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ABSTRACT

This report deals with the characterization and measurement of channels in which the input
waveform is subject to both additive noise and to time and frequency spreading. Part of the
report is tutorial in nature and attempts to relate the wealth of mathematically oriented lit-
erature on spread channels, with both the underlying physical machanisms and with the en-

gineering concepts concerning spread-channel communication.

Many spread channels are adequately characterized by any one of three functions of two
variables: the scattering function, the tap-gain correlation function, and the fwo-frequency
eorrelation function. These gquontities are carefully defined ond related by Fourier transform
m|nﬁnn5hip5. A number of interpretations ara given for these functions, and the phf&icn|
circumstances in which the functions provide meaoningful characterizations of the channel

are discussed.

Technigques are given for measuring each of the above three functions. It is shown that the
varionce of these mensurements approaches zero with the reciprocal of the measurament time.
One of these technigues, using a chirp input signal to measure the two-frequency correlation
function, appears to have definite odvantoges over the others, in terms of required measure-
ment time and in ecse of implementation. The analysis clears up some earlier paradoxes
obout measuring overspread channels and gives some insight into the relative merits of dif-

ferent input s.ignc:ls.
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CHARACTERIZATION AND MEASUREMENT
OF TIME- AND FREQUENCY-SPREAD CHANNELS

I. INTRODUCTION

Many communication channels in use today are subject not only to additive noise but also to
time and frequency spreading. Time spreading, often called multipath smear or dispersion,
manifests itself most clearly when a narrow pulse at the channel input is converted into an output
that is spread out over a significant period of time. Freguency spreading, often called doppler
spreading, manifests itself most clearly when a sinusoidal input is converted into an output that
is spread out over a significant band of frequencies. Both these phenomena together distort
arbitrary waveforms in unusual and ever-changing ways; the problems created by this distortion
are often considerably more serious for communication purposes than the problems created by
additive noise.

Before discussing the modeling and characterization of such channels, it may be helplul to
describe several time- and frequency=spread channels to examine the kinds of mechanisms which
give rise to the spreading.

Ag a first example, let us consider an orhbital dipole 4:-ha|.|::|:n::l.1 Such a channel can be gen-
erated by forming around the earth an orbiting belt comprised of metallic dipoles tuned to about
5 or 10kMe; communication can then take place from one antenna to ancther via reflection from
the belt. A typical order of magnitude for the width of such a belt is about 80 miles. When one
transmits a narrow pulse over the channel, the return is spread out over about 100 psec due to
the different path lengths to each reflector. On the other hand, the impulse response time of a
single dipole has a duration of only about w”? gec. The multipath smear (100 psec in this case)
is an important parameter for communication and plays a prominent role in the channel charac-
terizations to be discussed later. The impulse response duration of a single dipole is of less
interest and will not appear in our channel characterizations. The importance of the dipole
response duration lies in determining the over-all bandwidth of the channel. This is certainly
of communication importance but not of importance in describing the particular phenomena
associated with time and frequency spreading,

In addition to time spreading, there is doppler spreading due to the motion of the dipoles.
This doppler spreading has a typical order of magnitude of 1 ke, The motion of dipoles relative
to each other also produces alternating constructive and destructive interference and thus causes
fading. The relationship of doppler spreading to fading intervals and coherence times will be
digcussed in more detail later.

Ag a gsecond example, consider chaff channels., These channels, formed by placing a cloud
of dipoles several miles up in the atmosphere, provide short=ranpe communication by reflection
from the cloud, The channels are very similar to the orbiting dipole channel except for the



orders of magnitude involved — 5 psec for multipath smear and 100 cps for doppler spreading,
Maturally, because of the short range, the power limitations are much less severe than with
orbital scatter.

A5 a third example, consider communication by reflection from the moon. Here again the
raflecting body is so large that there is a multipath amear of about 410 msec. Similarly, the
differential velocities of different parts of the moon relative to each other give rise to & doppler
spread of about 10 cps.

The examples discussed here, as well as most other well-known time- and frequency-
spread channels, can be represented as linear time-varying filters with additive noise at the
receiver. If the reflecting clouds or bodies were stationary, the channel could be represented
ag a linear time-invariant filter with noise. The motion of the reflections simply causes the
response to change in time without affecting the linearity.

In Sec. Il we shall discuss linear time-varying filters, and in Sec, IV we shall discuss a
statistical characterization of such [ilters that is applicable to channels such as those discussed

in these examples.

II. LINEAR TIME-VARYING FILTERS

A linear time-varying filter has the following property: let xiﬂt] and xz{l} be any two pos-
sible inputs to the filter, and let ¥y (t) and }l'z[t',l be the corresponding outputs; then for any two

constants, a, and 2y, the input aixil:L] + &sz{t} gives rise Lo the output a*l:"r‘l[ﬂl + azyz[l‘j. A

linear 'limr,:-:ra.rying filter differs from the more usual linear time-invariant filter in that if x{t)
gives rise to y(t), x(t + 1) does not necessarily give rise to y(t + 7).

There is considerable literature on the characterizations of linear time-varying (LTV) fil-
ters, much of which is summarized and referenced in Kn.i'tath.z The only results of this theory
that we need here are that LTV lilters can be completely characterized by either of two quan-
tities: one, the frequency response function H{f, t), and the other, the impulse response func-
tion hir, t}. The function H({f, t}, introduced by Zadch,,3 is defined as the ratio of channel output
to input y{t}/x{t) when the input as a function of t is exp [j2mit]. This definition is somewhat un-
satisfying operationally, since it takes an infinite time to measure H(f, t} for a single value of f.
However, it is a satisfving definition in the sense that, if we happen to know H(f, t) for all { and
t, we can find the response to an arbitrary input. To see this, let x(t) be an arbitrary input
with Fourier transform ().

X(f) = S x(t) exp [—i2rft] di (1)

and

%[t} = 5‘ Xif) exp[jenft)af . (2}
=

From the definition of H(f, t}, the response to X({f) exp [j2wit] 18 X(0) H(I, 1) exp [j27it]. From the

assumption of linearity, the response to the integral in Eq. (2) is therefore
-
yit) = 51 X(f) H(I, 1) exp [j2rit] df . (3)
=

Thus the output from an arbitrary Fourier transformable input is specified in terms of H({{, t}.



MNext let hir, t} be the response at time £ toa unit impulse input applied at time t = 7. From
Eg. (1), the Fourier transform of a unit impulse at t — v is X{f} = exp [—j2ni{t — 7)]. Substituting

this into Eq. (3), we have

ol o
h{r,t) = S exp[—i2=ift — 7)] HIf, t) exp[j2rit] df = S HIE, t) expj2air] df . (4}
-0 -
Thus hir, t} is the Fourier transform of HI{f t), and the one specifies the other. Finally, we can
relate v(t) directly to x(t) and h(7,t}. Applying the convelution theorem to Eq. (3), we havef

with = S' %(t— 1) hir, t) dr : {5}

Thus we have related hir, t) to H(I, t) and showed that either can specify the filter output from an
arbitrary input.

[{a_LLa.thE' shows that in many cases hir,t} can be measured, at least in principle. If hiT, t)
is zero for T outside some range, say 0. 7< L, one can use an input of a periodic train of
impulses separated by L and measure hir, 1) at values of t separated by L. If hi{r,t) considered
as a function of t is limited to frequencies below 1/2L., hir, t} can be reconstructed from these
measured values by the sampling theorem.

We shall not he concerned here, however, with the measurement of hir, t} or H(f, t). For
the channels we are concerned with, hir, t} and H{f, t} are in some sense statistically varying
quantities, and we shall be concerned with measuring the statistics of these functions rather

than the actual functions themselves.

III. COMPLEX LOW-PASS REPRESENTATION OF WAVEFORMS

[n most of this report we shall be dealing with bandpass waveforms and bandpass [ilters.

It iz analytically convenient to represent such wavelorms and filter responses by eguivalent,
complex, low-pass waveforms. This is standard procedure in the literature, and one can con-
volve, correlate, multiply, and so forth, in the law-pass representation in much the same way
as with the actual waveforms. Unfortunately, there are a number of annoying details such as
complex conjugates and factors of § that enter into cperations on the low-pass representations.
There appears to be no standard way of handling such details. {Wl::t::::twa.rd4 is an excellent
reference here, but his treatment is too brief for our present purposes.)

In this section we shall define complex low-pass representations and summarize the formu-
las we shall use for convolution, cerrelation, spectral density, and multiplication in the low-
pass representation. The reader who is familiar with this material may omit the section and
simply refer to the appropriate relationship when it is used subsequently.

Let %({t} be a waveform with Fourier transform X(f):

xify = ‘S x(t) exp[—j2rit] dt {6

x(t) = ‘S‘ X(f) exp[j2ait] df . ik

t The fact that Hif,f) is o function of t does not affect the convelution theorem since t con be considered as
simply a parameter on the right sides of Eqgs. () and (5).



