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ABSTRACT: Let G(n, c/n) and Gr(n) be an n-node sparse random graph and a sparse random r-
regular graph, respectively, and let I(n, r) and I(n, c) be the sizes of the largest independent set
in G(n, c/n) and Gr(n). The asymptotic value of I(n, c)/n as n → ∞, can be computed using
the Karp-Sipser algorithm when c ≤ e. For random cubic graphs, r = 3, it is only known that
.432 ≤ lim infn I(n, 3)/n ≤ lim supn I(n, 3)/n ≤ .4591 with high probability (w.h.p.) as n → ∞,
as shown in Frieze and Suen [Random Structures Algorithms 5 (1994), 649–664] and Bollabas
[European J Combin 1 (1980), 311–316], respectively. In this paper we assume in addition that
the nodes of the graph are equipped with nonnegative weights, independently generated according
to some common distribution, and we consider instead the maximum weight of an independent
set. Surprisingly, we discover that for certain weight distributions, the limit limn I(n, c)/n can be
computed exactly even when c > e, and limn I(n, r)/n can be computed exactly for some r ≥ 1. For
example, when the weights are exponentially distributed with parameter 1, limn I(n, 2e)/n ≈ .5517,
and limn I(n, 3)/n ≈ .6077. Our results are established using the recently developed local weak
convergence method further reduced to a certain local optimality property exhibited by the models we
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consider. We extend our results to maximum weight matchings in G(n, c/n) and Gr(n). For the case
of exponential distributions, we compute the corresponding limits for every c > 0 and every r ≥ 2.
© 2005 Wiley Periodicals, Inc. Random Struct. Alg., 27, 000–000, 2005

1. INTRODUCTION

Two models of random graphs considered in this paper are a sparse random graph G(n, c/n)

and a sparse random regular graph Gr(n). The first is a graph on n nodes {0, 1, . . . , n−1} ≡
[n], where each potential undirected edge (i, j), 0 ≤ i < j ≤ n − 1, is present in the graph
with probability c/n, independently for all n(n−1)/2 edges. Here c > 0 is a fixed constant,
independent of n. A random r-regular graph Gr(n) is obtained by fixing a constant integer
r ≥ 1 and considering a graph selected uniformly at random from the set of all r-regular
graphs on n nodes (graphs in which every node has degree r). A set of nodes V in a graph
G is defined to be an independent set if no two nodes of V are connected by an edge.
Let I(n, c) and I(n, r) denote the maximum cardinality of an independent set in G(n, c/n)

and Gr(n) respectively. Suppose the nodes of a graph are equipped with some nonnegative
weights Wi, 0 ≤ i ≤ n − 1 which are generated independently according to some common
distribution Fw(t) = P(Wi ≤ t), t ≥ 0. We denote by Iw(n, c), Iw(n, r) the maximum weight
of an independent set in G(n, c/n) and Gr(n), respectively.

A matching is a set of edges A in a graph G such that every node is incident to at most
one edge in A. Let M(n, c) and M(n, r) denote the maximum cardinality of a matching
in G(n, c/n) and Gr(n), respectively. It is known that Gr(n), r ≥ 3 has a full matching
w.h.p., that is M(n, r) = n/2 (�n/2� for odd n) w.h.p. [16]. If the edges of the graph are
equipped with some nonnegative random weights, then we consider instead the maximum
weight of a matching Mw(n, c) and Mw(n, r) in graphs G(n, c/n), Gr(n), respectively. The
computation of Iw(n, c), Iw(n, r), Mw(n, c), Mw(n, r) in the limit as n → ∞ is the main
subject of the present paper.

The asymptotic values of M(n, c) for large n and for all constants c were obtained
by Karp and Sipser using a simple greedy type algorithm in [17]. The result extends to
I(n, c) but only when c ≤ e. It is an open problem to compute the corresponding limit
for independent sets for the case c > e. Likewise it is an open problem to compute the
corresponding limit in random regular graphs, or even to show that such a limit exists [3].

The developments in this paper show that, surprisingly, proving the existence and com-
putation of the limits limn I(n, ·)/n, limn M(n, ·)/n is easier in the weighted case than in
the unweighted case, at least for certain weight distributions. In particular, we compute
the limits for independent sets in Gr(n), r = 2, 3, 4 and G(n, c/n), c ≤ 2e, when the node
weights are exponentially distributed, and we compute the limits for matchings in Gr(n)

and G(n, c/n) for all r, c, when the edge weights are exponentially distributed. It was shown
earlier by the first author [14] that the limit limn M(n, ·)/n exists for every weight distri-
bution with bounded support, though the nonconstructive methods employed prevented the
computation of the limits.

Our method of proof is based on a powerful local weak convergence method developed
by Aldous [1,2], Aldous and Steele [5], Steele [23], further empowered by a certain local
optimality property derived in this paper. Local weak convergence is a recursion technique
based on fixed points of distributional equations, which allows one to compute limits of some
random combinatorial structures (see Aldous and Bandyopadhyay [4] for a recent survey
on applications of distributional equations, and Aldous and Steele [5] for a survey on the
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local weak convergence method). In particular, the method is used to compute maximum
weight matching on a random tree, when the weights are exponentially distributed. The tree
structure was essential in [5] for certain computations and the approach does not extend
directly to graphs like G(n, c/n) with c > 1, where the convenience of a tree structure
is lost due to the presence of a giant component. It was conjectured in [5] that a some
long-range independence property might be helpful to deal with this difficulty. The present
paper partially answers this qualitative conjecture in a positive way. We introduce a certain
operator T acting on the space of distribution functions. We prove a certain local optimality
property stating that, for example, for independent sets, whether a given node i belongs to
the maximum weight independent set is asymptotically independent from the portion of the
graph outside a constant size neighborhood of i, iff T 2 has a unique fixed point distribution.
Moreover, when T 2 does have the unique fixed point, the size of the extremal object (say
maximum weight independent set) can be derived from a fixed point of an operator T . The
computations of fixed points is tedious, but simple in principle and the groundwork for that
was already done in [5]. We suspect that the long-range independence holds in other random
combinatorial structures as well. In fact the issues of long-range independence were already
considered by Aldous and Bandyopadhyay [4] and Bandyopadhyay [8] using the notion
of endogeny. This specific version of long-range independence turned out to be critical in
Aldous [2] for proving the ζ(2) limit of the random assignment problem. It certainly seems
to be an interesting problem to understand better the connection between the endogeny and
the version of the long-range independence used in the present paper.

The issue of long-range independence of random combinatorial objects is addressed in
a somewhat different, statistical physics context in Mossel [20], Kelly [18], Brightwell and
Winkler [11], Rozikov and Suhov [21], and Martin [19], where independent sets (hard-
core model) are considered on infinite regular trees, weighted by the Gibbs measure. The
long-range interaction between nodes at a large distance is investigated with respect to
this measure using the notion of reconstruction. It would be interesting to investigate the
connections between the two models.

In a different setting Talagrand [24] proves a certain long-range independence property
for the random assignment problem, where the min-weight matching is replaced by the
Gibbs distribution on the space of feasible matchings. He uses a rigorous mathematical
version of the cavity method, which originated in physics, to prove that the spins (edges
of the matching) are asymptotically independent as the size of the problem increases. The
particular form of the long-range independence is similar to the one we obtain, refer to
Theorem 4 below, and in fact the cavity method, which is based on “knocking” out certain
spins from the system and analyzing the relative change of the size of the extremal object, has
some similarity with the local weak convergence method, which is also based on considering
extremal objects (say independent sets) with one or several nodes excluded. It seems worth
investigating whether there is a formal connection between the two methods. Finally, we
refer the reader to Hartmann and Weigt [15], who derive the same result as Karp and Sipser
for independent sets using nonrigorous arguments from statistical physics.

The rest of the paper is organized as follows. In the following section we describe some
prior results on maximum independent sets and matchings in random graphs. Our main
theorems are given in Section 3. The operator T , fixed point equations, and long-range
independence issues are discussed in Section 4. The main results are proven in Section 5.
Some conclusions are in Section 6.

We finish this section with some notational conventions. Exp(µ), Pois(λ), and Be(z)
denote respectively exponential, Poisson, and Bernoulli distributions with parameters
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µ, λ > 0, 0 ≤ z ≤ 1. For the Bernoulli distribution Be(z) we use the convention
P(X = 0) = z, P(X = 1) = 1 − z.

2. PRIOR WORK AND OPEN QUESTIONS

It is known and simple to prove that I(n, r), I(n, c) = �(n) w.h.p. for any all r ≥ 1, c > 0.
Moreover, it is known that, w.h.p., 6 log(3/2) − 2 = .432 . . . ≤ lim infn I(n, 3)/n ≤
lim supn I(n, 3)/n ≤ .4591. The lower bound is due to Frieze and Suen [13], and the upper
bound is due to Bollobas [10]. The upper bound is generalized for any r ≥ 1 and uses a
very ingenious construction of random regular graphs via matching and random grouping
[9, 16].

It is natural to expect that the following is true, which unfortunately remains only a
conjecture, appearing in several places, most recently in [3] and [5].

Conjecture 1. For every c > 0 and r ≥ 3 the limits

lim
n→∞

E[I(n, c)]
n

, lim
n→∞

E[I(n, r)]
n

exist.

The existence of these limits also implies the convergence to the same limits w.h.p.
by applying Azuma’s inequality (see [16] for the statement and the applicability of this
inequality).

The limit limn EI(n, c)/n is known to exist for c ≤ e and can be computed using the
Karp-Sipser [17] algorithm for maximum matching M(n, c). We describe the algorithm first
in high-level terms, and then state the result and its implications to maximum independent
sets. The algorithm proceeds in two stages. In the first stage any leaf v in the graph G(n, c/n)

is selected. The edge incident to this leaf is selected into a matching, and all the other edges
incident to the parent of v are deleted. This is repeated until no leaves are left. In the second
stage a matching M∗ in the remaining graph G∗ ⊂ G is selected greedily by selecting at
random edges and deleting edges adjacent to the selected one. It is a simple exercise to
prove that in the first stage no mistakes are made. That is the matching constructed in the
first stage plus the largest matching in the second stage is an optimal matching in the overall
graph. Karp and Sipser then show that the matching constructed in the second stage is
asymptotically optimal. Using this they prove the following result.

Theorem 1 (Karp and Sipser [17]). For every c > 0 the maximum matching satisfies

lim
n→∞

E[M(n, c)]
n

= 1 − γ ∗(c) + γ ∗∗(c) + cγ ∗(c)γ ∗∗(c)
2

, (1)

where γ ∗(c) is the smallest solution of the equation x = exp(−c exp(−cx)) and γ ∗∗(c) =
exp(−cγ ∗(c)). When c ≤ e, the equation x = exp(−c exp(−cx)) has a unique solution
γ (c), and |G∗| = o(n). That is the matching constructed in the first stage is asymptotically
optimal as n → ∞.

