Chapter 4

Estimation

4.1 Introduction

Estimation, as considered here, involves a probabilistic experiment with two random vectors
(rv’s) X and Y. The experiment is performed, but only the resulting sample value ¢ of the
rv Y is observed. The observer then “estimates” the unknown sample value # of X from the
observation 3. For simplicity, we assume that the ri’s have continuous distribution functions
with finite probability densities and conditional densities. The marginal density p (%) is

called the a priori density of X and the conditional density p-"f'il’(f | ) is called the a
posteriori density. The a posteriori density pfn-,(:é' | 7) gives us the conditional distribution

of X, given ¥ = §. The observer, given the observed 7 and knowing the a posteriori
density, chooses an estimate, X () of the unknown sample value #. That estimate might be
the conditional mean, the conditional median, or the conditional mode of the a posteriori
distribution, or might be any other function of .

Estimation problems occur in an amazing variety of situations, and are often referred to as
measurement problems or recovery problems. For example, in communication systems, the
timing and the phase of the transmitted signals must be recovered at the receiver. Often it is
necessary to measure the channel, and finally, for analog data, the receiver must estimate the
transmitted waveform at finely spaced sampling times. In control systems, the state of the
system must be estimated in order to generate appropriate control signals. In statistics, we
try to estimate parameters for a probabilistic model from sample values of the system being
modeled. In any experimental science, one is always concerned with measuring quantities
in the presence of noise and experimental error.

The problem of estimation is very similar to that of detection. With detection, we must
decide between a finite set of alternatives on the basis of an observation, whereas here
we make a selection from a vector continuum of choices. Although this does not appear
to be a fundamental difference, it leads to a surprising set of differences in approach. In
many typical detection problems, the cost of different kinds of errors is secondary and we are
concerned primarily with maximizing the probability of correct choice. In typical estimation
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84 CHAPTER 4. ESTIMATION

problems, with a continuum of alternatives, the probability of selecting the exact correct
value is zero; thus we can not avoid questioning what types of errors are most costly.

A fundamental approach to estimation is to use a cost function, C(Z’, ¥), to quantify the
cost associated with an estimate #’ when the true sample value is Z. This cost function,
C(z’,%), is analogous to the cost Cj;, defined in Chapter 3, of making decision ¢ when j
is the correct hypothesis. The minimum cost criterion or Bayes criterion for estimation is
to choose X (7), for the observed #, to minimize the expected cost conditional on Y =4
Specifically, for each observation ¢, X (%) is chosen to minimize

[ ¢ (X@),8) (@ 7 de = B[c1% (@), %) | ¥=7]
Thus, this minimum cost estimate X () has the property that, for any function g(%),
E[c (X@),X) |P=7| <E[Clo@. X]|y=g] forally (4.1)
Another way to express X (%), for each ¥, is as follows:
X(7) = argmip /x C 17", 2 pp(@ | ) &5 = argmin B [Cl2", %] V=] (42)

The argmin of a function is, by definition, the value of an argument that minimizes the
function. Now, suppose we multiply both sides of (4.1) by py(7) and integrate over . We

obtain " o
EC (X(Y),X)} SE[C (9(¥), X)] (4.3)

Thus the minimum cost estimate not only minimizes the expected cost for each sample
value ¢ but also minimizes the overall expected cost.

In (4.3), the minimum cost estimation problem is expressed as minimizing the expected cost
of the rv X (Y) relative to the rv X. Viewed this way, the mathematical problem of finding
the minimum cost estimate is formulated strictly in terms of the probability model and does
not depend on any notion of actually performing an experiment. Because of this we often
refer to estimating the r¢ X from Y. This point of view can sometimes be confusing, since
therv X isa mapping from the underlying sample space to real vectors &, and this mapping
is assumed to be known. What is unknown is the sample value # of X corresponding to the
observation §.

There are other kinds of estimation problems, briefly discussed in section 4.7, where we do
not assume a full probabilistic description of the rvs. There we assume that there is an
unknown underlying probability model, and that an estimate must be chosen that does not
depend on the unknown parts of the model.

4.1.1 The Squared Cost Function

In practice, the most important cost function is the squared cost function,

cl@, @) €Y [af -z’ (4.4)

]



4.1. INTRODUCTION 85

The estimate X () that satisfies (4.1) or, equivalently, (4.2) for the squared cost funetion is
called the Minimum Mean Square Error Estimate (MMSE Estimate). It is also often called

the Bayes least squares estimate. In order to minimize F [Ei[)’fz-(g') — X3 | ?:fg‘] over
X (%), it is sufficient to choose X;(), for each i, to minimize E [[ff-(g}‘) — X | ?:@}‘] Note
that [(X (y) — X:)? | Y= y] is simply the second moment of X; around X;(%), conditioned

on ¥ = §. Recall that the second moment of an arbitrary random variable U = E[U] + U
around an arbitrary number « satisfies

E((U — o)®] = E[(U + E[U] - 0)?] = E[U?] + (E[U] - &) (4.3)

This is minimized over o when a = E[U], i.e., the second moment of a random variable
around « is minimized by choosing o equal to the mean. Here we are dealing with the
second moment of the distribution conditional on a given observed sample value Y = 7, SO
the second moment is minimized when X;(%) is the conditional mean! of Xj, conditional on
Y = ¢. Thus, the MMSE of Xj, given Y =, is given by Xi(7) = E[X; | Y=5]. Since the
MMSE estimate of X is simply the vector of MMSE estimates of the components X, X
is simply the conditional mean of X, conditional on ¥ = §. Simple though this result is, it
is a central result of estimation theory, and we state it as a theorem.

Theorem 4.1 The MMSE estimate X (7), as o function of the observation Y =g, is given
by

—

X(§) = E[X | ¥=4 =/:E'px[?(§:‘] 7) d& (4.6)

Define the estimation error = as X(Y)—X. We shall be interested not only in the MMSE
estimate, but also in E [ T], which is the correlation matrix of =. Note that the mean
square €rror, E[ETE] is the trace of the correlation matrix. Since X (7) is the conditional
mean of X conditional on ¥ = §, we see that E[= | Y =7] = 0 for all , and thus® E| [E] =0.
The correlation matrix and covariance matrix of = are thus the same and given by

g =E[Z ET] [(X(Y) ) (X(Y) )TJ (4.7)

This can be simplified by recalling that £ [ﬁ | ?zg}'] = 0 for all §. Thus if g() is any
vector valued function of the same dimension as Z and =, then

E[2| V=g ¢"@) = E[24"(¥) | P=5] =0

!There is a very important, albeit simple, principle involved here. When we condition on something
(Y = ), we are restricting the sample space to those points for which Y = §, and renormalizing the
probabilities to sum to 1. This leaves us with a new probability space, but everything we know about
probabilities and random variables is still true in this new space. Mathematical purists will (and rightfully
should) be concerned about measurability in the new space, but we will ignore this, since it is usually
unimportant in sensibly modeled situations.

2 As we will explain in section 4.7, E[Z] is the expected value of the estimate bias. The bias of an estimate
X (Y) is defined there as E[X (¥) — # | X = &]. This is a function of the sample value Z. Bias and expected
bias are often confused in the literature.
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Averaging over §, we get the important relation that the MMSE estimation error and any
g(7) satisfies

E [E gT(Y)] =i (4.8)
In subsection 4.3.4, we will interpret this equation as an orthogonality principle. For now,
since g(ff) is an arbitrary function (of the right dimension), we can replace it with X (%),
getting F [EJ?T(Y")] = 0. Substituting this into (4.7), we finally get a useful simplified
expression for the covariance of the estimation error for MMSE estimation,

K

[

=-E[EXT| =Kz -E [)?(?) X7] (4.9)

4.1.2 Other Cost Functions

Subsequent sections of this chapter focus primarily on the squared cost function. First,
however, we briefly discuss several other cost functions. One is the absolute value cost
function, C(£',Z) = 3_; |z, — @i|; this expected cost is minimized, for each 7, by choosing
Xi(#) to be the conditional median of Px,v (i | 7) (see Exercise 1.1). The absolute value
cost function weighs large estimation errors more lightly than the squared cost function. The
-reason for the greater importance of the squared cost function, however, has less to do with
the relative importance of large errors than with the conceptual richness and computational
ease of working with means and variances rather than medians and absolute errors.

Another cost function is the maximum error cost function. Here, for some given number ¢,
the cost is 1 if the magnitude of any component of the error exceeds ¢ and is 0 otherwise.
That is, C(Z',&) = 1 if |2, — @;] > € for any ¢ and C(Z',Z) = 0 otherwise. For any
observation 7, this expected cost is minimized by that value X(3) that maximizes the
conditional probability that X lies in a cube with sides of length 2¢ centered on X (7).

For e very small, this maximum error cost function is approximated by choosing X (%) to be
that £ that maximizes pmy(:&’] 7) (i.e., for given ¥, one chooses the mode of pxi?(f | 7))
This estimation rule is called the Mazimum A posteriori Probability (MAP) estimate. Thus,
the MAP estimate, denoted Xy 4p(Y), is given by3

Xuap(¥) = arg Maxpy o (&9 (4.10)
25F;
One awkward property of MAP estimation is that, in some cases, the MAP estimate of x;
is different from the i*" component of the MAP estimate of Z = (21, ...,2m) (see Exercise
4.2).

In studying detection, we focused on the MAP rule, whereas here we focus on MMSE. To see
the reason for this, note that in the typical case where p 27 (Z | ¥) is finite, the probability of
choosing the correct sample value & exactly is equal to zero. Thus, in principle, attempting
to maximize the probability of correct choice is foolish (since that probability will be zero

3In what follows, we use a subscript on an estimate, such as X MAP, to be explicit about the type of
estimate beng used. We usually omit the subscript for MMSE estimates unless necessary for explicitness.
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anyway). The reason the. MAP rule is often used is, first, analytical convenience, and
second, some confidence, for the particular problem at hand, that the conditional mode is a
reasonable choice. For many situations, particularly those with Gaussian statistics, MMSE,
MAP, and minimum absolute error estimates are all equivalent.

A more fundamental question in estimation theory is whether it is reasonable to assume
a complete probabilistic model. A popular kind of model is that in which p;, . (7 | 7) is

specified, but one is unwilling or unable to specify p,(Z). For example, X might model a

set of parameters about which almost nothing is known, whereas ¥ might be the sum of
X plus statistically well characterized noise. In these situations, we shall still regard X as
a random vector, but look at estimates that do not depend on p A (Z). This will allow us
both to compare the two approaches easily and to employ the methodologies of probabilistic
models. The most common estimate that does not depend on p,, (%) is called the mazimum

likelihood (ML) estimate; the maximum likelihood estimate, X mL(7), is defined by
Xur(y) = arg maxpy - (7| 7) (4.11)

We can view the ML estimate as a limit of MAP estimates, taking the limit as the a priori
density on X approaches a constant. For example, we could model X ~ N(0,62I) in
the limit as ¢2 — oo. This limiting density does not exist, since the density approaches
0 everywhere, but the MAP estimate typically will approach a limit. All of the previous
comments about MAP estimates clearly carry over to ML.

4.2 MMSE Estimation for Jointly Gaussian Random Vectors

Minimum mean square error estimation turns out to be particularly simple when the ob-
served rv ¥ and the r¥ X to be estimated are jointly Gaussian. One of the simplifications
is that the estimate and its error depend only on the means and joint covariances of X
and Y. We say that X and Y are jointly non-singular if the covariance matrix Kz of
ZT = (XT,¥Y7T) is non- -singular. Thmuqhow‘ this chapter, except where e:gylzcztﬂy stated
otherwise, we assume that X and Y are jointly non-singular. For X and Y jointly non-
singular, jointly ¢ Gausszan and zero mean, we saw in Theorem 2.3 that X can always be
represented as X = GY + V where V is a zero mean Gaussian rv independent of ¥ and
where

G=KppKz'; Kyp=Kg—KgpK;'Kgo (4.12)

This means that X, conditional on ?:ﬂ', is M(G%, Ky7), and therefore the conditional

mean, E|X | Y=g, is equal to G§. The MMSE estimate, X (), given Y =7, is equal to the
conditional mean, so ~
X)) =Gy = K)WKII T8 (4.13)

The estimation error, 5= X(7) — X is then GY — X, which is —V. Since = = -V, =
and V have the same covariance, so from (4.12),

Kz=Ky—KgpK3' K% (4.14)
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As a check, this equation also results from substituting (4.13) into (4.9). The estimate in
(4.13) is linear in the observation sample value 7. Also, since Y and V are independent
rv’s, the covariance of the estimation error does not depend on the observation 3. That is,

Kz=E[X@-X)X@ -X7| Y=j| foreach g (4.15)
These are major simplifications that arise because the variables are jointly Gaussian.

