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ABSTRACT

A popular information theoretic technique for multiaccess communication on a white
Gaussian noise channel is to decode the users one by one. After each user is decoded,
its encoded waveform is subtracted from the received signal, thus cancelling the in-
terference from that user for the task of decoding subsequent users. This technique is
not directly applicable to the fading multipath channels common to wireless commu-
nication. The problem is that what should be subtracted from the received signal is
the response of the fading channel to the user’s encoded waveform. Since the channel
is unknown, the best that can be done is to subtract the convolution of the encoded
waveform with an estimate of the channel. This leaves a residual noise term which is
the convolution of the encoded waveform with the difference between the true channel
and the estimated channel. The point of this paper is to show that this residual noise
term is negligibly small for typical wireless situations.

1 INTRODUCTION

Cellular communication, personal communication systems (PCS), and packet
radio systems all involve multiaccess communication, i.e., multiple transmit-
ters sending data to the same receiver. Present day systems use a number of
different techniques such as time division multiple access (TDMA), frequency
division multiple access (FDMA), code division multiple access (CDMA), and




e B AN e L TS Rl WO N e WULE e e Nl | S W 10 el St Mt Y A T N et i W el SR S T Nl Ul B e S s Rl

nels between these transmitters and receivers are typically fading multipath
channels. For these channels, the response to each transmitted signal is a time-
varying linear combination of delayed replicas of that transmitted signal, and
the overall received signal is the sum of the responses to the various transmitters
plus additive noise.

From an information theoretic standpoint, the above systems can be abstracted
as multiaccess communication over time-varying multipath channels. In this
abstraction, we restrict attention to a single receiver with multiple transmitters.
The transmitters are limited to a common frequency band of width W and are
each power constrained. The noise is modeled as white Gaussian, and the
time-varying path strengths and delays are modeled as random processes. We
can then attempt to find the multiaccess capacity region and achievable coding
error probabilities as a function of rate and code block length.

For additive white Gaussian noise channels without time-varying multipath,
the multiaccess capacity region is well known [CT91] and can be interpreted in
terms of successive interference cancellation. That is, a set of m transmitter
rates is within the capacity region if the receiver can decode the transmit-
ters one by one. The first transmitter’s code word is decoded with the other
transmitters’ code words treated as additional noise. The waveform for that
code word is then subtracted from the received waveform, thus cancelling the
interference of that waveform from successive decodings. The code words of
subsequent transmitters are decoded and cancelled in the same way. The ca-
pacity region turns out to be the convex hull of the sets of rates decodable
by this interference cancellation approach. Points in this convex hull can be
achieved by time sharing between points achievable by interference cancella-
tion. Time sharing has a number of system disadvantages for wireless systems
[GJ91], but it turns out that arbitrary achievable points can also be achieved
by interference cancellation directly. This can be done if some transmitters are
conceptually split into two users, the available power of the transmitter and
the required rate being split between the two users [RU96).

The situation for fading multipath channels is considerably more complex. As
we shall see below, a fading multipath channel can be represented as an un-
known time-varying linear filter. Thus the waveform from each of the m trans-
mitters goes through an unknown time-varying linear filter. The received wave-
form is the sum of the outputs from these m filters along with white Gaussian
noise. Suppose that we successfully decode a code word from one of the trans-
mitters and attempt to do interference cancellation. We would like to subtract
the convolution of the code word waveform and the time-varying linear filter
from the received waveform, but since the time-varying filter is unknown, we
instead use the convolution of the code word waveform and an estimate of the
time-varying linear filter, Thus the interference cancellation is imperfect, and
some residual noise, consisting of the code word waveform convolved with the



difference between the true channel filter and the estimated channel filter, is
left to interfere with subsequent decoding of other transmitters.

