
Operations Research Letters 33 (2005) 467–474

Operations
Research
Letters
www.elsevier.com/locate/orl

An improved upper bound for theTSP in cubic 3-edge-connected
graphs

David Gamarnikb, Moshe Lewensteina,∗,1, Maxim Sviridenkob

aDepartment of Computer Science, Bar Ilan University, Room 323, Mailbox 50, Ramat Gan 52900, Israel
bIBM T. J. Watson Research Center, Yorktown Heights, P.O. Box 218, NY 10598, USA

Received 20 January 2004; accepted 3 September 2004

Abstract

We consider the travelling salesman problem (TSP) problem on (the metric completion of) 3-edge-connected cubic graphs.
These graphs are interesting because of the connection between their optimal solutions and the subtour elimination LP
relaxation. Our main result is an approximation algorithm better than the 3/2-approximation algorithm for TSP in general.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Approximation algorithms; Travelling salesman problem; Graphs; Regular graphs

1. Introduction

In this paper we consider the well-knowntravelling
salesman problem(TSP). Given a complete undirected
graphGc = (V , Ec) with nonnegative edge weights,
the goal is to find a shortest (according to the weights)
closed tour visiting each vertex exactly once. A closed
tour visiting each vertex exactly once is also known
as aHamiltonian cycle.

∗ Corresponding author. Tel.: +97235317668; fax: +9723736
0498.

E-mail addresses:gamarnik@watson.ibm.com(D. Gamarnik),
moshe@cs.biu.ac.il(M. Lewenstein),sviri@us.ibm.com
(M. Sviridenko).

1 The research in this paper was done when the author was a
postdoc at IBM T.J. Watson Research Center.

0167-6377/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2004.09.005

In general the TSP problem is NP-complete and not
approximable to any constant. Even the metric variant
of TSP, where the edge weights ofGc form a metric
over the vertex set, is known to be MAXSNP-hard[8].
However, Christofides[5] introduced an elegant ap-
proximation algorithm for metric TSP that produces
a solution with an approximation factor 3/2. Almost
three decades later, there is still no approximation al-
gorithm with a better factor than Christofides’ 3/2 fac-
tor. A detailed survey of the results and the history of
TSP appears in[7,6].
Let G be an arbitrary graph with edge weights that

do not violate the triangle inequality. Ametric com-
pletion on G is the completion ofG into a complete
graphGc such that each added edge(u, v) is weighted
in a manner so thatGc forms a metric. Ashortest path
metric completionis a metric completion for which

http://www.elsevier.com/locate/orl
mailto:gamarnik@watson.ibm.com
mailto:moshe@cs.biu.ac.il
mailto:sviri@us.ibm.com

468 D. Gamarnik et al. / Operations Research Letters 33 (2005) 467–474

each edge added is assigned the weight of the shortest
path betweenu andv. Since we only consider short-
est path metric completions in this paper, we will re-
fer to them as metric completions. In general, in this
paper we study the case whenG is a cubic 3-edge
connected graph andGc is its metric completion. All
edge weights of the original graph are 1.
One of the classical integer programming formula-

tions of the TSP problem is as follows:

min
∑

(u,v)∈Ec

w(u,v)x(u,v) (1)

∑
(u,v)∈Ec

x(u,v) = 2 for all v ∈ V, (2)

∑
u∈S,v∈V \S

x(u,v) �2 for all ∅ �= S ⊂ V, (3)

x(u,v) ∈ {0,1} for all u, v ∈ V. (4)

We denote optimal solutions of the above integer pro-
gram with IP ∗ and its value with�IP ∗ . As men-
tioned above, findingIP ∗ is NP-complete. Changing
requirement (4) to require thatx(u,v) �0 yields a linear
programming relaxation of the integer program also
known as thesubtour elimination relaxation(SER for
short).
Despite the drawback that there are an exponential

number of constraints (of type (3)), SER can neverthe-
less be solved in polynomial time since each iteration
of the separation oracle is onemincut computation.We
denote withLP ∗ the solution to SER and with�LP ∗
its value. A measure for the quality of approximation
of an SER solution is the worst-case ratio (integrality
gap)

� =max
�APX

�LP ∗
,

where�APX is a value of an SER solution and the
maximum is over all instances of metric TSP.
The best-known upper bound to date[10,11]shows

that ��3/2. However, no example showing� to be
3/2 is known. The well-known, and currently best,
lower bound on� appears inFig. 1. The full example
is a metric completion on this graph. To see the 4/3
gap, setx(u,v) to be 1/2 for the weight 2 edges in the
graph andx(u,v) to be 1 for the weight 1 edges. For all
other edges, setx(u,v) = 0. In Fig. 1 the optimal tour
is shown in the right-hand figure.

