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ABSTRACT

Two problems concerning noiseless source coding with side information
are considered. The first is a problem earlier considered by Slepian and
Wolf in which the decoder has access to the side information but the encoder
does not. We show that not only is the maximum reliable transmission rate
unaffected by whether or not the encoder has access to the side information,
but also the block error probability is essentially unaffected and that, in
a sense, all the encoder need know about the source is the alphabet size.
The second problem considered is that where neither the encoder nor decoder
knows the side information and good performance, is some sense, 1s required
for all values of side information (i.e., universal coding). We show, for
variable length codes, that the minmax redundancy and the maxmin redundancy,
as defined by Davisson, are essentially the same. Finally we establish a

similar minmax, maxmin equivalence for error probability with block codes.
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Source Coding with Side Information and Universal Coding
I. Introduction

Consider a source with a finite alphabet, say {0,1,..., X-1},
whose probabilistic description depends on a side information parameter,

y, from some set Y. We let Qutzly) denote the probability of _any particular
block of N letters, ; = (xl,..., xN}, from the source,conditional on V.
Sometimes we shall assume that Y has a probability distribution P(y) and
sometimes not. Also Y might depend on the block length N of source letters
under consideration.

We shall consider both block codes and variable length codes for the
sources described above. aAn (N,R) block code for a source is defined as a
mapping £ from the set XN of N-tuples of source letters to the set
(o2 350055 [ENRT) where ?E”}denotes the smallest integer greater than or
equal to z. The integers (l,..., FZNRY) are called code words and can be
considered to be binary sequences of length TRRT, where R is the code rate.
Typically the number of code words will be smaller than the number of N=-
tuples from the source and thus a decoder, mapping the code words back
into source li=tuples will make occasional errors. One of our main objectives
is to establish bounds on the probability of such errors under various

conditions.

An N-tuple variable length code for a source is defined as a mapping

£ from XN to the set of binary strings. We assume throughout that each
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; € XN is mapped into a different string (code word) and that the set of
such code words is uniquely decodable. The error problem for block cocdes
has been exchanged for the buffering problems that arise with variable
length code words. Our main interest here will be to evaluate the expected
length of the set of code words under various conditions. For each of the
above types of codes, we shall consider two types of decoders, namely
decoders using side information and decoders not using side information.

A decoder using side information may be viewed as a mapping from the
Cartesian product of the code word set and side information set to the

set XN of source N-tuples. Block codes with cdecoders using side information
were first studied by Slepian and Wolf (1973). In their model, the side
information was a second source and the pair of sources were memoryless

but statistically dependent on each other. They showed that if (and only
if) the code rate exceeds the conditional entropy of the first source

given the second, then arbitrarily small error probability is achievable in
the limit of large block length. This result can be interpreted as saying
that lack of side information at the encoder does not effect the minimum
rate at which data can be transmitted if the side information is available
at the decoder. Cover (1975) generalized the Slepian-Wolf result to the
case of ‘a joingly ergodic pair of sources. Wyner (1975) and Ahlswede

and Korner (1975) alsc generalized the result to the situation in which

the side information is separately encoded at a low rate and only partial

side information is available at the decoder.



In Section 2 we analyze the achievable error probability for block
codes and decoders using side information, both as a function of y
(the side information) and as an average over a distribution on y. We
shall see that the error probability is essentially the same as if the
encoder could observe the side information and generate an optimal code
for each value of side information. In fact, the results seem to indicate
that one can generate essentially optimal block codes for sources knowing
nothing about them but the alphabet (obviously, however, the decoding is
not so easy). Strangely enouagn, the derivation of these error probability
results is extremely simple. Aside from one observation, the derivaticn
is just a special case of a joint source-channel coding theorem given as
exercise 5.16 in Gallager (1968).

A decoder not using side information is just an ordinary decoder
which may be viewed as a mapping from the code word set into the set XN
of source N-tuples. It is helpful herxe to view the source as a collection
of sources, one for each value of the side information parameter. Our
problem then is to generate a single code and decoder which in some sense
is good for all or most sources in the collection. Codes meeting this

type of objective are called universal codes, although definitions vary.

Davisson (1973) is an excellent reference on universal codes, and we
follow his formulation closely. He describes a maxmin and a minmax

apprecach to universal coding. In the maxmin approach, we view nature as



first choosing the worst probability distribution on the side information
set Y and then we design an encoder and decoder for expected performance
against that distribution. In the minmax approach, we first design the
encoder and decoder and nature chooses the worst side information for our
choice. As one might guess, the maxmin approacn is analytically simpler,
but the minmax approcach is more important.