The different behavior for c ≤ e and c > e is called e-cutoff phenomena. Theorem 1 was
strengthened later by by Aronson, Pittel, and Frieze [6], who obtain bounds on convergence
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(1). It is the second part of the theorem above that can be used for the analysis of I(n, c).
Observe, that in the first stage of the Karp-Sipser algorithm for every selected leaf if one
takes a parent of this leaf instead of an edge between the leaf and its parent, one obtains a
node set which is an edge-cover set in the graph G \ G∗ constructed in the first stage. That
is every edge in G \ G∗ is incident to at least one node in this cover. It is a simple exercise
to prove that this is in fact a minimum node cover in G \ G∗. Its complement is a maximum
independent set in G \ G∗. Since |G∗| = o(n) when c ≤ e, one obtains then the following
result.

Corollary 1. When c ≤ e,

lim
n→∞

E[I(n, c)]
n

= 2γ (c) + cγ 2(c)

2
. (2)

The Karp-Sipser algorithm hinges strongly on working with leaves and thus is not appli-
cable to random regular graphs. Moreover, if the edges or the nodes of the graph G(n, c/n)

are equipped with weights, then the Karp-Sipser algorithm clearly can produce a strictly
suboptimal solution and cannot be used in our setting of weighted nodes and edges. Also,
when the edges of Gr(n) are equipped with weights, the problem of computing maximum
weight matching becomes non-trivial, as opposed to the unweighted case when the full
matching exists w.h.p.

3. MAIN RESULTS

We begin by introducing the key technique for our analysis—recursive distributional equa-
tions and its solutions. This technique was introduced by Aldous [1, 2] in the context of
solving ζ(2) limit conjecture for random minimal assignment problem, and was further
developed in Aldous and Steele [5], Steele [23], and Aldous and Bandyopadhyay [4, 7].
Let W be a nonnegative random variable with a distribution function Fw(t) = P(W ≤ t).
We consider four operators T = TI,r , TI,c, TM,r , TM,c acting on the space of distribution
functions F(t), t ≥ 0, where c > 0 is a fixed real value and r ≥ 1 is a fixed integer value.

1. Given W distributed according to Fw (we write simply W ∼ Fw), and given a distri-
bution function F = F(t), let B1, B2, . . . , Br ∼ F be generated independently. Then
TI,r : F �→ F ′, where F ′ is the distribution function of B′ defined by

B′ = max

(
0, W −

∑
1≤i≤r

Bi

)
. (3)

2. Under the same setting as above, let B1, . . . , Bm ∼ F, where m is a random variable
distributed according to Pois(c), independently from W , Bi. Then TI,c : F �→ F ′,
where F ′ is the distribution function of B′ defined by

B′ = max

(
0, W −

∑
1≤i≤m

Bi

)
, (4)
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when m ≥ 1 and B′ = W when m = 0. For simplicity we identify the sum with zero
when m = 0.

3. Let W1, . . . , Wr ∼ Fw, B1, . . . , Br ∼ F generated independently. Then TM,r : F �→
F ′, where F ′ is the distribution function of B′ defined by

B′ = max
1≤i≤r

(0, Wi − Bi) . (5)

4. Finally, let W1, . . . , Wm ∼ Fw, B1, . . . , Bm ∼ F generated independently, where
m ∼ Pois(c), independent from Wi, Bi. Then TM,c : F �→ F ′, where F ′ is the
distribution function of B′ defined by

B′ = max
1≤i≤m

(0, Wi − Bi), (6)

when m ≥ 1 and B′ = 0 when m = 0. Again, for simplicity, we assume that the max
expression above is zero when m = 0.

A distribution function F is defined to be a fixed point distribution of an operator T if
T(F) = F.

We now state the main result of this paper. Recall, that a distribution function F(t) is
defined to be continuous (atom free) if for every x in its support limε→0(F(x+ε)−F(x−ε)) =
0. We use 1{·} to denote the indicator function.

Theorem 2. Let Fw be a continuous nonnegative distribution function. For r ≥ 1 if the
operator T 2

I,r−1 has a unique fixed point distribution function F∗, then, w.h.p.,

lim
n

Iw(n, r)

n
= E

[
W 1

{
W −

∑
1≤i≤r

Bi > 0

}]
, (7)

where W ∼ Fw, Bi ∼ F∗, and W , Bi are independent. When Gr(n) is replaced by G(n, c/n),
the same result holds for T = TI,c, except the sum in the right-hand side of (7) is

∑
1≤i≤m Bi

and m ∼ Pois(c).
Finally, the similar results hold for Mw(n, r) and Mw(n, c) in Gr(n) and G(n, c), for

T = TM,r−1 and T = TM,c, respectively, whenever the corresponding operator T is such
that T 2 has the unique fixed point distribution F∗. The corresponding limits are w.h.p.

lim
n

Mw(n, r)

n
= 1

2
E

[ ∑
1≤i≤r

Wi 1

{
Wi − Bi = max

1≤j≤r
(Wj − Bj) > 0

}]
, (8)

where Wi ∼ Fw, Bi ∼ F∗, and

lim
n

Mw(n, c)

n
= 1

2
E

[∑
i≤m

Wi 1

{
Wi − Bi = max

j≤m
(Wj − Bj) > 0

}]
, (9)

where Wi ∼ Fw, Bi ∼ F∗, m ∼ Pois(c).

In (9) the value of the indicator function is understood to be zero when m = 0. For
G = Gr(n), G(n, c/n) with the weights on nodes given by a distribution function Fw, let
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IN w(n, r), IN w(n, c) denote the cardinality (the number of nodes) of the maximum weight
independent set in G. In case Fw is continuous, the maximum weight independent set is
uniquely defined, so IN w(n, r), IN w(n, c) are well defined as well. Clearly, I(n, r) ≥
IN w(n, r), I(n, c) ≥ IN w(n, c). MN w(n, r) and MN w(n, c) are defined similarly for
matchings. When T 2

I,r , T 2
I,c, T 2

M,r , or T 2
M,c have the unique fixed point, it is also possible to

compute asymptotically IN w(n, r), IN w(n, c), MN w(n, r), and MN w(n, c).

Corollary 2. Under the setting of Theorem 2, w.h.p.

lim
n

IN w(n, r)

n
= E

[
1

{
W −

∑
1≤i≤r

Bi > 0

}]
, (10)

where W ∼ Fw, Bi ∼ F∗, W , Bi independent, and F∗ is the unique fixed point distribution
of T 2 = T 2

I,r−1, and w.h.p.

lim
n

MN w(n, r)

n
= 1

2
E

[
1

{
max
1≤j≤r

(Wj − Bj) > 0

}]
, (11)

where Wi ∼ Fw, Bi ∼ F∗, Wi, Bi independent, and F∗ is the unique fixed point distribution
of T 2 = T 2

M,r−1 and Wi, Bi are independent.
Similar results hold for T = TI,c, TM,c where again in the sum

∑
1≤j≤r we substitute r

with random m ∼ Pois(c).

The Theorem 2 is the core result of this paper. It will allow us to obtain several interesting
corollaries, which we state below.

Theorem 3. Suppose the weights of the nodes and edges of the graphs G = Gr(n) and
G = G(n, c) are distributed as Exp(1). Then:

1. T 2
I,r−1 has a unique fixed point distribution F∗ iff r ≤ 4. In this case, w.h.p.

lim
n

Iw(n, r)

n
= (1 − b)(r − rb + 2b + 2)

4
, (12)

where b is the unique solution of b = 1 − ( 1+b
2 )r−1. In particular, w.h.p.

lim
n

Iw(n, 2)

n
= 2

3
, lim

n

Iw(n, 3)

n
≈ .6077, lim

n

Iw(n, 4)

n
≈ .4974. (13)

2. T 2
I,c has a unique fixed point distribution F∗ iff c ≤ 2e. In this case, w.h.p.

lim
n

Iw(n, c)

n
= (1 − b)

(
1 + c(1 − b)

4

)
, (14)

where b is the unique solution of 1 − b = e− c
2 (1−b). In particular, when c = 2e, this

limit is ≈ .5517.
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3. T 2
M,r−1 has a unique fixed point distribution F∗ for every r ≥ 1. Moreover, w.h.p.

lim
n

Mw(n, r)

n
= rbr−1

2

∫ ∞

0
te−t(1 − e−t(1 − b))r−1dt

+ r(r − 1)(1 − b)

2

∫ ∞

0

∫ t

0
te−te−z(1 − e−z(1 − b))r−2(1 − e−t+z(1 − b))r−1dzdt,

(15)

where b is the unique solution of b = 1 − 1−br

r(1−b)
.

4. T 2
M,c has a unique fixed point distribution F∗ for all c > 0. Moreover, for every c > 0

w.h.p.

lim
n

Mw(n, c)

n
= c

2

∫ ∞

0
te−te−c(1−b)(1+b−be−t )dt (16)

+ c2

2

∫ ∞

0

∫ t

0
te−te−z(1 − e−t+z(1 − b))

× e−c+c(1−e−t+z(1−b))(1−e−z(1−b))dzdt, (17)

where b is the unique solution of 1 − e−cb = c(1 − b)2.

The result above generalizes to the case when Exp(1) is replaced by Exp(µ) for any
µ > 0, since, for any α > 0 and W ∼ Exp(1), αW ∼ Exp(1/α). The expression in (15)
involving integrals is similar to the one found in [5] for maximum weight matching on a
tree. It is a pleasant surprise, though, that the answers for independent sets are derived in
closed form.

Part 2 of Theorem 3 leads to an interesting phase transition behavior. For Fw = Exp(1)

our result says that the value c = 2e is a phase transition point for the operator T 2
I,c where

for c ≤ 2e the operator has a unique fixed point distribution, but for c > 2e the fixed
point distribution is not unique. Contrast this with e-cutoff phenomena described above. It
turns out (see Theorems 8 and 9 below) that this phase transition is directly related to some
long-range independence/dependence property of the maximum weight independent sets in
the underlying graph G(n, c/n). Curiously, no such phase transition occurs for maximum
weight matchings.

As a sanity check, let us show directly the validity of (12) for the case r = 1. The answer
given by the formula is 3/4. It is, though, easy to compute Iw(n, 1) exactly. The graph is
a collection of n/2 isolated edges. For each edge we simply select the the incident node
with larger weight, which by memoryless property of Exp is 1/2 + 1 = 3/2. The limit
Iw(n, 1)/n → 3/4 then checks.