This leads to the following conjecture with regard
to �.

Conjecture. For metric TSP, the integrality gap� for
SER is4/3.

There have been numerous attempts to prove this
conjecture true; however, so far these attempts have
been unsuccessful. In fact, not only has the conjec-
ture not been proven so far, there has not even been
an improvement over the 3/2 factor. This has raised
the counterquestion: perhaps 3/2 is the best factor
achievable for the metric TSP problem. Or a some-
what milder variant of the question is, perhaps for
� = �IP ∗/�LP ∗ , � = 3/2 is the best achievable.
An optimal solution to the subtour elimination

LP is closely related tok-regular k-edge-connected
multigraphs in the following sense. Given an optimal
solution to the LP, we define the numberD to be the
smallest common multiplier of the variablesx∗

e for
all edgese, i.e.D satisfies that for each edgee, Dx∗

e

is integer. On the vertex setV we define a multigraph
with Dx∗

e edges between verticesu and v where
e = (u, v). This multigraph is 2D-regular and 2D-
edge-connected by the constraints of the LP. Consider
the original graphG, which was later completed to a
metric as a TSP instance. Say the weights of all edges
were 1, i.e. it was unweighted. If the optimal value of
the LP wasn, i.e.G was “fractionally” Hamiltonian,
then it would be enough to find a tour of value�n

with �<3/2 to improve on Cristofides algorithm for
that special (yet very general) case.
We consider probably the simplest class of graphs

satisfying the above properties, the cubic (that is,
3-regular) 3-edge-connected simple graphs with
weights 1. The metric completions of these graphs
have weights that can be substantially large. It is
easily seen that�LP ∗ = n on this class of graphs.
Indeed, consider the following solution:x(u,v) = 2/3
if (u, v) ∈ E andx(u,v) = 0 otherwise. The feasibility
of this solution follows from the fact that graphG is
cubic and 3-edge-connected. Since the value of this
solution isn andn is a trivial lower bound on�LP ∗ ,
this solution is optimal.
Thus, to improve the bound on the value of the op-

timal Hamiltonian cycle, it is enough to prove that
there is a Hamiltonian cycle of weight at most�n in
Gc for �<3/2. In this paper, we design a polynomial

D. Gamarnik et al. / Operations Research Letters 33 (2005) 467–474 469

1 1 1

1 1 111 1

1 1 1 1

...

...

...

1 1 1

2

2

2
2

2
2

...

Fig. 1. An example for which� is 4/3.

time algorithm which finds a Hamiltonian cycle inGc
of weight at most(3/2− 5/389)n. Approximation al-
gorithms with performance guarantees better than 3/2
(or even PTASes) for other special classes of metric
spaces can be found in[1–3,8].
There are several directions for possible improve-

ments of our results. It is conceivable that the im-
provements over 3/2 approximations can be obtained
for generalr-regular graphs. Another possibility is to
obtain improved results for sparse graphs, say graphs
with maximum degree 3. At this point, we cannot even
lift the 3-connectivity restriction.

2. Preliminaries

Consider a cubic 3-edge-connected graphG and
the corresponding complete weighted graphGc. Any
Hamiltonian cycle inGc corresponds to some closed
path inG of the same weight that visits all vertices
at least once and, conversely, any such path corre-
sponds to a Hamiltonian cycle inGc of the same
weight. Therefore, our original problem of finding
a shortest Hamiltonian cycle inGc can be reformu-
lated as the problem of finding an Eulerian multi-
graph with a minimum number of edges on the vertex
setV using edges fromG only (possibly more than
once).
Let G = (V , E) be a graph andE′ ⊂ E be a col-

lection of edges. LetV1, . . . , Vk be a partition of the
vertices according to the connected components of
(V , E′). The contractionof G according toE′ is a
multigraphG∗ = (V ∗, E∗), whereV ∗ = {V1, . . . , Vk}
andE∗ contains an edge(Vi, Vj) for each original
edge(u, v) /∈ E′ whereu ∈ Vi andv ∈ Vj . Note that
there is a one–one correspondence between the edges
of E′ from G and the edgesE∗ from G∗. Also note
that there may be parallel edges inG∗.