In Section 3 we analyze the maxmin and minmax approaches, first for
variable length codes, using redundancy (expected code word length minus
conditional entropy) as a performance criterion, and then for block codes,
using error probability as a performance criterion. For ll-tuple variable
length codes, we show that the minmax redundancy (the redundancy for the
worst y € Y given the best code), in bits per N-tuple, lies between C

M

N
and Cn+l where C . is the capacity of the channel from ¥ to X with trans-

N
ition probabilities QN{ZIy}. Davisson derived the same bounds for the
maxmin redundancy, so the two approaches are in a sense equivalent. For
block codes, we obtain the same sort of result, first deriving a tight
upper to the maxmin error probability, and then showing that the same
bound applies to the minmax error probability.
We do not analyze situations where the side information is available
to the encoder for the following reasons. First suppose the side information

is available to both encoder and decoder. Then it suffices, for each y, to

—_
construct the best code for the source probabilities QH(x[Y), which is just




the conventional source coding problem without side information. Second
suppose the side information is available to the encoder but not the
decoder. The decoder can then do no better than have a fixed mapping
from code words to source segquences. Given this decoding, the encoder
can do no better than map a source sequence into the code word (or short-
est code word) for which it will be correctly decoded. Thus the side

information in this case is of no use to the encoder.

ITI Source Coding for a Decoder Using Side Information

Consider an (N,R) block code for a source with encoding function
g: x> {1,..., 2"}, Let g: [(1,..., [2"R]}, ¥]+ 5" be the decoder
function. A decoding error occurs for source N-tuple ; and side in-
formation value y if g(f{;J; y) # ;. A decoder will minimize the error
probability for each y € ¥ if it maps (m,y) into the most likely (con-
ditional on y) source word encoded intc m. That is, g(m,y) will be some
-+ - . -> -
x for which £(x) = m and for which Q (x|y) > 0 (x'|y) for all x' such

-
that £(x') = m. In what follows we assume all decoders using side in-

formation to be optimum in this sense.

Definition: A random ensemble of (N,R) block codes for alphabet {3 P S,
k-1} is the set of all (M,R) block codes for that alphabet and a prob-

ability measure on these codes with the following properties: a) each



source N-tuple is mapped with equal probability (1/M) into each of the
M= r2NR7 code words; b) (pairwise independence) each pair of different
source_N-tuple, x, x', is mapped x - m, x' - m' with probability 1/M

for each pair of code words m,m' (not necessarily different).

It is important to observe that this ensemble of codes is independent
of the probabilities associated with source words. It is that fact that
will make the analysis of the effect of side information at the decoder
almost trivially simple. It will also be noticed that the definition above
defines a whole class of ensembles of codes, leaving unspecified higher
order statistical dependencies between the mappings of different source
words. One ensemble in the above class (that considered by Cover (1975))
is the ensemble in which each source word is independently mapped into
{1,2.,...,M}. Another ensemble in the class, which is of greater interest
for implementation purposes, is the ensemble of random coset codes (see
Section 6.2, Gallager (1968)). Codes in this ensemble are generated as
follows: first each source letter is mapped into its binary representation
of length log K (all logs here are base 2). This maps each source N-tuple
into a binary row vector of length N log K . This row vector is then
multiplied (over the field of 2 elements) by a binary fNR7 by N[log K?
binary matrix P. The result is then added (modulo 2) to an fﬁR? binary

-
row vector z to yield the code word. The ensemble of codes is formed by
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choosing suych binary digit in P and ;-independently with equiprobable 1l's
and O's.*

Given a particular random ensemble of (},R) codes, given a source
with probabilities QN(;|Y) for some value of side information vy, and given
an optimal decoder for each code in the ensemble, we want to investigate
the ensemble average probability of decoding error, Pefy}, for that value
of side information.

= [MR]
Theorem 1l:** For all p, 0 <0 <1, and M = [2

1
-p - 1+p
P ) < MU[T o x|y

e

N

1P (1)

-
Proof: A source sequence x is decoded incorrectly for an encoder £ if £

-
maps some more likely x' into the same code word. Thus

- - -
P(Y) £ -}; 0 (xly) By . . R {£: £(x) = f£(x)}
x'#x: Q (x'|y) 2 Q (x,y)

b

(2)

-
*The random vector z is nggded only to satisfy the definition. It will be
seen in retrospect that z could be omitted without changing any of the
results.

**Aside from the presence of the side information y, which is really im-
material, this theorem is a special case of problem 5.16 in Gallager (1968).
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Now, for any set of events {Ai}, PN[ L} Ail < [Z P“(Aillp for any o,

. == . L

1 1
0 < p < 1. this can be easily verified by considering separately the
case where Z PN(Ai) < 1 and when E PN{Ai) > l. Also, from definition 2,

p (£ E{x") = f&)} = 1/M. Thus,

R p
P (y) < E 0, (x| ¥) ) 1/M (3)
> .