The formula in (15), although it involves a double integration, is in fact simple to compute
explicitly. After expanding the expressions involving powers r −1 and r −2 and integrating
with respect to z, the resulting expression is a combination of the terms of the form tle−kt for
some integers l, k which need to be integrated with respect to t and this can be done using
the integration by parts. We demonstrate this for the case r = 2, but we do not compute the
double integral explicitly as the resulting expression is not very revealing. Before we do the
computations for the case r = 2, we note that we expect the answer to be 2/3. The reason
is that the random 2-regular graph is a collection of disjoint cycles on n elements. It is well
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known that, w.h.p., these cycles have decreasing lengths, starting from �(n
1
2 ). Clearly on

each even cycle the largest weighted matching is equal to the largest weighted independent
set. On odd cycles they differ by at most a constant and since most of the cycles in random
2-regular graphs are “large” this difference is negligible. On the other hand, we know from
(13) that the limiting constant for the largest weighted independent set in 2-regular random
graph is (2/3). We now demonstrate that this intuition is indeed correct and the largest
weighted matching is also equal to 2/3. The expression (15) corresponding to r = 2 is

2b

2

∫ ∞

0
te−t(1 − e−t(1 − b)) dt + 2(1 − b)

2

∫ ∞

0

∫ t

0
te−te−z(1 − e−t+z(1 − b)) dzdt

= b
∫ ∞

0
(te−t − te−2t(1 − b)) dt + (1 − b)

∫ ∞

0
te−t

∫ t

0
(e−z − e−t(1 − b)) dzdt

= b

(
1 − 1 − b

4

)
+ (1 − b)

∫ ∞

0
te−t(1 − e−t − te−t(1 − b)) dt

= b

(
1 − 1 − b

4

)
+ (1 − b)

(
1 − 1

4
− 1 − b

4

)

= b + 1

2
.

The value for b is easily computed to be 1/3 from the corresponding equation. This results
in the value 2/3 which matches (13).

Theorems 2 and 3 also hold for a simpler model of a 2-regular graph – n-cycle. The n
nodes 0, 1, . . . , n−1 and edges (0, 1), . . . , (n−2, n−1), (n−1, 0) of this cycle are assumed
to have weights distributed according to some distribution function Fw. Let Iw(n, cycle)
and Mw(n, cycle) denote respectively the maximum weight of an independent set and the
maximum weight of a matching.

Corollary 3. Suppose T 2
I,2 has a unique fixed point. Then (7), (8) hold when r = 2 and

Iw(n, cycle) replaces Iw(n, 2) and Mw(n, cycle) replaces Mw(n, 2). When Fw = Exp(1),
w.h.p.

lim
n

Iw(n, cycle)

n
= lim

n

Mw(n, cycle)

n
= 2

3
. (18)

We can also compute the cardinality of independent sets which achieve the maximum
weight, when Fw = Exp(1).

Corollary 4. When Fw = Exp(1), w.h.p.

lim inf
n

I(n, 2)

n
≥ lim

n

IN w(n, 2)

n
= 4

9
, lim inf

n

I(n, 3)

n
≥ lim

n

IN w(n, 3)

n
≈ .3923,

lim inf
n

I(n, 4)

n
≥ lim

n

IN w(n, 4)

n
≈ .3533. (19)
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We note that for r = 3, 4 our lower bounds .3923n−o(n), .3533n−o(n) are, unfortunately,
weaker than then the state of the art bounds .4328n − o(n) and .3901n − o(n) established
in [13] and [25].

An important implication of the uniqueness of the fixed point distribution of T 2 for the
types of T described above, is that it implies a certain long-range independence properties
of the structures we consider. The following theorem makes this notion precise. While the
theorem is not used directly in this paper, we believe it is interesting by itself. Below G
denotes one of the graphs Gr(n) or G(n, c). Let E denote the (random) edge set of G.

Theorem 4. Let T be one of the four operators (3),(4),(5),(6) with respect to some contin-
uous distribution function Fw, and let Cw(n) = Iw(n, r), Iw(n, c), Mw(n, r), or Mw(n, c).
Denote by O(n) the subset of [n] or E (depending on a context), which achieves Cw(n).
Select two elements i, j of [n] or E uniformly at random. If T 2 has a unique fixed point
distribution, then

P(i, j ∈ O(n)) → P(i ∈ O(n))P(j ∈ O(n)), (20)

as n → ∞.

Recall that for each of the four objects |C(n)| = �(n) w.h.p. As a result the values
P(v ∈ O(n)) do not vanish and the theorem above does have a nontrivial content (the limit
is not zero). In fact we will show a much stronger result stating that, when T 2 has a unique
fixed point, the event v ∈ O(n) is almost independent of the portion of the graph G outside
a depth-d graph-theoretic neighborhood of v, when d is a sufficiently large constant integer.

4. FIXED POINTS OF THE OPERATOR T 2 AND THE LONG-RANGE
INDEPENDENCE

4.1. Maximum Weight Independent Sets and Matchings in Trees. Fixed Points of
T 2 and the Bonus Function

We start by analyzing operator T—any of the four operators introduced in the previous
section. Given two distribution functions F1, F2 defined on [0, ∞), we say that F2 stochas-
tically dominates F1 and write F1 ≺ F2 if F1(t) ≥ F2(t) for every t ≥ 0. A sequence of
distribution functions Fn is defined to converge weakly to a distribution function F (written
Fn ⇒ F) if limn Fn(t) = F(t) for every t which is a point of continuity of F.

Lemma 5. The operators T = TI,r , TI,c, TM,r , TI,c are continuous with respect to the
weak convergence. That is, given a sequence of distributions F, Fs, s = 1, 2, . . . , if Fs ⇒ F,
then T(Fs) ⇒ T(F).

Proof. The proof is almost immediate for T = TI,r . Since the summation, subtraction, and
max operations are continuous functions then the assertion holds. Here we use the fact that
for any continuous function f , Fn ⇒ F implies f (Fn) ⇒ f (F) (see Continuous Mapping
Theorem in [12]). The proof for the case T = TI,c is slightly more subtle since we are
dealing with sum of randomly many elements. Let X (n)

1 , X (n)

2 , . . . be i.i.d. sample from the
distribution Fn, and let m be a Poisson(c) random variable which is independent of

(
X (n)

j

)
j≥1

.
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Let also X1, X2, . . . , be an i.i.d. sample from F. Define X (n) = max(0, W − ∑
1≤i≤m X (n)

i )

and X = max(0, W − ∑
1≤i≤m Xi). Fix arbitrary ε > 0 and m0 such that m does not exceed

m0 with probability at least 1 − ε. For any fixed t ≥ 0 and n

|P(X (n) ≤ t) − P(X (n) ≤ t|m ≤ m0)P(m ≤ m0)| ≤ ε,

and

|P(X ≤ t) − P(X ≤ t|m ≤ m0)P(m ≤ m0)| ≤ ε,

Now, we have |P(X (n) ≤ t|m ≤ m0) − P(X ≤ t|m ≤ m0)| ≤ ε for sufficiently large n since
Fn ⇒ F and m is conditioned to be at most m0. Combining, we obtain |P(X (n) ≤ t)−P(X ≤
t)| ≤ 3ε for sufficiently large n. This completes the proof for T = TI,c. The proofs for
T = TM,r , T = TM,c are similar.

Let 0 denote (for simplicity) the distribution function of a random variable X which is
zero w.p.1. Let W max

r = max1≤i≤r Wi, where Wi ∼ Fw are independent. Let also Wmax
c =

max1≤i≤m Wi, where Wi ∼ Fw are independent and m ∼ Pois(c). Denote by Fw,r and Fw,c

the distribution functions of Wmax
r and W max

c , respectively.

Proposition 1. Fix r ≥ 1, c > 0, a distribution function Fw(t), t ≥ 0 and T = TI,r or
TI,c. As s → ∞, the two sequences of distributions T 2s(0), T 2s(Fw) weakly converge to
distribution functions F∗∗, F∗∗, respectively, which are fixed points of the operator T 2. For
any distribution function F0 with nonnegative support, T 2s(0) ≺ T 2s+2(F0) ≺ T 2s(Fw) and
T 2s+1(Fw) ≺ T 2s+3(F0) ≺ T 2s+1(0) for all s = 1, 2, . . ..

If the operator T is such that T 2 has a unique fixed point (and F∗∗ = F∗∗ ≡ F∗), then
for any distribution function F0 with nonnegative support, T s(F0) ⇒ F∗ as s → ∞. In
particular, T s(0), T s(Fw) → F∗. Moreover, F∗ is also the unique fixed point of T .

When T = TM,r or T = TM,c, the same result holds with Fw,r and Fw,c respectively
replacing Fw.

Proof. Let F = F(t), t ≥ 0 be a distribution function corresponding to some nonnegative
random variable. It follows immediately from the definitions that

TI,r(F) ≺ Fw, TI,c(F) ≺ Fw, TM,r(F) ≺ Fw,r , TM,c(F) ≺ Fw,c. (21)

Observe that each of the four operators T above is antimonotone. That is, if F1 ≺ F2 for
some distribution functions F1, F2, then T(F1) � T(F2). Applying this twice, we obtain
T 2(F1) ≺ T 2(F2). Trivially, 0 ≺ T 2(0). Then 0 ≺ T 2(0) ≺ T 4(0) ≺ · · · , and this sequence
weakly converges to some function F∗∗ = F∗∗(t) ≤ 1, since the values of T 2s(0) at each
fixed t are decreasing and are bounded below by 0. Note that F∗∗(t) is a nondecreasing
function of t, since this is the case for each distribution T 2s(0). Finally, from (21) we have
that limt→∞ F∗∗(t) = 1. Thus F∗∗(t) is a distribution function. As T 2s(0) ⇒ F∗∗ and by
Lemma 5, T is continuous, we have T 2(F∗∗) = F∗∗.

We now fix T = TI,r . The proof of the other three cases is very similar. From (21),
by taking F = T(Fw), we obtain T 2(Fw) ≺ Fw. Then, by monotonicity of T 2 we obtain
Fw � T 2(Fw) � · · · � T 2s(Fw) and the sequence T 2s(Fw) converges weakly to some
function F∗∗. We repeat the arguments above to show that F∗∗ is actually a distribution
function. Again applying Lemma 5, we conclude T 2(F∗∗) = F∗∗.
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For any distribution function F0 with nonnegative support we have 0 ≺ T(F0), T 2(F0) ≺
Fw, where again we use nonnegativity and (21), first applied to F0 and then to T(F0).
Applying the monotonicity

T 2s(0) ≺ T 2s+1(F0), T 2s+2(F0) ≺ T 2s(Fw), (22)

and therefore T 2s+1(0) � T 2s+3(F0) � T 2s+1(Fw). This completes the proof of the first part
of the proposition.

