Chapter 3

DETECTION, DECISIONS, AND
HYPOTHESIS TESTING

3.1 Introduction

Detection, decision making, and hypothesis testing are synonyms. The word detection refers
to the effort to decide whether some phenomenon is present or not in a given situation. For
example, a radar system attempts to detect whether or not a target is present; a quality
control system attempts to detect whether a unit is defective; a medical test detects whether
a given disease is present. The meaning has been extended in the communication field to
detect which one, among a set of mutually exclusive alternatives, is correct. Decision mak-
ing is, again, the process of deciding between a number of mutually exclusive alternatives.
Hypothesis testing is the same, and here the mutually exclusive alternatives are called hy-
potheses. We use the word hypotheses for these alternatives in what follows, since the word
conjures up the appropriate intuitive image.

These problems will be studied initially in a purely probabilistic setting. That is, there is
a probability model within which each hypothesis is an event. These events are mutually
exclusive and collectively exhaustive, i.e., the sample outcome of the experiment lies in one
and only one of these events, which means that in each performance of the experiment, one
and only one hypothesis is correct. Assume there are m hypotheses, numbered 0,1, ...m—1,
and let H be a random variable whose sample value is the correct hypothesis iz, 0 < i < m—1
for that particular sample point. The probability of hypothesis ¢, Py (i), is denoted P; and
is usually referred to as the a priori probability of i. There is also a random vector (r¥) Y,
called the observation vector. We observe a sample value ¢ of ¥, and on the basis of that
observation, we want to make a decision between the possible hypotheses.

Before discussing how to make these decisions, it is important to understand when and
why decisions must be made. As an example, suppose we conclude, on the basis of the
observation, that hypothesis 0 is correct with probability 2/3 and hypothesis 1 with proba-
bility 1/3. Simply making a decision on hypothesis 0 and forgetting about the probabilities
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seems to be throwing away much of the information that we have gathered. The problem
is that sometimes choices must be made. In a communication system, the user wants to
receive the message rather than a set of probabilities. In a control system, the controls must
occasionally take action. Similarly managers must occasionally choose between courses of
action, between products, and between people to hire. In a sense, it is by making decisions
(and, in Chapter 4, by making estimates) that we return from the world of mathematical
probability models to the world being modeled.

There are a number of possible criteria to use in making decisions, and initially, we assume
that the criterion is to maximize the probability of choosing correctly. That is, when the
experiment is performed, the resulting sample point maps into a sample value ¢ for H and
into a sample value § for Y. The decision maker observes § (but not i) and maps # into a
decision H (7). The decision is correct if H (%) = i. In principal, maximizing the probability
of choosing correctly is almost trivially simple. Given g, we calculate Py p (i | ) for each
i, 0 <4 < m — 1. This is the probability that ¢ is the correct hypothesis conditional on 7.
Thus the rule for maximizing the probability of being correct is to choose H(#) to be that
i for which PHD?("': | %) is maximized. This is denoted

ff(g) = arg m?x[PHif,(i | )] (MAP rule) (3.1)

where arg max; means the argument ¢ that maximizes the function. If the maximum is
not unique, it makes no difference to the probability of being correct which maximizing i
is chosen. To be explicit, we arbitrarily choose the largest maximizing ¢. The conditional
probability PHI}-;(i | 9) is called an @ posteriori probability, and thus the decision rule in
(3.1) is called the maximum a posteriori probability (MAP) rule.

When we want to distinguish between different decision rules, we denote the MAP decision
rule in (3.1) as Hprap(f). Since the MAP rule maximizes the probability of correct decision
for each sample value 7, it also maximizes the probability of correct decision averaged over
all 7. To see this analytically, let H4 (%) be an arbitrary decision rule. Since H maximizes

Py (i | §)] over 4,

Pyy (Hmar@) | 9) = Py (Ha@) | );  foranyrule Aand allj  (3.2)

For simplicity of notation, we assume in what follows that the observation random vec-
tor Y conditional on each hypothesis, has a probability density, and thus that ¥ has an
uncondltlonal probability density, p,,. Averaging (3.2) over observation vectors,

[ 2@ Py (Baaar@15) 45 = [ 2, @Pyg (Ha@17) dg (3.3)

The quantity on the left is the probability of correct decision using H Mmap, and that on the
right is the probability of correct decision using H 4. The above results are very simple, but
also important and fundamental. We summarize them in the following theorem.

Theorem 3.1 The MAP rule, given in (3.1), maximizes the probability of correct decision
for each observed sample value § and also maximizes the overall probability of correct
decision.
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Before discussing the implications and use of the MAP rule, we review the assumptions that
have been made. First, we assumed a probability experiment in which all probabilities are
known, and in which, for each performance of the experiment, one and only one hypothesis
is correct. This conforms very well to a communication model in which a transmitter sends
one of a set of possible signals, and the receiver, given signal plus noise, makes a decision
on the signal actually sent. It does not always conform well to a scientific experiment
attempting to verify the existence of some new phenomenon; in such situations, there is
often no sensible way to model a priori probabilities. In section 3.5, we find ways to avoid
depending on a priori probabilities.