More generally, let X and Y be > jointly Gaussian random vectors with arbitrary means and
define the fluctuations, ' = X — E[X] and Z —Y - E[Y] The observation ¢ of ¥ is
equivalent to an observation Z=y-— E[Y] of Z. Since U and Z are zero mean, the MMSE
estimate U, given Z = 7= ¢ — E{Y] can be found from (4.13), i.e.,

U = KgzK;'@— EIY))

Since Kgy = E [()? - E[ff])(? - E[?])T] = Ky and, similarly, Ky = K5, this can be
rewritten as R .
U= KX,}—,K);I(Q‘— E[Y))

Finally, since X=U+ E[f], the corresponding estimate of )?, given Y= 7, is
X () = BEIX] + Kz K3' (7 — EY]) (4.16)
This can be rewritten as

f(‘ﬂ) =b+ K-'-'K}-; Yy  where b= E[X] K)-{"?K;?-'IE[}?] (4.17)

The error covariance in estimating X from ¥ is clearly the same as that in estimating U
from Z , so that there is no lack of generality in restricting our attention to zero mean 1v’s.
Note, however, that the estimate in (4.17) is a constant plus a linear function of §. This
is properly called an affine transformation. These results are summarized in the following
theorem:

Theorem 4.2 If X and Y are jointly non-singular Gaussian random vectors, the MMSE
estimate of X from the observation }7—@‘ is given by (4.16) which, for the zero mean case,
is (4.18). The covariance of the estimation error is given by (4.14), which gives both the
covariance conditional on Y =5 and the unconditional covariance.

In the remainder of this section, we look at a number of simple examples of MMSE estima-
tion for jointly Gaussian variables. We start with the simplest scalar cases and work our
way up to recursive and Kalman estimation. More general vector examples are given in
sections 4.4 and 4.5.

Example 4.1 (Scalar Signal plus Noise) The simplest estimation problem one can imag-
ine is to estimate X from the observation of Y = X + Z where X and Z are zero mean inde-
pendent Gaussian rv’s with variances 6% and 0% (i.e., X ~ N(0,0%) and Z ~ N(0,0%)).
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Since X and Y are zero mean and jointly Gaussian, X, conditional on an observation Y = y,
is given by (4.13) and (4.14) as N(Kxy Ky'y, Kx — Kxy Ky 'K%y). Since Y = X + Z, we
have Kxy = 0% and Ky = 0% + 0%. From (4.13), the MMSE estimate is

& Kxy Ox
X = = 4.18
(y) > Y A Y ( )

From the symmetry between X and Z,

oz
A 4.1
o% +0% Y (4.19)

Z(y) =
X(y) + Z(y) = y, so the estimation simply splits the observation between signal and noise
according to their variances. From an intuitive standpoint, recall that both X and Z are
zero mean, so if one has a larger variance than the other, it is reasonable to attribute the
major part of Y to the variable with the larger variance, as is done in (4.19). The estimation
error, 2 = X(Y) — X = Z — Z(Y), conditional on Y =y, is N'(0, Kx — Kxy Ky 'K%y).
This does not depend on ¥, so E is statistically independent of Y. Because of this, the
variance of the estimation error, conditional on Y = g, i.e., E[Z2 | Y=y] does not depend
on y and is the same as the unconditional variance of the error, which we call o%. Thus,
for all y

= F [(}?(y)—x)z [ Y:y] =o% — K%Y

0%
ay
2 2
2 2% 0%0%
= — = 2
KT gty T Ktod o
Rearranging (4.19) and (4.20) we get the following forms:
.- ol 1 1 1
Xyy==2y ;. = =% j
) Al FTETZ (4.21)

This is a special case of the alternative forms for conditional means and covariances in
(2.50) and (2.46). This expression for 62 makes it clear that it is smaller than the original
variances of X and Z, and that o2 decreases as either ¢% and ¢% decrease.

Example 4.2 (Attenuated Scalar Signal plus Noise) Now generalize the above prob-
lem to Y = hX + Z-where h is a scale factor. X and Z are still zero mean, inde-
pendent, and Gaussian. The conditional probability p,,.(x | y) for given y is again
N(KxyKy'y, Kx — KxyKy'K%y). Now Kxy = ho% and o3 = h%0% + 0%, so (4.13)
and (4.14) become

s ho%y h2c4 0%0%
Rig)==0xY _ . 2,2 X - %% 9
@) h?0% + 0% AE=0 h%c% + 0%  h%0% + 0% (4.23)
These expressions can be rearranged to the forms:
2 2
o o 1 1 I
Xy)==hy ; — = — + — 4.2
(¥) 0'% Y 0% Ji’ + 0% (4.23)
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These forms are also special cases of Equations (2.50) and (2.46). It is insightful to view
the observation as Y/h = X + Z/h. Thus the variance of this scaled noise is 0% /h?, which
shows that (4.22) and (4.23) follow directly from (4.18), (4.20), and (4.21).

As a final extension, suppose ¥ = hX + Z and X has a mean X; ie., X ~ N(X,0%). Z is
still zero mean. Then E[Y] = hX. Using (4.22) for the fluctuations in X and Y, and using
(4.16),

s -~ ho%[y — hX)| 0% 0%
La=Xp ¥ 2 = 2 X Z 4.2
@ * h?c% + 0% 72T B2 + 0% (524)
This can be rearranged as follows:
w2 2 2
o o — o 1 1 h
X =X+ Shy ; — =+ — 4.2
() = 0.2?{ J% Y 0‘% O_)zf + 0‘1_27 (4.25)

Example 4.3 (Scalar Recursive Extimation) Suppose that we make multiple noisy
observations, y1,%s,... of a single random variable X ~ N (X,0%). After the i*® obser-
vation, for each ¢, we want to make the best estimate of X based on y;,...,y;. We shall
see that this can be done recursively, using the estimate based on y1,...,7:i—1 to help form
the estimate based on yi,...,%. The observation random variables are related to X by

Yi=hX+Z;

where {Z;;i > 1} and X are independent Gaussian rv’s, Z; ~ N(0, oz) Let Y}.; denote
the first 4 observation random variables, Yi,...,Y;, and let y;,; denote the corresponding
sample values gy, .. ,yg Let X (y1:5) be the MMSE estimate of X based on the observation
of Y1;i = y14 and let 0‘5,, be the variance of the estimation error, Z; = X (Y1) — X.

For ¢ = 1, we solved this problem in (4.24); given Y; = y,

= —  hio X oo

X)) =X+ lh"'[y‘ 1—] R e - F (4.26)
10}( i 5 JZ‘ hlax + O'Zl
The alternate forms, from (4.25) are

2 o2 2

- (T—.: s :.' l 1 h
X)) ==X+=hye — == : (4.27)

% T, o, 0% oz

Conditional on ¥; = g;, X is Gaussian with mean X (y;) a.nd variance 0% ; it is also
independent of Z,, which, conditional on Y = y; is still (0, oz ). Thus, in the portion of
the sample space restricted to Y; = %1, and with probabilities conditional on Y; = ¥, we
want to estimate X from Y> = ho X 4+ Z3; this is an instance of (4.24) (here using conditional
probabilities in the space Y; = 1), with X(31) in place of X, cr?__:1 in place of 6%, and hz in
place of h, so

hao% [y2 — haX (1)) 42 02 0%,
h30% + 0%, : =2 h3o% +o0%,

X(yip) =X () + (4.28)
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The alternate forms are

5 g . o 1 1 h2
X)) = 52X —2 hoy e o B 4.29
(y122) ‘%1 (y1) + 0.%2 2 o2 o2 + 0.%2 (4:29)

We see that, conditional on Y = y; and Y3 = g, X is Gaussian with mean X (y1;2) and
variance 0%2. What we are doing here is first conditioning on Y;=y;, and then, in that
conditional space, conditioning on Yo=y>. This is the same as directly conditioning on
Y1=y1, Ya=y2. To see this more concretely, let gxy, (Zy2), x|y, (®|y2), and gy, (y2) represent

conditional probability densities in the space restricted to Y7 = y;. Then

axyv, (@y2) _ Pxvapy: (@42 [ 1)
qv, (y2) Pyapya (2 | 1)

axy, (2ly2) = = Pxyavi (% | Y231) (4.30)

Now we can iterate the argument in (4.28), (4.29) to arbitrary i > 1, getting

& S hioZ,_ [y: — hiX (1;i-1)] o2, o3
X ) = X i —i=k 2 ; g = e e 4.31
(11;4) (y1;6-1) + WioZ_ T2, E; hz?f"é_l +oZ, (4.31)
Alternately,
- gE. = o3 1 1 h?
4) = —5—— X (Y1:i— —= hayi s ——= i _
X (y1:) L (Y13-1) + o hay = N + = (4.32)

These equations can be combined (see Exercise 4.3) over subsequent observations from 1 to
i to yield

> X & Ry 1 1 t W
Xpg) =0k | 5+>. F|; ===+ 4 (4.33)

This is derived in a different way in (4.112) and (4.113).

Assuming that hf and a%j are bounded away from 0 and oo, we see from (4.33) that Jg.—

approaches 0 with increasing 4, and thus X (Y;.;) converges in mean square to the true z.
Also, as ¢ increases, the effect of the a priori mean and variance becomes increasingly small.

Example 4.4 (Scalar Kalman Filter) We now extend the recursive estimation above
to the case where X evolves with time. In particular, assume that X; ~ N (71,02&). For
each i > 1, X;y; evolves from X; as

Xin = o Xs + Wy, W; ~ N (0, 0%,) (4.34)
For each i > 1, a; and 0’124/‘_ are known scalars. Noisy observations Y; are made satisfying
Y, =hXi+Zi; i>1; Z;~N(0,0%) (4.35)

where, for each ¢ > 1, h; is a known scalar. Finally, assume that {Z;;1 > 1}, {Wi;i > 1},
and X, are all independent.
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For each i > 1, we want to find the MMSE estimate of both X; and X;i1 conditional
on the first i observations, Y1; = y14 = ¥1,--,¥- We denote those estimates as X;(y1.:)
and Xii1(y14). We denote the errors in these estimates as Z; = X;(Y1) — X: and Gy1 =
Xit1(Y1s) — Xip1. For i = 1, conditional on ¥; = y;, the solution for X1(y1) and the

variance o%{ of the estimation error is given by (4.26) and (4.27),

o - hio} X 0% 0%
Xi(y) = X + : Xl v — a; ! ; 02, = gt A (4.36)
hiok, + 0%, hiok, +o%,
o o2 2
- 1 1 h
Xi(y) = 1X1+~—h1y1 : — =+ = (4.37)
JX]_ Zl ' o-.%.]_ U?Yl J%‘

This means that, conditional on Yi=y;, X is Gaussian with mean X;(y;) and variance
. Thus, conditional on Y=y, X» = aq X1 + W is Gaussian with mean o3 X;(y;) and

varlance ofod + O'W It follows that the MMSE estimate X2(y1) and the error variance
0C2 for X, condltlonal on Y=y, are given by

552(@’1) = alxl(yl) : Ué = Q%G’%l + Ui?vl (4.38)

In the restricted space Y} = ¥, we now want to estimate X5 from the a_d_ditiona.l observation
Y, = 2. We can use (4.24) and (4.25) again, with X5(y;) in place of X and o¢, in place of
ox

> 5 haog, [y2 — haXa(y1)] g 0f,0%,
Xo(y1:2) = Xo(y1) + —2 ; 02, = 2 2 (4.39)
h%aé -+ 0_222 2 h,%cré N 0%2
o a2 11 R
X2(yl;2) =8 2j{2(3"1) g “‘_'h-2y2 3 ;2‘ =—+ '—'21— (4.40)

(2 Tz, Z2 UCQ 0%,

In general, we can repeat the arguments leading to (4 .38, 4.39, 4.40) for each i, leading to

)?i(’yl;i—l) = ai—l)?z'—l(yl;i——l) ) arf g T crw (4.41)
hioZ, ly: — hi}?‘(yl i-1)] 002
(; % i* v 2 C: Zt
= L ; 2 = —5—— 4.42
(ylﬁ) (yl it 1) + hg + Jz U_‘ o_gi = G%i ( )
An alternate form to (4.42) is
0 _ 1 1 h?
X; (y1::) = _‘:‘_Xz(yl,z—l) + —_hzy: ; E_g = g—gi + U%‘,— (4.43)

These are the scalar Kalman filter equations. The idea is that one “filters” the observed
values Yl, Ys,.. to generate the MMSE estimate of the “signal” X, X»,.... The variance
terms, ‘7:: and cr do not depend on the observations, and thus can be precomputed It
can then be seen that the estimates are affine in the observations.