Our objective in this paper is to show that this residual noise is negligible for
typical wireless situations. We will assume that each transmitter uses CDMA
waveforms over a broad enough bandwidth that the interference from these
transmitted signals can be modeled as white Gaussian noise over the bandwidth
of interest. Because of this, we will study the residual noise in terms of a
single transmitter, a single unknown filter, and additive Gaussian noise. We
focus on the problem of estimating the unknown filter, and show that a Rake
receiver [PG60] is an appropriate mechanism for both estimating the channel
and detecting the transmitted signal. In the interest of simplicity, we shall make
a number of simplifying assumptions as we proceed. Many of these assumptions
can be avoided, but the results become less insightful.

Since we analyze only the issue of residual noise, we neglect many important
problems associated with multiaccess fading multipath channels. One of these
is the capacity region under the assumption that transmitters and receivers
all know the fading multipath channels [CV93, Go94, KH95,TH96]. These
analyses consider transmitters that dynamically change their power, spectral
density, and/or rate as the channels change. Some results on the capacity
when transmitters do not know the channels are contained in [Me95]. There
is clearly a need for more work on the multiaccess capacity region of fading
multipath channels under various feedback situations, but it seems clear that
channel measurement must play a central role in this. We now proceed to
analyze channel measurements and residual noise.

2 BASEBAND EQUIVALENTS

Consider M-ary signalling with the M signals u,(2),...,uar(t). Let T be the
intersymbol duration, so that each T seconds, one of the signals {un,(t),1 <
m < M} is transmitted. We assume that u,,(t) is essentially non-zero only for
—T <t € 0 so that successive signals do not overlap. After passing through
the multipath channel there will be some overlap which we discuss later. The
signals all have bandwidth W, centered around some carrier frequency fo > W.
Let Un(f) = [um(t)e=727tdt be the Fourier transform of w,,(t) for each m,
and define the baseband equivalent waveforms z,,(¢) in terms of their Fourier
transforms X,,(f) where X, (f) = Un(f + fo) for f > —fo and Xn(f) =0
otherwise (see Fig. 3.1).

This way of going from passband to baseband is not entirely conventional. In
particular,

um (t) = 2Re[Xm (t)e/2™ "] = 2Re[xm (t)] cos(27fot) — 2Im[xm (t)] sin(27fot)
(3.1)
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Figure 3.1 Baseband equivalent; Uy (f) and X (f) are generally complex.

Also, if £ is the energy in the signal u,,(t), then

e= [ nPde=2 [ lemPa. (32)

-0

The desirable feature of this scaling is that if »(¢) is passed through a linear
filter of impulse response g(t) to get output v(t), and if z(¢), k(t), and y(t) are
the corresponding bascband equivalents of u(t), g(t), and v(t), then

v(t)=ul)*xg@®) ; V() =GAHV(S)
y(@) =h(t)xz(t) ; Y()=H(HX{) (3.3)

Since the arguments to follow depend critically on being able to view signals
and filters interchangeably, we have defined baseband waveforms so that (3.3)
is satisfied, and by necessity this forces the peculiar energy scaling in (3.2).

Assume that the real and imaginary parts of z,,(t);1 < m < M are pseudo
noise signals (as used in CDMA). These signals have the property that |Un (f)|
is essentially constant over the signalling bandwidth |f — fo] < W/2. It
follows that |X,,(f)| is essentially constant over |[f| < W/2 and 0 else-
where. For simplicity, we henceforth assume that |X,,(f)| is exactly constant
over |[f| € W/2 and zero elsewhere. Applying Parseval’s equation to (3.2),
2, 1 Xm(£)Pdf = £/2, 50

£
[Xm(H)I? = ow lorlfl<W/2 Xm(HP =0 forlfl>W/2 (34)
Since |Xm(f)|? and Rm(t) = [z, (7)zm(t + 7)dr are Fourier transforms, it
follows from (3.4) that R, (t) = (£/2) sin(aWt)/(xWt). Thus, if we view z,,(¢)
in terms of its samples &, ; at rate W, we have 3, a7, :&m i+; = (EW/2)6(j).
It is not possible to find waveforms z(t) that are both time limited to the signal
interval T and low pass limited to the band W/2. CDMA systems, however,



have a relatively large time bandwidth product, WT > 1 (which is why they are
called spread spectrum systems), and for this reason, waveforms can be found
that are both approximately time limited and frequency limited. Finding such
waveforms with desirable cross correlation properties is a large and very well
studied field, but studying this would draw us away from our main purpose.
Thus in what follows, we simply assume (3.4) to be valid, and recognize that
the approximation can be quite good for WT > 1.