The next assumption was that maximizing the probability of correct decision is an appropri-
ate decision criterion. In many situations, the cost of a wrong decision is highly asymmetric.
For example, when testing for a treatable but deadly disease, making an error when the
disease is present is far more costly than making an error when the disease is not present. In
section 3.4, we adopt a minimum cost formulation which allows us to treat these asymmetric
cases.

The next five sections are restricted to the case of binary hypotheses, (m = 2). This allows
us to understand most of the important ideas but simplifies the notation considerably. In
section 3.7, we again consider an arbitrary number of hypotheses.

3.2 Binary Detection with the MAP Criterion

We now continue our discussion of the MAP criterion. Assume a probability model in which
the correct hypothesis H is a binary random variable with possible values 0 and 1 and with
positive a priori probabilities Py and P;. Let Y be a rv whose conditional probability
density, Py (7| i), is initially assumed to be finite and non-zero for all 7/ and for i = 0, 1.

The conditional densities p},w(@‘ | i), i = 0,1 are called likelihoods in the jargon of hypothesis

testing. The marginal density of ¥ is given by P () = Pop}_,m(ﬂ 0) + Pzp?m(m 1). The
a posteriori probability of H, for i =0 or 1, is given by
Fp, (714
Pooli|f) =—28 "~ 3.4
Writing out (3.1) explicitly for this case,
Plp)'}”;(gl 1) 2 PopylH(gl 0) (3.5)
— — 7 0
pe(i) < Py (%)
H=0

This “equation” indicates that the decision is 1 if the left side is greater than or equal to
the right, and is 0 if the left side is less than the right. Choosing the decision to be 1 when



58 CHAPTER 3. DETECTION, DECISIONS, AND HYPOTHESIS TESTING

equality holds is arbitrary and does not affect the probability of being correct. Canceling
5 () and rearranging,
A=l
o@D > By
Pen@10) < Py
A=0

A7) =19 (3.6)

Alg) = 'p?lH(gr’| 1)/Py,; (7 | 0) is called the likelihood ratio, and is a function of §. Similarly
n = Py/P; is called the threshold. The binary MAP rule (or MAP test, as it is often called)
is then to compare the likelihood ratio with the threshold, and decide on hypothesis 0 if the
threshold is not reached, and on hypothesis 1 otherwise. Note that if the a priori probability
Py is increased, the threshold increases, and the set of § for which hypothesis 0 is chosen
increases; this corresponds to our intuition—the more certain we are initially that H is 0,
the stronger the evidence required to make us change our minds. We shall find later, when
we look at the minimum cost problem, that the only effect of minimizing over costs is to
change the threshold 7 in (3.6).

An important special case of (3.6) is that in which Py = P;. In this case n = 1, and the
rule chooses H () = 1 for Poig (F1]1) = Py, (7| 0) and chooses H(7) = 0 otherwise. This is
called a mazimum likelihood (ML) rule or test. The maximum likelihood test is often used
when Py and P; are unknown, as is discussed in Section 3.5.

We now find the probability of error under each hypothesis, Pr(e | H=0) and Pr(e | H=1).
From this we can also find the overall probability of error, Pr(e) =F Pr(e | H=0) +
Py Pr(e | H=1). In the radar field, Pr(e | H=0) is called the probability of false alarm,
and Pr(e | H=1) is called the probability of a miss. Also 1 —Pr(e | H=1) is called the
probability of detection. In statistics, Pr(e | H=1) is called the probability of error of the
second kind, and Pr(e | H=0) is the probability of error of the first kind.

Note that (3.6) partitions the space of observed sample values into 2 regions. Ry = {7 :
A(7) = n} is the region for which H =1 and Ro = {¢ : A(§) < n} is the region for which
H = 0. For H=0, an error occurs iff § is in Ry, and for H = 1, an error occurs iff 7 is in
Rg. Thus,

Pr(e | H=0) = [ v, (71 0)dy (3:7)

Prie| H=1) = [ p,,, @1 1)d7 (38)

Another, frequently more useful, approach to finding the probability of error is to work
directly with the likelihood ratio. Since A(%) is a function of the observed sample value 7,
we can define the likelihood ratio random variable A(Y’) in the usual way, i.e., for every
sample point w, Y(w) is the corresponding sample value ¥, and A(Y) is then shorthand for
A(Y (w)). In the same way, H(Y) (or more briefly H) is the decision random variable. In
these terms, (3.6) states that

H=1 iff A(Y)>7 (3.9)
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Figure 3.1: The source, in some given interval of time, attempts to transmit a binary
digit, either 0 or 1, to the detector. The transmitter is here abstracted into a modulator
which maps 0 into the signal vector @ = (a1,...,a,)7 and maps 1 into the vector
b= (b1,...,bn)T. A Gaussian noise vector, independent of the source output, is added
to the modulated signal. The detector receives the signal plus noise. Based on this
observation it makes a decision on the source output.