Also say we have a spanning treeT = (V , E) on
a connected graphG. We call the multigraph(V , E′),
whereE′ contains two copies of each edge ofE, a
double spanning tree. We say that wedouble Twhen
we take a double spanning tree according toT.
A cycle coveris a collection of node disjoint cycles

covering all nodes in a graph. The following result
from 1891 is due to Petersen[9]. Its proof can be
found in Behzad, Chartrand and Lesniak-Foster[4].

Lemma 1 (Petersen[9]). LetG=(V , E) be a2-edge-
connected cubic graph. The edge set E can be parti-
tioned into a perfect matching M and a cycle cover C.

Note that both problems of finding a perfect match-
ing and finding a cycle cover are polynomially solv-
able. Using this result we show the following lemma.

Lemma 2. LetG=(V , E) be a3-edge-connected cu-
bic graph. The edge set E can be partitioned into a
perfect matching M and a triangle-free cycle cover C
(that is a cycle cover which does not contain cycles of
length3).

Proof. We prove the lemma by induction on the size
of the graphG. If |V |=4 the lemma is trivial. Assume
we proved it for all graphsGwith |V |�n−2 (note that
|V | must be even). Consider a graphGwith |V |=n. If
G does not contain triangles, then by Lemma 1 graph
G can be split into a cycle coverC (which must be
triangle-free) and a matchingM. Otherwise, letE′ be
an arbitrary triangle and letG∗ be the contraction ofG
according toE′.G∗ is still cubic and 3-edge-connected
and hasn−2 vertices, and therefore can be split into a
matching and a triangle-free cycle coverC. Note that
in general when contracting toG∗, parallel edges, and
hence loops, may be created. However, sinceG is 3-
edge-connected this does not happen. The contracted

470 D. Gamarnik et al. / Operations Research Letters 33 (2005) 467–474

triangleE′ belongs to some cycle of length at least
l�4 inC. If we uncontractE′, we can add two edges
from E′ to the cycle and get a cycle of lengthl + 2
in the original graphG. The remaining edge of the
triangleE′ is added to the matching.�

3. The TSP approximation algorithm

3.1. Algorithm outline

The algorithm we present utilizes the partition of
the edge setE into M ∪ C implied by Lemma 2. (We
will be interested inC only and not inM.) C, the
cycle cover, is triangle-free. Hence, each cycle inC is
of length at least four. Obviously, if there is exactly
one cycle in the cycle cover, this is a Hamiltonian
cycle and we are done. Likewise, if all the cycles are
relatively large then transforming it into a Hamiltonian
cycle can be done at a small “cost”. The algorithm
considers two cases. In the first a large fraction of the
cycles are of size 5 or greater (we call this the high-five
property—to be defined later). If the cycle coverC is
high-five then we can benefit from the fact that there
are many large (greater than length four) cycles and
utilize this to find a Hamiltonian cycle at a “reduced
cost”.
The more difficult situation to handle is when the

cycle coverC is not high-five. HereC contains a lot
of cycles of length four. In this case we manipulateC
in a collection of rounds in order to transform it into
a Eulerian graph from which a Eulerian tour is taken.
This is the heart of the algorithm and can be done in
a manner that improves over the approximation factor
over 3/2.

3.2. The high-five property

Throughout the algorithm presentation wewill work
with a constant�, to be set at the end of the analysis.
Note that, as mentioned above, the larger the cycles in
C the closer they are to a “real” TSP. The following
definition captures the notion of having many larger
cycles.
The high-five property: We say that a cycle cover

has thehigh-fiveproperty if the cycles of length five
and more inC contain at least�n vertices, wheren is
the number of vertices inV.