3 THE EFFECT OF MULTIPATH

Let 7;(¢) be the propagation delay of the i*# propagation path at time ¢, and let
a;(t) be the strength of that path, at least within the frequency range of interest
around fy. Both a; and 7; change slowly with time. The impulse response of
the channel, i.e., the output at time ¢ due to an impulse 7 seconds earlier is
then g(7,%) = >, ai(t)d(r — 7;(t)). Thus the response to a signal u(t) is

alt) = / u(t = 7)g(r, Odr = 3 ult - m(e)ai(t) (3.5)
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Defining G(f,t) = [ g(7,t)e™72"/7dr, we have G(f,t) = 3, ai(t)e 737 f™(8),
again within the frequency range of interest. Define H(f,t) = G(f + fo,t) for
the baseband region of interest. Then

H(f,t) = Z at_(t)eﬂ‘%fon(t)e—é:’ﬂfrs(t) = Z a,-(t)e"-"z"f""“) (3.6)

where «;(t) = ai(t)e‘ﬂfffo'rf(t)

Letting «(t) and y(#) be the baseband equivalents of u(¢) and v(#) respectively,
and letting X (f) and Y(f) be the corresponding Fourier transforms, it can be
shown after a little manipulation that

v = [ " X(PH(, et (3.7)

This shows that H(f,¢) for |f| > W/2 has no effect on the output. Thus we
arbitrarily define H(f,t) to be 0 for |f| > W/2. Inverse Fourier transforming
(3.6) with this modification, the baseband equivalent filter is

sin([mW (¢t — 7:(¢))]

W) =D el =) .
Also, transforming the right hand side of (3.7), we get
(s ]
y(t) = / z(t — TYh(r, t)dr (3.9)
—00



Note that h(r,t) has one filtered impulse for each path, and that the sinc pulse
representing the filtered impulse has a peak that increases with W and a width
that decreases, thus keeping unit area. The multipath structure does not change
as the bandwidth of the input is changed, but the filter 27, t) does change, since
A(T,t) represents only the effect of the channel over the given bandwidth. This
is an important point, since the effect of the channel is typically very complex,
but we need measure its effect only on the signals in the given band. Since we
want to measure the channel over the bandwidth W/2, we want to characterize
it in the simplest way over that band.

Define L as the multipath spread of the channel; this is the difference in prop-
agation delay between the longest and shortest path. For W large, h(7,t) is
approximately 0 for 7 < 0 and for v > L (in communication, one usually adjusts
the time reference at the receiver to be delayed from that at the transmitter by
the shortest (or sometimes the strongest) propagation delay). For smaller W,
it can be seen that h(r,t) is non-zero over an interval L’ consisting of L plus
several times 1/W. For cellular mobile communication, L is typically between
a few microseconds and 30 microseconds, and for PCS, L is typically much
smaller, on the order of 100 nsec. If L = 10 usec, and W = 10% H, then A(r,¢)
could be represented (through the sampling theorem) by slightly more than
10 samples in 7; each sample is complex, so measuring h at any given time
corresponds to measuring slightly more than 20 real numbers.

Define B as the Doppler spread of the channel; this is the difference between the
largest and the smallest Doppler shift. Typical values in a mobile system are
around 100 H. B determines how quickly h(r,t) can change with ¢. The phase
in the path strength «;(t) can change significantly over the interval 1/B, so
that measurements of the channel become outdated over intervals of duration
1/B. We will assume in what follows that the signalling interval T' is very much
smaller than 1/B, and thus we assume that h(r, t) is constant as a function of ¢
over a signal interval 7'. Thus h(r,t) is modeled as a linear time invariant filter
over individual signal intervals, allowing one to play all the games of elementary
linear systems. One must recognize, of course, that k(7,¢) changes significantly
over many signalling intervals, so that one cannot simply measure h once and
for all.