We are interested primarily in waveforms that are band-limited in the sense that X(f) is essen-
tially zero except in the vicinity of some carrier frequency f and —f . Our mathematical
definitions do not involve this bandwidth, however, so we need not be fussy aboul the meaning
of "essentially zero."
We define the quantity X(f) by
55 " _

= v I X0 =2X({{+1) £>-1 el 2

=0 f<-f . - (8)

" A

Thus X(I) is twice the positive frequency part of X(f] shifted down by fﬂ. Since x(t) is real,
H(f) = K#(—f}, and we have

X(f—1)+ %E*{-—T—TDJ . : (9)

| e

wmif) =

X il ¢l.' Fal _'.rff‘_:J

i

S = Ji
The first term in Eqg. (9) is the positive frequency part of X{f}, and the second term is the nega-

tive frequency part.
Now we define the complex low-pass representation of x(t) denoted x(t) by

xlt) = S' X(f) exp[jarit] df (10)

51[]:5‘ x(t) exp [-j2rft] dt . (11)
o=

{Throughout this report we shall underline all complex low=pass representations.) Taking the

inverse Fourier transform of each term in Eq. (9],

x(t) I% x(t) expj2sf t] +M.% x* 1) expl—j2nt t] (12)
- He {xit) exp[jzxfot]} (13)

— e

- 1".4'
= Re[x(t)] cos erfnl = Im[x(t)] Sinwaﬂt . [14)

Thus the real and imaginary parts of x(t) are interpreted as amplitude modulations of cosine and

sine carriers.
MNext let Sx{l'} be the energy spectral density of x(t):

S (6) = X({f) X={f) . (15)

Also let in 7} be the autocorrelation function of x(t):
-
R_(7} =5 x(th x(t + 1) dt . (16)
X =
Substituting Eq. (&) into (15), and performing some manipulation, it follows that S _(f} is the

Fourier transform of th'r}. We define the low=-pass spectral density of x(t) as

,-—3 Exfﬂ = sttf + fﬂ] TS =

[ =
= 0 et (47)



Since Sx{ﬂ = Sx{—ﬂ, we have

= d o Loemon o
S () = SRR = S RSl i)
! 1 e \"'J—";II FACRY
Substituting Eqs. (15) and (8) into Eq. [17), we have e el =
f . N v : T
Ex{i"r = g;{ﬂ X . f.-.l J T {19)

Note that Eqs. (15) and (19) differ by a factor of ;.

We define the complex low-pass autocorrelation function as

R_{7) = S' 8, (0) explj2afr] df (20)

=

S_{f) = S‘ R (7) exp [—j2rfr] d7 . (21}

Taking the Fourier transform of Eq. (18),

Bl ]

s . o i - s bt
R_(7) = R_(7) e.\cp[_]er['n.] t 5 E;'EI:.]- exp [ _]ETrTD.] (223

R, (7) Re{ﬂx{?’] exp[jawfﬂ'r]} . {23)

Finally, upon substituting Eq. {19} into (20], we have, after some manipulation,

R_(7) = % g x#1) xlt + 7} dt . [24)

Note that Eg. {24) differs from Eq. (16} by a factor of L and also by involving a complex conjugate.
Although _139{{.‘} is not necessarily real, it follows immediately from Eq. (24) that

{ry - [25)

Ri(-7) = B,

From Eqs. (16), {23}, and (24), we see that the energy E of the waveform is given by
(-]
= 2 i oA [ 2
E = g x“(t) dt = R_(0) = R (0) = ES |z} = at . {26)
_— B

Mexl we wish to investigate convolution in the complex low-pass representation. Let x(t),

h(t), and (i)} be three wavelorms, and let

¥t =S x{t = 7) hir) dT

From the convolution theorem, the Fourier transforms of these quantities are related by
¥i{f) = ®({f} H{f) . (27}

Using Eq. (8) on all three terms above,
(0 = 1 X0 HO (28)

Applying the convelution theorem to Eq. (28),



yi) = 5 S €t —7) h(7) dr . (29)

Note the factor of 1 and the absence of any conjugate in Eq. (29).
Finally, let hiT,t} be the response at 1 to an impulse 7t seconds earlier of a linear time-
varying filter. Treating t as a parameter, h{v, t) is a {inite energy waveform in 7, and we

define hir, 1) as its complex low-pass represeniation. That is,

H(f, ) = 2H{f + 1, 1) >—1_

=0 f < —fﬂ [30)

hir,t) = 5 HIf, t) exp[i2sfs] df . (31)

This notalion will cause no confusion since the linear time-varying filters we consider will
always be bandpass functions of 7 and slowly varying functions of t. If x(t) is the input, and

y(t) the output from a filter with a response hiv, t), we can now immediately apply Eq. (29):

yit} = Ei S x(t = 1) hir, t) dr . {32}

=ca

IV. CHARACTERIZATION OF TIME- AND FREQUENCY-SPREAD CHANNELS

In thiz section we shall discuss three functions: the two-frequency correlation function, the
tap-pain correlation function, and the scattering function, all of which have been proposed as
characierizations of time- and frequency-spread channels., We shall show how these lunclions
are related as Fourier transforms and how they are related to the frequency and impulse re-
sponses of the channel. Examples will be given to show the relevance of the functions to com-
munication problems, and, where possible, these functions will be related to the physical
processes in the channel, The problem of measuring these functions will be posiponed until
See. V.

We have stated that the transmission charaeteristies of a time- and {requency-spread chan-
nel are specified by the time-varying frequency response H(f, t) and its inverse Fourier trans-
form hirt,t). Ewen if these functions could be measured, using them to characterize a given
channel would be somewhat akin to using a sample function of a random process to characterize
the process. In other words, these functions contain too much data to be useful without process-
ing; we shall be interested only in finding various averages of these quantities.

We shall make the assumption that H(f, t) and h{r, t), considering {f and 7 as parameters,
can be adequately modeled as sample functions of stationary ergodic random processes. Ob-
viously, for channels such as chalfl channels, where the scattering particles fall to the ground
in a number of hours, the stationarity assumption cannoi be strictly valid. However, over the
period of a measurement it is perfectly reasconable to assume stationarity. As Brennan® has
pointed out, the assumption of ergodicity is no problem when one is constructing a random

process model from a sample function,

The first averages that one might consider are h(r, t}) and Hif, t), where we use overhead
bars to represent averages. If is not hard to see that, for communication by reflection from a

eollection of seatterers in motion relative te each other, both hiv,t) and HIf, t) will be zero. Ta



achieve this result, it is sufficient for the phase of the return from each scatterer to be uniformly

distributed between 0 and 27. Naturally, on channels for which hir, t) and H{f, t} are not zero,
these quantities can be easily measured and their effect considered as a specular component of
channel return. We shall simplify our notation, however, by assuming these quantities to be 0.

A. Two-Frequency Correlation Function

The next average we shall consider is a quantity called the two-irequency correlation func-
tion R{af, At) first discussed by Hagfors .6 This is defined as

RIAL, At) = 2H* () — -‘%—f. t) H(f, + %J t + AL . (33)

Using the complex low-pass representation for H from Eq. (30}, this becomes

R(af, o) = 5 He (-5, 0 HSE, t+an (34)

The right side of Eq. {33} is not a Munction of because of the stationarity assumption. How-
ever, it does appear to be a function of the carrier frequency fu‘ We shall justify later the fact
that, for most time- and frequency-spread channels of interest, R (AL, At) is relatively independ-
ent of {_ over a very broad range of f .

In order to interpret ®(Af, At), let us first consider the special case % (0, At). From Eq.(33),
this is simply the autocorrelation of the channel response to a sinusoid of frequency f.;;.' We shall
define the coherence time of the channel Tr: as the interwval in At over which ®(0, At} is essen-
tially nonzero, We are deliberately vague about this delinition since we wish to use T in an
order of magnitude sense only. It can be seen that T  is a measure of the time over which coher-
ent integration can be performed on the channel cutput and also of the duration of fades on the
channel,

It is to be seen that a large Tc iz of questionable value, since the large coherent integration
time is offset by the presence of long fades. [t is sometimes convenient to think of a coherent
channel as the limit as T approaches infinity of a time- and frequency-spread channel, but the
above relationship between coherent integration time and fading duration suggests that consider-
ahle caution should be exercised here.

Mext let us consider R{af, D). If frequency diversity to transmit information is used, it is
R{AL, 0] that tells us how far apart in frequency the channels must be to achieve essentially un-
correlated returns on each., Even more important, if we transmit a signal of bandwidth W,
where W is small enough so that R(W, 0) =# (0, 0), H(L,t) will be approximately independent of f
over the bandwidth used. Thus the received sipnal will be the same as the transmitted signal
excepl for an over-all amplitude and phase that change over a period of time which is of the
order of magnitude T .. On the other hand, if the input bandwidth ig so large that ® (W, 0) =0,
the amplitude and phase of different frequency components of the input signal will be changed
relative to each other, and the received waveform will no longer bear any simple resemblance
to the transmitted waveform. We vaguely define the coherence bandwidth of the channel F‘c a8
the frequency at which EEFE, 0) has dropped significantly toward 0 from R(0, 0).

[t is somewhat tempting to try to relate the coherence time T to the over-all impulse
response duration of the channel and to relate F to the over-all doppler spreading. Such a



relationship does not exist and these quantities arise in physically unrelated ways., We shall
show later, however, that if R{Af, Al) is unimodal, then ‘["E is roughly the reciproecal of the
doppler spreading, and F, is roughly the reciprocal of the impulse response duration. For the
example of orbital dipole channels previously discussed, Tc = 1 msec, and F{: = 104 Cps.

B. Tap-Gain Correlation Function

The tap-gain correlation function & (¢, At) is defined as the inverse Fourier tranzform on Al
of R{Af, At),

RiT, At) & g RiAT, At) explj2raft] daf {35)

(Al at) =S. Ri7, At) exp[—j2rafr] dr . (36}

We can obtain a more convenient expression for R{r, At) by applying Eqgs. (34) and (34) to
RAT, At).