An important special case of this result occurs where ks, oz, 0%, and o, are all independent
of 4, with 0 < o < 1. As we will see later, the discrete process {Xn;n > 1} is a Markov
process as well as a Gaussian process, and is usually referred to as Gauss Markov. As n
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becomes large, the mean of X, approaches 0 and the variance approaches %, /(1 —o?). We
would expect that if o is very close to 1, we would be able to estimate X,, quite accurately
since an independent measurement is taken each unit of time and the process changes very
slowly. To investigate the steady state behavior under these circumstances, we substitute
the second half of (4.41) into the second half of (4.43), getting

1 1 h?
=+~ (4.44)
e A

It is not hard to see that 0%;- monotonically approaches a limiting value A, and that A must
satisfy the quadratic equation

0h?072 X + [Wofyo7? +1—0?| A—afy =0 (4.45)

The simplicity of the results in these last two examples came from two features. The first is
that the conditional distribution of X;, conditional on Y7,; contains all the relevant informa-
tion about Y}, for estimation of X;;,,.... The second is that the conditional distribution
is Gaussian and thus specified by mean and variance.

4.3 Linear Least Squares Error Estimation and the Projection
Principle

In section 4.2, we saw that, for zero mean jointly Gaussian rvs, the MMSE estimate X (7)
is a linear function of the observation ¢. For non-Gaussian cases, the MMSE estimate is
sometimes difficult to find and messy to compute. For this and several other reasons, we
sometimes want to constrain an estimate to be a linear function of the observation, and
to minimize the mean square error subject to this constraint. Such an estimate is called a
linear least squares errvor estimate (LLSE estimate). We start by calculating these LLSE
estimates strictly as an optimization problem. We then view the problem in terms of a
particular abstract linear vector space and view the solution as an orthogonal projection in
that space.

4.3.1 LLSE Estimation; zero mean case

As usual, we first look at the zero mean case and then generalize the problem slightly
to look at non-zero means. We also look only at the estimation of a single rv from the
observation of an n dimensional rv (a random vector can always be estimated by estimating
each component separately). In particular, then, let X be a zero mean rv and let ¥ be a
zero mean n dimensional r¥ with a non-singular covariance matrix Ky. The LLSE estimate

of X from Y is an estimate X(Y) of the form

)?(}7) =aTy = z o;Y; (4.46)
i=1
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where the vector & = (a1, ..., an)T is chosen to minimize E[(@TY — X)?], i.¢., to minimize
E [(aT? - X))@V -X)| =E [(&T??Ta —2xV7a+ X7 (4.47)
=aTKpd@ — 2K 30 + 0% (4.48)

To minimize this, we take the derivative of &TK};EE*- 2K X;,Ez‘-i—cr?( with respect to &, getting
28" Ky — 2Ky (Exercise 4.4 explains this for readers who are rusty on vector calculus).
Setting this equal to zero, we get

FTEp=Kypi & =KupKy' (4.49)
Assuming that this stationary point is actually the minimum?, the LLSE estimate is
s — _ _l —
Xppse(Y) = KX?K}; ¥ (4.50)

Next suppose that X is an m dimensional rv. Then (4.50) can be applied to each component
of X, and the LLSE estimate is given by

Xppsp(Y) = KgyKZ'Y (4.51)

Finally, let i;g: Xirse(¥) - X be the error in the LLSE estimate. Since X and ¥ are
zero mean, E[=r] = 0, so the correlation matrix and covariance matrix of this error are the
same and given by

. ot =X + T = T
Ks, = B|(KgeK7'V - X)(Kgpk3'V - X)T| = ~KgoK5'K3p + Kz (452)

Note that the estimation rule in (4.51) is the same as the MMSE Gaussian estimation rule
in (4.13) and the error covariance in (4.52) is the same as the error covariance for Gaussian
MMSE in (4.14). This says that the LLSE estimate for a zero mean r¥ X from a zero mean
17 Y is the same as the MMSE estimate of a Gaussian zero mean r¥ from a jointly Gaussian
zero mean v with the same covariances.

To understand why MMSE estimation for the Gaussian case yields the same result as LLSE
estimation for the arbitrary case, first note that MMSE and LLSE are equivalent for the
Gaussian case. That is, the MMSE estimate for the Gaussian case is (from (4.13)) a linear
estimate, and thus the linear constraint for LLSE is not really a constraint.

Next note,from (4.48), that the minimization problem solved to find the LLSE estimate
involves only joint covariances of X and Y. Thus the LLSE estimation rule, as generalized
in (4.51), depends only on covariances and thus must be the same for any non-Gaussian case
and Gaussian case with the same covariances. Combining these two facts, we see that the
MMSE estimation rule for the Gaussian case and the LLSE estimation rule for the arbitrary
case must be the same. Similarly, the error covariance matrices must be the same. Thus,

*For those familiar with vector calculus, the second derivitive (Hessian) matrix of (4.47) with respect to
& is Kp. The fact that this is positive definite guarantees that the stationary point is actually the minimum.
We shall soon give a geometric argument that also shows that (4.49) achieves the minimum.
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aside from the appealing simplicity of the optimization above, it wasn’t really necessary to
carry it out.

For an arbitrary zero mean rv X and rv Y, the LLSE estimate minimizes the mean square
estimation error, E[(X (Y)—X)? subject to the constraint that X ( Y) is linear in Y, and the
MMSE minimizes the same quantity with no constraint. Thus the mean square estimation
error in the LLSE case is greater than or equal to mean square estimation error for the
MMSE estimate. In fact, letting =z, = (Xrrse(Y)—X and E = ()? M MSE(’?) — X, exercise
4.5 shows that R . R .

E(g}] = B2 + B [(Rewse(Y) — Ruumse(V))?] (4.53)

For the Gaussian case, E[Z%] = E[Z?|, i.e., the mean square errors for MMSE and LLSE
are the same. Thus, for estimating X from 17', the mean square error E[Ez] for MMSE
estimation in the non-Gaussian case is less than or equal to the mean square error for the
Gaussian case with the same covariances. In this sense, the Gaussian case is the case that
yields the largest mean square estimation errors. This same result clearly extends to the
estimation of a r¥ X instead of a rv X. What is more, an estimator, constructed under
the assumption of Gaussian rv’s, will work just as well for non-Gaussian rv’s with the same
covariances. Naturally, an estimator constructed to take advantage of the non-Gaussian
statistics might do even better.

4.3.2 LLSE Estimation; arbitrary means

Next let X be a rv with arbitrary mean and let Sz' be a v with an arbitrary mean. The
LLSE estimate of X is defined to be an estimate X (Y") of the form

X(Y)=p+a"Y =5+ anam (454)

=1

where the constant 4 and the vector @ = (ai, ..., a,)T are chosen to minimize E[(ﬁ+aT}7—
X)?]. Because of the constant 3, this estimate should be called an affine estimate rather
than linear, but the terminology is too standard to be changed. Note that this definition
of LLSE estimate differs from that in the zero mean case because of the constant 3, but we
shall soon see that the optimizing constant 3 turns out to be zero in the zero mean case.

Let X and X be the mean and fluctuation of X, and similarly for ¥. We then want to
choose 3 and @ to minimize

E[B+d"Y -X +d77 - )?)2] =(B+d"Y - X+ E[@Y - )?)2] (4.55)

=(B+a"Y —X)?+a"Kpd — 2K 3@ + 0% (4.56)

We used the fact that the last two terms on the left of (4.55) are zero mean, and the first
three terms are constants, so, in squaring, the cross terms between them are zero. For any
choice of &, the first term in (4.56) is minimized, at the value 0, by choosing

B=X-a"Y (4.57)
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Note that 3 is zero for the zero mean case, thus justifying the slight difference in definition
of LLSE in this section and the last. Note also that the remaining terms are exactly the
same as the quantity we minimized in the previous subsection. Thus the minimum occurs
at

=T == ! =T _ —1

o K}-; = KX}_" 3 a = KX}‘}K}? (4.58)

Assuming again that this stationary point is actually the minimum, the LLSE estimate is

Xopsp(V) =X + Ky K-l(y Y) (4.59)

As before, if X is an m dimensional r¥, then (4.59) can be applied to each component of
X, and the LLSE estimate is given by

Xiise(Y) = E[X] + K3y K3 (¥ — E[Y)) (4.60)

This estimate is the same as that in (4.16). The LLSE estimate for an arbitrary rv X from
an arbitrary rv Y is the same as the MMSE estimate of a Gaussian rv from another jointly
Gaussian rv with the same means and covariances.

Also as beforeL let 2 = X LLSE(}-") — X be the error in the LLSE estimat_g. We see from
(4.60) that E[=f] = 0, so the correlation matrix and covariance matrix of =z, are the same
and given by (4.52).

The argument why LLSE estimation for the non-Gaussian case yields the same result as
MMSE estimation for the Gaussian case is the same for non-zero means as it was for zero
means. Also, as in the zero mean case, the mean square error for the MMSE estimate must
be less than or equal to the mean square error for the LLSE estimate. In this sense, the
jointly Gaussian case is the case that yields the largest mean square estimation errors. The
results on LLSE estimation are summarized in the following theorem:

Theorem 4.3 If X and Y are jointly non-singular random vectors, the LLSE estimate of
X from the observation Y = § is given in (4.60) and is equal to the MMSE estimate for
the Gaussian case as given by (4.16) and, for zero means, by (4.13). The error covariance,
averaged over Y, i.e., Kz, = E|ZL HL] is given by (4.52) and is equal to the MMSE
covariance for the Gaussian case in (4.14).

4.3.3 The Projection Principle; zero mean case

In order to get some added insight into the linear optimization we have just done, and to
obtain some later generalizations, we now view linear variables as elements of an abstract
linear vector space. Up until now, we have used vectors simply as n-tuples of real numbers,
and done so primarily as a notational tool to make expressions look simpler. We are now
about to view random variables as vectors in their own right. To review the definition
of a vector space, a real vector space V is a set of elements, called vectors, along with
two operations, addition and scalar multiplication. Under the addition operation, any two
vectors, X €V, Y €V can be added to produce another vector, denoted X + Y € V. Under
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scalar multiplication, any real number « (called a scalar) can be multiplied by any vector
X € V to produce another vector, denoted X € V. A real vector space must satisfy the
following axioms for all vectors X,Y, Z and all real numbers «, 3:

1. Addition is commutative and associative, ie. X +Y =Y + X and (X +Y) + Z =
X +(Y + Z).

2. scalar multiplication is associative, i.e., (af8)X = a(B8X).

3. Scalar multiplication by 1 satisfies 1X = X.

4. The distributive laws hold: a(X +Y) = (aX) + (aY); (a+ B)X = (aX) + (8X).
5. There is a zero vector 0 such that X 4+ 0= X forall X € V.

6. For each X €V, there is a unique —X € V such that X + (—X) = 0.

The reason for all this formalism is that vector space results can be applied to many situ-
ations other than n-tuples of real numbers. Some common examples are polynomials and
other sets of functions. All that is necessary to apply all the known results about vector
spaces to the given situation is to check whether the given set of elements satisfy the axioms
above. The particular set of elements of concern to us here is the set of zero mean random
variables defined in some given probability space. We can add zero mean random variables
to get other zero mean random variables, we can scale random variables by scalars, and it
is easy to verify that the above axioms are satisfied.

It is important to understand that viewing a random variable as a vector is very dif-
ferent from the random vectors that we have been considering. A random vector ¥ =
(Y1,Y3,...,Y,)T is a string of n random variables, and is a function from the sample space
to the space of n-dimensional real vectors. It is primarily a notational artifice to refer com-
pactly to several random variables as a unit. Here, each random variable ¥;; 1 < i < n is
viewed as a vector in its own right, and the sample values of these random variables do not
live in this vector space at all.