X'#x: Qu{;’ly} 3QN(EE,y)

Using the familiar Chernoff bounding technique, this is upper bounded,

for any s > 0, by

I~ Q (;'|y) s P
p ) < [ oGn| I [ S0 i] (4)
+ -, 0 (x|¥)
X x N

Choosing s = 1/(1+p), this reduces to (1).

It is convenient now to rewrite (1) in the form

log P_(y) < -pNR + NE_(p,HN,Y) i 0<p<1 (5)
R
4 (1+p0) > 1+p
E_(p/N,¥) == log _); 9, (x|y) (6)
X
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Theorem 2: ES(Q,N,y] is a convex \/ function of p for p > 0, with strict
-+~ - -+
convexity unless Qq{x|y1 is constant for all x such that Qq(x|y} > 0.

Furthermore

Es(p.u.yll =0 (7N
p=0
3 E (p'pr}
s = i N
— = H(xp|y} (8)

where H{x§|yj is the entropy of the tilted distribution

. 0 (;ly)l/(l+0)
0o ElW = —— (9)
’ Lo xly)
-
X
N - -
H(X)]y) E 'Qu,p(xly’ log, 9y o (XI¥) (10)
x

Proof: The convexity follows from Holder's inequality, and is a trivial
variation of lemma S5Bl. in Gallager (1968). Equations (7) and (8) follow
from straightforward calculation and differentiation.

With this theorem it is easy to optimize the bound over p. Figure 1

shows the optimization geometrically. Analytically, the solution is most



S

conveniently represented giving R and the bound on (1/N) log Pe(y)

parametrically as functions of (0 < p <.
NR = mxglyl (11)
N 7
log P_(y) < —H(xpllxbly) (12)

N ;
where H(Xpllxﬂly) is the generalized entropy given by

.
Q (x| y)

1 "N,

ROy = T oo . Gly) log —B (13)
R + TP 0 (X]y)

X "N

This parametric form can be used only for
K |y) < NR < n(xgly) (14)

p=1

For larger values of R, (5) is optimized by p = 1; for smaller values of
R, we have the unsurprising bound Pe(y) s 1.

With our current level of generality, it is difficult to make any
statements about the tightness of the bound, so we now consider the special
case considered by Slepian and Wolf (1973) in which the source is memory=-

less and the side information is another discrete memoryless source
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correlated with the first., We take Q(x|yJP(y) as the probability that

the first source emits letter x and the second source emits y. Successive
pairs of letters are independent. With this model, we represent the side
information as an N-sequence, ; = (yl,yz,..., yNJ of letters from an

alphabet {0,1,..., J}, and we have

QN(x gy = . QUx_ yn) (15)

The tilted source of (9) then becomes

- N
QN'p (x|ly) = nEl Qp(xnlyn) (16)
1/(1+p)
- 1¢30%)
Qp(x|y) E Q(x|y)l/(l+m (17)
x
Equations (11l) and (12) then become
N
NR = ) H(xp|yn) (18)
n=1
= N
log () < ] =mHx|[x]y) Q9

n=1
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where

H(Xp|y) = }Ec -Qp(x|y} log Qp(x}y} (20)
o (x|y)
H(XDHXIN = Z QQ(X‘YJ log o=y (21)

X

Theorem 3: For any set of transition probabilities Q(xly) and all p > o,

—
there exists A < ® such that for every (N,R) source code and every vy, if

n

¥R < ) H(X.|y) -A N (22)
p'fn
n=1
then
v ) AN
= - A
log P_(y) > m):'l H(xp||x|yn) (23)

Note that theorem 3 asserts that for R in the range given by (14),
the exponent to error probability (in the limit of large N) over the
random ensemble of codes is the same as the exponent for the best code

-
constructed using knowledge of y at the encoder.

Proof: We use theorem 5 from Shannon, Gallager, and Berlekamp (1967),
- s
which states that if Pl(x) and Pz(x) are two probability assignments on

a space, if X, is some subset of this space, and if



p - J P. (x) p = 7 P_(x) (24)
el L s LT T ez £ 2
X E x1 X € Xl
then for all s, 0 € s < 1, either
P, 2 F exp U(s) - su'(s) -5 YZU(s)] (25)
r
or
P, 2 3 exp [U(s) + (1-s)U'(s) - (1-s) Y2U"(s)]  (26)
r
where H(s) = 1n Z P (;]l-s P (x)°
X

i -+ T -+ -N
For our application, Pl(x] = QN(xly) and P2(x} = K . We also take

xl to be the set of source sequences that are correctly decoded, so that

Pe 1= Pe(;)° Finally since only 2NR source sequences can be correctly
r
decoded, Pe 2 < ,ENRYK-N. We can rewrite H(s) as
,2 —
M(s) = )} ln} Q(xlyn)l—s K> (27)

n=1 X

Since the two source alphabets are finite, U"(s) can be upper bounded by

-
N times some constant that is independent of y. Taking s = I%E » and

evaluating (25) and (26) (except for the bound on U"(s)) we get (22) and
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(23), where the multiplicative factors of 1/4 have been incorporated into
the constant A.