[
4 ESTIMATING H(7,T)

First ignore noise, assume that z,(7) is transmitted, and consider passing the
channel output, z,,(7)* k{7, t) through a filter matched to z,, (i.e., a filter with
impulse response 5, (—7)) (see Fig. 3.2).

Taking Fourier transforms, we have

Bon(f) = Xm (NNH, X0 (F) = | Xm(DIPH(f,t) = %H(f,t) (3.10)
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Figure 3.2

where we have used (3.4). Taking the inverse Fourier transform, we see that
Tt} = E%h(r, t). Since we are looking at an input in the interval [—7,0],
and we are assuming that h(r,t) does not change in ¢ over intervals of duration
T, the parameter ¢ can be taken to be 0. This suggests that the output should
be attenuated by 2W/€ in order to obtain an estimate of h(r,t) at t=0.

We now put the white noise back in the picture and look at the output of the
attenuated matched filter including noise (see Fig. 3.3). Assume the noise has
spectral density No/2. Filtering the noise to |f — fo] < W/2, and defining
the baseband equivalent noise, as the upper sideband shifted down by fq, the
baseband equivalent noise process is complex Gaussian and has the spectral
density No/2 for |f| € W/2. Tt follows that the noise power of the baseband
waveform is NoW/2, which is half the noise power of the band pass waveform.
Thus we have scaled the noise in the same way as the signal. Physically, when
one demodulates a passband waveform into quadrature baseband components,
one can scale those baseband waveforms arbitrarily, but the signal and noise
must be scaled the same way.
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Figure 3.3

We have seen that the component of the output due to the signal z,,(7) is
h(r,0). To analyze a sample z,,(7) of the output noise process, note that the
Fourier transform of the attenuated matched filter is X, (f)2W/E. The spec-
tral density of the filter, i.e., the magnitude squared of the Fourier transform,
is £/(2W))[2W/E)? = 2W/E. Since the input process has the spectral den-
sity No/2, the output {z,(7)} comes from a process with the spectral density
NoW/E. Since this output noise process has bandwidth W/2, z,,(7), for any
given 7 is a sample value of a random variable of variance NoW?2 /€, so

Var[zm (t)] = NoW? /€ (3.11)



Now consider a rake receiver (see Fig. 3.4). If h(7, t) is known, then the optimal
detector for the M-ary signal set z,(7), 1 < m < M, through the filter
h(r,t), is simply a set of matched filters matched to the convolution of z,, and
hy 1.e., x5 (—7) * h*(—7,t). The decision on m in Fig. 3.4 replaces h*(—,t)
with h* (-7, ), which is reasonable if the estimate is good. Assume that h(,t)
is well estimated, and that a correct decision is made on the input m. Given
this decision, the output of the filter matched to the signal z,, yields a new
estimate of h plus additive Gaussian noise. The device to estimate h then uses
the decision on m to accept the output from the m** matched filter to update
the old estimate of h.

S (- ) b
) z€ 7)
T (T
h{r,t) “
/
ARG ke, + ) h*(—,1)
estimate h decide m

Figure 3.4 Rake receiver.

To avoid worrying about the optimal estimate of %, we can get an approximate
answer by assuming that the estimate h of h is simply the linear average of the
previous n measurements. Here one measurement is made each T seconds and
the i** such measurement, made at time —iT", comes from matched filter m;,
where signal m; was sent at that time. Since the channel filter remains almost
constant for a time on the order of 1/B, we take n = 1/(BT). Let z'(7) be
the error in h(r,0), i.e., h(r,t) = h(r,t) + z'(r). Since taking an average over
n measurements with IID noise reduces the noise variance by a factor of n, it
can be shown that

NoW?  BTNgW?®
nE £ !

We assume that the multipath spread L' (including the limitation to bandwidth
W/2) is known, and thus that h(r, t) is taken to be 0 for 7 < 0 and 7 > L.
Since all of the noise processes being averaged are white over |f| < W/2, {z'(7)}
is a sample function of a process that is white over |f| < W/2 and is non-zero
only over the interval [0, L'].