An abstract real vector space, as defined above, contains no notion of length or orthogonality.
To achieve these notions, we must define an inner product, (X,Y") as an additional operation
on a real vector space, mapping pairs of vectors into real numbers. A real inner product
vector space is a real vector space with an inner product operation that satisfies the following
axioms for all vectors X, Y, Z and all scalars a:

it

AXY) = (Y, X)
2. a(X,Y) = (aX,Y)

w

(X +Y,2) = (X,2) + (¥, 2)

o

. {X, X) = 0 with equality iff X = 0.
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In a real inner product vector space, two vectors, X and Y, are defined to be orthogonal
_if (X,Y) = 0. The length of a vector X is defined to be || X ||= +/{X,X). Similarly, the
distance between two vectors X and Y is | X =Y ||= /(X — Y, X —Y). For the conven-
tional vector space in which a vector & is an n-tuple of real numbers, Z = (z1,...,2,)7,
the inner product (&, 7) is conventionally taken to be (Z,7) = z1y; + - - - + ZnYn. With this
convention, length and orthogonality take on their conventional geometric significance. For
the vector space of zero mean random variables, the natural definition for an inner product
is the covariance,

(X,Y) = E[XY] (4.61)

Note that the covariance satisfies all the axioms for an inner product above. In this vector
space, two zero mean random variables are orthogonal if they are uncorrelated. Also, the
length of a random variable is its standard deviation.

We now use this vector space to interpret the LLSE estimate of a zero mean random variable
X from the observation of n zero mean random variables Y}, ...,Y,. The estimate here is
a random variable that is required to be a linear combination of the observed variables,

X Y) =) 009 (4.62)
i=}

Viewing the random variables Yi,...,Y, as vectors in the real inner product vector space
discussed above, a linear estimate X (Y3, ..., Y;,) must then be in the subspace® S spanned
by ¥1,...,Y,. The estimation error is the vector (random variable) Z = A(YI, s vy Ypd—X.
Thus, in terms of this inner product space, the LLSE estimate X (Y1,...,Yn) is that point
P € S that is closest to X.

Finding the closest point in a subspace to a given vector is a fundamental and central
problem for inner product vector spaces. As indicated in Figure 4.1, the closest point is
found by dropping a “perpendicular” from the point X to the subspace. The point where
this perpendicular intersects the subspace is called the projection P of X onto the subspace.
Formally, P is defined to be the projection of X onto Sif (P—X,Y)Y=0forall Y € S.
The following well known result summarizes this:

Theorem 4.4 (Projection Principle) Let X be a vector in a real inner product space
V, and let S be a finite dimensional® subspace of V. There is a unique vector P € S such
that (X — P,Y) = 0 for all Y € 8. That vector P is the closest point in S to X, i.e.,
| X =-P|<| XY | forallY €S8,Y # P.

Proof: Initially assume X ¢ S and assume that a vector P € S exists such that (X—P,Y) =
OforallY € S. Let Y € §,Y # P be arbitrary. The figure suggests that the three points

A subspace of a vector space V is a subset of elements of V' that constitutes a vector space in its own
right. In particular, the linear combination of any two vectors in the subspace is also in the subspace; for
this reason, subspaces are often called linear subspaces.

®The theorem also holds for infinite dimensional vector spaces if they satisfy a condition called complete-
ness; this will be discussed later.
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Figure 4.1: P is the projection of the vector X onto the subspace spanned by ¥; and
Ys. That is, X —P is orthogonal to all points in the subspace, and, as seen geometrically,
the distance from X to P is smaller than the distance from X to any other point Y in
the subspace.

X, P, Y form aright triangle with sides U = X —P, V = P-Y, and hypoteneuse W = P-Y.
We first show that the squared length of the hypoteneuse, (W, W), is equal to the sum of
the squared lengths of the sides, (U,UY + (V, V)" . W,U,V are vectors and W = U + V.
ie, X—Y = (X—P)+ (P-Y). Expanding the inner product,

(W, W) = ((U+V),U+V))
= (U, U)+2{U, V) + (V,V)
Since PeSandY €S, V=P—-Y €S, so (U, V) =0. Thus
(W, W) = (U,U) + (V, V) (4.63)

Since (V, V) is positive for all Y # P, (W, W) > (U,U), so P is the unique point in S
closest to X, and thus is the unique P € S for which (P —Y,X) =0 forall ¥ € S. We
assumed above that X ¢ S, but if X € &, we simply choose P = X, and the result follows
immediately.

The remaining question in completing the proof is whether a P exists such that (X—P, Y) =
0 for all Y € S. Since S is finite dimensional, we can choose a basis Y;,Y2,...,Y, for S.
Then (X—P,Y)=0forall Y € S iff (X—P, Y;) =0, or equivalently (X, ¥;) = (P, i)
for all 4, 1 < ¢ < n. Representing P as 1Yy + agY2 + ... + oYy, the question reduces to
whether the set of linear equations

X, ¥) = 0i(¥;,Y)=0 ; 1<i<n (4.64)

j=1

has a solution. But the vectors Y1, ..., Y, are linearly independent, so it follows (see Exercise

4.7) that the matrix with elements (¥}, Y;) must be non-singular. Thus (4.64) has a unique
solution and the proof is complete.

"The issue here is not whether the familiar Pythagorean theorem of plane geometry is correct, but rather
whether, in an abstract vector space, the definition of orthogonality corresponds to the plane geometry
notion of right angle.
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Returning to LLSE estimation, we have seen that the LLSE estimate X rLse(Yy, ..., Yn) is
the projection P of X onto the subspace spanned by Yi,...,Y,. Thus,

7L
Repep(Vij o Ya) =P=1 4% (4.65)
i=1
where aj, ..., an is the unique solution to (4.64). Since the inner products here correspond

to covariances, (4.64) becomes

EXY]=) oElY;Y)] ; 1<i<n (4.66)
i=1

Equations (4.65) and (4.66) agree (as they must) with (4.50). This also gives us a simple,
and very geometric, proof of the fact that the stationary point that we found in (4.49) is
actually a minimum. It turns out that (4.66) must have a solution whether or not Ky
is non-singular, and according to the theorem, P = Xrzsp(Y1,...,Ys) = ¥0 ;Y5 is
uniquely specified. The subtlety in the case where Ky is singular is that, although P is
uniquely specified, (@i, ..., o) is not. As usual, however, the singular case is best handled
by eliminating the dependent observations from consideration.

4.3.4 Projection Principle; non-zero mean

The above discussion was restricted to viewing zero mean random variables as vectors. It is
often useful to remove this restriction and to consider the entire set of random variables in a
given probability space as forming a real inner product vector space. In this generalization,
the inner product is again defined as (X,Y) = E|[XY], but the correlation now includes
the mean values, i.e., E[(XY] = E[X]E[Y] + E|XY]. Note that for any random variable
X with a non-zero mean, the difference between X and its fluctuation X is a constant
random variable equal to E[X]. This constant random variable maps all sample points
into the constant E[X]. This constant rv must also be interpreted as a vector in the real
inner product space under consideration (since the difference of two vectors must again be a
vector). Let D be the random variable (i.e., vector) that maps all sample points into unity.
Thus X — X = E[X]D is a constant rv with value E|X]. As in subsection 4.3.2, a linear
estimate involving rv’s with non-zero means is invariably taken to mean an affine estimate
)?(Yl, oo Yp) = B+ X, 04Y;. Writing this in terms of the unit constant rv D,

n
X(Y1,..,.Y) =B8D+ > wY; (4.67)
=}

Interpreting these random variables as vectors, the LLSE estimate is the projection P of X
onto the subspace S spanned by D, Yy,Ys,..., Yy,

Xiese(Viy...,Yo) =P =pD + > Y (4.68)

=1
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where 8 and o;; 1 < i < n, are chosen so that (X — P,Y) = 0, or equivalently (X,Y) =
(P,Y)forallY € 8. This condition is satisfied iff both (X, D) = (P, D) and (X, Y;) = (P, Y;)
for 1 < i < n. Now for any vector Y we have (Y, D) = E[Y D] = E[Y], so (X, D) = (P, D)
can be rewritten as 4

E[X]=E[P] =8+ aE[Y]] (4.69)

=1

Also, (X,Y;) = (P,Y;) can be rewritten as

E(XY,] = B|PY] = BE[Y] + 3" a;E[Y;Y] (4.70)
£l

Exercise 4.8 shows that (4.68-4.70) are equivalent to (4.59). Note that in the world of
random variables, X(Y1,...,Y,) = 8+ 3; o;Y; is an affine function of Y3, ..., Y,, whereas
it can also be viewed as a linear function of D, Y3,...,Y,. In the vector space world,
X(Y1,...,Y,) = BD + ¥, o;Y; must be viewed as a vector in the linear subspace spanned
by D,Y1,...,Y,. The notion of linearity here is dependent on the context.

Next consider a situation in which we want to allow a limited amount of nonlinearity into
an estimate. For example, suppose we consider estimating X as a linear combination of the
constant random variable D, the observation variables Yj,...,Y,, and the squares of the
observation variables Y7, ...,Y,2. Note that a sample value y; of Y; also specifies the sample
value g7 of Y;?, so such an estimate can be formed from the observation . Our estimate is
then

T
X(M,..., o) =BD+Y (oY +%YF) (4.71)

j=1
We wish to choose the scalars 3, a;, and 75, 1 < j < n, to minimize the expected squared
error between X and X (Y1,...,Y,). In terms of the inner product space of random variables,
we want to estimate X as the projection P of X onto the subspace spanned by the vectors
D,Yi,...,Ya, Y2, ..., Y2 It is sufficient for X — P to be orthogonal to D, Y;, and Y for
1 <i<m,sothat (X,D) =(P,D), (X,Y;}) = (P,Y;) and (X,Y?) = (P,Y?) for1<i<n.

Using (4.71), the coefficients 3, ¢, and +; must satisfy

BIX| = B+ (aBlY;] +wEY2) (4.72)
j=1
BIXY] = BE)+ (sEYY;] +wEIYY2) (4.73)
>
BIXY| = BEIYZ)+ (osBIYRY;) + vEY2Y?) (4.74)
i=1

This example should make one even more careful about the word “linear.” The projection
P is a linear function of the vectors D, Y;, Y2, 1 <4 < n, but in the underlying probability
space with random variables, ¥;? is a nonlinear function of Y;.
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Noise
: L HT Taieie Hm J\ e X
&1, y Ty Fllter H [ _1 ]n. & Y1, ;yn Estimator __L>

Figure 4.2: The input, over some interval of time, is the m dimensional sample sequence
% ==21,...,Zm. This is filtered into the n dimensional sample sequence Hz. Noise is
added to get the n dimensional sample output ¥ =41, ..., yn-

This example can be extended with cross terms, cubic terms, and so forth. Ultimately,
we can consider the subspace $ of all random variables g(Y),...,Y,) that are functions of
Y1,...,Y,. The projection P of X onto & by definition satisfies (X — P, g(Y1,...,Y¥%)) =0
for all g(Y3,...,Y,). Theorem 4.4 does not quite assure us that this projection exists, since
S is infinite dimensional, but we already know that the MMSE estimate X (Y1, ..., Yy) exists
and, from (4.8), that the estimation error = = X (Y1, ..., ¥,)—X satisfies (Z, g(Y1,...,Yy)) =
0 for all g(Y1,...,Yn). Thus the projection P does exist, and is equal to the MMSE esti-
mate. In principle, then, the MMSE estimate can be found from (4.8), although usually
it is more simply determined as the conditional mean of X, conditional on the observed
sample values of Y1,..., Y5,

As we progress from linear (or affine) estimates to estimates with square terms to estimates
with yet more terms, the mean square error must be non-increasing, since the simpler
estimates are non-optimal versions of the more complex estimates with some of the terms
set to zero. Viewing this geometrically, in terms of projecting from X onto a subspace S,
the distance from X to the subspace must be non-increasing as the subspace is enlarged.

4.4 Filtered Vector Signal Plus Noise

Consider esmmahnﬂg a Gaussian m dimensional r¥ X from an observed sample of a Gaussian
n dimensional rv Y where
Y=HX+Z (4.75)

Assume that X and Z are independent with non-singular covariance matrices and that H
is an arbitrary n by m matrix. It follows from this that X and Y are jointly non-singular
(see exercise 4.9). Initially, we also assume that X and Z are zero mean.