Suppose now T 2 has a unique fixed point F∗ = F∗∗ = F∗∗. For any distribution function
F0 we have 0 ≺ T(F0), T 2(F0) ≺ Fw, where again we use (21). Applying (22) and using
T 2s(0), T 2s(Fw) ⇒ F∗, we obtain T s(F0) ⇒ F∗. In particular, by taking F0 = 0 and
F0 = Fw, we obtain T s(0), T s(Fw) ⇒ F∗. Finally, we obtain T 2s(T(F∗)) ⇒ F∗. But
T 2s(T(F∗)) = T(T 2s(F∗)) = T(F∗). Thus T(F∗) = F∗. Clearly it is the unique fixed point
of T since any fixed point of T is also a fixed point of T 2.

We now switch to analyzing the maximum weight independent set problem on a tree. The
derivation here repeats the development in [5] for maximum weight matching in random
trees. We highlight important differences where appropriate.

Suppose we have a (nonrandom) finite tree H with nodes 0, 1, . . . , h = |H| − 1, with
a fixed root 0. The nodes of this tree are equipped with some (nonrandom) weights
W0, W1, . . . , Wh ≥ 0. For any node i ∈ H , let H(i) denote the subtree rooted at i con-
sisting of all the descendants of i. In particular, H(0) = H. Let IH(i) denote the maximum
weight of an independent set in H(i) and let BH(i) = IH(i) − ∑

j IH(j), where the sum runs
over nodes j which are children of i. If i has no children, then BH(i) is simply IH(i) = Wi.
Observe that BH(i) is also a difference between IH(i) and the maximum weight of an inde-
pendent set in H(i), which is not allowed to use node i. Clearly, 0 ≤ BH(i) ≤ Wi. The value
BH(i) was considered in [5] in the context of maximum weight matchings and was referred
to as a bonus of a node i in tree H(i). W.l.g. denote by 1, . . . , m the children of the root
node 0.

Lemma 6.

BH = max

(
0, W0 −

∑
1≤i≤m

BH(i)

)
. (23)

Moreover, if W0 >
∑

1≤i≤m BH(i) (that is, if BH(0) > 0), then the maximum weight inde-
pendent set in H must contain node 0. If W0 <

∑
1≤i≤m BH(i), then the maximum weight

independent set in H does not contain the node 0.

Remark. There might be several independent sets in H which achieve IH . The second part
of the lemma refers to any independent set achieving maximum weight. Also, the statement
of the lemma applies as well to every node i with respect to its tree H(i). That is let j1, . . . , jl

be the children of a node i. Then the lemma claims BH(i) = max(0, W0 − ∑
1≤i≤l BH(ji)).

Proof. Consider an independent set V ⊂ H which achieves the maximum weight. We
take an arbitrary such in case there are many. If 0 ∈ V , then i /∈ V for 1 ≤ i ≤ m. Then V is
obtained by taking maximum independent sets Vi in H(i) such that i /∈ V(i). By definition
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the weight of such Vi is IH(i) − BH(i). On the other hand, if 0 /∈ V , then a maximum weight
of an independent set in H is obtained simply as

∑
1≤i≤m IH(i). We conclude that

IH = max

(
W0 +

∑
1≤i≤m

(IH(i) − BH(i)),
∑

1≤i≤m

IH(i)

)
. (24)

Recall that BH = IH − ∑
1≤i≤m IH(i). Subtracting

∑
1≤i≤m IH(i) from both sides of (24) we

obtain (23). The second part of the lemma follows directly from the discussion above.

A similar development is possible for maximum weight matching. Suppose the edges
of the tree H are equipped with weights Wi,j. Let MH(i) denote the maximum weight of
a matching in H(i), and let BH(i) denote the difference between MH(i) and the maximum
weight of a matching in H(i), which is not allowed to include any edge in H(i) incident to
i. Again 1, 2, . . . , m are assumed to be the children of the root 0.

Lemma 7.

BH = max

(
0, max

1≤i≤m
(W0,i − BH(i))

)
. (25)

Moreover, if W0,i − BH(i) > W0,i′ − BH(i′) for all i′ �= i and W0,i − BH(i) > 0, then every
maximum weight matching in H contains edge (0, i). If W0,i −BH(i) < 0 for all i = 1, . . . , m,
then every maximum weight matching in H does not contain any edge incident to 0.

Proof. The proof is very similar to the one of Lemma 6. If a maximum weight matching
contains edge (0, i), then its weight is W0,i plus maximum weight of a matching in H(i)
with node i excluded, plus the sum of the maximum weights of matchings in H(j), 1 ≤ j ≤
m, j �= i. If a maximum weight matching contains none of the edges (0, i), 1 ≤ i ≤ m, then
its weight is simply sum of maximum weight of matchings in H(i) for all i = 1, . . . , m. We
obtain

MH = max

(
max
1≤i≤m

(
W0,i + MH(i) − BH(i) +

∑
j �=i

MH(j)

)
,

∑
1≤i≤m

MH(j)

)
. (26)

Subtracting
∑

1≤j≤m MH(j) from both sides of (26), we obtain (25). The proof of the second
part follows immediately from the discussion above.

4.2. Long-Range Independence

We now consider trees H of specific types. Given integers r ≥ 2, d ≥ 2, let Hr(d) denote
an r-regular finite tree with depth d. The root node 0 has degree r − 1, all the nodes at
distance ≥ 1, ≤ d − 1 from the root have outdegree r − 1, and all the nodes at distance d
from 0 are leaves. (Usually, in the definition of an r-regular tree, the root node is assumed
to have degree r, not r −1. The slight distinction here is done for convenience.) Also, given
a constant c > 0, a Poisson tree H(c, d) with parameter c and depth d is constructed as
follows. The root node has a degree which is a random variable distributed according to
Pois(c) distribution. All the children of 0 have outdegrees which are also random, distributed
according to Pois(c). In particular, the children of 0 have total degrees 1+Pois(c). Similarly,
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children of children of 0 also have outdegree Pois(c), etc. We continue this process until
either the process stops at some depth d ′ < d, where no nodes in level d ′ have any children,
or until we reach level d. In this case all the children of the nodes in level d are deleted and
the nodes in level d become leaves. We obtain a tree with depth ≤ d. We call this a depth-d
Poisson tree.

Let H = Hr(d) or H(c, d). Suppose the nodes and the edges of H are equipped with
weights Wi, Wi,j, which are generated at random independently using a distribution function
Fw. Fix any infinite sequences w̄ = (w1, w2, . . .) ∈ [0, ∞)∞ and b̄ = (b1, b2, . . .) ∈ {0, 1}∞.
For every i = 1, 2, . . . , d let i1, i2, . . . , iji denote the nodes of H in level i (if any exist for
H(c, d)). When H = Hr(d), ji = (r − 1)i, of course. Let (I|(b̄, w̄)) denote the maximum
weight of an independent set V in H such that the nodes dj with bj = 1 are conditioned to
be in V , nodes dj with bj = 0 are conditioned not to be in V , and the weights of nodes dj are
conditioned to be equal to wj for j = 1, . . . , jd . That is, we consider the maximum weight
of independent set among those which contain depth d leaves with bj = 1, do not contain
depth d leaves with bj = 0, and with the weights of the leaves deterministically determined
by w̄. For brevity we call it the maximum weight of an independent set with boundary
condition (b̄, w̄). For the case H = H(c, d), the boundary condition is simply absent when
the tree does not contain any nodes in the last level d. (IH(ij)|(b̄, w̄)) are defined similarly
for the subtrees H(ij) spanned by nodes ij in level i. Given again b̄, w̄, let (M|(b̄, w̄)) and
(MH(ij)|(b̄, w̄)) denote, respectively, the maximum weight of a matching E in H and Hij,
such that the edges incident to nodes dj are conditioned to be in E when bj = 1, edges
incident to nodes dj are conditioned not to be in E when bj = 0, and the weights of the
edges incident to nodes dj are conditioned to be equal to wj, j = 1, . . . , jd (of course, we
refer to edges between nodes in levels d − 1 and d as there is only one edge per each leaf
in level d).

For the case of independent sets, let (B|(b̄, w̄)) denote the bonus of the root node 0 given
the boundary condition (b̄, w̄). Namely,

(B|(b̄, w̄)) = (I|(b̄, w̄)) −
∑

1≤j≤j1

(IH(1j)|(b̄, w̄)).

For the case of matchings, let (B|(b̄, w̄)) also denote the bonus of the root node 0 given the
boundary condition (b̄, w̄). Namely,

(B|(b̄, w̄)) = (M|(b̄, w̄)) −
∑

1≤j≤j1

(MH(1j)|(b̄, w̄)).

It should be always clear from the context whether B is taken with respect to independent
sets or matchings.

The following theorem establishes the crucial long-range independence property for the
maximum weight independent sets and matchings in trees H = Hr(d), H(c, d) when the
corresponding operator T 2 has a unique fixed point. It establishes that the distribution of
the bonus (B|(b̄, w̄)) of the root is asymptotically independent of the boundary condition
(b̄, w̄) as d becomes large. Recall our convention that 0 denotes the distribution of a random
variable which is equal to zero with probability one.

Theorem 8. Given a distribution function Fw and a regular tree H = Hr(d) let T = TI,r .
Then for every t ≥ 0 and b̄, w̄

T d−1(0)(t) ≤ P((B|(b̄, w̄)) ≤ t) ≤ T d−1(Fw)(t) (27)
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when d even, and

T d−1(Fw)(t) ≤ P((B|(b̄, w̄)) ≤ t) ≤ T d−1(0)(t) (28)

when d is odd. Suppose in addition the operator T 2 = T 2
I,r−1 has the unique fixed dis-

tribution F∗. Then for every t ≥ 0

sup
b̄,w̄

∣∣P((B|(b̄, w̄)) ≤ t) − F∗(t)
∣∣ → 0, (29)

as d → ∞. Similar assertion holds for T = TM,r and for H = H(c, d) with T = TI,c and
T = TM,c. For the cases T = TM,r and TM,c, Fw is replaced with Fw,r and Fw,c respectively.

Before we prove the proposition above, which is one of the key results of the paper,
let us compare it with the developments in [5]. In that paper maximum weight matching
is considered on an n-node tree, drawn independently and uniformly from the space of all
nn−2 labelled trees. The notion of a bonus is introduced and the recursion (25) is derived.
However, since a tree structure is assumed to begin with, there is no need to consider the
boundary conditions (b̄, w̄). Here we avoid the difficulty of the nontree structure by proving
the long-range independence property via the uniqueness of fixed points of T 2.

Proof. We prove (28) and (27) for independent sets in H = Hr(d). The proof of (29)
will then be almost immediate. The proofs for other cases are similar. We will indicate
the differences where appropriate. The proof of (28) and (27) proceeds by induction in d.
Suppose d = 1. Then we have

(B|(b̄, w̄)) = max


0, W0 −

∑
i:1≤i≤r−1,b̄1i=1

w̄1i


 ≤ W0.