Let us choose a partition of the edge setE =M ∪C

according to Lemma 2. We will be interested in the
cycle coverC. We first consider the situation whenC
is high-five and then the, more difficult case, whenC
is not high-five. Finally we choose the� as a suitable
tradeoff between the high-five and non high-five cycle
covers as a result we will prove the following theorem.

Theorem 3. Given an arbitrary cubic 3-edge-
connected graph, the metric completion of this graph
contains a Hamiltonian cycle of weight at most
(3/2− 5/389)n.

3.3. High-five cycle covers

When the cycle coverC is high-five, it is straight-
forward to show that an improvement over the 3/2
Christofides’ approximation can be obtained. This im-
provement is dependent on� and is as follows.

Lemma 4. If the cycle cover C is high-five, thenGc
has a Hamiltonian cycle of weight at most(3/2 −
�/10)n.

Proof. LetG′ be the contraction ofG according toC.
LetT be a spanning tree onG′. DoubleT to getT ′. We
outputG′′ = (V , C ∪T ′). ClearlyG′′ is Eulerian since
it is connected and all vertices have even degree and
therefore it corresponds to a Hamiltonian cycle inGc.
We now estimate the number of edges inG′′. Let

V4 ⊆ V be the set of vertices covered by the cycles of
length 4 inC. SinceC satisfies the high-five property,
|V \V4|��n and therefore the total weight of the tour
is estimated above by

n + 2

(|V4|
4

+ |V \V4|
5

)
�
(
3

2
− �

10

)
n. �

3.4. Cycle covers that are not high-five

We now consider the case where the cycle coverC
is not high-five, i.e. when|V \V4| < �n. Let C′ be the
edges ofC from cycles of length exactly 4. LetG′ be
the contraction ofG according toC′. First of all we
claim thatG′ does not contain self-loops since other-
wise it would contain the subgraph fromFig. 2 and
therefore would not be 3-edge-connected. SoG′ con-
tains |V4|/4 vertices of degree four and|V \V4| < �n

D. Gamarnik et al. / Operations Research Letters 33 (2005) 467–474 471

... ...

Fig. 2. Impossible 4-cycle in a 3-edge-connected graph.

vertices of degree three. The total number of edges in
G′ is (|V4| + 3|V \V4|)/2.

3.4.1. Eliminating isolated 2-cycles
In the contracted graphG′ there are nodes that cor-

respond to a single node inG and hence still have de-
gree 3, and nodes that correspond to cycles of length
4 in C the cycle cover onG. It is easy to verify that
these nodes have degree 4. Moreover we may have
parallel edges inG′.
A 2-cycle is a graph consisting of two parallel edges.

We call a 2-cycle isolated if it does not have a com-
mon vertex with another 2-cycle. For each isolated 2-
cycle in G′, delete one of the two parallel edges in
the 2-cycle (notice that we cannot have three parallel
edges inG′ since otherwiseG would not be 3-edge-
connected). LetG′′ be the new graph. Since isolated
2-cycles do not touch each other the deleted edges
form a matching inG′ and therefore the total number
of edges inG′′ is at least

|V4| + 3|V \V4|
2

− |V4|/4+ |V \V4|
2

= 3|V4|
8

+ |V \V4|.

3.4.2. Removing 2-cycle chains and cycles
It is possible that inG′′ some 2-cycles share a node.

However, no more than two 2-cycles may share a
node, since the degree of vertices inG′′ is at most 4.
In fact, a node incident on two 2-cycles has no other
edges incident upon it. Such a node is said to be 2-
cycle-saturated. Since each 2-cycle saturated node is
incident to exactly two 2-cycles, the 2-cycle-saturated
nodes form a collection of (disjoint) chains (of 2-
cycles) and cycles (of 2-cycles). We also call the 2-
cycle-saturated nodes,internal nodesas they must be
internal to the chain or cycle. However, note that the
only cycle of 2-cycles possible is one that contains
all vertices. This is true since all nodes on this cycle

Fig. 3. A chain of 2-cycles.