In a very real sense, this is the canonic estimation problem, estimating X from noisy
observations of linear functions of X. In communication terms, we can view X as a discrete
time input to a communication system (see figure 4.2_). H then represents the filter (perhaps
time varying) that the input passes through, and Z represents discrete time noise that is
added to the filtered signal. From (4.13) and 4.14), the MMSE estimate, X (Y), and the
covariance Kz of the error, ==X (}7) — X, are given by _

X = K¢ K3y (4.76)

Kz=Kz—KgpK;' Ko (4.77)
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Also, we have seen that the error = is Gaussian and independent of X, and the con-
ditional probability p 27 (& | %), for any given 7, is the Gaussian density N(X(7), Kz,

Ky—Kg K‘IKI-T.-) To express this in terms of H, K¢, and K, we have

XY
Kgp=E [X‘(Hf + Z)T] = K¢HT (4.78)
Ky=E [(HX + Z)(HX + Z’)T} = HK HT + K (4.79)
Substituting these into (4.76) and (4.77),
X)) = KgHT|HKgHT + Kz™'§ (4.80)
K: = Kg-KgHT[HKgHT + K5 "'"HK 3 (4.81)

From Equations (2.46) and (2.50), alternative forms are
e _ T =1
X)) = KzHTKZ;j (4.82)
Kz = |Kz'+HTK;'H|™! (4.83)

As we have seen in the previous section, all of these results are also valid for LLSE estimation
whether or not the rv’s are Gaussian.

Example 4.5 (Gaussian Signal plus Noise) It is easier to interpret these results in the
simpler case where H is an identity matrix I, i.e. where ¥ = X + Z. Equations (4.80) and
(4.81) then become ~

X()=Kg(Kg+Kz)™'y (4.84)

Ke=Kyg—KgpK;' K3y =Kz —KeKZ' Ky (4.85)

We now show how the alternative forms in (4.82) and (4.83) follow directly from these
equations. Factoring K XK};I out of the right side of (4.85), we get

Kz =KzK3'|Ky —Kg)= Ky K3'Kz;=KglKg+ Kz 'Ky (4.86)
Inverting both sides of this equation,
el -1 -1 -1 -1
K: =K [Kg+ KzlK; =K3 +K; (4.87)
This is (4.83) in the special case H = I,. Finally, substituting (4.86) into (4.84), we get
X(§) = K=K;'y (4.88)

in agreement with (4.82). This example is simply the vector form of example 4.1 and is
interpreted in the same way. In particular, because of the symmetry between X and Z, we
can also estimate Z in the same way, getting () = K_K‘l 7. Note that X(§) +Z ()= 7,

so that the observation is split between the estimate of X and that of Z according to the
covariances.
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Figure 4.3: Viewing the input to a filter followed by noise as a transformed version of
the filter output followed by noise.

4.4.1 Interpretation in terms of Input transformations

If we transform the input in figure 4.2, then we should be able to determine the estimate
and estimation error of the transformed quantities from the untransformed quantities. To
see how this works, let H be an invertible n by n matrix and let Y = HX + Z where X
and Y are zero mean Gaussian (see figure 4.3). Define U as the filter output, so that
U=HX ; X=H'U (4.89)
It follows that E[U | Y=j] = H E[X | Y=7) and E[X | Y= 7 = H-'E[U | Y=§]. Since
these conditional means are the MMSE estimates, X () and U (%), we have
U =HXE ; X@H=H'0@ (4.90)
From (4.89), the covariances of X and U are related by
Kg=HKgzHT ; Kg=H'KgH™")T (4.91)

Letting = —x = X(7) — XandZy =0 (1) — U denote the estimation errors, we have Sy =
HEy and =x = H1Ey, so that

— = . - o | —1\T
Kz =HKz HT ; Kz =H 'Kz (H™) (4.92)

Zu

We can now use these equations to find X (§) and Kz in terms of U(#) and Kz, , which,
in turn, have been found in example 4.5. Using (4.90) for X(¢) and (4.88) for U (7)), we get

X(@) =H 'Kz K;'§=Ksz H K;'§ (4.93)

where we have used (4.92) for the second equality. Similarly, using (4.92) for Kz, and
(4.87) for Kz , we get

-1 _ 7T [p—1 = _ g1 T 7r—1
Kzl =H [KU, +K2]H_ (' + HTK;'H (4.94)

Equations (4.93) and (4.94) agree with (4.82) and (4.83), but the derivation here is consid-
erably more insightful than the strictly algebraic derivation of these equations from chapter
2. Equations (4.80) and (4.81) can also be derived in the same way (see Exercise 4.10) Note,
however, that these derivations apply only to the case where H is invertible. We look at
the non-invertible case in subsection 4.4.3.
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W
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W
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Figure 4.4: Transforming the output to V=A1Y has the effect of making the noise
IID and modifying the filter H to A~1H. Note that X is operated on by H and then
A1 theresultis A~1H X, i.e., a left to right sequence of operations in a block diagram
corresponds to a right to left ordering in an equation.

4.4.2 Interpretation in terms of Noise Transformations

An equally useful transformation comes from viewing the noise Z as filtered IID noise. To
do this, let A be a matrix such that AAT = K 7 (for example A could be /K 7 as discussed

in section 2.5). We can then represent Z as AW where W is N(0, I,). Define
V=AY =A"HX+W (4.95)

This can be viewed as the output filtered to make the noise components IID, and is repre-
sented in block diagram form in Figure 4.4. V is an invertible transformation of the actual
observation )7", so we can form the I\EMSE estimate of X from V as well as from Y. However,
defining G = A~1H, we see that V = GX + W. Thus, any such Gaussian problem with
an an arbitrary non-singular covariance can be converted into a problem with IID noise by
modifying the input filter and the output.

In terms of this transformation, the estimate and estimation error, in the form of (4.82)
and (4.83), are given by
X(9) = KsGTK;'v (4.96)

X,

it

_ —1 T rr—1 -1
= [K3' + GTK;'G) (4.97)

[1

As a sanity check, we verify that if we substitute G = A71H, ¥ = A™j, Ky = I, and
AAT = K 7 into these equations, we come back to (4.82) and (4.83) in their untransformed
form.

KzGTK3't = K5[AT HIT A\ = KsHTK 'y (4.98)

= : 0 w . _ _ 3 -1 . - -1
K5+ GTK'G) 1=[KX1+[A 'HTATH| = K3 +HTKG'H| ] (4.99)
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This transformation essentially shows that if we solve problems with IID noise, we can then
easily modify the solution to deal with arbitrary non-singular noise covariances. We shall
use this idea several times in what follows.

4.4.3 Interpretation in terms of Sufficient Statistics

In many applications, the dimension m of X is much smaller than the dimension n of ¥
and Z. Also the components of Z are often independent, so that K is easy to invert. In
these applications, (4.82) and (4.83) are easier to work with and more insightful than (4.80)
and (4.81). In this section, we re-derive and interpret (4.82) and (4.83) from the viewpoint
of likelihood ratios and sufficient statistics.

Starting from first principles, f}, conditional on a given X = Z, is a Gaussian vector with
covariance K; and mean HZ. The density, or likelihood, is

exp (~3(7 - HE)TK3'(7 — HE))

P12 = )P Ja K, (4.100)
e (-3 [g’fff;g*—2(Ha‘:’)TK;g‘+(Hf)TK;Hf]) s

(2m)n/2 \/det K

In going from (4.100) to (4.101 we used the fact that (HE')TK;g‘ and T KZ'HZ are
transposes of each oth_’er and are one dimensional; thus they must be the same. The likelihood
ratio for estimating X from Y is defined as

Py (7] )

Ay, &) = =
(y m) p?rg(y I "fo)

(4.102)

where &, is some fixed vector that we take to be 0. Recall that for hypothesis testing with
M hypotheses, the likelihood ratio was a function of § and was indexed by the hypothesis,
whereas here, it is a function of both ¢ and Z. Thus, the likelihood ratio here is the extension
of that for the detection case in which # takes values from the uncountably infinite set of
real vectors rather than from-a finite set of M values. From (4.101), with @, = 0, the
likelihood ratio is given by

1
AW, 2) = exp (fTHT K5'9- 3(Ha:-')'*’"K;H;r:‘) (4.103)

For estimation problems, as with detection problems, a sufficient statistic 7 (3) is a function
of the observation § from which the likelihood ratio can be calculated for all Z. Thus, from
(4.103), we see that

T = HTK;;J (4.104)

is a sufficient statistic. Intuitively, a sufficient statistic is a function of the observation
that includes all the statistical information about X contained in the observation. More



4.4. FILTERED VECTOR SIGNAL PLUS NOISE 107

precisely, 7 (i) specifies A(7, &) for all Z. To see the significance of a sufficient statistic, note
that the a posteriori density can be calculated as

o AG AR @
L X AP AT

(4.105)

The MMSE estimate, and any other minimum expected cost estimate, can be found from the
a posteriori probability density, and thus from a sufficient statistic. Also, the ML estimate
can be calculated by maximizing A(¥, Z) over &, and the MAP estimate can be calculated
by maximizing A(¥, Z)p, (&) over Z.

Note that 7(f) above is an m dimensional quantity, whereas f has dimension n. Thus, for
n > m, replacing the observation § with the sufficient statistic 7 () has greatly simplified
the problem. It is important to recognize that nothing is lost if 7(f) is found from the
observation % and then § is discarded; all of the relevant information has been extracted
from ¢. There are usually many choices of sufficient statistics. For example, the observation
7 itself is a sufficient statistic, and any invertible transformation of 7 is also sufficient. Also,
any invertible transformation of a sufficient statistic 7 (#) is another sufficient statistic.

What is important about 7(§) = HK E‘g‘ is, first, that the dimensionality has been reduced
from n (the dimension of the observation §) to m. Second, the operation 7 () is the same
operation that we studied for detection; this will be discussed shortly. Third, sufficient
statistics do not depend on the probability distribution of the rv X to be estimated, and
thus, that distribution can be changed without changing the sufficient statistic.

Let us now view our estimation problem as first finding the sufficient statistic 7(3) =
HK Elg}' and then considering the m dimensional estimation problem for estimating X from

T (). Let T(Y) be the r¥ form of the sufficient statistic so that

T(V) = H'K;' [HX + 2] = AX + U (4.106)
where the matrix A and r¢ U are given by

A=HTK;'H ; U= HTK;'Z (4.107)

We then have
s T -1 T =1 _ gl -1
¢ =FE[H'K;'227K;'H| = BTK;'H (4.108)

Note that A is the same as K;. Assuming® that the columns of H are linearly independent,
A (and thus Kz are invertible. Thus, estimating X from T = AX +U is the problem solved

in subsection 4.4.1. From (4.94), the estimation error in X for the problem 7 = AX +U is
given by

Bk = K3+ ATKE‘A =Kz'+A=Kz'+ HTK;H (4.109)

81f the columns of H are not independent, then a sufficient statistic of lower dimension than m can be
found, and after creating such an estimate, the procedure above can be followed.



108 CHAPTER 4. ESTIMATION

Noise

Source X I Modulator MmX.... kX o, CITERERE Estimator —X—

Figure 4.5: The source, in some given interval of time, attempts to transmit a number,
modeled as the rv X. The transmitter is abstracted into a modulator which maps
X into the signal (ki X, ..., h,X). An IID Gaussian noise vector, independent of the
source output, is added to the modulated signal. The estimator receives the signal plus
noise and estimates the source output.

Thus we have derived and interpreted the estimation error in (4.83) in terms of a sufficient
statistic. For the estimate itself, (4.93), applied to estlmatmg X from 7 = AX +U, yields

X(T) = KzATK;'T = KT (4.110)

where we have used the fact that A = K. Since 7() = H Kztlg’, this is equivalent to
(4.82).

Example 4.6 (Scalar Signal plus IID Vector Noise) Consider the special case of (4.109)
and (4.110) where X is a scalarrv, H isann by 1 matrlx denoted as k, and the components
{Z:;;1 < i < n} of Z are independent with variances az We can view this as a commu-
nication problem in which a single real number, modeled as the Gaussian rv X, is first
modulated into the signal hX and then transmitted in the presence of independent noise
(see Figure 4.5). This problem is the same as Example 4.3 (specialized here to E[X]| = 0).