There is a more intuitive way of seeing the result of theorem 3.
Consider the class of source sequences ; for which Qp(x|y} approximatély
specifies the fraction of appearances of letter x in positions where ;

has letter y. There are approximately Zg H(X]::‘l}r'n):s.x.n::h sequences, and for
the R given in the theorem, most of these will be incorrectlyv decoded.
Each of these sequences will have a probability close to
ZE E o} (x|yn) log Q(xlyn)

R , and thus these seguences alone lead to the

error probability predicted in (23).

Next let us assume a probability assignment P(y) on the space of side
information values. Clearly the probability of error, over the ensemble

of codes and the ensemble of side information values, is

B, = 1 B(y) Py
y
N 1+p
< 2P Tew| ] QN(xlyil/(lw) ; 0<0<1
Y -

»
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It appears that one might get a tighter bound in (28) by using a different
value of p for each y, but as we shall soon see, the improvement is un-
important. The logarithm of the sum over y in (28) is convex (as can

be seen by applying Holder's inequality and using the convexity of
E_(p,N,y) given in (6)). Thus the right hand side of (28) can be minimized
over p. The result, after some manipulation, is the following set of

parametric equations.
N
NR = H(XQ|Y§) (29)
logp < - H(Xg v || Sy (30)
where the conditional entropy in (29) is

€18%] (31)

N ->
HIXt) = ] -p
x| ) z o) 9 ((xly) log 0
X

and the generalized entropy in (30) is

-

5 P (y)Q, . (x|y)

(x|ly) 1og —S—tef (32)
P(y)Q, (x|y)

N N B
H(X) Y, [1x" v» = Z¢ P, (¥)Q

-
XY

,p

The tilted probability QN 0 is given by (9) and PD is given by
r



-] T

- 1+p
piy) § o (x|n /P

h

Byl =
o . 1+6
[ew [ o Gnt/H®
Y P

These equations are valid for R in the range

H(xX'Jy) < MR < H(XV|Y)] (33)
= = plop
p=1
and for larger values of R, (28) is optimized by p = l.

For the correlated memoryless sources of Slepian and Wolf, all .of
the probabilities above factor, and the entropies become N times the cor-
responding single letter entropies. This proves the first half of the
following theorem and also shows that Pe decays exponentially with block

length ¥ for all R > H(XlYJ.

Theorem 4: a) For a correlated memoryless source with single letter
probabilities P(y)Q(x/y) and with the side information source output ;
available at the decoder, the probability of error for a random ensemble
of (H,R) codes, averaged over both sources, satisfies the parametric

equations



-]18-—-

R = H( ; < R < H(X_|¥
HX ¥ ) ;o H&x|Y) <R <HKX| D)p'—-l

log B, < = NH(XY | x ¥ (34)

)

log Pe < = NR + N log z P(y)l z Q(x y)
¥

= {4
4 iy i R> H(Xp]Yp)
X - p=1

(35)

b) For any such source there exists a finite constant A such that for all
-
(M,R) encoders (including encoders using the side information v) and for

all p >0, if R < H(XplYp} - A//N, then

P > - NH(X.Y Y) - a/v 36
log P > (pp[[x) (36)

Proof of part b: The proof is a minor modification of that of theorem 3.
-t
In place of Pl(x} in the Shannon, Gallager, and Berlekamp theorem, we use

- - - -N = 2
PN(Y}QN(xly}, and in place of Pz(x} we use K P 0(?). Finally we take
r
-~ =

the region xl to. be the set of x,y such that with side information v, x

. ; NR
is decoded from some code word. Since at most 2 sQurce sequences can

- -
be decoded for each y, we again have Pe > < 2NR K N. This leads, after
’

some straightforward calculation to (36).

Mext we make the trivial observation that at least one code in an

(N,R) random ensemble has an error probability as small as the ensemble




average. This code encodes source sequences into code words without use

of the side information, and from theorem 4 we see that this code is
substantially as good as the best code using the side information at

the encoder if N is large and R is the range of (34). For rates larger

than the range of (34), the exponents in the upper and lower bounds of
theorem 4 differ. It can be shown, by a slight modification of the

arqument in Chapter 5 of Jelinek (1968), that the best code using side
information at the encoder has the exponent given by the lower bound. The
exponent for the best codes not using side information at the encoder is
unknown at these high rates and might be inferior to the lower bound exponent.

A more important open question is whether codes exist (not using side
information at the encoder) which are uniformly good in the sense of almost
satisfying (11) and (12) for each value of side information ;. There is
one example, in which X and Y are both binary, with P(0) = P(1l) = 1/2 and
Q(1|0) = 0, 9(1|1) = 1/2, for which it can be shown that no code in the
coset random ensemble previously discussed is uniformly good. It is not
clear, however, whether less structured codes can be uniformly good.