Then we obtain the bound (28) for the case d = 1. Suppose the assumption holds for d − 1
and d is odd. We have

(B|(b̄, w̄)) = max

(
0, W0 −

∑
i:1≤i≤r−1

(B1i|(b̄, w̄))

)
. (30)

By the inductive assumption the distribution of each of (B1i|(b̄, w̄)) dominates T d−2(0) and
is dominated by T d−2(Fw). Applying this to (30), we obtain (28). The case d is even is
considered similarly. This completes the induction and establishes (28) and (27). Now if T 2

has the unique fixed point distribution F∗, then, by Proposition 1, T d(0), T d(Fw) converge to
F∗ as d → ∞, and we obtain (29). The proof for the case of Poisson tree H(c, d) instead of
Hr(d) is pretty much identical. For the proof of the same result for maximum weight match-
ing we just use Fw,r and Fw,c instead of Fw, just as we did in the proof of Proposition 1.

While not used for the further results in this paper, it is interesting to note that the
uniqueness of the solution T 2(F) = F is the tight condition for (29), as the following
theorem indicates.
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Theorem 9. Under the setting of Theorem 9 suppose the operator T 2 has more than one
fixed point distributions F∗. Then for every such F∗ there exists t ≥ 0 such that

limsup
d

sup
b̄,w̄

|P((B|(b̄, w̄)) ≤ t) − F∗(t)| > 0. (31)

Proof. As usual we start with T = TI,r . The proofs for other cases are similar, we highlight
the differences where appropriate. Let F∗∗ and F∗∗ be distributions introduced in Proposi-
tion 1. The nonuniqueness of the fixed point of T 2 implies that F∗∗ �= F∗∗. For every node
j in layer d (last layer) of Hr(d) set bj = 0, wj = 0. In particular, the bonus Bj of each
such node is zero. Then for every node in layer d − 1 its bonus is given by the distribution
T(0) = Fw, the bonus of each node in layer d − 2 has distribution T 2(0), etc. The root node
0 has bonus with distribution T d(0). When d is an even number diverging to infinity, from
Proposition 1, T d(0) converges weakly to F∗∗. Thus the distribution of (B|(b̄, w̄)) converges
to F∗∗. If F∗, a fixed point of T 2, is distinct from F∗∗, then we obtain that (31) holds. Sup-
pose, on the other hand, F∗ = F∗∗. We claim that T(F∗∗) �= F∗∗. Assuming this is the case,
we consider the same boundary condition b̄ = w̄ = 0 but take d to be odd integer diverging
to infinity. Then the bonus of the root 0 converges in distribution to T(F∗∗) �= F∗∗ and (31)
is shown again.

Assume T(F∗∗) = F∗∗. Recall from the first part of Proposition 1 that for every distri-
bution F0, T 2s+3(F0) ≺ T 2s+1(0). Taking F0 = T(F∗∗), we obtain F∗∗ = T 2s+4(F∗∗) ≺
T 2s+1(0). Taking s → ∞, F∗∗ ≺ T(F∗∗) = F∗∗. But, from Proposition 1, F∗∗ ≺ F∗∗, and,
as a result, F∗∗ = F∗∗, implying (again using Proposition 1) T 2 has the unique fixed point.
We obtained a contradiction.

5. APPLICATIONS TO MAXIMUM WEIGHT INDEPENDENT SETS AND
MATCHINGS IN Gr (n) AND G(n, c/n)

5.1. Long-Range Independence in Gr (n), G(n, c/n)

The goal of the current section is to demonstrate that Theorem 8 allows us to reduce the
computation of the maximum weight independent set and the maximum weight matching
in random graphs to a much simpler problem of finding those in trees. We highlight this
key message of the paper as the following local optimality property: If the operator T 2

corresponding to a maximum weight combinatorial object (independent set or matching) in
a sparse random graph has a unique fixed point, then, for a randomly selected node (edge)
of the graph, the event “the node (edge) belongs to the optimal object” and the distribution
of the node (edge) weight, conditioned that it does, asymptotically depends only on the
constant size neighborhood of the node and is independent from the rest of the graph. In
other words, when T 2 has a unique fixed point, the maximum weight independent sets and
matchings exhibit a long-range independence property.

Our hope is that similar local optimality can be established for other random combina-
torial structures, for example, the problem of coloring in sparse random graphs and also
the problems of Gibbs distributions of various combinatorial objects including independent
sets and matchings. A version of the local optimality of Gibbs distributions corresponding
to independent sets (hard-core model) on regular trees is already addressed in [18], [11],
and [19].
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Proof of Theorem 2. Again we start by proving the result for Iw(n, r). The proofs for other
three objects is similar and we highlight some differences in the end. Let Vr ⊂ Gr(n) denote
the independent set which achieves the maximum weight Iw(n, r). It is almost surely unique
by the continuity of the distribution Fw. Consider a randomly selected node of the graph G,
which, w.l.g., we may assume is node 0. By symmetry we have E[Iw(n, r)] = nE[W01{0 ∈
Vr}]. Let us fix a large positive integer d, which is a constant independent from n, and let
H(d) denote the depth-d neighborhood of 0. That is, H is the collection of nodes in G which
are connected to 0 by paths with length ≤ d. It is well known that, w.h.p. as n → ∞, H is
a depth-d r-regular tree, [16], except in this case, unlike in Subsection 4.2, the root node
has outdegree r and the remaining nonleaf nodes have outdegree r − 1. Let ∂H denote the
leaves of this tree (level d). Fix any binary vector b̄ with dimension |∂H| + |G \ H|, and
any nonnegative vector w̄ also with dimension |∂H| + |G \ H|. Assume the vector b̄ is such
that if two nodes in ∂H ∪ (G \ H) are connected by an edge, only one of these two nodes
can have the corresponding component of b̄ equal to 1. That is, the nodes marked 1 by b̄
correspond to some independent set in ∂H ∪ (G \ H). Consider the problem of finding the
maximum weight independent set Vr in G when the weights of the nodes in ∂H ∪ (G \ H)

are conditioned to be w̄, nodes i ∈ ∂H ∪ (G \ H) with the corresponding component of b̄
equal to 1 are conditioned to belong to Vr , and the remaining nodes in ∂H ∪ (G \ H) are
conditioned not to belong to Vr . Notationwise, we consider the value (Iw(n, r)|(b̄, w̄)). In
particular, we need to select to maximum weight independent set in the tree H, which is
consistent with conditioning (b̄, w̄). Naturally, the consistency needs to be checked only
across the boundary ∂H .

Let (B|(b̄, w̄)) and (Bi|(b̄, w̄)), 1 ≤ i ≤ r, denote the bonus of the node 0 and the bonuses
of its neighboring nodes 1, 2, . . . , r, respectively. By Lemma 6, we have (B|(b̄, w̄)) =
max(0, W0 − ∑

1≤i≤r(Bi|(b̄, w̄))). Since the distribution function Fw of W0 is continuous,
then W0 − ∑

1≤i≤r(Bi|(b̄, w̄)) = 0 with probability 0. Then applying the second part of
Lemma 6, node 0 belongs to the maximum weight independent set if and only if B =
W0 − ∑

1≤i≤r(Bi|(b̄, w̄)) > 0. Therefore,

E[Iw(n, r)]
n

=
∫

b̄,w̄
E

[
W01

{
W0 −

∑
1≤i≤r

(Bi|(b̄, w̄)) > 0

}]
dP(b̄, w̄).

But by Theorem 8, for every b̄, w̄ the distribution of (Bi|(b̄, w̄)) converges to F∗ uniformly
in b̄, w̄ as d becomes large. We conclude

lim
n

E[Iw(n, r)]
n

= E

[
W01

{
W0 −

∑
1≤i≤r

Bi > 0

}]
,

where Bi ∼ F∗. This completes the proof for the maximum weight independent set in Gr(n).
When the graph G(n, c/n) is considered, the proof is very similar, we just use the fact that
H – depth d neighborhood of 0 approaches in distribution a Poisson tree [22]. The proofs
for maximum weight matchings are similar; we use Lemma 7 instead of Lemma 6.

Proof of Corollary 2. In fact we have proved this result already en route of proving
Theorem 2 above. We have shown, that given b̄, w̄ and conditioned on H being a
tree, a fixed node 0 belongs to the maximum weight independent set almost surely
iff (B|(b̄, w̄)) = W0 − ∑

1≤i≤r(Bi|(b̄, w̄)) > 0. Repeating the proof of Theorem 2,
IN w(n, r)/n = E[1{0 ∈ Vr}] → E[1{W0 − ∑

1≤i≤r Bi}], where Bi ∼ F∗.



18 GAMARNIK, NOWICKI, AND SWIRSZCZ

Proof of Theorem 4. The essential ingredients for the proof of this results are already
established in the proof of Theorem 2 above. We start with Iw(n, r). The proofs for other
cases are very similar and we omit them. Let O = O(n, r) ⊂ [n] be the independent
set achieving the maximum weight. Fix two nodes i, j ∈ [n] and arbitrary ε > 0. Let
H = H(i, d) denote the depth-d graph-theoretic neighborhood of i in the graph G = Gr(n)

and let ∂H denote the boundary of H – the nodes of H at distance d from i. Let ET denote
the event that H is a (r-regular) tree. From the theory of random regular graphs [16],
P(ET ) → 1 as n → ∞. As a result P(ET ) ≥ 1 − ε for all n ≥ n0 for some n0 = n0(d) (note
the dependence on d). Fix any realization of (G \ H) ∪ ∂H together with the realization
of the weights w̄ of nodes in G \ (H ∪ ∂H) and indicators b̄ of whether the nodes belong
to O. As far as deciding which nodes of H \ ∂H are in O and in particular whether node
i belongs to O, only the restriction of w̄, b̄ to ∂H is relevant. Conditioning on the event
ET , denote by (B|(b̄, w̄)) the bonus of i in H [for completeness define (B|(b̄, w̄)) to be zero
when the event ET does not hold]. Applying Lemma 6 and the continuity of Fw, we have
i ∈ O iff (B|(b̄, w̄)) > 0. Applying Theorem 8, |P((B|(b̄, w̄)) > 0) − P(B > 0)| < ε for all
d ≥ d0(ε) for some d0(ε), and for any w̄, b̄, where B ∼ F∗ and F∗ is the unique fixed point
of T 2 = T 2

I,r−1. Thus

|P(i ∈ O) − P(B > 0)| ≤
∫

Ĝw̄,b̄
|P(i ∈ O|ET , Ĝ, w̄, b̄) − P(B > 0)|dP(ET , Ĝ, w̄, b̄)

+ |P(i ∈ O|ĒT ) − P(B > 0)|P(ĒT ) (32)