Riaf, a0 = 2 H (-51, y &

af '
':2._* t + At)

= 2 3 g dr'dr'"h*(7', t) exp[-i2rr'Af/2] hiz", t + At) exp[=j2x7''AL/2] .

2 -
Changing the variables of integration by letting § = ' — 7', and then 7= "+ {6/2), we [ind that
it ][ &
T (A1, At) =S. dr exp [—j2zAlr] [f g dé h*{r — 5, 1) h(r + %, t+ .:Lt;] . (37}
T v o

Comparing Eq, (37) with (36), we see that

1

@
R:»;,m::zg dsh#{r—3, hhir + 3, t+at) . (38)

E -+ 2
If X {Af, At) depends upon rn‘ Rir, At) will also depend upon I{:' This can be seen in Eqg. (38)
because the low-pass representation h is defined from h using the frequency FD.

Let us investipate Eq. (38) for the case of a channel composed of a collection of seatterers,
and let us suppose that each scatterer has an impulse response duration of, at most, el TFor
chaff particles and orbital dipole scatterers, e = 10-9. The quantity € is not to be confused
with the aover-all impulse response duration of the cloud. The latter quantity is many orders
of magnitude larger than ¢ because the scatterers are spread out, and each one responds with

a different over-all delay. We now wish to establish that

gh{rmg,ut_:h+%,1+m}=u for |6] >¢ . (39)

T Although it is possible for the impulse response of a scotterer to be sirictly limited to o time duration e, it is
not possible to sirictly time limit the complex |ow-pass representation of the impulse response since its Fourier
transform is strictly zero for F£ —f . It is not hard fo convince oneself, however, that the errors due to this
approximation con be ignored.



Unfortunately, to prove this mathematically, we would first have to set up a mathematical model
for the statistics of the scatterer locations. Any model that we could handle mathematically
would be far too restrictive for the physical cases we wish to consider. Thus we must be satis-
fied with an intuitive argument. Let h, (7, t} be the response from the ilh of a collection of
scatterers. Then, since h is the sum of the responses from the individual scatterers, Egq.([39)

becomes

n o n _
5 5 a
A he(r— 5, hylr + 3, t+ 68 =0 for |[6] > ¢ . {40)

To establish Eq. (40), it is certainly sufficient to show that?

hf'lr—%: t}gj{7+ﬁ,t+m}=+} for i £ . (41}
Equation (41} will follow, however, if the phase angles of both Ei‘"[-* — {6,/2), t] and ]_-gj[r + [&/2),
t + At] are independent and uniformly distributed. This will occur if the probability density of
the path length of each scattering particle is flat over an RF wavelength independent of the other
particles; this appears to be eminently reasonable for any collection of scatterers. Using this
assumption, Eg. (38) can be written

3
R{r, At) = %S 46 h*(r — 2, t) hir + =, t + A1) . (42)

=E

MAssuming also that Rir, At) is relatively constant over an interval ¢ in 7, this becomes

——————

W, ] :
R, at) = = SUHE dr" h*(r,t] hi7', t + &t} 1 & = I_'l_ i?’ 5/ IJ? {T;ff{ig/

T=E

T ]

In order to interpret R+, At), suppose that the inputs to the channel are restricted to a
bandwidth W around the carrier freguency i'o. Then, as shown by Kailath, the channel, aside
from additive noise, can be represented by a tapped delay line with taps spaced 1/W apart. To

accomplish this, the input x{t} can be represented by the sampling theorem as

- : k
5 sinaWir — =)
x(t—1 = J xlt-g) ——— (44)
A TW(r — 1)

Applying this to Eq. (32), the channel output can be expressed as

= sinTtWiT = }
=1 ¥ x5 L YO {45)
o 2 w ) o
k= =oo =
Defining
A k

E sinTWit — =)
hyl, t) & 5 dr ——— h(r, ¥ (46)

e TW(r — 557)

i This follows from the fact that h [+ = {Sj‘rﬁ H hil+ + (5/N, 8] must be O far & > ¢, since hj is nonzers Cﬂ'l-l}f for

a duratien & in *. |f purhc:la i hos a detarministic velocity companent v, h [r= {5;"2},1‘] hs ["r + {Efﬂ t+ At
might be nonzero for & < ¢ + (Atv/c), but we shall neglect this effect for Slm'plll!.'.ll}l" since it dcras not oppear to
have any impertant effects.



we have

o

i) = =it g 1

K K .
7 Xt — ) byl Y (47)

k===
Then the channel is represented as a delay line with taps 1/W seconds apart and gain wakf'r W, t)
on the kih tap.
We shall next find the autocorrelation of the tap gain Ew:k,-"w, th under the restriction that

ti,.-’Wj > ¢ and also that 1/W is much less than the time in T owver which R{t, At) changes

appreciably.
IS k ;
3 _thi.-ﬂ,%. t) byl t + ot = % Sg drd7' | h#*(71, t) h(7', 1 + 4t)
sin 7W(r — g) sinTW(r' %1

b = % [48)

w!.lrl'{-l—_ W ""WI:-T - -ﬁ:l

sintW(r — %‘1 E
= g drRir, &t) |—————— (49)
TW(T — W
Ritr, &1

= — - (50)

Equation (48) follows from Eq. (46), Eq. (49) from Eq. (43) and the agsumption that W << (1/€),
and Eq. {50) from the assumption that 4/W is much less than the time over which R{r, &t) changes
appreciably. Using the same conditions, it follows in the same way that successive tap gains are
uncorrelated. For orbital scatter channels, the fact that the tap gains are uncorrelated agrees
with an earlier result by Eurzlll:'m._"r For a discussion of channels in which the tap gains are cor-
related, see Sp.il}':er‘kl and E{ailath_q

The quantity on the left side of Eq. (48) is the tap=gain correlation function used by Kailath.
We have shown that under some very plausible conditions it is proportional to the tap-gain cor-
relation defined here. If the conditions are not satisfied, one must give up Eq. (50) if one uses
the definition here, and one must give up the Fourier relationships between R{AT, At), Rir, At),
and the scattering function if one uses Kailath's definition.

The difficulty here is not due to the use of sampling. If one wishes to maintain Fourier
relationships between S (Af, Aty, RiT, At), and the scatiering function, the definition of R{7, A1)
must involve some smoothing over T [see Egs. (38) and (43}]. If W << 1/, the taps on the
delay-line model are far encugh apart for this smoothing to be automatically accomplished. If
W = 1/e, there is no reason to expect the two definitions to be equivalenti.

The quantity R(r, At) is sometimes complex; when this is so, Rr_-[hw{'r, t}] and Im[hw{.—, i+
At)] are correlated. This condition is physically meaningful and, as we shall see later, allows
us to distinguish, for example, between an expanding and a contracting cloud of scatlerers.

Sometimes it is desirable to separate the tap gain Ew:'kfw, t) into a real and an imaginary
part and find the autocorrelations and cross correlation of these two quantities. Equation (50)
is not sufficient to find these quantities, but if we use the assumption of scatterers with inde-
pendent uniformly distributed phases, we immediately see that the real and imaginary parts of

10



l;lvw{k..-'fw, t} have the same autocorrelation. Using Eg. (50) for the sum of these guantities,

k
Re[R(ss, At)]
Refhy (<, t)] Re[hy (5, t + At)] = ———— (51)
k
. - Re[R(xy, At)]
Imfh (5, t)] Im[hgg (g, t + O8] = ———— . {52)

To find some physical interpretation for R(r, At), we can first lock at Rir, 0} as given by
Eq. (43). This is proportional to the average returned power at delay 7, or in other words, is
the return due to scatterers for which the path length yields a delay 7. Similarly, R{r, 4t) is
the correlation function of the return due to scatterers at path lengths of delay v. Clearly, we
eannot try to resolve T too closely in this picture, because of the individual response time &
and because our statistical model will break down if a large number of scatterers are not in
each resolution zone.

We shall define the multipath smear L as the time duration in 7 over which R{r, 0} is effec-
tively nonzero. This is clearly the same as the effective duration in 7 of the impulse response
hi{r,t}. Since R{7, At} is the Fourier transform of R (Af, At), L will have the order of magnitude
of 1_.-"Fc, if RiT, At) and # (AL, At) are well-behaved unimodal functions of T and Af. The time
coherence of the channel Tc previously defined as the interval in At over which R(Af, At) is
effectively nongero is also the interval in &t over which BT, &t) is effectively nonzero.

In order to interpret the significance of L and Tc* consider the use of phase-shift keying
for transmitting digital data. The duration of a symbol in sueh a system should be considerably
greater than L fo avoid inter-symbol interference. On the other hand, it should be less than
T, to allow for coherent integration of the received signal. These conditions cannot be met i
T, < L; under these circumstances phase-shift keying is clearly a very poor data transmission

method. Channels for which Tc < L are called overspread channels and will be discussed later.

C. Scattering Funection

The scattering function o7, {) of & time- and frequency-spread channel is defined as

Lor]
ofr, f) & S Rit, &At) exp [—j2riAt) dat . {53)
=G0
As with R(Af, At} and R{T, At), o7, {) is implicitly a function of the carrier frequency i‘ﬂ, but as
before, we assume that o{7, f) is relatively independent of f | over a wide band of frequencies.
The function o7, ), unlike R{T, &t) and R{af, At), is necessarily real and non-negative. To
demonstrate this, it is sufficient to show that R(7, At) = R#(r, —At). Using Eg. (38) we have

-
=%S‘.m das }.l*{'."'g*t] "]‘!l:'il'—%,tfﬂ.t} (55)
_%5 d6 h*(T—2,0) h(r + 2, t + At) = R(1, 80) . (56)
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Equation (55) follows from using stationarity to replace t with t + At, Equation (56) follows
from using =& for & as the variable of integration.