Since we have now seen that side information is of very little use to
an encoder for block codes, it is reasonable to ask whether the same type
of result is true for variable length codes. The answer, surprisingly
enough, is no. The reason for this is quite simple and depends on our

assumption that variable length codes must be error free (i.e. uniquely
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decodable). This means that the encoder must provide a different code
* - 3 - . -
word for each source sequence, and thus the side information is of no

use to the decoder.

III Source Coding For Decoders Not Using Side Information

At first glance this problem seems uninteresting; if the side in-
formation is unavailable, one should simply average over it and encode
for the average source. For the Slepian and Wolf type correlated memory-
less sources, this approach certainly makes sense. However, if the side
information is unchanging or very slowly changing in time, then one wants
a source ccde that is in some sense universally good for all values of
the side information

Variable Length Codes

We first consider variable length codes, both because of their
inherent interest and because of their potential for practical applications.
An MN=-tuple variable length encoder (encoder for short) is a mapping from
xN (the set of source sequences of length N) into the set of finite length
binary strings. For each N-tuple ; from the source, let 2(;) be the length

-
of the binary string that x is encoded into. The Kraft inequality,

*
One exception to this is where some source sequences have zero probability
for some values of side information.
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) %) <1 (37)
x

must be satisfied by any uniquely decodable code and a binary prefix
condition code can be constructed for any set of non—-negative integer
lengths satisfying (37) (see Gallager (1968)). Because of these facts,
we can consider only the set of lengths in a code and ignore the actual
encoded strings. Thus a code can be considered as a non—-negative integer
valued function A satisfying (37).

The redundancy of a code %, for a particular value of side information

¥, 1is defined to be

rg(Ly) = %[EQN(;IY} 260 - T HE |y) (38)
x
This is just the expected length of the code, given y, minus the entropy
of the source (conditional on that y), normalized by the source block
length M. It is well known from the elementary source coding theorem
that rN(y,i} > 0, with the value O only if 2(;} = = log Qu(zly} for all ;,
and thus the smallness of rN(y,l) is a reasonable measure of how effective
the code is for a particular v.

Davisson now defines maxmin redundancy{ﬂ; and minmax redundancy¢R;

by
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(R; = sup min z P(y) rN(Yfff’«) (39)
P Lel v
+ .
{EN = min sup rN(y,i) (40)

Lel vey

The minimization in (39) is over the set ﬁ of non negative integer
functions £ satisfying the Kraft inequality (37). The SUpPremum is over
the set of probability measures on Y. Here we are tacitly assuming Y
to be a finite set, although in the appendix, it is shown that the results
are valid for an arbitrary measurable set Y.

The maxmin redundancy, .ﬁ;r is the expected redundancy that results
if nature first perversely picks a distribution P(y) to maximize the
redundancy, and then we observe nature's choice and choose a code to
minimize redundancy. For R;, we must choose the code first, and then
nature chooses the most unfavorable value of y. Davisson (1973) has

shown that R; _>_Ka and also that C_ < NR; < (C *1) where C is the capacity

N
of the channel with input alphabet ¥, output alphabet xN and transition
probabilities Qutzly) . We shall show, in addition that (:l < NR-; = (CN+l) a
One consequence of this is that if a source with side information has

l—»i: C“/N = 0, then the redundancy can be made uniformly arbitrarily small
1:0: all values of side information by using variable length enceders of

sufficiently large block length. Asymptotically, knowledge of the side

information at the encoder and decoder is not of any use.
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. . . - +
It turns out that the major difficulty in evaluatlnq|RN and(RN comes

from the integer constraint in the code word lengths. Thus our strategy

A+ :
- and zZRN without the integer con-—

will be to define two new quantities R
straint., We will relate these tozR; andiR; and then we will evaluate
L H
2 ; ot : N,
them. Let L be the class of all functions 2(x) mapping X into the non-

negative real numbers satisfying the Kraft inequality (37). Then define

di; = sup min . E P(y) r“(y,li (41)
P el ¥

|R; = min sup ruty,i) (42)
REIYEY

The key to relating the constrained and unconstrained redundanaies
lies in the observation that if £ is any non=integer length function
satisfying the Kraft inequality (37), then the function ri1 formed by
increasing each length to an integer (i.e. [E1(;} = ‘h(;f]) also
satisfies the Kraft inequality. Thus 2 E‘i implies f?? e L. From (38)

we See that for all vy € ¥, L € L,

rutﬂ’-ry) = rucfﬂ, y) < rg(R,y) + 1/ (43)
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Lemma :
at + o+
<
Ry = RL 2 R, + 1w (44)
- e R < £
R, 2R <R+ 1 (45)

Proof: The left hand inequalities are almost obvious consequences of
~

the faect that I.C I; when one minimizes over a larger set, cne gets a

smaller or equal result. The right hand inequalities come from (43).
4 -~

We demosz:::‘atenﬁ‘J < R; + 1/M in detail; minor variations establish the
H —

others. For any given £ € I let {yi} be a sequence of elements in Y

such that

-0

lim rg J2, ¥k & 539 rN(]ﬂ. y) (44)
From (43),
rH(rﬂ, y;) < «x (L, y.) + L/N < sup rqtl.yJ + 1I/N (45)
Y -

Combining (44) and (45)

sup rN(rQT. y) < sup rN{i,Y) + 1/N (46)
4 L
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Next let L' minimize the right hand side of (46) over 2 e L.