are 2-cycle-saturated and hence not incident to any
other edges, implying that the cycle of 2-cycles is a
component ofG′′. However,G′′ is a connected graph
(Fig. 3).
Denote withC′′ all 2-cycles on chains. For each

chain the 2 vertices, at either end, are not 2-cycle satu-
rated and hence are incident to one or two other edges,
the tail edges. We remove theC′′ and tail edges from
G′′. In the case where there is exactly one cycle of 2-
cycles, we letC′′ be a Hamiltonian cycle containing
one edge from each 2-cycle. In this case we remove
the Hamiltonian path fromG′′. After removing these
edges,G′′ does not contain 2-cycles anymore.
We now (greedily) find any cycle inG′′, delete its

edges and all edges incident to this cycle from the
graph and add the cycle toC′′. We repeat this process
until the graphG′′ becomes acyclic.
Let p be the number of steps (cycles and chains)

in the above process andLi, i = 1, . . . , p, be the
number of vertices in the chain or cycle defined in step
i. At the end of the above algorithm,G′′ contains at
most|V4|/4+|V \V4|−∑p

k=1Lk vertices that are not
isolated. SinceG′′ is acyclic without parallel edges, i.e.
a forest, there are at most|V4|/4+|V \V4|−∑p

k=1Lk−
1 edges. For each cycle or chain of lengthLk deleted
from G′′, there are at most 3Lk edges deleted from
G′′ and therefore

3
p∑

k=1

Lk � 3|V4|
8

+ |V \V4|

−
(

|V4|/4+ |V \V4| −
p∑

k=1

Lk − 1

)

� |V4|
8

+
p∑

k=1

Lk.

Hence,

p∑
k=1

Lk � |V4|
16

. (5)

472 D. Gamarnik et al. / Operations Research Letters 33 (2005) 467–474

Now, consider the originalG′′, i.e. the graph we had
before removing the edges according toC′′. Let G′′′
be the contraction ofG′′ according toC′′. Remove the
self-loops fromG′′′ and letTbe a spanning tree inG′′′.
Let us estimate the total number of vertices inG′′′,

which is one more than the size of the spanning tree
T. This number is also equal to the number of vertices
in G′′ minus the total number of vertices in the cycles
and chains fromC′′ and plus the number of cycles and
chains inC′′, i.e.

|T | + 1� |V4|/4+ |V \V4| −
p∑

k=1

Lk + p

� |V4|/4+ |V \V4| − 2
∑p

k=1Lk

3
, (6)

where|T | denotes the number of edges in treeT and
the second inequality follows from the fact thatLk �3
for all k = 1, . . . , p.

3.4.3. Final Eulerian graph
We now build the final Eulerian graph inG. Let

C′′
G be the edges in the graphG corresponding to the

edges fromC′′ (note that even though we have been
transformingG, the edges in every stage are from the
original graphG, so althoughC′′ was defined on a
transformed graph the edges are still originally from
G). We will transform the graphC ∪ C′′

G so that the
degrees of all vertices will become even to satisfy the
Eulerian requirements. We also guarantee that the new
graph contains at mostn + ∑p

k=1Lk edges and that
the connectivity properties are not destroyed, i.e. every
connected component of the transformed graph is a
connected component of the original graph and vice
versa.After we transformC∪C′′

G to maintain the “even
degree” requirement we add a doubled spanning treeT
to connect all connected components ofC ∪C′′

G while
maintaining the “even degree” requirement. Hence, the
graph will be Eulerian.

3.4.4. TransformingC ∪ C′′
G into a graph with even

degree vertices
We begin by analyzing the reasons for an odd de-

gree vertex inC ∪ C′′
G. SinceC is a cycle cover on

the originalG, each vertex has exactly two edges in
C∪C′′

G from theC cycles.G′′ is obtained by contract-
ing cycles of length 4 inC into (super)vertices inG′′

Fig. 4. Solid edges are the 4-cycle ofC and the dashed edges are
from the cycle inG′′. Note that the 4-cycle is a supervertex inG′′.

Fig. 5. Solid edges are the 4-cycle ofC and the dashed edges are
from the cycle inG′′.