The seattering function has a much more direct physieal interpretation than either R{Af, Af)
or R(r, At), Going back to the tapped delay-line model for the channel, we see that olk/W, /W
gives the power density spectrum of the l-iih tap gain. Thus o{k/W, [}/W is 2 measure of the
power returned at delay k;"‘l.'f.’ with doppler shift f, and we can think of o7, ) as being a measure
of the power returned by scatterers at delay 7t with doppler shift f. This is obscured some-
what because frequency spreading is caused not only by the doppler shift produced by motion of
scatterers in the direction of changing path length, but also by the modulation introduced by the
rotation of the scatterers. When the cloud of scatterers is actually an astronomical body such
as the moon, rotation of individual pieces of the body is no problem, and o(r, {) resolves the
return from the body according to path length and veloeity in the direction of changing path
length. This was originally pointed out by Green.m and Pettengill's moon-mapping experiments:“
were based on this principle. For chaff clouds and orbital dipole belts, rotation of particles is
not negligible, and therefore o{r, I} cannot quite be interpreted as the return from particles with
a given path length and path length velocity component. Ewven in these cases, however, o7, 1} is
clogely related to the actual physical mechanisme in the cloud.

We can now justify our contention that o1, f), and hence alse Rir, At) and R(Af, At), are
relatively insensitive to changes of the carrier frequency fo' The relationship between doppler
shift and velacity depends linearly upon fD' Thus for fﬂ = 10kMe, a change in carrier frequency
of 1 kMe will change the doppler shift and hence the seale of o(7,{) by 10 percent. Similarly, for
short dipole scatterers a 10-percent change in carrier [requency should not materially affect the
individual seatterer response. Although {1 kMe is not large relative Lo !"D, it ig certainly large
relative to conventional communication bandwidths, and this is the rationale in ignoring fc:'

The most important over-all characteristics of (7, f) are: L, the previously defined time
duration in 7; and B, the frequency interwal in f outside of which o(r, ) ig effectively zero.

The guantity B is commonly called the doppler spread of the channel. If o(r, f) and R{7, &At) are
both well behaved and unimoedal in f and At, B has the order of magnitude of UrTc.

V. MEASUREMENT OF TIME- AND FREQUENCY-SPREAD CHANNELS

In Sec. IV we showed that the two-frequency correlation funetion, the tap-gain correlation
funection, and the seattering function are of fundamental importance in characterizing a time- and
frequency-spread channel. In this section we shall analyze several techniques for measuring
these guantities. We shall find both the mean and variance of the measurements discussed, and
hopefully, make it relatively easy to decide what type of measurement to make in a given situa-

tion. (For a different approach to the analysis of channel measurements, see Levin.'%)

A. Measurement by Pseudo-Random Inputs

First we shall discuss the measurement of Rir, &t) or o7, [} by using a pseudo-random in-
put waveform on the channel. Greenm and E{,ﬂ.ilﬂ.thq have discussed, from very different stand-
points, what is operationally this same measurement. We shall discuss the measurement tech-
nigue itself, show how it fits in with the work of Kailath and Green, and resolve an anomaly
about overspread channels arising between the results obtained by these men.
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L)

EstR(T, 50 = & 5 51 drdt[RZ(r — 71} + RZ{A] R(7, 80 . (62)

l=—w

The limits on the integral on t of Eq.(62) are such that they keept — 7, t — 7', t + At =7, and

1+ At — 7 all between 0 and T. If we assume T >> L, where L is the duration in 7' of R{7v', At),

we can take the limits on t io be T and T — AT + 7. If we also assume that the duration of Rx{ﬂ
is much shorter than the time in 7 over which R(7', &t) changes, we can integrate Eq. (62) to
find that
== H{r-,'ﬂ-“ﬂ = :i!_f (T — at) [H{.—,a.tj g H;“rj drt + nf{at} S R{T', At) cn-] | {63}
lrr Lt = Tr

Finally, setting

AL (64)
(T -4y [, H;{r'i dr'

we have
5t
F'x [at)

Est R(7, Al) = R, &t) + R{7', At) d+! . {&65)

_-2- ]
f Ry () dt “r

Equation [65) was derived on the assumptions that the measurement interval T is much
greater than the muliipath spread L and that the duration of Hx{.": is much greater than ¢ and
much less than the time in v+ over which R{t, At) changes., For the common time- and frequency-
gpread channels, meeting this restriction is no problem. If, for some peculiar channel, € is
comparable to the time in r over which R(r, At} changes, R, At) will not characterize the chan-

nel very well. The guantity h*(7', t) h{7"", t + At} could still be estimated in this case, however.
Equation (66) shows that the average of the proposed estimate of R{7, At) is the true value
plus an error term; however, the error term is only significant for At so small that Hx{ﬂxt‘,l 15
nonzero. If we increase ithe bandwidth of the input process, we can make Rxlfm.} be nonzero
over as small an interval as we wish down te €, but it can be seen from Eq [65) that the magni-
iude of the disturbance at At = 0 grows with the bandwidth. For a large input bandwidth, we
can consider the error term to be an impulse in &t of magnitude fT, R({7', at)dr'. Figure 1 shows
m as a function of At

s s
EST R (=, A1)

Fig. 1. EstR{t,At) as a function of At.
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The impulsive behavior of this error term does not appear to be a consequence of the
assumption that the input was a sample function of a Gaussian randoam process. The same be-
havior can be demonstrated when the input is a carrier that is phase-shift keyed by a random
binary sequence, and all the evidence indicates that any input waveform of long duration and
large bandwidth will give a similar behavior.

The error term in Eq. (65) is of course no problem practically, We simply pick the input
bandwidth large enough so that R(r, At) is essentially constant in At over the duration of th:r]l.
We then extrapolate R(r, At} at At = 0 from nearby points.

The error term in Eq. (65) is streszed because it is the key to the anomaly between the re-

sults of Kailath and Green. Kailath's analysis was formally analogous to what has been done here,

except that he used white Gaussian noise as the input and measured hiv',t) hir"', t + At]. He noted
an impulse in his measurement corresponding to the error term found here but did not discuss iis
effect on a practical measurement. The use of white Gaussian noise as an input simplifies the
formal manipulations but precludes any analysizs of the noise or the variance of the estimate and
makes interpretation of some of the results quite difficult.

B. Green's Estimate of o(r, f)

In Green's analysis, o7, f) was estimated by passing the received waveform through a filter
matched to the input but offset in time by 7 and in frequency by f. This amounts to finding the
energy at frequency f in the waveform ¥t} x(t — 1), and thus qualitatively it appears that Green's
estimate of a(r, f) should be the Fourier transform of Est R(r, At)., Analytically, Greenl® shows
that the average value of his offset matched filter estimate is given by

Esto{T, ) = —% SS dr! df! - %Jpzqf' -7, £ — ) af{r', ') (66)

whe re rjlz is the ambiguity function of the input waveform a'az[rr, Il = 9z, I} - o™+, I},
wr, ) = S‘ dt —éﬁ*ﬁ.] x(t + 7) exp[j2afe] . {6T)

We now show that the inverse Fourier transform of Eq. (68} is indeed Eq, (59). Taking the
inverse Fourier transform of Eq. (66) on f and recognizing that the right-hand side is a eon-
volution on f, we can use the convelution theorem to get

Fi - EEto () = e S dr' 7L wlir =7, 07 FL ol 0 (68)
.-rl

where the notation 1'*"41 denotes inverse Fourier transform.
From the definition of o(7, f) in Eq. (53), we have F_© [o{r',f}]] = Ri+', At).
Also, from Eq. (7],

F'iw.-' =7, f} = %ﬁttl X*(t+ 7' =7}

Thus u'lz{'r' — 7, 1) is the energy density spectrum of the function £ =2(t) x#(t + 7' — 7) considered
as a funetion of t. Conseguently, the inverse transform of z,!-z' is the autocorrelation of

1 x{t) x*(t + ' — 1) or % filk{nj ([t + 7' — 1) 2t + At) Xt + At + 1= 7) dt.
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Finally, substituting t — 7' for t, we have

Fl it — 7, 1 = 5

f= —an

¥t =" xlt— 7 xlt + At — ') x*(t + &t —7) dt . (6]

] =

Substituting Eq. (69) into (68}, we have

FlEstolr,n - & S‘

X x(t + At — ') dtd? . (70}

Rit', At) g ®t — 1) oot — ') ([t + AL —T)
7! t

Comparing (70) with (59), we see that the expressions are identical. Thus

Esto{r, {} = g Est R{T, &t) exp[—j2rfat] dat . (71)

This result is not really surprising; both techniques perform the same operation. In both cases
we multiply the received signal by a delayed version of the transmitted signal and either correlate
the resulting waveform or find its spectrum.