Var(z'(7)) = o<r<kr! (3.12)




5 RESIDUAL NOISE

Finally we have the problem of determining the residual noise if the effect of
the detected signal is subtracted from the received waveform (again assuming
the correct signal was detected). The effect of the signal @, (v) on the received
signal is @, (7) # h(7,t). The quantity subtracted from the received signal
in cancelling the interference from this user is zn,(7) * h(r,t), and thus the
residual noise after interference cancellation is ¢(7) = z,(7) * (7). Taking
Fourier transforms, @(f) = X,,(f)Z'(f) and

B = Xm(DPIZ (D = 5512' ()P (3.13)

Thus, . g
2O = [P = [P (619)

Taking the expected value of the final terms in (3.14),

BTN,WL'

; (3.15)

&
/Var|¢(r)|df = WV—Vaﬂz’('r)ldr =

This is the baseband expected energy of the residual noise in the band |f| <
W/2 and over the interval 0 € { €< T. Since z'(7) is white over the band
|f] € W/2, ¢(7) is also white over |f| < W/2. Thus the spectral density of
this noise power (averaged over the time interval.(0,7T) ) is BL'Ny/2. Since
the spreading product BL’ is small for most wireless situations, this indicates
that the residual noise is small relative to the ordinary additive noise of spectral
density No/2. When multiaccess communication is taken into account, the noise
that effects the filter measurement becomes not only the white noise but also
the other users signals, which have been passed through their own multipath
filters before contributing to the measurement of the filter in question.

6 DISCUSSION

The analysis here indicates that the residual noise is a factor BL' of the back-
ground noise and the interference from other users, and rather surprisingly,
it does not depend on either the signal power or the signal bandwidth. The
assumption, however, was that the signals could be successfully detected, and,
of course, successful detection does depend on signal power and bandwidth. In
fact, it can be shown that pseudo-noise signals of any given power and dura-
tion cannot be spread arbitrarily in bandwidth and still be detected on a fading
multipath channel. This effect appears only indirectly here, where in it can be
seen that the estimate of the channel becomes poor as W becomes large. This
increasingly poor estimate does not increase the residual noise spectral density




because the signal spectral density is decreasing with W, but it does increase
the difficulty of detection.

It is not difficult to actually analyze the estimation error in estimating h. For
any fixed 7, if we know the correlation function in t for the random process
with sample functions h(r,t), then we can use discrete Kalman filtering to find
the minimum mean square error linear estimate. One finds, on doing this,
that our assumption of (BT)~! estimates with IID noise is very optimistic,
but it should be clear that the result only changes by a scale factor. A more
serious issue is that with coding, there is significant delay before symbols can
be correctly decoded, and this increases the delay in estimating the channel.
One can imagine an iterative approach where symbols are detected without
delay, this is used to update the channel estimate, and then a better channel
estimate is made after decoding. One could also use a Viterbi decoder where
different channel estimates are carried along with different potential paths, but
this is not very attractive.

Perhaps the best way to look at this is that whatever method is used in decoding
a user, that decoded data can be used to estimate the channel and cancel
interference if decoding is correct. This can introduce large delays overall,
because each user is delayed until the interference cancellation is done for the
earlier users to be decoded, but interference cancellation is possible whenever
decoding is possible.

It appears to be possible to carry through the analysis without assuming a flat
spectral density for the input waveforms, but this seems to be an exercise for
people who like complex calculations. Finally, we have ignored inter-symbol
interference for the transmitter being detected. This seems to be reasonable if
L' is small relative to the signal interval T'. It is also reasonable if the spreading
factor WT is large, since then the neighboring symbols appear like noise spread
over the band, and act much like the interference from other users.

In summary, we must ask whether interference cancellation might someday be
practical for wireless communication. We have shown that residual noise is not
a major problem there, but delay might be an insurmountable problem, and
interence from users in other cells might be sufficiently large that it doesn’t pay
to cancel interference within a cell. Thus the question is still open.
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