(and possibly removing edges from isolated 2-cycles).
SinceC′′ contains cycles and chains of 2-cycles in
G′′, a vertexv in G can be adjacent to either 0, 1
or 2 edges fromC′′

G. The parity of the degree ofv
is odd if it is adjacent to exactly one edge fromC′′

G.
This can happen only ifv belongs to a 4-cycle inC.
Moreover by construction ofC′′ the cycles and chains
of 2-cycles inC′′ are vertex disjoint (relative even to
G′′), so for each 4-cycle inC, which corresponds to a
vertex inG′′, it can be either on a cycle ofC′′, on a
2-cycle chain or on neither. But never on both. Hence
we have two cases.
Case1: This vertex belongs to some cycle of length

four and it is incident to exactly one edge from some
cycle inC′′

G (see left figures in Figs.4 and5).
For any cycle of length four inC there are either

none or two such vertices. In the latter case, if these
vertices are adjacent in the cycle of length four we
just delete the edge connecting them which decreases
their degrees by one, seeFig. 4. This procedure does
not change connectivity since we throw away just one
edge per cycle. If a cyclev1, v2, v3, v4 of length four
has two verticesv1, v3 of odd degrees which are not
adjacent we throw away edge(v1, v2) and add edge
(v2, v3), seeFig. 5. Again after this transformation the
degrees of all vertices in the cycle are even and the
connectivity of the component remains intact. More-

D. Gamarnik et al. / Operations Research Letters 33 (2005) 467–474 473

over, the transformation does not increase the total
number of edges in a component.
Case2: The vertex of odd degree belongs to a cycle

of length four and the vertex corresponding to this
cycle inG′′ belongs to a chain of 2-cycles inC′′.

Lemma 5. Every node in this chain corresponds to a
cycle of length four in C.

Proof. Indeed, every internal (2-cycle-saturated) node
of this chain is a cycle of length four inC since it
has degree four inG′′. Every end node of a chain also
corresponds to a 4-cycle. In fact, otherwise it would
have degree three inG′′ and two edges of a chain
connecting this vertex to an internal 4-cycle (which
belongs toC) cannot belong to any cycle inC. Since
the end node itself does belong to some cycle inC, it
must be incident to two additional edges, but then its
degree is 4, a contradiction.�

We distinguish between internal (2-cycle-saturated)
nodes on these chains and between the end nodes of the
chain. Consider a 4-cycle corresponding to an internal
(2-cycle saturated) node of a chain. Let us denote it
v1, v2, v3, v4. All these vertices have degree three in
C ∪ C′′

G, 2 edges from the cycleC that they partici-
pate upon and the only other edgevi is connected to
corresponds to a 2-cycle edge inG′′ which is chosen
in C′′ as a chain of 2-cycles (since this 4-cycle is an
internal node inG′′).
Therefore, by deleting two edges(v1, v2), (v3, v4)

or (v1, v4), (v2, v3) we make all degrees of vertices
v1, v2, v3, v4 even. Moreover, one of these two vari-
ants does not destroy connectivity, since the initial
chain consisting of the internal 4-cycles, end 4-cycles
and pairs of edges connecting the 4-cycles, contains
two vertex disjoint paths, inG, connecting end cycles.
Therefore, if we throw away two opposite edges in
each internal 4-cycle not belonging to these paths we
do not disconnect vertices of the 4-cycle from each
other. For two external nodes of a chain we apply the
argument identical to the one from case 1. There are
exactly two nodes of odd degree on a 4-cycle corre-
sponding to an end of a chain; if these two nodes are
connected by an edge in a 4-cycle, we delete it. Oth-
erwise, ifv1 andv3 are vertices with odd degree in a
4-cyclev1, v2, v3, v4 we delete the edge(v1, v2) and
add the edge(v2, v3).

3.4.5. Upper bounding the size of the Eulerian graph
In the previous section we explained how to trans-

form graphC ∪C′′
G into an Eulerian graph. Let us call

this graphGt . We now upper bound the total number
of edges inGt . If p1 is the number of chains inC′′
andp2 is the number of cycles inC′′, thenC ∪ C′′

G

contain at mostn + 2
∑p1

k=1(Lk − 1) +∑p
k=p1+1Lk

edges wherep = p1 + p2. During the transforma-
tion we never increase the current number of edges
in our graph, but we need a stronger statement since
we would like to show that the number of edges in
Gt is at mostn +∑p

k=1Lk; we do it by showing that
we delete enough edges when we transform chains of
supervertices corresponding to cycles of length four.
Indeed, for each chain of lengthLk we delete at least
2(Lk −2) edges when we transform internal cycles of
a chain (2 per each internal node of a chain). There-
fore, the total number of edges inGt can be upper
bounded by

n + 2
p1∑

k=1

(Lk − 1) +
p∑

k=p1+1

Lk − 2
p1∑

k=1

(Lk − 2)