ﬁ; S sup rN(M, y) < sup rN(Q'. y) + 1/N

¥ b4
= min _ swp ry(2,y) +I/N = R+ 1/m (47)
Lel y
Theorem 5:
ﬁ_ I\+
C/N = ﬁu = & (48)
/M < R < (g + D/ (49)
+
< <
N S RL < (¢ + LM (50)

- . N s
where CN is the capacity of the channel from Y to X with transition

-
probabilities QN(x|Y).

Proof: It suffices to establish (48) since (49) and (50) then follow

~
from the previous lemma. First we show that Nﬂ% = CN' Combining (41)
L

and (38),

mN = sup min Z P(y) ) QI.!('EIy)M;J —H(XNIY} (51)
P teyfl ¥ e
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- - -

For a given P, ) P(y) z Qq(x|y}£{x) is minimized (subject to the Kraft
- L
x

Y
inequality by

2 (x)

|

-
- log w_(x) (52)
P

1

X ) x|
wp(x) P(y) Qn(x y)

Yy
This minimization is precisely the same as that used in the elementary
source coding theorem to show that the expected length of a variable
length code exceeds the source entropy (Section 3.3, Gallager (1968).
Substituting (52) into (51) and writing H(X'|y),
o (x|y)
NE'; = sup ) Py QN(;ly) log —2 ! (53)

I 2oy x|y
yl

-
P YeX

The right hand side of (53) is, by the definition of capacity, CN' For

the moment, assume Y to be a finite set. Then necessary and sufficient
conditions on the P, say P

—

on the right hand side of (53) are:

0 that maximizes the average mutual information

0, (xly)

A
)

-
Qu(xly) log - N } all y (54)
wotx)

¥4
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- -
with equality for all y such that %}y) > 0 and where wo(x} = z PO(y}QN(xly)
Y
(theorem 4.5.1, Gallager (1968)). The appendix provides an eguivalent
version of this result for the general case where Y is an arbitrary

measurable set. From (42) and (38) we have

Nﬂg = min sup Z QN(;Iy}ﬁ(;) - H(xnly} (55)
2el yey ;

Now let f(x) satisfy (52) for the P_ that satisfies (54). For this 2(x),

0
0, (x|¥)
- = -+ N
swe ] o GINtG® -u'ly = sw [ oxly) log ———
v + y v W, (x)
£ e (56)

where we have used (54). Comparing (55) and (56), we have NR; f_CN.

Finally let 2' minimize (55) and let P(y) be an arbitrary probability

distribution on y. Then

R. = suwp r (/A 2 ] P(y) ryly,2")
yey y
> min ] P(y) r (v, ;  all P(y)
Lel ¥

(57)
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~

o~ ~
Ny - + - ,
From the definition of @N, then, LRN id{l, completing the proof.

One can make a number of conjectures about the actual values of
ﬁ; andtR; within the limits of (49) and (50), but most of them turn out
to be false. For example, it is not true in general thatcR; =(R;. It
is also not true in general that if one finds the input probabilities
P(y) that lead to capacity, and then finds the corresponding output
probabilities w(;) = Z P{y}QN(;|Y); that the Huffman code generated
+ Y = +

from w(x) will achieve either ® or R .
Block Codes

We now study block codes where neither the encoder nor decoder observe
the side information. As in Section 2, we shall be concerned with bounds
on the error probability as a function of the rate R, the block length N,
and the value of side information y. This problem was studied earlier by
ziv (1972) who developed an encoding strategy and showed that for any
particular value of side information, if the code rate exceeds the source
entropy conditional on that value ©f side information, then the error
prohability goes to zero as block length increases. Our results will indicate
that the choice of encoder is not critical (being based on random coding)
and also will provide rather tight bounds on error probability.