Let us now use Eq. (71) to calculate E=s;‘;F,_ﬁ when x(t} is a sample of a complex, stationary,
Gaussian, random process. Taking the Fourier transform of Eq. (65) and assuming that Rx{&ﬂ
is nonzero only when R{7' at) = R(7', 0},

Bsto(r, f) = olr,f) + \ R(r'.0} dr' (72)
T'l

Estolr, ) = alr, 1) +S 5 a(r'. £) driaf' . (73)
T1 1

The term on the right side of Eq. (73) is usually called self-noise, but this name is somewhat
misleading since the term is a fixed deterministic quantity independent of 7 and f. To get an
idea of the relative magnitude of the two terms in Eg. (73), assume that ¢(7, {) iz constant over
the region —L/2 < v < L/2, —B/2 <1 < B/2, and zero outside this region. Then the ratioc of the
error term to {7, f) i8 simply BL, the spreading constant of the channel. Greenm also observed
this result and pointed out that if the channel were overspread, i.e., if BL >4, then the estimate
of ¢i7, f) would not be close io the true value. The new contribution here is to point out that when
this error term is averaged over the channel and the input ensemble, it is independent of 7 and
i and therefore can be subtracted out.

The preceding results have established the connection between Green's offset match-filter
measuring technique and Kailath's correlation technigue. We have seen that neither the sell-
noise spike in EBSTM} at 7= 0, At = 0, nor the corresponding plateau in Em causes
any insurmountable measurement problems, These results, however, concern only the average
value of our estimates. In order to show that any particular measurement will yield a good esti-
mate, we shall estimate the variance of cur estimate of R(r, At) and show that it goes to zero with
increasing measurement time. The estimate of o{7, f) approaches {7, {} in a somewhat more
complicated way and will not be treated in detail here. Since Est o(7, ) is the power specirum
of a finite sample of the random process y(t) x(t — 7]}, some smoothing must be done on Esto(7, f}
before the variance goes to zero with increasing measurement time. The problem of finding the
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power spectrum of a process from a sample function is discussed in detail by Blackman and

Tn_lke;,-.m

C. Variance of EstR(r, at) with Pseudo-Random Inputs

In order to find the variance of Est R(T, At), we must discuss in more detail how the received
signal is filtered to reduce the additive noise. In practice, this would involve a circuit such as
that in Fig. 2"

r e Nhican
| GAUSSIAN MOISE, TIME=INVARIANT
SPECTRAL DEMSITY | FILTERS
| Ho /2
| I
2it) 1 I
= hir. 1) I (o }—= sin
I I
I CHANMEL |
II I AUTOCORRELATOR
[ e -
DELAY
ir EST Rlr.At]

Fig. 2. Block diagram for estimating Riv, Af).

If the bandwidth of the input process is W % then presumably the bandwidth of alt) should be
about W + B, and the bandmdth of bt} should be about B, In order to simplify the analysis,
we shal'r. azsume that the input process has an autocorrelation B {“‘.I S exp [—rrwz'z] Ccorre-
sponding to an input power S and nominal bandwidth ‘Jxx. We alao tale the low-pass equivalent
of the impulse of filters alt) and bit) to be:

i s 2.2
alth = 2 ~2 Wa e:{p[-arwat ]

bit) = 2 NZ W, exp (27w %)

This particular form of filter is chosen anly for analytical convenience. The fact that a(t) and
bit) are unrealizable is of no consequence sinee they can be realized as closely as desired by
adding delay. By taking the Fourier transform of these filters and moving them up to bandpass
by Eq.{9), we see that each filter has unity gain in the center of the band. Ewven with these
simplifications, the general analysis of such a syatem is exceptionally tedious, Two special
eases have been analyzed however, and these are sufficient [or our purposes. In Case A, we
assume W, >> W= W, so that the filter blt) can be ignored. In Case B, we assume that
11.‘.- > ‘»F-' > ‘J-h 5.-_: thm the filter alt) can be ignored. Case A is analyzed in Appendix A, and
Case B a.lthcugh slightly more tedious, can be analyzed in the same way. In both cases, itis
assumed that i;"W =»» ¢ [¢ i5s the impulse response duration of an individual scatterer), and
that 1fw is much less than the time interval in 7 and At over which R(T, at] changes signifi-
cantly. IiT. is zlse assumed that T, the duration of the input signal, is long enough to neglect
end effects in the integrations. Finally, it is assumed that there are many scattering particles
in an interval 1,.-""5‘-’ of path delay, and that i,.-"‘."." < At e

The variance -::f EstRiTt, ot} i8 broken up into three terms: I\-é the variance due to channel
and input variations; 12. the variance due to additive noise; and HCIL* the variance due 1o

cross products. For Case A, the following approximate expressions and alse some more exacl

expressiong are derived in Appendix A.
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né—%g |R(7, 11]% at + SR{ ,0) dr ] (74)
, 4NZW Wl 2Nz [ (wa>z]-1fz
NS = —— X8 O bl (75]
A TSE ‘l.i'i.-x
U1 e Yatlo, ERGRA0Iids) (76)
CA T 5 W N2
N 4 4 ‘ﬁ'x
For Case B, the analopous expressions are:
W 2
1A 1 2 b
N =—S!Hi7.t dt + —— Sﬂt 1,0} dr' 77
C T | }l u\.'_‘ET l T } dT (77)
— 442W W I‘\
Ni = —"--—h 2 {78)
'TS
4W W
A b "o 1
Nep = -—T S RiT', 0} dr 3 {79)

Ag expected, these expressions indieate that the variance of Est R(T, At) decreases as T
and S increase. The behavior with respect to the input and filter bandwidths is less obvious.
The results clearly indicate that all these bandwidths should be made as small as possible. One
might argue that by making ‘l.T.’x large, one could reselve Est R(7, &t) more closely, and then by
smoothing over 7, one could reduce the variance. The argument is valid if the additive noise is
unimportant, but in most measurements, Ni is the dominant term; then since Case B is valid
for large W_, we see that even after smoothing over 7, the variance increases with W . The
reason for the inerease in variance with an increase in Wx can be seen somewhat from Eqs. (63)
and (64). As Wx increases, the scaling constant o increases linearly corresponding to a de-
crease in the level of the autocorrelation of x{t — 7) y*(1). This constanl o appears squared in
the variance of Est R{r, &1), giving rise to the sz term in Eq. (78).

When Wx' Wa. and Wb are all reduced as much as possible without violaiing the restric-
tions put on them, ‘L'.'b will be limited by B, the doppler spread of the channel, and Wx will be
limited by the reciprocal of the time in 7 over which R{r, &t} changes. For underspread chan-
nels, i.e., channels in which LB << 1, we will have Wx > Wb and the results for Case B will
be valid. For other channels, W,, W_, and W, will all be about the same and Case A and
Case B will give the same order of magnitude of results. These results will be discussed in

more detail after describing another technigue for measuring spread channels.

D. Measurement by a Chirp Input Signal

Although the measurement technigque deseribed in the last section yields a perfectly accept-
able way to measure R(r, At], the required instrumentation is elaborate and expensive. In this
seetion we shall describe anoiher measurement technique that appears both to be simpler to
instrument and to have a smaller variance than the pseudo-random input iechnique.

We shzll use a chirp signal of power 5 and duration T as an input to the channel:
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2
x(t) = ~28 eos 2r (fnt + -‘3‘-;-.) octsT . (80)

The instantaneous freguency of this signal is ::‘cI + ot and is thus linearly increasing (or decreas-
ing for a < 0) with time. We shall take the complex low-pass representation of x(t) to beT

x(t) = NZ5 expljzrat®/2] 0gtgT . (81)

Nepglecting additive noise, the received, complex, low-pass representation y(t) is given by
Eq. (32) as

y(t) = % 5 hi7, t) x(t — 7) dr (82)
SR 2 2
-J5 R A (83)

If we bring the received signal down to an intermediate frequency by multiplying it by

another chirp signal of the same «, we have
s (! _ .
et =2 hi7, t) exp [jre{—7t + 7°)] d7 . Li
=0

We ghall show that the autocorrelation of EIF“’} can be used as an estimate of the two-

frequency correlation function R{Af, At),

A g t L+4L
LI : — = =1 — '
3 lIFm EIFH F ALY ) 5-:(: S‘“:n drds k_:rk{., t) E{r , b+ At)
: 2 2
exp{jme [27t — 7" —27'(t + At} + (7)) . {85)
We now average both sides of Eq. (85) and integrate over 7. Recall that h¥ (7, t} hit', t + At)

iz effectively nonzero only for |+ — ¢'| < €, where ¢ is the response duration of a single scatter-
ing particle. If re(2t + 24t — 7') is much less than 1/e, then the exponential term in Eq. (85) will
remain essentially constant as 7' changes by ¢, and Eg. (85) can be integrated to give

; t
1yt yiplt + 8 = 3 LG Rir, at) exp [jra(-27a1)] . (86)

Applying Eq. (36), and assuming R{r, At} nonzero only for 0.5 v£ 1, we get

Lzt yptt + 80 = £ Q(ant, a0 (87)

In order to establish the validity of Eq. (87), we must justify the assumption that Zre(t + 4t =
/2) << 1fe. We can interpret et + At — Tr;’zj as the change in instantaneous freguency between
time 0 and time t + At — 7'/2, Also, since ¢ is the impulse-response duration of a scatterer,
1/e can be crudely interpreted as the over-all bandwidth of the channel. Thus Eq. (87) will be

T Strictly, 5_{1‘} must persist far all time since its Fourier transform must be O far £ {—'FQ. It ean be shown, how-
ever, that the fraction of energy at frequencies below —f in x(t), as given by Eq.(B1), is less than ?,fnZFDT for
a >0, and 2{1’“2{{& +aT)T] fora <0.
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valid if the frequency sweep of the chirp signal stays well within the over-all channel bandwidth.
For chaff or orbital seatter, this restriets us to a sweep of less than 1 kMe which is hardly

seripus. From Eg.{87) we see thal it is reasonable to estimate R[Af, At) as follows:

T
Est Rleat, At) = T.Sm St=L+31 y;'FttJ E-IF{t + At) dt . {88)
The limits on the integral in Eq. (88) are simply the limits for which Eqg. (87) is valid. We can-
nol be quite so cavalier in neglecting &t and L relative to T as we were in the last section
gince T is limited by a'T << 1/e.