≤ 2ε,

whenever d ≥ d0(ε) and n ≥ n0(d), where Ĝ denotes a realization of the subgraph (G \
H)∪ ∂H. Observe that since |H| ≤ 1 + r + (r − 1)2 +· · ·+ (r − 1)d then P(j /∈ H) ≥ 1 − ε

for all n ≥ n1(d) for some n1(d). Then

|P(i, j ∈ O) − P(i ∈ O)P(j ∈ O)|
≤ |P(i ∈ O|ET , j /∈ H, j ∈ O)P(ET , j /∈ H, j ∈ O) − P(i ∈ O)P(j ∈ O)| (33)

+ P(i ∈ O, ET , j ∈ H ∩ O) + P(i ∈ O, ĒT , j ∈ O) (34)

The event j /∈ H, j ∈ O is completely described by the realizations Ĝ, w̄, b̄. Since
|P((B|(b̄, w̄)) > 0) − P(B > 0)| < ε for all d ≥ d0(ε), then

|P(i ∈ O|ET , j /∈ H, j ∈ O) − P(B > 0)| < ε, (35)

for all d ≥ d0(ε). Also P(j ∈ O) = P(ET , j /∈ H, j ∈ O)+P(ET , j ∈ H ∩O)+P(ĒT , j ∈ O).
But P(ET , j ∈ H ∩ O) ≤ P(j ∈ H) ≤ ε for all n ≥ n1(d) and P(ĒT , j ∈ O) ≤ P(ĒT ) ≤ ε for
all n ≥ n0(d). As a result

|P(j ∈ O) − P(ET , j /∈ H, j ∈ O)| ≤ 2ε (36)

whenever n ≥ max(n0(d0(ε)), n1(d0(ε))). Combining (35), (32), and (36), we obtain

P(i ∈ O|ET , j /∈ H, j ∈ O)P(ET , j /∈ H, j ∈ O) − P(i ∈ O)P(j ∈ O)

≤ (P(i ∈ O) + 3ε)(P(j ∈ O) + 2ε) − P(i ∈ O)P(j ∈ O)

≤ 5ε + 6ε2 < 6ε.
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Similarly we show

P(i ∈ O|ET , j /∈ H, j ∈ O)P(ET , j /∈ H , j ∈ O) − P(i ∈ O)P(j ∈ O) ≥ −6ε.

We conclude that the value in (33) is bounded by 6ε. Each summand in (34) is bounded by
ε since P(j ∈ H) when n ≥ n1(d0(ε)) and P(ĒT ) ≤ ε when n ≥ n0(d0(ε)). We conclude
that whenever n ≥ max(n0(d0(ε)), n1(d0(ε))), |P(i, j ∈ O) − P(i ∈ O)P(j ∈ O)| ≤ 8ε.
This completes the proof of the theorem.

5.2. Computation of Limits. Exponentially Distributed Weights

We prove Theorem 3 in this subsection. With the help of Theorem 2, we can focus on
proving the uniqueness and computing the fixed points of the operator T 2. As usual we
start with maximum weight independent set in Gr(n). The analysis of other cases is similar
and will follow immediately. The calculations are similar to the ones in [5] performed for
maximum weight matching in random trees. The difference is that we have to compute the
fixed point of the operator T 2 and not just T .

Proof of Theorem 3.

• Independent sets in Gr(n). Let F∗ denote any fixed point distribution of T 2 = T 2
I,r−1

(at least one exists by Proposition 1), and let B ∼ F∗. Then B = max(0, W −∑
1≤i≤r−1 B̂i), W ∼ Exp(1), B̂i ∼ T(F∗). Similarly, if B̂ ∼ T(F∗), then B̂ =

max(0, W − ∑
1≤i≤r−1 Bi), W ∼ Exp(1), Bi ∼ F∗. Then for any t ≥ 0

P(B > t) = P

(
W >

∑
1≤i≤r−1

B̂i + t

)
= e−t

P

(
W >

∑
1≤i≤r−1

B̂i

)
,

and similarly

P(B̂ > t) = e−t
P

(
W >

∑
1≤i≤r−1

Bi

)
,

where we use the memoryless property of the exponential distribution. Let b = P(B =
0), b̂ = P(B̂ = 0), where B ∼ F∗ and B̂ ∼ T(F∗). Our next goal is computing b and
b̂. From the above we obtain

P(B > t) = e−t(1 − b), P(B̂ > t) = e−t(1 − b̂), (37)

implying

P(B > t|B > 0) ∼ Exp(1), P(B̂ > t|B̂ > 0) ∼ Exp(1). (38)

Then

b = P(W −
∑

1≤i≤r−1

B̂i ≤ 0) =
∫ ∞

0
e−t

P(
∑

1≤i≤r−1

B̂i ≥ t) dt (39)

In order to compute P(
∑

1≤i≤r−1 B̂i ≥ t), we condition on j ≤ r − 1 terms B̂i out
of r − 1 being equal to zero, and the rest positive. This occurs with probability
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(r−1
j

)
b̂j(1−b̂)r−1−j. When j < r−1, the sum of r−1−j nonzero terms B̂i has an Erlang

distribution with parameter r − 1 − j (sum of r − 1 − j independent random variables
distributed as Exp(1)). The density function of this distribution is f (z) = zr−2−j

(r−2−j)! e
−z

and the tail probability is

P(· > t) =
∫ ∞

t

zr−2−j

(r − 2 − j)!e−zdz =
∑

0≤i≤r−2−j

ti

i!e−t (40)

and ∫ ∞

0
e−t

P(· > t) dt =
∑

0≤i≤r−2−j

1

2i+1
= 1 − 1

2r−1−j
.

Combining with (39) and interchanging integration and summation, we obtain

b =
∑

0≤j≤r−1

(
r − 1

j

)
b̂j(1 − b̂)r−1−j

(
1 − 1

2r−1−j

)
= 1 −

(
1 + b̂

2

)r−1

. (41)

Similar calculations lead to b̂ = 1 − ( 1+b
2 )r−1. Combining

b = f (f (b)), where f (x) = 1 −
(

1 + x

2

)r−1

(42)

Lemma 10. Equation (42) has a unique solution b∗ within the range b ∈ [0, 1] iff
r ≤ 4. In this case b∗ is also the unique solution of f (b) = b.

Figures 1 and 2 show the graphs of f (f (b)) for the cases r = 4 and r = 8. The first
corresponds to the case of the unique solution. In the second case there is more than
one solution.

Fig. 1. f (f (b)) = b has one solution when r = 4.
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Fig. 2. f (f (b)) = b has more than one solution when r = 8.

Proof. Note that for every r ≥ 1 the equation x = f (x) has exactly one solution in
[0, 1] since f is a strictly decreasing function and f (0) = 1−1/2r−1 > f (1) = 0. This
solution is also a solution to x = f (f (x)).
We now prove the uniqueness for 2 ≤ r ≤ 4 and nonuniqueness for r > 4. Let r ≤ 4.
We claim that for all x ∈ [0, 1]

df (f (x))

dx
= (r − 1)2

4

(
1 + f (x)

2

)r−2 (
1 + x

2

)r−2

< 1. (43)

This would imply that f (f (x))− x is a strictly decreasing function and is equal to zero
in at most one point. (43) is equivalent to

(1 + f (x))(1 + x) <
2

2r−2
r−2

(r − 1)
2

r−2

. (44)

Let us check the validity of this inequality at the end points x = 0, 1. Since f (0) <

1, f (1) = 0, the left-hand side in both points is at most 2, which is strictly smaller
than the right-hand side for r = 2, 3, 4, as is easily checked. It remains to check the
inequality at the points where the derivative of the function g(x) = (1 + f (x))(1 + x)
vanishes. We have

ġ(x) = 1 + ḟ (x) + f (x) + xḟ (x)

= 1 − r − 1

2

(
1 + x

2

)r−2

+ 1 −
(

1 + x

2

)r−1

− x
r − 1

2

(
1 + x

2

)r−2

= 2 −
(

1 + x

2

)r−1

− (1 + x)(r − 1)

2

(
1 + x

2

)r−2

= 2 − r

(
1 + x

2

)r−1

.
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Thus ġ(x) = 0 in exactly one point x = 2( 2
r )

1
r−1 − 1. We check that (44) holds in this

point for r = 2, 3, 4.
We now prove the nonuniqueness of the solution to (42) when r ≥ 5. Let b∗ denote

the unique fixed point of f (b∗) = b∗. Clearly f (f (b∗)) = b∗. We claim that

df (f (x))

dx

∣∣∣∣
x=b∗

> 1. (45)

This implies the result since we get that for ε sufficiently small, f (f (b∗ −ε)) < b∗ −ε.
But f (f (0)) > 0. Therefore, there exists a different fixed point of (42) in the interval
(0, b∗). To show (45), note that

df (f (x))

dx

∣∣∣∣
x=b∗

= (r − 1)2

4

(
1 + f (b∗)

2

)r−2 (
1 + b∗

2

)r−2

= (r − 1)2

4

(
1 + b∗

2

)2r−4

.

We need to show that

(r − 1)2

4

(
1 + b∗

2

)2r−4

> 1, (46)

which is equivalent to b∗ > 2( 2
r−1 )

1
r−2 − 1 ≡ b(r). We claim that b(r) < f (b(r)) =

1 − ( 1+b(r)
2 )r−1. Since b∗ = f (b∗) and f is a decreasing function, this would imply

b(r) < b∗ or (46). Note that (1 + b(r))/2 = ( 2
r−1 )

1
r−2 . Thus we need to check that

2

(
2

r − 1

) 1
r−2 − 1 < 1 −

(
2

r − 1

) r−1
r−2 ⇔ 2

(
2

r − 1

) 1
r−2

< 2 −
(

2

r − 1

) r−1
r−2

⇔
(

2

r − 1

) 1
r−2

< 1 − 2
1

r−2

(r − 1)
1+ 1

r−2

= 1 −
(

1

r − 1

) (
2

r − 1

) 1
r−2

⇔
(

2

r − 1

) 1
r−2

<
r − 1

r

⇔ 2 < (r − 1)

(
1 − 1

r

)r−2

.

Note that g(r) = (1 − 1
r )

r−2 is a strictly growing function of r since log(g(r)) =
(r − 2) log(1 − 1

r ). Therefore, it suffices to verify that for r = 5 we have 2 <

4(1 − 1
5 )

3 ≈ 2.048.

Applying Lemma 10, b = b̂ is the unique solution of f (b) = b. When r = 2, we
obtain b = 1/3. When r = 3, we obtain b = 1− (1+b)2/4 or b = 2

√
3−3 ≈ .4641.

When r = 4, we find numerically that b ≈ .5419.
Recall that the distribution F∗ of B is given by P(B = 0) = b and P(B > t) =
(1−b)e−t . Applying (7) of Theorem 2 and generating B1, . . . , Br ∼ F∗ independently,
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we obtain

lim
n

Iw(n, r)

n
=

∫ ∞

0
te−t

P

(
t >

∑
1≤i≤r

Bi

)
dt. (47)

We again condition on j out of r terms Bi to be equal to zero and the rest positive.

