) and cycles (of 2-cycles). We also call the 2-
cycle-saturated nodemternal nodesas they must be
internal to the chain or cycle. However, note that the » A

only cycle of 2-cycles possible is one that contains ZL"/E' (5)
all vertices. This is true since all nodes on this cycle =1

Hence,
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Now, consider the originaf;”, i.e. the graph we had T
before removing the edges according@®. Let G” P Pl )
be the contraction ofi” according toC”. Remove the N -
self-loops fromG” and letT be a spanning tree @”. ¢ <« o

Let us estimate the total number of verticesGff,
which is one more than the size of the spanning tree
T. This number is also equal to the number of vertices Fig. 4. Solid edges are the 4-cycle Gfand the dashed edges are
in G” minus the total number of vertices in the cycles from the cycle inG”. Note that the 4-cycle is a supervertexGH.
and chains fron€” and plus the number of cycles and
chains inC”, i.e.

O O
p
T|+ 1< |Val/A+ [V\Val = Y Ly +p
k=1
237 Lk
<|Val/4+ |V\Va| — Z"T‘l (6) ; .

where|T'| denotes the number of edges in tieand

the second inequality follows from the fact thiat> 3 Fig. 5. Solid ed_ges,are the 4-cycle Gfand the dashed edges are
from the cycle inG”.
forallk=1,...,p.

3.4.3. Final Eulerian graph _ (and possibly removing edges from isolated 2-cycles).
We now build the final Eulerian graph i6. Let Since C” contains cycles and chains of 2-cycles in
C( be the edges in the graghcorresponding to the 7 5 vertexv in G can be adjacent to either 0, 1
edges fromC” (note that even though we have been ., - edges fromCY,. The parity of the degree of
transformingG, the edges in every stage are from the s oqd if it is adjacent to exactly one edge fraf.
original graphG, so althoughC” was defined on @  Thjs can happen only if belongs to a 4-cycle i
transformgd graph the edges are still originally from poreover by construction af” the cycles and chains
G). We will transform the grapl€ U C; so that the  of 2_cycles inC” are vertex disjoint (relative even to
degrees of all vertices will become even to satisfy the G"), so for each 4-cycle i€, which corresponds to a
Eulerian requirements. We also guarantee that the neWyertex inG”. it can be either on a cycle @, on a

graph contains at most+ »_/_; L, edges and that 2-cycle chain or on neither. But never on both. Hence
the connectivity properties are not destroyed, i.e. every \ye have two cases.
connected component of the transformed graph is a case1: This vertex belongs to some cycle of length
connected component of the original graph and vice for and it is incident to exactly one edge from some
versa. 6fter we transforr@UC |, to maintain the "‘even cycle inCJ, (see left figures in Figst ands5).
degree” requirement we add a doubled spannmg‘l’tree For any cycle of length four irC there are either
to connect all connected component<of C; while none or two such vertices. In the latter case, if these
maintaining the “even degree” requirement. Hence, the yertices are adjacent in the cycle of length four we
graph will be Eulerian. just delete the edge connecting them which decreases
their degrees by one, s&ég. 4. This procedure does

3.4.4. Transforming” U C{; into a graph with even not change connectivity since we throw away just one
degree vertices edge per cycle. If a cycler, va, v3, v4 Of length four

We begin by analyzing the reasons for an odd de- has two vertices1, vz of odd degrees which are not
gree vertex inC U C/,. SinceC is a cycle cover on  adjacent we throw away edge;, v2) and add edge
the original G, each vertex has exactly two edges in (vg, v3), seeFig. 5. Again after this transformation the
cucy fromtheC cycles.G” is obtained by contract-  degrees of all vertices in the cycle are even and the
ing cycles of length 4 irC into (super)vertices " connectivity of the component remains intact. More-
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over, the transformation does not increase the total
number of edges in a component.

Case2: The vertex of odd degree belongs to a cycle
of length four and the vertex corresponding to this
cycle in G” belongs to a chain of 2-cycles @".