We see from Eq. (B8) that with a chirp signal of given a we can measure R{Af, At) along a
straight line of slope o passing through the origin in the At, Af plane. Thus to measure
RiAf, At) everywhere, we must use a variety of different values of o.

In Appendix A we calculate the variance of Est R{aat, At). As before, this variance is

separated into three parts: Né, the variance due to channel fluctuations; I\".E:, the variance due

to additive noise; and hép, the variance due to cross terms between the channel and the additive
noigse. We assume that the noise added to EIF{” iz Gaussian and is filtered so that it has an
autocorrelation
B 2.2
Hn{.] = anr exp [—rwr T | (B9)

We assume that the bandwidth of this filter Wr is large enough to pass J’PIFM with negligible dis-
tortion. We also assume that T is much larger than the duration in At over which R{aat, At} is

nonzero. Subject to these restrictions, the following relationships are derived in Appendix A:

— ’ b :
G = o= gmm | leat, at)|© dat 190)
s =t e (91)

ASIT-L-at)W_\ S
EE S o 4 %{0, 0} N W
S = T = A W ( 5 . (92)

Along with these variance terms, it is possible for the additive noise to change the mean value

of Est Rlaat, at) if At is not much larger than i,-frwr. This additional term is real and positive
3

and has the value ENGWI_,.-’S EXp [—z'ﬁ.ﬁ.-'r'.'{a.tlz]. Since the term can be subtracted from the esti-

mate, we shall ignore it in the following discussion.

E. Comparison of Measurement Technigues

We have discussed two measurement techniques, one measuring R(r, At] by a pseudo-
random input, and the other measuring R{Af, At) by a chirp-signal input. In this section we
wish to compare the measurements on the basis of the time required to measure the channel,

It appears to this author that the chirp-signal method has definite advantages, but a clear and
convinecing argument is difficult since the techniques measure different quantities, and the ex-
pressions for variance are not simple and depend on a number of assumptions.

We can give a reasonably convincing argument, however, by censidering one example. Sup-

pose the channel has a two-frequeney correlation funciion given by
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R(at, at) = &(0,0) expi{-al(a0%/F 2 + a?/T2)} (93)

Using Eqs. (35) and (53}, the tap-gain correlation function and the scattering function are given
2 2 242
R{+, At) = Fﬂiﬁtﬂ. a) exp{—w[F’c T + {At) ETQ 1} {94)

2 2 Z.2
alt, i) = F‘GTC'.HED. 0) exp {—:ITIFET * TEI' 1} : [CE)]

The quantities Fc and Tc represent the frequency and time coherences of the channel in the
sense that about 60 percent of the volume of R{Af, At) is contained within the region where
| af] < E‘c,."'z, |at] £ T /2. Ina similar sense, L = 1/F_and B = 1/T_ can be taken as the
rultipath smear and doppler spread of the channel. We assume that the signal power available
for measuring the channel is so limited that N; is the only important term in the variance of
Est R{T, At) or Est R{A7, &t).

Consider a measurement of R, At) by the pseudo-random input technigue in which we
attempt to resolve R{T, At} to intervals of L/m in 7, and Tc,.'"m in At, where m is a given posi-
tive integer. If we assume the channel to be underspread so that L < T, Eq. (78) is valid for
the variance of EstR{r, At). In order to resolve 7 to intervals of L/m, we must take Wx to be
at least m/L, and in order to resolve At to intervals of Tc,.-"m, we rmust take Wb to be at least

m,r'rTL_. Substituting these values into Eqg, (78), we have

SiE WZ m N Z
N, = —"2"—20 : {96}
L g .

If we normalize N, by dividing by R°(0, 0), which is proportional to the square of the mean
of the estimate, we have, using Eq. (94),
z
el
= 3 77
R%(0,0) TT_S°%°(0,0)

4 «.'Em3wf
197)

Suppose we use the chirp-signal technique to measure the same channel. Since we are now
measuring R(AL, At), we will attempt to rescolve Af in increments of Fc,-"rn and At in increments
of 'I‘C,-"m. Since :;IF[t:I is filtered before it is autocorrelated to give R{aat, At), the filter band-
width Wr must be at least m,-f'Te in order to resolve At in increments of Tc,-"m. Using WT =
rﬁ,.-"'l"c in Eq. {91) and neglecting L and At relative to T, we get 2 variance of

L N ENZm
. L]

&
N T ——————
A csg

{98}

In order to resolve Af to FEHmJ we must make about 2m measurements with different values
of @. If welet T, = 2mT be the total time for all 2m measurements and normalize Eq. (98) by
dividing by :RE'{D, 0}, which is proportional to the mean of Est RloAt, At), we have

2

e )
I 4 IE =
M N2 N m

el ¥

{99)

3%(0,0) T,T .S (0,0

Z1




Comparing Eqgs. (97) and (99), we see thai the normalized variance for the chirp case is less
than that for the pseudo-random case by & factor of m. Thus, if the measurement is limited by
additive noise, the total time required for a chirp measurement will be m times lese than the
equivalent pseudo-random noise measurement.

We can rationalize these results in the following way. The assumption that the additive
noise is the major limitation in the measurement indicates that the major problem is that of
building up a sufficient signal-to-noise ratio at the receiver. Price and Greenm have shown
that this signal-to-noise ratio is proportional to the number of degrees of freedom in the output
signal, times the square of the energy-to-noise ratio per degree of freedom when this energy-
to-noise ratio is small. To achieve a good signal-to-noise ratio, therefore, one must reduce
the number of degrees of freedom in the output signal.

In the comparison just considered, the outpui bandwidth, and therefore the number of de-
grees of freedom per second, was the same in both the chirp and pseudo-random cases. How-
ever, for epch sample measured in the chirp case, we used a measurement interval of thzm,
whereas for each sample in the pseudo-random case, we used the total interval T,. Thus the
number of degrees of freedom entering into the measurement of each sample in the chirp case
was smaller than in the pgeudo-random case by a facior of Zm. It is nof surprising that the
variance in & chirp measurement sample is gbout 1,/m of the variance in & pseudo-random
measurement sample.

When the additive noise is not the limiting factor in the measurement, there appears 1o be
no simple comparison between chirp and pseudo-random inputs. Gualitatively, we can see that
the chirp input has less interference between the measurement of different sample points than
the pseudo-random input. Om the other hand, it is clear that the chirp input does not minimize
the time reguired to measure the channel. If signal power is not a consideration, one can use
several chirp inputs together, for example, to decrease the time required for a2 measurement.

While certzin advantages for chirp inputs over pseudo-randem inputs have been demon-
sirated in the preceding paragraphs, the guestion of the "optimum" input to use in measuring &
channel still remains. It is the author's opinion, after analyzing these two cases in detail and
several other types of input in somewhat less detail, that the similarities between the periorm-
ance of different inputs is much more striking than the differences. It appears that almost any
rezsonable input signal, if properly processed at the receiver, will produce a measurement
whose variance goes down as the reciprocal of the measurement time, and that this result is
true for all values of B iimes L. The major factor influencing the choice of an input signal in
a very noisy environment appears 1o he the desire to measure the minimum number of guan=
tities at a time. The reason for this is not so much to reduce interference between samples as

io decrease the number of degrees of {freedom entering into each sample measurement.
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APPENDIX A
VARIANCE OF ESTIMATES

1. VARIANCE OF ESTR(r, at) FOR PSEUDO-RANDOM INPUT

In this section we shall calculate the variance of EstR{r, &t) for the circuit given in Fig. 2
for the case where 'I.T.'x s W:'. B Wb. We shall first calculate this variance in the absence of
additive noise, in which case both filters may be neglected. We shall find the mean square value

f Est R{r,At). From Eg.(58) we have

Est RirT,&t) = f—a 5‘55‘ ditdr'dr' [m{t = 7) x*(t — ') x¥ ([t + &t —7)

x x(t + &t —7'") h=(7',t) h{r'', t + &t)] (A=-1)

| Est Ri~, .f_m1;3||2 10 ﬂ‘(grg didi'dridr"dr'dr" [x{t — 1) 2*({t —T')

WoxF(t + At =7) xit + OL=1T") xE(t — ) x(t! — ")
® x(t! + At = 7) x¥{t + 4t = 7)) h¥F(T, £ hi7"', t + 4t)
xh[THr’-ﬂ} E*{T””, t-l + -Iﬁt:l] x {A_z}

We wish to find the average value of Eq, (A-2). We assume that: the input is statistically
independent of hit,t); the input satisfies Eqs. (40} and (61); and At is large enough 30 that
R (At) = 0. We further assume that R(7,4t) is essentially constant in both 7 and At over the
mtewal in which R {'r} iz nonzero, and that & {r] is essentially constant over the interval £ so

that we can upprnxlma.te the fourth moment of h by [=see Appendix B)

t_]’h‘,t} ]_-]{Tll't + -ﬁ-ﬂ E"I_HI.LI} E*[T””,t' 4 _&ﬂ
= 4'R['T’_, &ﬂ R’:{an,f:‘lt] -Ij':"l'" _.].r} 5{.'-”1!_ Tru':l