Using (4.104), we see that a sufficient statistic is given by

T(§) =hTKzj = Z’;’j‘ (4.111)

Note that 7(7) above is a one dimensional quantity, whereas ¢ has dimension n. Thus, in
this case, replacing the observation ¥ with the sufficient statistic reduces the problem to a
single dimension. In the special case where cr%‘_ is the same for all ¢ (i.e., where the Z; are
1ID), the operation T (§) is the same matched filter operation that we studied for detection.
When or% varies with . the operation of forming 7(%) is an almost trivial variation on
the matched filter operation. When the observed values y; come from different locations,
as opposed to being observed at different times, 7(y) is called mazimal ratio combining.
As we see, however, all of this terminology simply refers to this one dimensional sufficient
statistic. Finally note that (4.111) yields a sufficient statistic whether or not X is Gaussian.

Finally, to complete the example, we find the MMSE estimate and the estimation error.
From (4.110),

X(T@) = 2T () = 02 Z hiys (4.112)

1—'»'1 :
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Figure 4.6: Illustration of one dimensional signal z and 2 dimensional observation ¥
where y; = 2242 and y» = £+ 29. The noise terms, z; and z9, are sample values of ITD
Gaussian rv’s. The concentric circles are regions where Poix (7' | =) is constant for given
z. The straight line through the origin is the locus of points (2z, z) as z varies; this is
the received signal vector , as a function of the signal x, in the absence of noise. The
other straight line is perpendicular to the first line; it is the locus of points where 2y, +y2
is constant. Thus the sufficient statistic 2y; + y» can be viewed as projecting (y;,us)
onto the straight line (2z, z) and ignoring the noise in the perpendicular direction.

2
1.

(4.113)

l T
Z g i

Note that this is the same as the solution to the scalar recursive estimation problem in (4.33).
Figure 4.6 illustrates this for n = 2 and illustrates how the sufficient statistic focuses on the
received vector in the direction of the modulated signal, ignoring the irrelevant directions.

2
Z

Look again now at the case where X is m dimsional and Z and ¥ are n dimensional,
n > m. The m dimensional sufficient statistic given in (4.104) can be broken down into m
one dimensional equations,

L@ =3 3~ (4.114)

Thus each component of 7 is a matched filter type operation as in the previous example, and
does not depend on the covariance of the input. The problem of finding the estimate of each
component of X in the presence of “intersymbol interference” from the other components
is then handled by the matrix Kz

Example 4.7 (Scalar Signal plus Arbitrary Vector Noise) As a slightly more gen-
eral scalar signal example , let ¥ = hX + Z again, but let Z have an arbitrary non-
singular covariance matrix K. Let A be a matrix such that AAT = Kz We can
then represent Z as AW where W is N'(0,1,). Using the transformation of figure 4.4,
let V = A=Y be the transformed output and let § = A~1k be the transformed filter. Then

= §TX + W. This is then the problem of the prevzous example. The sufficient statistic
is then T = Tv= g A~ 'j= hTK -
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4.4.4 Orthornomal Expansions of Input and Output

Next consider the SItuatlon Y = HX +Z where X = (X1,...,Xm)T has m IID components
each of variance o2 and Z = 7 - 1,;) has n > m I]D components each of variance
1. We could wew each component X; of X as passing through a filter hi= (R1dy - s Rni),
where h; is the i*" column of H, and the solution in (4. 82) passes the observation § through
n matched filters hTy in forming the MMSE estimate of X. However, in (4.82) the matched
filter outputs are then operated on by K z, which somehow takes care of scaling and of the

interference between the different components of Z

To get another viewpoint of why K = is the right operation in (4.82), we rederive (4.82) in
yet another way, through viewing the operator H in terms of orthonormal expansions of
input and output. Note that HT H is a symmetric, non-negative definite m by m matrix,
and it has m eigenvalue, eigenvector pairs,

HTH¢; = Mis; 1<i<m (4.115)

The eigenvalues need not be distinct, and need not be non-zero, but they are all non-
negative, and we can always choose the set of ¢; to be orthonormal, which we henceforth
assume. The matrix F with columns ¢y, @2, . .., ¢m has the property that FTF = I (since
qﬁ?cﬁj = d;;) 80O FT = 1. Assume that A; > 0 for 1 < i < m and define the n dimensional
vectors 0; to be A, 12 @;. These vectors must be orthonormal (see Exercise 4.6) since the
vectors ¢; are orthonormal, and each 6; is an eigenvector, with eigenvalue \;, of HH ‘3 (which
is an n by n matrix). Let @ be the n by m matrix made up of the columns 8y, .. .,6,,. Then
Q = HFA~Y2 where A is the diagonal matrix with elements Ay, ..., Am. We then have

H = QAV2FT = Y 0:.0%6F (4.116)

Y = QAPFTX + 7 (4.117)
Now note that, because of the orthonormality of {6;}, Q7@ = I (even though Q is n by
m), and thus
QTY =AYVPFTX + Q%2 (4.118)
Now define FTX as X;. That is, X4 is the random vector X in the basis ¢1,...,¢n,
i.e., the random vector with components {¢7 X; 1 < i < m} Note that Eijqbf“b] =
E[FTX XTF] = ¢2FT[F = ¢2]. Similarly, define Q7Z as_ Zp. By the same argument,
B|ZoZ]) = I. Finally define QTY as Yy. We then have Yy = AV2X, + Z,. Since the
components of both X¢, and Zp are independent, we have m independent one dimensional
estimation problems. Note that Zy does not fully represent the noise 2,:7' (see Exercise 4.6),
but the remaining n — m components of the noise are independent of X and of Z, so they

are irrelevant and can be ignored. From (4.22) and (4.23), the MMSE estimate of each
component of .f¢ is given by

o i 72 (7o) & s
Ratgo)s = L2 05 p[| %

i 2} =072+ N7} (4.119)
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In vector notation, define the error, in the basis ¢1,...,¢n, as ._'3.¢. = )Q(@‘g) — )_{'qg. The
covariance matrix of this, from 4.119, is a diagonal matrix given by

Kz, = [e~2 +A]? (4.120)
The estimate, from 4.119 then becomes
X (5o) = K=,VAgs (4.121)
Finally we change back to the original basis. Since X = F)?¢, we have X(7) = FX4(%0).
Also 7 = QT so
X(9) = FKz,VAQ"Y = (FKg, F')(FVAQT)§ (4.122)
As shown below, the the first term above is Kx.

K:=E [| X -X@ [2} = E|F(Xy— Rg)(X] — X5)FT| = FK5 FT (4.123)

Also, from (4.116), HT = FAY2QT. Substituting this and (4.123) into (4.122)
X@) =Kz H'y (4.124)
This agrees with (4.82), since K 7 = I. Finally, from (4.123) and then (4.120),
KZ'=F(Kg ) 'FT = F(o 2l + N FT =0 I + H'H

which agrees with (4.83).

For the more general case when X is not TID, one can transform X into IID variables,
X' = AX, and then apply the above approach to X'. Similarly, if Z is not IID, one can
first whiten it into IID variables W = BZ. Not much would be gained by this, since we
already know the answer from (4.80) and (4.82), and the purpose of these examples was to
make those results look less like linear algebra magic.

As a final geﬁleralizaiion, assume ¥ = HX + Z as before, but now assume X has_‘a mean,
X. Thus E[Y] = HX. Applying (4.80) and (4.82) to the fluctuations, X — X and Y — HX,
we have the alternative forms

= _ i =

X@) = X+KgHT [HK)?HT + KZ-] (7 — HX) (4.125)

X@ = X+KzH'K;'(j—-HX) (4.126)

The error covariance is still given by (4.81) and (4.83).
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4.5 Vector Recursive and Kalman Estimation

We now make multiple noisy vector observations, #i,%2,..., of a single m dimensional
Gaussian ¥ X ~ N (X, K ) For each i, we assume the observation random vectors have
the form .

Y = HiX + Z;; Z_.‘;"VN(ﬁ,KZ‘iJ; 1>1 (4.127)

We assume that X , 2‘1,22, ... are mutually independent and that Hp, Hs,... are known
matrices. For each i, we want to find the MMSE estimate of X based on {f;; 1 < j < i}.
We will do this recursively, using the estimate based on #,...,%i—1 to help in finding
the estimate based on #,...,%. Let }7'1;1- denote the first i observation r#’s and let 7.
denote the corresponding 4 sample observations. Let X(#1.:) denote the MMSE estimate,
= =X (Hha) — X denote the estimation error, and K =. denote the error covariance, all
based on the observation §1.; = 1, %2,...,%. Fori = 1, the result is the same as that in
(4.125) and (4.126), yielding

X)) = X+KgH{ [HlI{fH? + Kz-l] (- B X) (4.128)
X(h) = X+EKzH K3 (h - 11 X) (4.129)
From (4.81) and (4.83), the error covariance is
Kz = Kg—KgH{HiKgH{ + Kz | 'H\Kg (4.130)
K;l‘ = K3+ H?Kgll H (4.131)

Using the same argument that we used for the scalar case, we see that for each i > 1, the
conditional mean of X, conditional on the observation $1:i—1, is by definition by (¥1:i—1) and
the conditional covariance is K s, ,- Using these quantities in place of X and K ¢ in (4.125)
and (4.126) then yields

g & -1 =
R(fi) = X@rom1) + Kz, HF [HiKz, HT + Kz]™ @ — HiX fri-1) (4132)
X(ha) = X(@ra-1) + Kz, HIKZ (5 — HiX (f13-1) (4.133)
From (4.81) and (4.83), the error covariance is given by

Kz = K

=i

T T .
— Kz, HT [Hikz HT +K;]| HKs (4.134)

Zi

(1

§—

K3 = KZ' +HIKZ'H; (4.135)

—f—

4.5.1 Vector Kalman Filter

Finally, consider the vector case of recursive estimation on a sequence of m dimensional
time varying Gaussian rv’s, say X, Xo,.... Assume that X; ~ N(Xl,KX.-l), and that X,
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evolves from X; for i > 1 according to the equation
Xipr = AXi+ Wi; Win N(O,Ky); 21 (4.136)

Here, for each ¢ > 1, A; is a given matrix and K is a given invertible covariance matrix..
1
Noisy n dimensional observations Y; are made satisfying

Y,=HiXi+Zi; Zi~N(OKg); i21 (4.137)
where for each ¢ > 1, H; is a known matrix, and K 7, is an invertible covariance matrix.

Assume that X1, {W;;i > 1} and {Z:;i > 1} are all independent. As in the scalar case, we
want to find the MMSE estimate of both X; and X;.H conditional on Yl, }’2} .S V. We
denote these estimates as X; (71) and Xin (#.:) respectively. We denote the errors in these
estimates as 3; = X;(#14) — X; and g:;.,.] = Xi1(ha) —.f,;_,_l respectively and we denote the
covariance of these estimation errors as K= and K L respectively. For ¢ = 1, the problem
is the same as in (4.128-4.131). Alternate forms for the estimate and error covariance are

P — I =
Xigh) = Xi+Kg H{ [HlelH?+Kgl] (th — Hi1 X,) (4.138)
X)) = Xi+Kz HTKZ::(fl — 1 X1) (4.139)
Kz = Kg —KgHl|HiKg H] + Kz |"'HiKy, (4.140)
T
K3 = K3'+HTK;'H) (4.141)

This ‘means that, conditional on Y= =i, X ~N (X1(3), K= ) Thus, conditional on

Yl =i X; = A1 X+ W, is Gaussian with mean A 1X1(7) and Wlth covariance A1 K z A
. Thus

Xo(ih) = AXi(fh); Kz = AKz AT + Ky, (4.142)

Conditional on ¥} = 1, (4.142) gives the mean and covariance of X5. Thus, given the
additional observation Y» = %2, where Yo = Hy X, + 75, we can use (4.125) and (4.126) with
this mean and covariance to get the alternative forms

& 2y P = -

Ro(fr2) = Rol@h) + K Hf [HoKg HY + Kz| (o— HoXo@h))  (4.143)

Xa(fh2) = Xao(ih) + K 2, HY K3 (2 — HaXa(3) (4.144)
The covariance of the error is given by the alternative forms

—1
K=z = KEz—KEQHg [HQK Hg +Kz] H'gffé'2 (4.145)

=2

Kz = KZ'+Hj K3 Hy (4.146)
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Continuing this same argument recursively for all ¢ > 1, we obtain the Kalman filter equa-
tions,

Y ~ -1 Y
Ri@hs) = Rilfim) + KeHT [HiKg HT + Kz |~ Gi—HiXi(@so)  (4147)

Xi(thy) = Xi(haa) + KE”,HEKE:(@"? — H; Xi(514-1)) (4.148)
T a -

Kg = Kgp — Kz H |HiKz H + Kz HiKg (4.149)

KZ!'= KZ'+ H K3 H; (4.150)

)?{__H (g];-i) = Ai}?g(gl;z‘) ; KC_:H-l = A,Ké"A;‘r + I(ﬁ,‘_ (4151)

The alternative forms above are equivalent and differ in the size and type of matrix inversions
required; these matrix inversions do not depend on the data, however, and thus can be
precomputed.