To begin, let us assume a probability assignment P(y) on the side

information. We also use the same ensemble of codes as in Section 2. The

decoder will minimize error probability, over the side information ensemble,
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by decoding code word m into the source word % that maximizes
- apn - g
wp(x) = f P(y}QN(xly) over all x encoded into m.
v
Let Pe(y,P) be the average error probability, over the ensemble of
codes, when y is the wvalue of side information and P is the probability

measure on y assumed by the decoder. By repeating the steps of the proof

of Theorem 1, we find that, for all p, 0 < p < 1,

0 o o]
- + - +
P(y,B) < 20 T o xlyy w TPl T ey P
e - 5 N P ped P
X x!
(58)

Averaging over y according to P(y), this simplifies to

1

2 4w
P (p) < 2P|y () P (59)
e = 4 Tp

X

It is important to note that the measure P in (58) appears only
because of the decoder's decision rule; (58) is wvalid for that decision
rule for any probability assignment (or none) on y.

As in our treatment of wvariable length codes, it is useful to have
results independent of some assumed distribution P(y). Thus we define
P; as the error probability (over the code ensemble) that results if
nature first chooses P(y) to maximize Pe(P)' but the decoder is allowed to

use natures choice in its decisions. Thus

- _ - 1/(1+p) | 1+p
P- < sup 2R} TV pyrg (xly) (60)
a - N

P ; Yy
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Fortunately the term in braces is ccnvex/} and it is easy to calculate
the following necessary and sufficient conditions for P*, the maximizing

P

r

> 1/(1+p)

(;)-p/(1+p) < ) Wo o ()
x

(61)

I o,xly) w
N P*
g
X
with equality for v such that P*(y) > 0. This result (and in fact the
whole concept of P;) would not be terribly interesting were it not for

the striking and fortuitous resemblance between (61) and (58).

Using (61) _ to upper bound (58), we then get
-NRO + 1/(1+0) | 1P
P (y,P*) < 2 1 ow, (x) (62)
e -— o P
X

This is very nice, since it says that if the decoder assumes the worst
P(y) for its decoding rule, then the resulting bound on error probability
is uniformly good over all values of side information.

This bound can be written in parametric form, like Equations (1ll) to
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(14) , but we shall not repeat the Equations here. The lower limit on the

rate, however, for which the bound is less than 1, is given by

NR > sup Z-wp(§} log wP(;) (64)
P

In other words, this uniform bound on error probability is only useful
when R exceeds the unconditional source entropy per digit, maximized over P.

Next we recall that Pe(y,P*) is an average error probability over an
ensemble of codes, and the question arises whether individual codes exist
which are uniformly good against all values of y. Fortunately, if the set
Y is finite and not too large, the answer is yes. We assume that the
decoder uses probability assignment P*, but we use a uniform probability
assignment on Y. The right hand side of (63) (optimized over p) is an
upper bound to error probability over the ensemble of codes and over this
uniform distribution on Y. We pick a code from the ensemble that is as
good as the average and note that for at least half the set Y, we must

have

+ 1/7(14p) |1*P

. o~NRP
Pe(y,P*) £ 22 z. wP*(x) (65)

x

We next assign zero probability to all y in the code that satisfy
(65), and uniform probability again to the remaining y. We then pick
another cecde from the ensemble that is as good as the average for this

new distribution on Y. Half of the remaining y must satisfy (65) for



this new code. We continue this process, exhausting the set Y after
choosing m < fiog IY]-?codes, where |Y| is the number of elements in Y.
We now combine all these codes into one code with m 2NR code words. The
encoder, given ;, encodes it into the first of the m codes for which the
decoder will decode ; (if ; is not decoded for any of the codes, it
makes no difference what the encoder does). This new code is decoded
correctly whenever any of the m codes would have decoded correctly, and
thus (65) is satisfied for every vy € Y. The actual rate of the new code
is R' = R + (log m)/N < R + (log rlog Yﬁl]/N. We have thus proved the

following theorem.

Theorem 6: Given any N and R, given a source with side information with
the probability assignment QN(;Iy). there exists an (N,R) block encoder

mapping xN * Claees 2““) - xN with an error probability for each y

satisfying
- 7 1| 140
P (y) < min nax 2~P(NR = logilog [e] h+1 57 P(Y)QN(;IY) 1+p
O_R_ 1 P ; Yy

(66)
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Appendix

We want to consider a channel with an arbitrary input space Y, a
finite set of outputs X = {1,..., k}, and a set of transition probabilities
Q(xly) for all x € X, v € Y. X here corresponds to the set xN in Section
3. We assume throughout that ¥, along with an appropriate set of subsets,
is a measurable space and that Q(x]y}, for each x € X, is a measurable
function of y € Y. Por any probability measure P on the space Y, we make

the following definitions:

HiXly) = - ): Q(x|y) log Q(x|y) (A1)
X
HP(xIY) = [ apy) 5x|y) (A2)
vp(x) = [ aPr(y) olx|y (a3)
Vo= Wy (L), wo(2), eeey WL (K)) (&4)
Hoy) = = [ w00 log wy(x) (A5)
X
-
(G = ﬂtwp) - ", (x|Y) (26)

The capacity of the channel is then defined as

C = sup IP(Y:X)
P
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where the supremum is over all probability measures on Y.
Theorem A: In order for a number C to be the capacity of the channel

defined above, it is necessary and sufficient for a sequence {Pi} of

probability measures on Y to exist and for a probability vector

;0 = wo(lJ...., wO(K)) to exist with the following properties:
1) lim J:P (Y;X) =2¢ (A7)
i i
2) 1lim ¥p (%) = wG(x} ¢ all xe X (A8)
i 1
3) Z o(x|y) log %i%£¥l £ C ; allye¥ (A9)
b4 0

Furthermore :0 is unique.