This occurs with probability

(
r
j

)
bj(1 − b)r−j. W.l.g. assume that the nonzero terms

are B1, . . . , Br−j. We have

∫ ∞

0
te−t

P

(
t >

∑
1≤i≤r−j

Bi

)
dt = 1 −

∫ ∞

0
te−t

P

( ∑
1≤i≤r−j

Bi > t

)
dt. (48)

Repeating the calculations (40), we obtain that P(
∑

1≤i≤r−j Bi > t) =∑
0≤i≤r−1−j

ti

i! e
−t . Then the expression of the right-hand side of (48) becomes

1 −
∫ ∞

0
te−t

∑
0≤i≤r−1−j

ti

i!e−tdt = 1 −
∑

0≤i≤r−1−j

i + 1

2i+2
= r − j + 2

2r−j+1
. (49)

Combining, we obtain

lim
n

Iw(n, r)

n
=

∑
0≤j≤r

(
r
j

)
bj(1 − b)r−j r − j + 2

2r−j+1
= 1

2
2

∑
0≤j≤r

(
r
j

)
bj

(
1

2
− b

2

)r−j

+ 1

2

∑
0≤j≤r

(
r
j

)
bj

(
1

2
− b

2

)r−j

(r − j).

The first summand is simply ( 1
2 + b

2 )
r . We compute the second summand using the

following probabilistic argument. Rewrite the expression as(
1

2
+ b

2

)r ∑
0≤j≤r

(
r
j

)
bj( 1

2 − b
2 )

r−j

( 1
2 + b

2 )
r

(r − j).

The sum above is simply the expected number of successes in r Bernoulli trials with
the probability of success equal to ( 1

2 − b
2 )/(

1
2 + b

2 ) = (1 − b)/(1 + b). Namely, it is
r(1 − b)/(1 + b). We obtain

lim
n

Iw(n, r)

n
=

(
1

2
+ b

2

)r (
1 + r(1 − b)

2 + 2b

)
= (1 + b)r−1

2r+1
(2 + 2b + r − rb). (50)

Recall from Lemma 10 that (1 + b)r−1/2r−1 = 1 − b. This proves (12). Plugging the
corresponding value of b for r = 2, 3, 4, we obtain limn

Iw(n,2)

n = 2
3 , limn

Iw(n,3)

n =
.6077, and limn

Iw(n,4)

n = .5632. This concludes the proofs for the case of maximum
weight independent set in G3(n) and G4(n). Before we continue with other cases, it is
convenient to prove Corollary 4, as the proof is almost immediate from above.

Proof of Corollary 4. We have established above that T 2
I,r has a unique fixed point

iff r ≤ 4. Applying (10), we need to compute E[1{W − ∑
1≤i≤r Bi > 0}] = P(W >
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∑
1≤i≤r Bi), where W ∼ Exp(1), Bi ∼ F∗. Instead of computing this quantity directly,

note that the probability above is exactly 1 − b, if we the summation above was up to
r − 1 not r. Repeating the computations up to (41), we obtain

P

(
W >

∑
1≤i≤r

Bi

)
=

(
1 + b

2

)r

.

Plugging the obtained values of b for r = 2, 3, 4, we obtain (19).

• Independent sets in G(n, c/n). Let F∗ denote now any fixed point of T 2 = T 2
I,c.

We introduce again b = F∗(0) = P(W − ∑
1≤i≤m B̂i ≤ 0), where B̂i ∼ T(F∗)

and m ∼ Pois(c). Similarly, b̂ = T(F∗)(0) = P(W − ∑
1≤i≤m Bi ≤ 0), where

Bi ∼ F∗. Repeating the computations done for Gr(n), we obtain similarly to (41) that
conditioning on m = k

b = 1 −
(

1 + b̂

2

)k

.

Then b = ∑
k≥0

ck

k! e−c
(
1 − (

1+b̂
2

)k) = 1 − e− c(1−b̂)
2 . Similarly, b̂ = 1 − e− c(1−b)

2 . Thus,
b must satisfy 1−b = exp

(− c
2 exp

(− c
2 (1−b)

))
. Recall, however, that, by the second

part of Theorem 1, the equation above has a unique solution iff c ≤ 2e. In this case b is
also the unique solution of 1 − b = exp

(− c
2 (1 − b)

)
. We now apply (7) of Theorem 2

to compute limn
Iw(n,c)

n , where we substitute m ∼ Pois(c) for r. In order to shortcut
the computations, we use (47) and (50). We have

lim
n

Iw(n, c)

n
=

∑
k≥0

ck

k! e−c

∫ ∞

0
te−t

P

(
t >

∑
1≤i≤k

Bi

)
dt,

where Bi ∼ F∗. Recall, though, from (50), that∫ ∞

0
te−t

P

(
t >

∑
1≤i≤k

Bi

)
dt =

(
1 + b

2

)k (
1 + k(1 − b)

2(1 + b)

)
.

Combining,

lim
n

Iw(n, c)

n
= e− c(1−b)

2 + (1 − b)

2(1 + b)

c(1 + b)

2
e− c(1−b)

2 =
(

1 + c(1 − b)

4

)
e− c(1−b)

2 .

Using b = 1 − exp(− c(1−b)

2 ), we obtain (14).
• Matchings in Gr(n). Let F∗ denote any fixed point distribution of T = TM,r .

Then we have the following distributional identities: B̂ = max1≤i≤r−1(0, Wi − Bi),
Wi ∼ Exp(1), Bi ∼ F∗, B̂ ∼ T(F∗), and B = max1≤i≤r−1(0, Wi − B̂i), Wi ∼ Exp(1),
B̂i ∼ T(F∗), B ∼ F∗. Let b̂ = P(W − B̂ < 0), where W ∼ Exp(1) and B̂ ∼ T(F∗), and
let b = P(W − B < 0), where B ∼ F∗. Then for any t ≥ 0

P(B ≤ t) = P

(
max

1≤i≤r−1
(Wi − B̂i) ≤ t

)
= (1 − P(W1 > t + B̂1))

r−1

= (1 − e−t(1 − b̂))r−1. (51)
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In particular

P(B = 0) = b̂r−1, dP(B ≤ t) = (r − 1)(1 − b̂)e−t(1 − e−t(1 − b̂))r−2dt, t > 0.
(52)

(We note as above that P(W1 = ·) = 0, since W1 has a continuous distribution.) Then

b =
∫ ∞

0
e−t

P(B > t) dt

=
∫ ∞

0
e−t(1 − (1 − e−t(1 − b̂))r−1) dt

= 1 −
∫ ∞

0
e−t(1 − e−t(1 − b̂))r−1dt

= 1 −
∫ ∞

0
(1 − e−t(1 − b̂))r−1d(−e−t)

= 1 −
∫ 1

0
(1 − z(1 − b̂))r−1dz

= 1 − (1 − z(1 − b̂))r

r(−(1 − b̂))

∣∣∣∣∣
1

0

= 1 − 1 − b̂r

r(1 − b̂)
. (53)

Similarly, we obtain

b̂ = 1 − 1 − br

r(1 − b)
,

and combining we conclude that b must be a fixed point of the equation f (f (x)) = x,
where

f (x) = 1 − 1 − xr

r(1 − x)
.

Lemma 11. For every r ≥ 1 the equation f (f (x)) = x has a unique solution x∗ in
the range [0, 1], which is the unique solution of the equation f (x) = x.

Proof. Note that (1− xr)/(1− x) = 1+ x +· · ·+ xr−1 and therefore f (x) is a strictly
decreasing function with f (0) = 1 − 1/r, f (1) = 0. Therefore, f (x) = x has exactly
one solution x∗. We now prove that f (f (x)) > x for all x < x∗ and f (f (x)) < x for all
x > x∗. This would complete the proof of the lemma. We need to show that for x < x∗

f (f (x)) = 1 − 1 − f r(x)

r(1 − f (x))
> x,

which is equivalent to 1 − f r(x) < r(1 − f (x))(1 − x). But since f is a decreasing
function and f (x∗) = x∗, then f (x) > x for all x < x∗ and therefore 1 − f r(x) <
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1 − xr = r(1 − f (x))(1 − x). Similarly, when x > x∗, we have f (x) < x∗, and
then 1 − f r(x) > 1 − xr = r(1 − f (x))(1 − x), resulting in

f (f (x)) = 1 − 1 − f r(x)

r(1 − f (x))
< x.

We conclude that b = b̂ is determined as the unique solution of

b = 1 − 1 − br

r(1 − b)
, (54)

and the unique fixed point of T 2 is the distribution given by (51) with b = b̂ given above.
Now, using (8) of Theorem 2, (52), and adopting a convention max2≤j≤r(Wj −Bj)) = 0
when r = 1, we have

lim
n

Mw(n, r)

n
= 1

2
E

[ ∑
1≤i≤r

Wi1

{
Wi − Bi = max

1≤j≤r
(0, Wj − Bj)

}]
,

= r

2
E

[
W11

{
W1 − B1 > max

2≤j≤r
(0, Wj − Bj)

}]
,

= r

2

∫ ∞

0
te−tbr−1

P

(
t > max

2≤j≤r
(Wj − Bj)

)
dt (55)

+ r

2

∫ ∞

0

∫ t

0
te−t(r − 1)(1 − b)

× e−z(1 − e−z(1 − b))r−2
P

(
t − z > max

2≤j≤r
(Wj − Bj)

)
dtdz, (56)

where the summands (55) and (56) corresponds to conditioning on B1 = 0 and B1 =
z > 0.

We now compute the integrals in these summands. We have∫ ∞

0
te−tbr−1

P

(
t > max

2≤j≤r
(Wj − Bj)

)
dt =

∫ ∞

0
te−tbr−1

P
r−1(t > W2 − B2) dt

=
∫ ∞

0
te−tbr−1(1 − P(W2 > t + B2))

r−1dt

=
∫ ∞

0
te−tbr−1(1 − e−t

P(W2 > B2))
r−1dt

=
∫ ∞

0
te−tbr−1(1 − e−t(1 − b)))r−1dt.