�n + 2p1 +
p∑

k=p1+1

Lk �n +
p∑

k=1

Lk

sinceLk �3 for all k.
Let us estimate the total number of edges in the final

Eulerian graph, which contains theGt and a doubled
spanning treeT over its connected components. This
number can be estimated above by

n +
p∑

k=1

Lk + 2|T |

�n + |V4|/2+ 2|V \V4| −
∑p

k=1Lk

3

�n +
(
1

2
− 1

48

)
|V4| + 2|V \V4|

�
(
3

2
− 1

48

)
n +

(
3

2
+ 1

48

)
�n, (7)

where the first inequality follows from (6), the second
one follows from (5) and the last one follows from the
fact that|V \V4| < �n. The inequality (7) implies the
following lemma.

474 D. Gamarnik et al. / Operations Research Letters 33 (2005) 467–474

Lemma 6. If the cycle cover C is not high-five, then
Gc has a Hamiltonian cycle of weight at most(3/2−
1/48)n + (3/2+ 1/48)�n.

3.5. Trading off high-five and non high-five cycle
covers

To achieve our final result, we need to tradeoff high-
five cycle covers and cycle covers which are not high-
five. To achieve this we optimize� over inequalities
in Lemmas 4 and 6 and obtain Theorem 3.
The construction is obviously achievable in poly-

nomial time, since all it involves is finding a perfect
matching (the cycle cover is then immediately obtain-
able), detecting cycles of length 4, chains of 2-cycles
over them and then greedily finding cycles. Also the
spanning tree can be found in polynomial time.

Acknowledgements

We thank the anonymous referees of this paper for
providing comments that improved the exposition of
this paper.

References

[1] S. Arora, Polynomial time approximation schemes for
Euclidean traveling salesman and other geometric problems,
J. ACM 45 (5) (1998) 753–782.

[2] S. Arora, M. Grigni, D. Karger, P. Klein, A. Woloszyn, A
polynomial-time approximation scheme for weighted planar
graph TSP, Proceedings of the Symposium on Discrete
Algorithms, 1998, pp. 33–41.

[3] D. Arun Kumar, C. Pandu Rangan, Approximation algorithms
for the traveling salesman problem with range condition,
Theoret. Inform. Appl. 34 (3) (2000) 173–181.

[4] M. Behzad, G. Chartrand, L. Lesniak-Foster, Graphs and
Digraphs, PWS Publishers, Massachusetts, 1979.

[5] N. Christofides, Worst-case analysis of a new heuristic for
the travelling salesman problem, Technical Report, Carnegie
Mellon University, 1976.

[6] G. Gutin, A. Punnen (Eds.), The Traveling Salesman Problem
and its Variations, Kluwer Academic Publishers, Dordrecht,
2002.

[7] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys
(Eds.), The Traveling Salesman Problem, John Wiley, New
York, 1985.

[8] C.H. Papadimitriou, M. Yannakakis, The traveling salesman
problem with distances one and two, Math. Oper. Res. 18
(1993) 1–11.

[9] J. Petersen, Die Theorie der Regulären Graphen, Acta Math.
15 (1891) 193–220.

[10] D.B. Shmoys, D.P. Williamson, Analyzing the Held-Karp
TSP bound: a monotonicity property with application, Inform.
Process. Lett. 35 (6) (1990) 281–285.

[11] L. Wolsey, Heuristic analysis, linear programming and branch
and bound, Math. Programming Stud. 13 (1980) 121–134.

	An improved upper bound for the TSP in cubic 3-edge-connected graphs
	Introduction
	Preliminaries
	The TSP approximation algorithm
	Algorithm outline
	The high-five property
	High-five cycle covers
	Cycle covers that are not high-five
	Eliminating isolated 2-cycles
	Removing 2-cycle chains and cycles
	Final Eulerian graph
	Transforming C=2ptCG into a graph with even degree vertices
	Upper bounding the size of the Eulerian graph

	Trading off high-five and non high-five cycle covers

	Acknowledgements
	References