4.6 Estimation for Complex Random Variables

A complex random variable (crv) is a mapping from the underlying sample space onto the
complex numbers. A crv X can be viewed as a pair of real rv's, X, and X,, where for
each Sample point w, X,-(w) = .SRIX(w)] and X,rm(w) = %‘[X(u:)] Thus X = X, —|—jX;-m where
4§ = v/=1. The complex conjugate X* of a crv X is X, — jXun. It is always possible to
simply represent each crv as a pair of real rv’s, but this often obscures insights. In what
follows, we first look at vectors of crv’s and their covariance matrices. We then look at crv’s
as vectors in their own right and extend the orthogonality principle to the corresponding
complex inner product space.

Let X1,..., X, be an n-tuple of crv’s. We refer to X = (X1,..., Xn)T as a complex rv. It is
a mapping from sample points into n-vectors of complex numbers. The complex conjugate,
X*, of a complex r¥ X is the vector of complex conjugates, (X -, XH)7T. The covariance
matriz of a zero mean complex r¥ X is defined as

Ki=E [)?X‘*T] (4.152)

The covariance matrix K of a complex r¥ has the special property that K = K*Z. Such
matrices are called Hermetian. A complex matrix is said to be positive definite (positive
semi-definite) if it is Hermetian and if, for all complex non-zero vectors b, bTKb* > 0(= 0).
A matrix K is a covariance matrix of a complex rv iff K is positive semi-definite.

All the eigenvalues of a Hermitian matrix are real, and the eigenvectors g; (which in general
are complex) can be chosen to span the space and to be orthogonal (in the sense that
@;th‘j * = 0,1 # 7). These properties of Hermetian matrices can be derived in much the

same way as the properties of symmetric matrices were derived in section 2.4.
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There is a very important difference between covariance matrices of complex rv’s and real
r#'s. The covariance matrix of a complex rv X does not contain all the second moment
information about the 2n real rv's X1, X14m, - .., Xnr, Xnim. For example, in the one
dimensional case, we have .

E[XX*) = Bl(X; + j Xim)(Xr — i Xim)] = BIX? + X7,] (4.153)

This only specifies the sum of the variances of X, and X;,,, but does not specify the individal
variances or the covariance. Asshown in Exercise 4.11, all of the second moment information
can be extracted from the combination of K ¢ and a matrix E [ff X T] sometimes known as
the pseudo-covariance matrix.

In many of the situations in which complex random variables appear naturally, there is
a type of circular symmetry which causes E [)"(' X T] to be identically zero. To be more

specific, a complex rv X is circularly symmetric if X and e7® X are statistically the same
(i.e., have the same joint distribution function) for all ¢. This implies that each complex
random variable X;, 1 <i < n, is circularly symmetric in the sense that if the joint density
for X; », Xi im is expressed in polar form, it will be independent of the angle. It also implies
that if two complex variables, X; and X}, are each rotated by the same angle, then the
joint density will again be unchanged. If X is circularly symmetric, then

E {)‘EX'T] —F [(ef‘f’)'f')(e#)?)’*"] =Mp(XRT] . (4.154)

This equation can only be satisfied for all ¢ if £ [ff x T] = 0. Thus for circularly symmetric
complex rv’s, the pseudo-covariance matrix is zero and the covariance matrix specifies all the
second moments. We also define X and ¥ to be jointly circularly symmetric if (X7, ¥7T)T
is circularly symmetric.

Next, we extend the definition of real vector spaces to complex vector spaces. This is
particularly easy since the definition of a complex vector space is the same as that of a real
vector space except that the scalars are now complex numbers rather than real numbers. We
must also extend inner products. A complex inner product space is a complex vector space
VY with an inner product (X,Y) that maps pairs of vectors X,Y into complex numbers.
The axioms are the same as for real inner product spaces except that for all X,Y €V,

(X,Y) = (Y, X)* (4.155)

As with real inner product spaces, two vectors, X,Y are orthogonal if (X,Y) = 0. Also,
the length of X is defined to be | X ||= +/(X,Y), and the distance between X and Y is
|| X =Y ||. For the conventional complex vector space in which Z is an n-tuple of complex
numbers, the inner product (&, ) is conventionally taken to be (Z,7) = z1y] + - + 2y
Note that this choice makes (z,z) > 0, whereas without the complex conjugates, this would
not be true. The complex vector space of interest here is the set of zero mean crv’s defined
in some given probability space. The inner product for zero mean crv’s is defined to be the
covariance of the crv’s, i.e., '

(X,Y) = E[XY?] (4.156)
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It can be verified directly that this definition satisfies all the axioms of an inner product.

The orthogonality principle can also be applied to complex inner product vector spaces.
The proof is a minor modification of the proof in the real case and is left as Exercise 4.12.

Theorem 4.5 (ORTHOGONALITY PRINCIPLE, COMPLEX CASE) Let X be
a vector in a complex inner product space V, and let S be a finite dimensional subspace of
V. There is a unique vector P € § such that (X — P,Y) =0 for allY € 8. That vector P
is the closest point in S to X, i.e., | X —P||<|| X =Y || forallY € S, Y # P.

Consider LLSE estimation of a ecrv X from the crv’s Yi,...,Y,. The LLSE estimate for
crv’s is defined as

R 1ns Y= ¥ (4.157)
i

i 2
where oy, ..., a, are complex numbers chosen to minimize ¥ UX ,...,.Y,)—-X ‘ ] In

terms of the complex vector space of zero mean crv’s, the quantity to be minimized is
| X(Y1,...,¥,) = X|. Thus, from the theorem, X (Y3,...,Y;) is the projection P of X on
the space spanned by Y1, ..., Y,. Since (X —P,Y}) = 0 for all Y in the subspace spanned by
Y1,...,Y;, it suffices to find that P for which (X — P,Y;) =0 for 1 < i < n. Equivalently,
P must satisfy (X,Y;) = (P,Y;) for 1 <i <n. Since P = X(Y3,...,Y,) = > =1 05Y5, this

means that ai, ..., a, must satisfy (4.57). Using (4.156), we have
mn
EIXY]| =) aElY;Y}] ; ;1<i<n (4.158)
i=1

If we define Ky as E[XY*T, this can be written in vector form as
Ky =Kyp; a7 =Kypk3' (4.159)

Thus the LLSE estimate X(Y) is given by
X(Y) = KypK3'Y, (4.160)

This is valid whether or not the variables are circularly symmetric. This is somewhat
surprising since the covariance matrices do not contain all the information about second
moments in this case. We explain this shortly, but first, we look at LLSE estimation of a
vector of complex variables, X, from the observation of Y. Since (4.160) can be used for
the LLSE estimate of each component of X, the LLSE estimate of the vector X is given by

X(Y) = KX'}-;K};l?, (4.161)
0 - . *T
The estimation error matrix, X Xy = [(X (Y) ) (X (Y) ) ] is then given by

_ —1 55T
Kgy =Kz - KgpK5' K35 (4.162)
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The surprising nature of these results is resolved by being careful about what linearity
means. What we have found in (4.160) is the linear least squares estimate of the crv X
based on the crv’s Y3, ...Y,. This is not the same as the linear least squares estimate of X
and X, based on Y, Yiim; 1 < i < n. This can be seen by noting that an arbitrary linear
transformation from two variables Y,., Yim t0 X,, Xim is specified by a two by two matrix,
which contains four arbitrary real numbers. An arbitrary linear transformation from a
complex variable Y to a complex variable X is specified by a single complex variable, i.e.,
by two real variables.

To further clarify the difference between LLSE estimates on complex variables and LLSE
estimates on the real and imaginary parts of the complex variables, consider estimating the
crv X as a linear function of both Y and Y™, i.e.,

X(Y) =Y lea¥s + 87 (4.163)

where o; and (3; are chosen, for each ¢, to minimize the mean squared error. From the
orthogonality theorem, 4.4,

(X, %) = Y oY, Y+ B(YS, Y (4.164)
i 7

(X,Y) = YooY, Y+ Bi(Y7, YY) (4.165)
3 i

It can be seen from (4.163) that this estimate must have a real part and imaginary part that
are linear functions of the real and imaginary parts of Y. It can also be seen (see Exercise
4.11) that any such linear function of the real and imaginary parts can be represented in
this way. Thus the LLSE estimate based on complex variables using both the variables and
complex conjugates is equivalent to the LLSE estimate for real and imaginary parts.

Now consider the case where X and Y are jointly circularly symmetric. Then (X, ¥;*) =0
and (Y;, ¥;*) = (Y}, Yi) = 0. In this case, (4.165) implies that 3; = 0 for each j, and (4.163)
is then the same as (4.159). This means that the complex LLSE estimate of (4.160) is the
same as the LLSE estimate using real and imaginary values in the circularly symmetric case.
Similarly if X and ¥ are jointly circularly symmetric, the complex LLSE estimate in (4.161)
is the same as the LLSE estimate using real and imaginary values, and the covariance error
is also the same.

The next question is when the circularly symmetric case arises. Consider the case Y =
HX + Z and suppose that X and Z are independent and each circularly symmetric. The
first thing to observe is that for any ¢, /Y = H|[e/*X] + ¢7¢Z. Thus, since X and X
have the same distribution and Z and e®7 have the same distribution, ¥ and e7¢Y also
have the same distribution. Thus Y is circularly symmetric. In the same way, we see that

X and Y are jointly circularly symmetric. Thus, in this case, the complex LLSE estimate
is again the same as the real LLSE estimate.

Finally, define X to be a complex Gaussian r¥ if R(X) and S(X) are jointly Gaussian. Sim-
ilarly X and ¥ are jointly complex Gaussian if the real and imaginary parts are collectively
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301ntly Gaussian. For this jointly Gaussian case, the MMSE estimate of X from observation
of ¥ is given by the MMSE estimate of the real and imaginary parts of X from the obser-
vation of the real and imaginary parts of Y. ThlS_‘IS the same as the LLSE estimate of X
as a linear function of both ¥ and Y*. Finally, if X and ¥ are jointly circularly symmetric,
the MMSE estimate is also given by (4.161).

For the circularly symmetric Gaussian case, it is also nice to express the density of X in
terms of the covariance matrix, K 3. As shown in Exercises 4.14 and 4.15, this is given by

exp [—E’*K;:E']
ndet(K ¢)

D, (@) = (4.166)

4.7 Parameter Estimation and the Cramer-Rao Bound

We now focus on estimation problems in which there is no appropriate model for a priori
probabilities on the quantity z to be estimated. We view x as a parameter which is known
to lie in some interval on the real line. We can view the parameter z as a sample value
of a random variable X whose distribution is unknown to us, or we can view it simply as
an unknown value. When z is viewed simply as an unknown value, then we don’t have an
overall probability space to work with—we only have a probability space for each individual
value of 2. We can not take overall expected values of random variables, but can only take
expected values given particular values of . Strictly speaking, we can not even regard the
observation as a random vector, but can only view the observation as a distinct random
vector for each value of 2. By viewing x as a sample value of a rv X whose cllstnbumon
is unknown, we avoid these notational problems. We denote the expected value of ¥,
given X = z, by Ez(Y), but the overall expected value of ¥ can not be found, since the
distribution of X is unknown.

Consider an estimation problem in which we want to estimate the parameter x, and we
observe a sample value § of the observation Y. Let f(§ | #) denote the probability density
of ¥ at sample value . #, given that the parameter has the value z. This is not a conditional
probability in the usual sense, since z is only a parameter. We assume that small changes
in & correspond to small changes in the density f(y/ | ), and in fact we assume that f(7| z)
and In[f(7 | z)] are differentiable with respect to 2. Define V,.(7) as

_on(f(Flx) 1 O(f(F|=x)
Va(¥) = dx T f@ |z Bz

Recall that the maximum likelihood estimate Xr,(7) is that value of z that maximizes

7(# | @) for the given observation §. Xa1(#) also is the & that maximizes In[f(7 | )], and
1f the maximum occurs at a stationary point, it occurs where V;, (:.}') = 0. Note that for each
z, Vo(Y) is a random variable, and as shown in the next equation, V,(¥) has zero mean for
each 2.