Lemma 5. Every node in this chain corresponds to a
cycle of length four in C

Proof. Indeed, every internal (2-cycle-saturated) node
of this chain is a cycle of length four i€ since it
has degree four i6;”. Every end node of a chain also
corresponds to a 4-cycle. In fact, otherwise it would
have degree three i” and two edges of a chain
connecting this vertex to an internal 4-cycle (which
belongs toC) cannot belong to any cycle i@. Since
the end node itself does belong to some cycl€,jrit
must be incident to two additional edges, but then its
degree is 4, a contradiction.]

We distinguish between internal (2-cycle-saturated)

473

3.4.5. Upper bounding the size of the Eulerian graph
In the previous section we explained how to trans-
form graphC U C¢; into an Eulerian graph. Let us call
this graphG,. We now upper bound the total number
of edges inG;. If p1 is the number of chains ig"”
and pz is the number of cycles i€”, thenC U C(;
contain at most +23 7% (L = 1) + 37, 14 L
edges wherep = p1 + p2. During the transforma-
tion we never increase the current number of edges
in our graph, but we need a stronger statement since
we would like to show that the number of edges in
G, is atmostr + >_7_, Li; we do it by showing that
we delete enough edges when we transform chains of
supervertices corresponding to cycles of length four.
Indeed, for each chain of lengity we delete at least
2(Ly — 2) edges when we transform internal cycles of
a chain (2 per each internal node of a chain). There-
fore, the total number of edges i@, can be upper
bounded by

pP1 Pl

nodes on these chains and between the end nodes of the, + 2Z(Lk -1+ Z Ly—2 Z(Lk -2

chain. Consider a 4-cycle corresponding to an internal
(2-cycle saturated) node of a chain. Let us denote it
v1, U2, v3, v4. All these vertices have degree three in
C U C{, 2 edges from the cycl€ that they partici-
pate upon and the only other edgeis connected to
corresponds to a 2-cycle edgedr which is chosen
in C” as a chain of 2-cycles (since this 4-cycle is an
internal node inG”).

Therefore, by deleting two edgé€ss, vz), (vs, va)
or (v1, va), (v2, v3) we make all degrees of vertices
v1, U2, U3, v4 even. Moreover, one of these two vari-
ants does not destroy connectivity, since the initial
chain consisting of the internal 4-cycles, end 4-cycles

and pairs of edges connecting the 4-cycles, contains

two vertex disjoint paths, i, connecting end cycles.
Therefore, if we throw away two opposite edges in
each internal 4-cycle not belonging to these paths we
do not disconnect vertices of the 4-cycle from each
other. For two external nodes of a chain we apply the
argument identical to the one from case 1. There are
exactly two nodes of odd degree on a 4-cycle corre-
sponding to an end of a chain; if these two nodes are
connected by an edge in a 4-cycle, we delete it. Oth-
erwise, ifvy andvz are vertices with odd degree in a
4-cycle v, vp, v3, v4 We delete the edgév1, vo) and
add the edgévy, v3).

k=1 k=p1+1 k=1
p p
<n+2p1+ Z Lk<n+ZLk

k=p1+1 k=1

sinceL; >3 for all k.

Let us estimate the total number of edges in the final
Eulerian graph, which contains tl& and a doubled
spanning tred over its connected components. This
number can be estimated above by

p

n+ Y Li+2T|
k=1

(7)

p
L
<+ (Val/2+ 2v\vy — izt
1
5~ —) [Va| 4+ 2|V \Va|
- 3 1 o 3 n 1)
S\27 a8 2" a8)"
one follows from (5) and the last one follows from the
fact that|V\ V4| < en. The inequality (7) implies the

3
<1
<n +
where the first inequality follows from (6), the second
following lemma.
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Lemma 6. If the cycle cover C is not high-fivéhen
G has a Hamiltonian cycle of weight at ma&y/2 —
1/48)n + (3/2 + 1/48)en.

3.5. Trading off high-five and non high-five cycle
covers

To achieve our final result, we need to tradeoff high-
five cycle covers and cycle covers which are not high-
five. To achieve this we optimize over inequalities
in Lemmas 4 and 6 and obtain Theorem 3.

The construction is obviously achievable in poly-
nomial time, since all it involves is finding a perfect
matching (the cycle cover is then immediately obtain-
able), detecting cycles of length 4, chains of 2-cycles
over them and then greedily finding cycles. Also the
spanning tree can be found in polynomial time.
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