+ 4RI(T!, t' =1t} R(r', t" — 1) a{z"'" — 71 G{z1 — 711
+ 4_, [R[T' t! —t) |E ﬁ[Tul_Tq 45{."”—?'] ‘5|:1.|||r_,l,.|] [

where § is a unit impulse, L is the multipath smear, n is the number of scatterers, and K is

a factor of the order of magnitude of 1.
We now average Eq.(A-2) over both the channel fluctuations and the input. After substituting

Eq. (4-3) into Eg. (A-2) and integrating out the delta functions, we are left with

———————m

Z b b
|Est RiT, at) % = £ SE'S‘S dtdt'dr'dr"! [R(7', at) R=(7'"", at) x[t—7)
2 ot

®x#(t =T x*(t + At — 7] x(t +AL= " x#(t' —7) x(t'— 7'}

2
®x(t' + At — 7y x¥(t' + At =T ] 4 EE' S‘S‘B‘g dtdtidr'ds"
2

® [RiT!, t' —t) R&{7", t' — 1) x(t—71) x*{t—T" x*(t + At — T)

woxlt + At — 7T x*{tt — 7] xlt! — T xft! + At —=T) 2t + At — T'1]
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2
P = SSE dtat'dr [|R(r', ' —1}|® EE = xe(t— 7

% x#¥(t + At = 1) x(t + 4F = 7') x®(t' = 7} x(t' — T}

x£[1'+ﬁ1—1] E*tt‘i—#t-r'h] 3 (£ =)

Each of the eighth-order moments in x in Eq. (A-4) can now be broken up into a sum of prod-
ucts of second-order moments since x is & Gaussian randem process. When we do this, using
Eqs. (60) and {é1) and the assumption that R_(7) =0 for |7] > |at|, we find that the first term
breaks into eight, the second into fourteen, and the third into eight terms. It may be illuminating
to write explicitly the first two of the thirty terms. We derive the first by coupling terms 1 + 2,
3+4, 5+6, and T+ 8 in the first eighth-order moment; and the second from coupling 1 + &,
3+6, 445, and 7 + 8. This gives us

=——————————— rid ..
|Est Rir, at)| © = £ W dtdt'dridr'™ [R(7%, at) R#* (1", at) R(r — 1) R2(r — 1)
; 16 JJJ : % ®

+ R{r', at) R* (7", &t) R (T — 71 Rx[t +At=T=t"4 7'
¥ HEH Fat—1'—t' 7' HE{T 7'

+ 28 sther terms . {A-5)

Equation (A-5), if we had written out 211 the terms, would not provide a very illuminating
solution. Hewever, if we assume a particularly simple form for R_(7}, these integrals can zll

be evaluated, We therefore assume
z 2
P‘x“:l =Sexp[—rW_717] . (A=)

Thus xit) is a low-pass representation of 2 Gaussian random process of power 3 with & Gaussian
shaped autocorrelation, a2 Gausscian shaped spectrum, and 2 nominal bandwidth Wx. We assume
that W_ is much larger than 1/At and much larger than the reciproecal of the time over which
R{7, At) changes appreciably. We also assume that T, the duration of the input, is so large that
end effects on the inteprals can be neglected.

Integrating Eq. (A-5), we have

2 4.2 4
IEstR[r,mHz:f—& 5'1'2 |R{T,.ﬂt]|2+5—'1; ]Fﬂ':‘,ﬂt]lz
2W W
b =
+ 28 other terms . {A-T)

Substituting Eq. (A=6) into (64}, and again assuming that At is negligible with respect to T
4 ZW
o= —Ex | (A-8)
TS

Substituting Eq. {A-8) into (A-T7),



|Est R{r, at)|“ = |Rir, at}|° + |1=L{.~,a.ﬂ‘:z

1
W

X
+ 28 other terms . (A-9)

We now note that the first term in Eq. {A-9) is the square of the mean of Est R{T, At). Thus
the remaining terms give the variance of Est RiT, at). Since ER"-‘_&I:H Z is so much larger than
any of the other terms, we might be concerned about the approximations used in evaluating it
This is no problem, however, since the term in Eq. (A-5), from which | Rt &t}:-z came, is
precisely the square of m as given in Eq, (62}, and thus the other terms in Eg. (A=5)
do constitute the variance. Wae call this variance NE, ginece it is due to channel and input varia-

tions and does not invelve the additive noise. Ewaluating and adding together the remaining

twenty-nine terms, we have

TE 2 : 2 i z y
NG = Tw (6 [Rim, at)|© + |R(z — at, at}|© + |RiT + at, at)|“ + 2R{r,0)
» R(r — At, 0] + 2R{r, 0) R(* + At, 0) + -12- Rit — At, 0} RiT + at, 0)]

#|f

|R(", at) | % ar' +E |Rir, )] % dt + 5‘ R(7', 0] R(r' + At, 0) dr'
t

o
[

*

[2R(r,0) + —— R{r — At, 0) + ——R(r + at, 0)] | R(r',0) dr’
Nz Nz T

+

W 2 WKL 2
T"[fﬂw,mqw] +F [SIR{— 9] dt+S'|Rirr 0) | dvr'l

(%)

WKL

+ WiT ( X )[3 il=r.{.',1ill}|2+i—|1=l{'r,f_'~.t.‘.ll‘;i+L|th'—.:21¢]|Z
x x Wz Wz
14 2 i 12

+—— |R{T + At, 0}|° + — |Ri{T — at, 0] 1 3 {A-10)
Nz WSz

Equation (A-10) is still too complicated to be of much use without some further analysis.
Those terms involving W l{L,.-"n come from the third part of Eg. (A-3) and can be neglected rela-
e e (e e 6 {'I.'I.’ KL/n) << 1. If we interpret 1;’1‘.’}: as the desired resclution in T of

RiT, At), corresponding to thr: assumption that 1,-""'.-‘.-'}{ is less than the interval over which Rir, at)

changes, then nfwx]_. is the average number of scatterers in a resclution interval of path delays.

Therefore, the term involving ‘l.'.’xKLJ-’n can be neglected if there are many scatterers in each
resolution interval. If these terms cannot be neglected, then our results can only be considered
ag order of magnitude results due to the factor K. We shall refer to these terms as shot noise
because, if they are important, the impulse response of the channel, filtered to bandwidth Wx_
will look like shot noise.

For the other terms in Eq. (A-10), we shall {irst assume a particular form for R; namely,

L IL;
S SUS g
Rir, At) = R{0, 0}
T T
c c
=g SeREae
=0 otherwise



Then for 7 and At both close to zero, Eg. (A-10) reduces to

——— 2.
Z _R“(0,0) [42.5
R0 (125 4

N& oG, WKLZ) > (A -14)

o
x

Cur aesumptions already imply that L >> [1,fwx:|; thus only the second and fourth terms are

important, and finding the terms in Eq. (A-10) from which these come, we have
W 2
ﬁg “"4.‘1_5 |R¢T,t}|2dt+Tl[S R(t', 0) d‘r‘] : (A-12)
i 7!

Next we consider the effect of additive noise on the variance of Est Ri7, &t). We have been
using y{t) as the channel output in the absence of noise, so we let y(t) + n(t) be the actual channel
output.

T
Est Rir, &t) = E& S‘ dt x(t — 7} [y#(t)+ n*(t)] x*{t + At — 7) [yt + &t + nlt + At)] . (A-13)
t=0 i = & e

When we square the magnitude of Eq. (A=13) and expand the sums, we find a term involving
¥ to the fourth order, a term involving n to the fourth order, and various cross terms. In the
preceding section we found the mean of the term involving y to the fourth order, and in this
section we shall find the mean of the term involving n to the fourth order, N_ﬂf

—— 4

A ]
N, = — SS dt dt! [xlt — 7) x¥t + At — 1) 2¥t' — 7) x{t' + At = 7)
A b4 gdpr

¥ n¥t) ni(t + 4t) alt') olt' + &t)) . (& -14)

We recall that the received signal is passed through the filter a(t). We have assumed that
this does not affect y(t) since W_3>> W _. On the other hand, the noise will be affected. We
assume thai the noise before filtering is white Gaussian noise of spectral density N D,"’ 2, corre-
gponding to ND per unit positive handwflh. After passzi_nzg through the filter a(t) with a low-pass
equivalent impulse response, alt) = 22 Wa exXp [—Trzwat ], it follows after some calculation that
the low-pass equivalent autocorrelation of the filtered noise is given by

R (7) = & o%(0 o + 1) = NW_ exp[-nW71%] . {A-15)

1=

Assuming the same input process as before, we can write Eg. (A-14) as
ez 2

il T .
24t ) s e 2 S =
N, = 3 gﬁ go di dt [RE[ﬁt}+Rﬁtt '] [RE[M] $ HE“ e e (A-18)

Assuming, as before, that Hx(.ﬁt} = Rnlié.ﬂ = 0, we can substitute Egs. (60} and (A-15) into
Eqg. (4-146), and integrate to arrive at

NE - : (A-17)
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Substituting Eq. {A4-8)} for o, this becomes

— 42 W W N .2
M = X a o [A-18)
A r 5
U.a 2
T-f1+ (72)
=

We observe that N W_ is the received noise power Nr. The received signal power is given by

S, = SR(0,0), or

r

s =%sg R(w!,0) d7' . (A-19)

Substituting this into Eq. (A-18), we have
—_— ~EW

N_2=—“( ) [5 R(r ﬂ}d] : (4-20)
-

Comparing Eq. (A-20) with the second term of Eg. (A-12}, we see that the additive noise is

important when Nr,.-’Er is less than 1.
We can now return to Eq. (A-413) and compute the variance due to the cross terms between
noise and channel and input. The calculation is similar to those already given, and the answer is

l_i_
4

=% ".'-’ W_N
I'.'iz'. B x a = 5 R{r', 0} d7' + negligible terms & (A-21)
4

It can easily be shown that Néﬁ = NE + ch; consequently, this term is not of great importance,

II. VARIANCE OF EST? (oat, At) FOR CHIRP INPUT

In this section we find the variance of Est R{adt, At) as given by Eqg. (88). The analysis is

similar to that in the last section but somewhat simpler. First, we find |Est (x4t ﬁt}|z in the
absence of additive noise.