Similarly, we obtain that the integral in (56) is equal to∫ ∞

0

∫ t

0
te−t(r − 1)(1 − b)e−z(1 − e−z(1 − b))r−2(1 − e−t+z(1 − b))r−1dtdz

Substituting to summands in (55) and (56), we obtain (15).
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• Matchings in G(n, c/n). The derivation is very similar to the one for Mw(n, r). We
introduce b and b̂ exactly as above. Equation (53) becomes

b =
∑
m≥0

cm

m!e−c

(
1 − 1 − b̂m+1

(m + 1)(1 − b̂)

)

= 1 − 1

c(1 − b̂)

∑
m≥0

cm+1

(m + 1)!e−c + 1

c(1 − b̂)

∑
m≥0

cm+1b̂m+1

(m + 1)! e−c

= 1 − 1

c(1 − b̂)
+ e−c(1−b̂)

c(1 − b̂)
,

Then 1 − b is a fixed point of the equation f (f (x)) = x, where f (x) = 1−e−cx

cx . That is

1 − ec
1−e−cx

cx −c

c
1−e−cx

cx

= x

First we note that x = 0 does not satisfy f (f (x)) = x, so we assume x > 0. The
expression above then becomes e−cx + cx2 − 1 = 0. The function e−cx + cx2 − 1 is
a strictly convex function which is equal to zero at x = 0, has derivative −c < 0
at x = 0, and diverges to infinity as x diverges to infinity. Therefore, its graph has
exactly one intersection with the horizontal axis in x ∈ (0, ∞). Note that at x = 1 the
value is e−c + c − 1 > 0 (for every c > 0); therefore there exists exactly solution to
e−cx + cx2 − 1 = 0 in x ∈ (0, 1). We conclude that b is uniquely determined by the
equation e−c(1−b) + c(1 − b)2 − 1 = 0. The remainder of the calculation is done just
like for Gr(n) by conditioning first on specific values of r and recalling m = r with
probability cr

r !e−c. We omit the fairly straightforward calculations.

Proof of Corollary 3. The result is essentially established en route of proving Theorems 2
and 3. Recall that in the proof of Theorem 2 the only place we used the randomness of our
regular graph Gr(n) was to say that a constant depth-d neighborhood H(d) of a randomly
selected node i ∈ [n] is a depth-d r-regular tree w.h.p. In the case of a cycle any constant
depth-d neighborhood of any node is w.p.1 a path of length 2d with the selected node in
the middle. This is depth-d 2-regular tree. The answer for the maximum weight matching
on a cycle is the same as for independent set since we may simply assume the weights are
assigned to nodes which are to the left for each edge.

5.3. Deterministic and Bernoulli Weights

Are the results obtained above relevant to the case when the weight of each node and edge
W = 1 with probability 1 or, in general, when the weights take some discrete values? Let
us examine these questions with respect to our usual four operators T . We start with the
case W = 1. For T = TI,r , the corresponding distributional equation is B = max(0, 1 −∑

1≤i≤r−1 Bi). If Bi = 0, w.p.1, then B = 1, w.p.1, and vice verse. Thus B = 0 and B = 1
are two fixed points of T 2, and T 2 does not have a unique fixed point distribution. There is a
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natural explanation for the lack of uniqueness, coming directly from the lack of long-range
independence. Given a depth-d r-regular tree T with all the weights equal to unity, note that
the boundary does carry a nonvanishing information about the root in the following sense. If
all the leaves of the tree (boundary nodes) are conditioned to belong to the maximum weight
independent set, then all the parents of leaves cannot be part of the set. Then the maximum
independent set is obtained by selecting all the nodes in level d, not selecting nodes in level
d −1, selecting all the nodes in level d −2, and so on. In the end whether the root is selected
is fully determined by the parity of d. Thereby, we do not have a long-range independence.
Contrast this with the discussion in Brightwell and Winkler [11], where similar observation
is used to show long-range dependence for Gibbs measures on infinite regular trees for the
hard-core model. It is not hard to see that the similar lack of long-range independence holds
for maximum weight matchings, where the weights are all 1.

The situation is different for T = TI,c. Let F be a distribution function given by
F(t) = p, t ∈ [0, 1), F(1) = 1. Namely, F is simply a Bernoulli distribution with para-
meter p (Be(p)). If B = max(0, 1 − ∑

1≤i≤m Bi), where Bi ∼ F and m ∼ Pois(c), then

B = 1 if
∑

1≤i≤m Bi = 0, which occurs with probability
∑

k≥0
ck

k! e−cpk = e−c(1−p), and
B = 0 otherwise. Thus T(F) is Be(p1) where p1 = 1 − e−c(1−p). Similarly T 2(F) is
Be(p2), with p2 = 1 − e−ce−c(1−p)

. In general, for s = 1, 2, . . ., T 2s(F) is Be(p2s) with

1 − p2s = e−ce−c(1−p2s−2)

. By Proposition 1 we know that for F = Be(0) and F = Be(1),
T 2s(F) converges to some fixed point distributions F∗∗, F∗∗ which by the argument above are
Be(p∗∗), Be(p∗∗) with both p = p∗∗ and p = p∗∗ satisfying 1 − p = e−ce−c(1−p)

. Recall from
Theorem 1, that the equation x = e−ce−cx

has a unique solution iff c ≤ e. By Proposition 1
this implies that when c ≤ e, T s(F0) converges to Be(p∗) for any starting distribution F0.
Again applying Proposition 1, we obtain that T s(F0) converges to Be(p∗), T and T 2 have
the same unique fixed point distribution – Be(p∗), where p∗ is also the unique solution of
1 − p∗ = e−c(1−p∗).

It is a simple exercise to see that the same holds for T = TM,c: T 2 has a unique fixed
point iff c ≤ e, in which case the fixed point distribution is also Be(p∗). This is, of course,
fully consistent with Theorem 1. We summarize these observations.

Proposition 2. Let Fw = 1. For every r ≥ 2, T 2
I,r , T 2

M,r have at least two fixed point
distributions. T 2

I,c, T 2
M,c have the unique fixed point distribution iff c ≤ e in which case the

unique fixed point distribution is Be(p∗), where p∗ is the unique solution of 1−p∗ = e−c(1−p∗).

Can we fully reproduce Theorem 1 for the case c ≤ e? The problem with the case Fw = 1
as, generally, with noncontinuous distributions Fw, is that the probability of W−∑

1≤i≤r Bi =
0 is no longer zero. As a result, we do not have an exact condition purely in terms of
B = max(0, W −∑

1≤i≤r Bi) for determining whether the root node belongs to say maximum
weight independent set. One natural approach would be to approximate Fw with a continuous
distribution. But the difficulty is the lack of closed form expression for the solution of fixed
point of T 2(F∗) = F∗. Such a solution F∗ can, though, be approximated numerically by
computing T 2s(0) and T 2s(Fw) (T 2s(Fw,r), T 2s(Fw,c)) for matching) for large s such that the
differences between the two distributions is sufficiently small.

Suppose now the weights Wi of the nodes are distributed as Be(z) for some parameter
z ∈ [0, 1]. For simplicity we will only consider the case r = 3 and T = TI,3 and obtain a
complete criteria for uniqueness.
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Proposition 3. For r = 3 the operator T 2
I,r−1 has a unique fixed point distribution iff

z ∈ [ 1
4 , 1]. In this case the fixed point distribution is Be(p) with p =

√
5−4z−1
2(1−z) .

Proof. Let F = Be(p) for any x ∈ [0, 1]. Then for B′ ∼ T(F) we have B′ = max(0, W −
B1 − B2), where B1, B2 are independent and distributed as F. Then B′ = 0 when W = 0
or when W = 1 and B1 + B2 > 0. This occurs with probability z + (1 − z)(1 − p2) =
1 − (1 − z)p2. Thus B′ ∼ Be(1 − (1 − z)p2). Repeating the development above for the
case of the deterministic weight, we need to analyze the number of the solutions to the
equation f (f (x)) = x, where f (x) = 1 − (1 − z)x2. First, the equation f (x) = x leads to the
unique solution x∗ = −1+√

5−4z
2(1−z) (it is simple to check that the solution is in [0, 1] for every

z ∈ [0, 1]). Also x∗ is a solution of g(x) ≡ f (f (x)) = x. We need to show that this is the
unique solution of this equation iff z > 1/4.

First we show that when z < 1/4, ġ(x∗) > 1. Since g(0) > 0, this would imply that
there exists a solution of g(x) = x in the open interval (0, x∗) and the case z < 1/4 would
be resolved. We have ġ(x∗) = 4(1 − z)2f (x∗)x∗ = (2(1 − z)x∗)2, where we use f (x∗) = x∗.
Then the inequality ġ(x∗) > 1 holds when x∗ > 1/(2 − 2z) which after as simple algebra is
reduced to z < 1/4. Thus when z < 1/4 there are more than one fixed points of T 2 = T 2

I,2.
Suppose now z ≥ 1/4. Let again x∗ be the unique solution to f (x∗) = x∗ and consider

ġ(x) = 4(1 − z)2f (x)x. We claim that when z > 1/4, ġ(x) < 1 for all x ∈ [0, 1] and when
z = 1/4, ġ(x) < 1 for all x �= x∗ and ġ(x∗) = 1. This immediately implies that g(x) = x
has at most one solution, meaning it has exactly one since g(x∗) = x∗. Note ġ(0) = 0 < 1.

We now prove that ġ(1) = 4(1− z)2z < 1 and ġ(x) < 1 for all x such that d2g(x)
dx2 = 0, except

for x = x∗ for which we will show that ġ(x∗) = 1.
We start with ġ(1) = 4(1−z)2z ≡ φ(z). Note φ(0) = φ(1) = 0 < 1. Then the maximum

is achieved at the points z where φ̇(z) = −8(1−z)z+4(1−z)2 = 4(1−z)(1−3z) = 0. We
have already considered the case z = 1. Otherwise z = 1/3 for which φ(1/3) = 16/27 < 1.
Thus ġ(1) ≤ supz∈[0,1] φ(z) < 1.

Consider now points x such that d2g(x)
dx2 = 4(1 − z)2[−2(1 − z)x2 + 1 − (1 − z)x2] = 0,

from which we obtain x = 1/
√

3 − 3z. Plugging this into

ġ(x) = 4(1 − z)2(1 − (1 − z)x2)x = 4(1 − z)2 2

3

1√
3 − 3z

=
(

64(1 − z)3

27

) 1
2

.

The last expression is smaller than unity whenever z > 1/4. When z = 1/4 the expression
is equal to the unity. In this case, however, x = 1/

√
3 − 3z = 2/3 which is checked to be

equal to x∗ = −1+√
5−4z

2(1−z) when z = 1/4. This concludes the proof of the proposition.

6. CONCLUSIONS

We have derived in this paper the limits of maximum weight independent sets and matchings
in sparse random graphs for some types of i.i.d weight distributions. Our method is based on
a certain local optimality property, which states loosely that, in cases of certain distributions
of the random weights, the optimal random combinatorial structure under the consideration
exhibits a long-range independence and, as a result, the value which each node (edge)
“contributes” to the optimal structure is almost completely determined by the constant
depth neighborhood of the node (edge). We certainly believe that such local optimality
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holds for many other random combinatorial structures, and it seems to be an interesting
property to study by itself, not to mention its applications to studying random combinatorial
structures.
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