(4.167)

BNV = [ 1@ 0v%@di= [ 1G0T a9
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_ 0Jf@lx)dy o1 _ '
- v =z =0 (4.168)

It is not immediately apparent why V;(Y') is a fundamental quantity, but as one indication
of this, note that if f(y | x) is replaced by the likelihood ratio A(y,z) in (4.167), the
derivative remains the same. Thus Vz(7) is the partial derivative, with respect to x, of the
log likelihood ratio LLR(Y, x).

Now suppose that some value of z is selected (z is simply a parameter, and we assume
no a priori probability distribution on it), and an observation §f occurs accordmg to the
density f(7 | z). An observer, given the value 7, chooses an estimate X (@) of . Thus

X(9) is a function of , and thus, for any given parameter value z, X(¥) can be considered
as a random variable (conditional on z). The Cramer-Rao bound gives us a lower bound
on E.[(z — X(Y))?], the second moment of X(¥) around z, given x. One may think of
this as a communication channel with input z and output 17', with Y taking on the value
7 with probability density f(# | «). For each choice of z, one can in principle calculate
E.[(zx—X (Y))?], and this depends on the particular estimate X () and also on the particular
z. One can make this estimate better for some values of 2 by making it poorer for others,
but no matter how one does this,Ex[(z — X(¥))?] must, for each z, satisfy a soon to be
derived lower bound called the Cramer-Rao bound.

The bias®, be(a), of an estimate X(#) is defined as
be(x) = Eo[X(Y) —af (4.169)

An estimate X is called unbiased if b ¢ (@) = 0 for all z. Many people take it for granted that
estimates should be unbiased, but there are many situations in which unbiased estimates
do not exist, and others in which they exist but are not particularly desirable (see Exercise
4.16).

The Fisher information J(z) is defined as the variance (conditional on z) of Vz(?)-
J(&) = VAR |Vo(Y)] = Ex|(Va(¥))?] (4.170)

For the example where Y, conditional on z, is M (z,0?%), Vo(Y) = (Y —2)/0?, and thus
J(x) = 1/0? (see Exercise 4.17). Viewing Y as a noisy measurement of &, we see that the
Fisher information gets smaller as the measurement noise gets larger. The major reason
for considering the Fisher information comes from the Cramer-Rao bound below, and one
is advised to look at the bound and some examples rather than trying to get an abstract
sense of why one might call this an information.

Theorem 4.6 (CRAMER-RAO BOUND) For each z, and any estimator X(Y),

b= ()
VAR, [)?(Y‘)] > {—I—J(m)—} (4.171)

*When the parameter = is a sample of a known random variable X, the expected bias is E[X (V) — X).
The expected bias in this case is sometimes simply called bias, causing some confusion. Bias as we define it
is a function of z, whereas the expected bias is a single number, formed by averaging over X.
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Proof:
Ez(NXD) = [ 1@V X @y
= /8f(y| X(@)dy  (from (4.167))

= é% / f@ | @)X (@)dy (interchanging differentiation and integration)

_ 3Ex§i(y)] _ Bz +6I;f(m)] (from (4.169))

e (x)
= 14— (4.172)

Let X (Y) = X(¥) — E.(X(Y)) be the fluctuation in X(¥) for given z. Since Vae(Y) is
zero mean, we know that

ox

E: [Va¥) Xa(Y)] = BelVa(V)X (V)] = 1 + (4.173)

Since the normalized covariance between V, and X (Y) (for given x) must be at most 1, we
have

B2[Vo(¥) Xo(Y)] < VAR [Va(Y)IV AR, [X (V)] = J(2)V AR [X (V)] (4.174)
Combining (4.173) and (4.174) yields (4.171).

The usual quantity of interest is the mean square estimation error for any given z, i.e.,
[(X(Y z)?|. Since this is equal to VARL[X(Y)] + E2[X(Y)] — z, a.nd since bg =

EL[X(Y)] — =z, (4.171) is equivalent to

] Bbo(z)]? i
E, [(}?(?) —_ .’E)2] > I:_WL + [bf(m)]" (4.175)

Finally, if we restrict attention to the special case of unbiased estimates, (4.175) becomes

1

E[(X(Y) —2)? 2 @

(4.176)

This is the usual form of the Cramer-Rao inequality. Many people mistakenly believe that
unbiased estimates must be better than biased, and that therefore biased estimates also
satisfy (4.176), but this is untrue, and as mentioned before, there are many situations in
which no unbiased estimates exist.
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4.8 EXERCISES

Exercise 4.1 Let X and Z be IID random variables and let ¥’ = X + Z. For the following
densities for X and Y, find the minimum mean square estimate X (y) of the sample value
of X given the observation Y = y.

a) py(z) =1for 0 <z <1 and p, () = 0 elsewhere.
b) p,(z) =e* for z > 0 and p, (z) = 0 for z < 0.

¢ py () is arbitrary.

Exercise 4.2 a) Consider the joint probability density py ,(z,2) =¢e™ for 0 £ 2 < z and
Py (2,2) = 0 otherwise. Find the pair @, z of values that maximize this density. Find the
marginal density p,(z) and find the value of z that maximizes this.

b) Let px » 1 (2,2, %) be y?e ¥ for 0 < & < z,1 < y <2 and be 0 otherwise. Conditional on
an observation Y =y, find the joint MAP estimate of X, Z. Find p,,,. (2 | y), the marginal
density of Z conditional on ¥ = y, and find the MAP estimate of Z conditional on ¥ = y.

c) Explain why the expected minimum cost estimate for any vector X = (LS.
must be the vector of the expected minimum cost estimates of the individual components
Xi,...,X, for both the squared cost function and the absolute value cost function.

Exercise 4.3 a) Let X, Z;, Z3, ... be independent zero mean Gaussmn rv’s with variances
0%,0%,, ... respectively. Let K = hX + Z;fori>1and let ¥; = (13,...Y:)7. Let @ be
the row vector d; = K XV ? Multiply this on the right by Ky : 1o solve for @;. Then use

(4.13) to show that the MMSE estimate of X from Y; = #; = (yl, ..., ¥i)T, is given by

R =3 hs/o%, (4177)
Vi) = D QiYi; Qi = — ¢
=T (Yo%) + S /o3,
b) Let =; = X(¥;) — X and use a) to show that
1 1 & R? _
=7 x n=192n

c) Now suppose that X has a mean, X. Modify (4.177) and (4.178) to account for the mean
and show that the result is (4.33).

d) Show that (4.33) is consistent with (4.31) and (4.32).

Exercise 4.4 Write out E[(X — aTY¥)? = 0% — 2K, & + GTKyd as a function of
o1,02,...,0, and take the partial derivative of the function with respect to a; for each
i, 1 <4 <n. Show that the vector of these partial derivatives is —2K ¢ + 287 Ky
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Exercise 4.5 Let X4(¥) bean arbitrary estimate of a rv X from a rv _l? and let Xy MSE(?)
be the MMSE estimate. Let 24 = X4(Y) — X and Z = Xpypse(Y) — X be the corre-
sponding estimation errors.

a Show that for any given sample value Y=g,
B[E} | Y= = E[E® | Y=§| + [Xa(®) — Kmmse@)?
b Taking the expectation over Y, show that

E[=3) = BIE% + E [(Ra(Y) — Rumse(¥))]

Exercise 4.6 a) Show that the set of vectors {#; = ,\;1/ ’H @;; 1<i<m} is an orthonormal
set, where the vectors ¢;; 1<i<m satisfy (4.115) and are orthonormal and )\; > 0 for
1<i<m.

b) Show that ; is an eigenvector, with eigenvalue \;, of HHT.
c) Show that HHT has n — m additional orthonormal eigenvectors, each of eigenvalue 0.

d) Now assume that H7 H has only m' < m orthonormal eigenvectors with positive eigen-
values and has m —m’ orthonormal eigenvectors with eigenvalue 0. Show that HH” has
n —m' orthonormal eigenvectors with eigenvalue 0.

e) Let ¥ = HX + Z. Show that for each eigenvector 0; of HHT with eigenvalue 0,
67Y = 67 Z and show that the random variable 6 Z is statistically independent of 67 Z for
each eigenvector #; with a non-zero eigenvalue.

Exercise 4.7 For a real inner product space, show that n vectors, Y},...,Y, are linearly
dependent iff the matrix of inner products, {(Y;,Y:); 1 < 4,5 < n}, is singular.

Exercise 4.8 Show that (4.68-4.70) agree with (4.59).

Exercise 4.9 Show that if X is a Gaussian m—r¥ and Z is a Gaussian n—rv independent
of X, then Y and X are jointly non-singular, where ¥ = HX + Z and H is an arbitrary
m by n matrix. Hint: Show that p,(Z) and Pog (7 | #) are bounded and explain why this
establishes the desired result.

Exercise 4.10 Assume that H is invertible and derive (4.80) and (4.81) from (4.84) and
(4.85) using subsection 4.4.1

Exercise 4.11 Let X = (Xi,..., X,)7 be a zero mean complex rv with real and imaginary
components Xy j, Xim,j, 1<j<n respectively. Express E[X, ; X, k|, B[ XrjXim k|, Bl Xim j Ximxl,
E[Xim,; Xr ] as functions of the components of K ¢ and E[XX7].
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Exercise 4.12 Prove Theorem 4.5. Hint: Modify the proof of theorem 4.4 for the complex
case.

Exercise 4.13 Let Y = Y, + jYim be a complex random variable. For arbitrary real
numbers a, b, ¢, d, find complex numbers o and 3 such that

R[aY + BY | = aYy + bYim

S oY + BY*] =Yy + dYim

be a zero mean circularly symmetric n dimensional Gaussian complex rv. Let U = XL NT

Exercise 4.14 (Derivation of circularly symmetric Gaussian density) Let X ff,._‘-l— i Xim
tU = (X7
be the corresponding 2n dimensional real rv. Let K, = E[X,X7] and K,; = E[X, XT |.

a) Show that

K K‘r Kri
v —Krz' K-r
b) Show that
x| B @
Ky = ( —C B

and find the B, C for which this is true.

c) Show that K ¢ = 2(K; — Krs).

d) Show that K? = 3(B —jO).

e) Define p (%) = p, (@) for & = (#7,#7,)T and show that
L exp—T'K ;lfr
Pl = oy Jaet K,

f) Show that

detKﬁzdet[K’”I—jKﬁ K’"ith”.‘

_’Kri. Kr
Hint: Recall that elementary row operations do not change the value of a determinant.

g) Show that

detKg:[KT-l-‘?Kﬁ 0 ‘|

_K-rf, Kf e jKr-é
. Hint: Recall that elementary column operations do not change the value of a determinant.

h Show that ’
det K5 = 272" (det K )

and from this conclude that (4.166) is valid.
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Exercise 4.15 a) (Alternate derivation of circularly symmetric Gaussian density).

a) Let X be a circularly symmetric zero mean complex Gaussian rv with covariance 1.
Show that -
exp —z*x

e
Hint: Note that the variance of the real part is 1/2 and the variance of the imaginary part
is 1/2.

px(@) =

b) Let X be an n dimensional circularly symmetric complex Gaussian zero mean random
vector with K¢ = I,,. Show that

exp—&T%

pe(® = 222

c) Let ¥ = HX where H is n by n and invertible. Show that

exp |[—g*TH T Hg]

il

Py () =

where v is |dy]/|dZ]|, the ratio of an incremental 2n dimensional volume element after being
transformed by H to that before being transformed.

d) Show that
_ lagl _ g
o= az det[ K]

and thus conclude that (4.166) is valid.

Exercise 4.16 Let Y = X? + Z where Z is a zero mean unit variance Gaussian random
variable. Show that no unbiased estimate of X exists from observation of Y. Hint. Consider
any & > 0 and compare with —z.

Exercise 4.17 a) Assume that for each parameter value z, Y is Gaussian, N'(z, ¢2). Show
that Vi(y) as defined in (4.167) is equal to (y —z)/0? and show that the Fisher information
is equal to 1/02.

b) Show that the Cramer-Rao bound is satisfied with equality for ML estimation for this
example. Show that if X is N'(0,0%), the MMSE estimate satisfies the Cramer-Rao bound
with equality.

Exercise 4.18 Assume that Y is N(0,2). Show that V,(y) as defined in(4.167) is Vi(y) =
[y?/2 — 1]/(2x). Verify that Vi(Y) is zero mean for each 2. Find the Fisher information,
J2)