Before proving the theorem, the following erasure channel (see Figure
A) will be helpful in understanding both the proof and the wording of the
theorem. The input space is the set of positive and negative integers,

and the output space is the three letters O, 1, e. The transition

probabilities are given by

Q(0|n) l1-1/n i n>0

]

Q(eln) l/lnl : n>0,n<2ag

]

o(1|n) 1-1/|n] &+ n<o
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The capacity of this channel is 1 bit, approached by a sequence of pro-
bability measures Pi(n) = 1/2 for +n = i. The resulting limiting output
distribution is $0 = (1/2, 1/2, 0). However, no input measure either

-
leads to wo or to capacity.

- 1 - 1/(n+l)

n+l

- 1/n

-n

-n=1

1l - 1/(n+l)

Generalized Erasure Channel

Figure A
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Proof of Theorem: Necessity: since the output alphabet is finite, the
capacity C clearly exists, and there is a sequence {Pi} of input probability

-
measures that satisfy (A7). Since wp is an element of the compact space
“k

% .
of K dimensional probability vectors, the sequence {wP } has a cluster point,
i
+ -
which we denote by w,. Thus there is a subsequence of {Pi}' which we re=-

define as a new sequence {Pi}, for which (A7) and (A8) are satisfied.
Now we assume that (A9) is violated by some y, say v', and show a con-

tradiction to the assumption that C is the capacity. Thus we have

Q(x|y") > ¢ (A10)

E Q(x|y') iag wo(x)

x

For any 8, 0 < 8 <1, let Pi P be the convex combinition of Pi with the
— [

atomic distribution on y'. That is, for any measurable Z C Y,

<
™
N

(1-0) P.(2)

v
m
N

(1-08) Pi(Z) + 8
From (A2) and (A3) we verify that

H xlv) = -8 H, x|V + 8 H(X[y"
i,0 i

w (x) = ‘1'9’“9 (x) + 6 o(x|y" ; all x € X
i,6 i
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Let Q' denote the vector (Q(L|y'), Q(2|y"),e.. Q(k|y')). Then we can
rewrite (A6) as

I, (GR o= Fa-0w, + 89" - (1-0)H_ (X|Y) - 8 H(X[y")

P

i,0 i i
(Al2)
Using (A7) and (A8) in (A&6), we see that
lim 1, (xjn) = Hew) -c (A13)

s lo; e 1

Using (Al2) and (Al3),

lim I, (¥;%) = ?a‘m-e)ie"o + 60') - (1-8) [}*{30) - ¢) - BH(X|y"
jwo Ti.9
(A14)

Equatioﬁ (Al4) is valid for each 8, 0 < 6 < 1. Also the left hand
side of (Al4) cannot exceed capacity for any 6 by definition. .Pinally
the right hand side is equal to capacity at 6= 0. Thus, if the derivative.
of the right hand side with respect to 6, is positive at 9= 0, we have

demonstrated our contradiction. Evaluating this derivative, we cobtain

Z O(x|y') log M -C (ALS)
X

wo(x)
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From (AlO), this is positive, completing the proof of necessity.

Sufficiency: Suppose that (A7), (A8), and (A9) are satisfied for
some sequence of probability measures {Pi} and some probability vector ;.
From (A7) the capacity can be no less than C, so all we need show is that

IP(Y:XJ < C for all P. Rewriting (a6),

. » Q(x|y)
I(¥:x) = [ ap(y) EQ(x|y) 109 4 ()
(x)
) o(xly) i i
[ ar(y) EQ(xly) log Wy () + [dP(y) )Z{Q(th) log g ()

Th first term above is less than or equal to C from (A9). The second is
non-positive as can be seen by interchanging the sum and integral and using
(A3) to get z W (x) log (wo(x}/wP(x]) , which is the negative of a generalized
entropy.

In order to demconstrate the uniqueness of ;O  We assume ancother

probability vector ;‘, which, along with some other sequence {P;'}, satisfies

0
(A7) and (A8). The sequence {% P:’. k2 % P;_} then leads to the limiting output

probability vector !2'--\:0 + %-‘:C‘)' It is then an easy matter, using the strict
-
convexity N of M (w) to establish that lim Il
i — P, + =7p!
2 1 2%

(Y;X) > C, which

is a contradiction.