Est Rlaat, at) = 5T 1

= .
S(T — L — At) Yre(t) ypplt + &) dt . {A-22)

=L+dt

From Eg. {85), this is

1

Af, A
Est R{aat, At) = =T =21 Jy_r ons

t+At
5 5 dtdrdr' h#(T, 1) hit!, t+ At)
r=0 Y71=0

% exp{jra [27t — T2 27t + At + '['?‘]'z]} : {A-23)
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Squaring Eq. (4-23} in magnitude, we have

2 1 T 1 t AL
| Est R(alt, at}]° = ———— S dtg dt’ 5 d-rg dr!
4T — L = &t) t=LAt = +At o 0

T=

t t+dt
xg d‘_II‘S\ deitt E*':Tp” E{TI- t 4 -‘5*.} :I_'l'['?'”,t']' h*h’”lp +1 4 ﬂt]
=g

TH1'=0

X exp {jre [27t = 7° = 27'(t + A1) + (7'} — 27"t

+h—"]2+ ZiTULL [ J.-&-L}—{'r'”}z]} . (A-24)
Averapging this over h, using Eq. (A-3) for the fourth moment of h, and integrating over

the & functions,

| Est f{aant, _ﬁt”z = —'1._....—3 SSSS‘ ditdt'drdt"" R{T, &t) R#=(1'", At)
{T — L — &t)”

X expira{—274t + 27144 ]

+ —-1—-*-2 SS‘S‘S dtdt'drdr' R(T, t' —t) R=(7", t' — 1)
(T = L — At)

® exp{ire [—2(t — 7'} {t' — t]}

te—e 555 dtai'dv [Rir t' —0]% . ot
(T — L — At)

The first term in Eq. (A-25) is the magnitude squared of Est Rlo&t, At), and therefore, the vari-

ance of the estimate which we egall Né is given by the second and third terms. Using Eg. (36)

we can integrate the second term

IR [aft' -1, t' —t]|®

— T T
Ng= ——— S 5 dtdt!
[T — L — A1) t=LA4At vi'=sL4+4t

+Q5 IR(T, ' — 0] 2 a7 (A-26)

n

The second term in Eq. (A-28) can be neglected relative to the first term if the number of
scattering particles is large. If we then substitute &t for t' —1i, and integrate over t (neglecting

end effects), we get

= 1 z
I‘NC ol e S‘iﬂ |fPLI:D:ﬂt., ﬁt}l dat 5 (A -27)

Next, we consider the effect of additive noise on the variance of Est Rlelt, At).  Letting yyp(t) +

nit} be the complex representation of the noisy received IF waveform, we have

T
Est M{aat, At) = m S‘ i [_.b_"FF[l] +n¥t) ] [EIF[t + 4t)+ nft + 4t} ] dt . (A -28)
t=L+4¢
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We assume 2§ before that n(t) represents filtered Gaussian noise and that its autocorrelation

RE{ 7] is

% n*{t) nit + 1) = Nowr exp [—;-erzl ; (A-29)

Ro(m) =
We shall determine an appropriate value for the bandwidth Wr of the filter later.

When we square the magnitude of Eq. (A-28) and expand the sums, we find a term involving
¥ to the fourth order, a term involving n to the fourth order, and various cross terms. In the
last section we found the mean of the term inveolving y to the fourth order. Here we find the

mean of the term involving n to the fourth order Nﬁ, The mean of the cross term Néq iz found

the same way, and only the result will be given.

= 1 T T
N, = S mg dt' n®(t) nft + At) n(t') n*¥ (" + &) . {A-30)
= t t

Sa['r - L - m]z =18t Tzl

Breaking up the fourth moment of n in second moments,

N

3 SS drdt! [R2(at) + R - 1]
SE(T — L — Ay ° z o

o p
[

2 — T
4N W ) 2NN W )
= __oz—r exp{—nwz{ﬁt]z] +— i : [A-31)
5 t S°W_(T — L — At)

The first term in Eq. [A-31) is not part of the variance of Est R s, ) but is simply part
of the square of the mean as can be seen from Eq.(A-28). It can be neglected for At == 1,-"".'.’1_.
The analogous term in Eq.(A-16) for pseudo-random inputs was completely neglected. The

second term in Eg. {4-31) is the actual variance due to additive noige.

21 22 oy
Noa = T-L-anw, ( S ) - (A-32}

A similar analysis of the variance due to cross terms between noise and channel gives us

——— N W
T 4 Rio, 0 SOl
Nea = T-L-30W, 3 {A-33)
If we rewrite both these equations using N _ = Wr[\ED and Sr =4 SR(0,0), we have
e 510, 0) Npy A
Ny = — |5 {A-34)
NZT-L—at) W, ' r
2 ™
. g 24°(0, 0) : r i
NCA = TP L - A0 W, (—Sr) ; {A-35)

From Eq.(A-3Z}, we see that W should be made as small as possible to reduce the
additive-noise interference. On the other hand, W must be large enough to pass y(t) with

negligible change. The power spectrum of l’m“] is the Fourier transform of the autocorrelation
of E[F{ﬂ which was shown to be R(ast, 4t). Thus if « is small, most of the power of EIFM will

be in 2 bandwidth B, the doppler spread of the channel. If o is large, most of the power will
be in a bandwidth @L. Thus W _ should be taken somewhat larger than both B and eL.
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APPENDIX B
FOURTH MOMENT OF CHANNEL IMPULSE RESPONSE

In this section we shall analyze the fourth moment:

h, = B¥(7, ) (7", t + At R{TT V) RF(, £+ At By

of a channel made up of & large number n of scatterers. We assume that each scatierer has
an impulse response ‘Ei:-.-, t} limited to a time duration €. Assume for simplicity that the im-
pulse rezponses are square waves of duration « starting at times independently and uniformly
distributed between 0 and L. The amplitude of each sguare wave £ is a zero-mean, complex,
random variable with identically distributed, independent, real and imaginary parts.

We can then rewrite Eqg. (BE=-1) as

I
hy= & BFELOLITLEFAURGELUIBF L S A (B-2)
i,j. k=1

Due to the independence of the scatterers and the zero-mean amplitudes, only the terms in
Eq. (B-2), with all four indices the same or with pairs of indices the same, will be nonzero.

n
hy= 3, BY(T, 0 By, £+ AD B (7 LU RF(T, T+ Af)
i=1

o =

NN (A (e BT, S o)

n
50 L) By(r", £+ At By(7 L Y BE(EI, € + AL

¢
1=
12

RFE(, b, £+ At) B (a!" BYVRF(TIN, ¢+ at) . (B-3)

[

. i
L

!
i

First assume for simplieity that t' = t and At = 0. The first term in Eq. (B-3) is nonzero only
when 7', 7', ™', and """ are all within € of each other. If the equivalent low=pass input to
the channel is essentially constant over a period €, as we have assumed throughout this report,
we can represent this term as a function of 7' with unit impulse functions for 7'', 7''', and 7'''".
The probability that a particular scatterer will be giving a return at time 7' is ¢ /L. Given a re-
turn at ', we can integrate over t'', 7', and #''"', getting the [irst term in Eq. (B-3) to be

'{51 efL - E:}.f_d (1" = ') B(T'"" = T') (7" —7"). The second, third, and fourth terms can be
k=1
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handled similarly to give, fort" =t and 4t = o,

NEcEE e e
]_,‘4; ji ﬁtlll_r:lﬁ{,_lrl'_.r:lﬁ{ I!II_.]-I':|+ LE E
xlﬁ{Tll —T:| E{T””—T'”:l"'ﬁ{'fln _.].HI' ﬁ[TIIII _Th” ] {B'4F

Using the same argument for R {7, At), we find that for At = 0,

2
Ri7, 0} = _I..i . {B-5)

Now we define:

Ji=y

(B-6)

1

| Eaad

For any reasonable type of scatterer, K will have the order of magnitude of 1. Substituting
Eqs. (B-6) and B-5) into Eq. (B-4), we have

h, = ‘*T" RZ(+', 0) 6(7"' = ') 871" = 7') B(''"" = 7') + 4R(7", 0) R¥{r'"", O}
X a(r — 7 1”.7-|||-_Ti||'=|+ dR{‘T",ﬂ} R* (+'', O) E{TIII_TI}ﬁtTHH — 7'y 2 (B=-7)

If at # 0 and t' #1, we could still use the same argument. The only difference is that the
movement of the particles will spread out the difference in times 7', ', 7', and T''" over
which the first term of Eq. (B-3) is zero. We assume that this time spread is small enough so
that Eqg. (B-4) can still be used. Finally, if the impulse response is arbitrary, the argument iz
still walid, except that the factor K defined in Eqg. (B-6) will be more difficult to estimate.
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