Thus, .
Pr(e | H=0) = Pr(H=1 | H=0) = Pr(A(Y) > 7 | H=0) (3.10)

Pr(e | H=1) = Pr(A=0 | H=1) = Pr(A(Y) < 5 | H=1) (3.11)

A sufficient statistic is defined as a function of the observation vector 7 from which the
likelihood ratio can be calculated. For example, ¢ itself, A(%), and any one to one function
of A(7) are sufficient statistics. A(%) and functions of it are often simpler to work with than
4/ in calculating the probability of error, since they are one dimensional variables rather than
vector variables. We have seen that the MAP rule (and, as we find later, essentially any
sensible decision rule) can be specified in terms of the likelihood ratio. Thus, once a sufficient
statistic has been calculated from the observed vector, the observed vector has no further
value. For example, we see from (3.10) and (3.11) that the conditional error probabilities
are determined simply from the conditional distribution functions of the likelihood ratio.
We will often find that the log likelihood ratio, LLR(Y) = In[A(Y)] is even more convenient
to work with than A(Y). We next look at some widely used examples of binary MAP
detection.

3.3 Binary Detection in Additive Gaussian Noise

We look at three progressively more complex examples here. Each can be visualized most
easily in terms of the communication situation depicted in Figure 3.1, but each also applies
more generally to many situations in which noisy measurements are taken to distinguish
between two alternatives.

Example 3.1 First we look at the scalar version of Figure 3.1 where n = 1. That is, the
correct hypothesis H is either 1 or 0; 1 is mapped into the real number b and 0 is mapped
into the real number a. Let Z ~ N(0,¢?) be the Gaussian noise rv, independent of H. The
observation rv Y is b+ Z or a + Z, depending on whether H = 1 or 0. Thus, conditional
on H=1,Y ~N(b,0o?) and, conditional on H = 0, Y ~ N(a,a?).

1 —(y — b)2
= { ((yzgz)) }

. S 2
i pym(ylﬂ)=\/?%2wp[ (&2;")1
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pr(F=1| H=0)

Figure 3.2: Binary hypothesis testing for signal plus noise

The likelihood ratio is the ratio of these likelihoods, and given by

(-9 _ﬂ - F(b —a)y + (- b?)]

202 202

[ (35) - 52)]

Substituting this into (3.6), we have

()65 2 B

This is further simplified by taking the logarithm, yielding

Aly) = exp [

ure) = [(50) (1-52)] 2 o) (314)

Assuming that b > a, (3.14) can be rewritten as a threshold rule on y directly,

H=1
o2In(n) +b+a_
b—a 2

0 (3.15)

NIV

H=0

This says that comparing A(y) to a threshold 7 is equivalent to comparing y to a threshold
6 = o?In(n)/(b — a) + (b + a)/2. In the maximum likelihood (ML) case (P, = Fp), the
threshold n for A is 1 and the threshold @ for y is the midpoint between a and b (i.e.,
6 = (b+ a)/2). For the MAP case, If 7 is larger or smaller than 1, @ is respectively larger
or smaller than (b+ a)/2 (see Figure 3.2).
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From (3.15), Pr(e | H=0) = Pr(Y > 6 | H=0). Given H =0, Y ~ N(a,0?), so, given
H =0, (Y —a)/o is a normalized Gaussian variable.

Pr(YZB]H:O)zPr(YU 5 8= ”’|H 0) Q(Q;“') (3.16)

where @(z) is defined as the complementary distribution function of a normalized Gaussian

rv, i.e., 2
Qx) = 3 \/_exp ( ) dz (3.17)

Q(x) cannot be evaluated in closed form, but is a standard function that will appear fre-
quently. Replacing € in (3.16) by its value in (3.15),

Pr(e | H=0) = Q (?‘_‘(? + bz'g “) (3.18)

We evaluate Pr(e | H=1) = Pr(Y < 6 | H=1) in the same way. Given H = 1, Y is M (b, 0?),

* Pr(Y<9]H=D)=Pr(Y;b<u|H 0)_1_Q(‘2;b)

g

Using (3.15) for ¢ and noting that Q(z) = 1 — Q(—=z) for any z,

Pr(e | H=1) = Q (“:I_“EI”) + 52';“) (3.19)

Note that (3.18) and (3.19) are functions only of (b—a)/o and 5. That is, only the difference
between b and a is relevant, not the individual values, and it is only this difference relative to
o that is relevant. This should be intuitively clear from Figure 3.2. If we define v = (b—a)/0,
then (3.18) and (3.19) simplify to

Pr(e | H=0) = Q (@ + %) Pr(e | H=1) = Q (ll-f’]‘{(i) + %) (3.20)

&

For ML detection, 7 = 1, so this simplifies further to
Pr(e | H=0) = Pr(e | H=1) = Pr(e) = Q(v/2) (3.21)

The quantity v* here is a signal to noise ratio, i.e., the ratio of the signal difference energy
to the noise energy. We shall find that the next two examples also reduce to this same form.

Example 3.2 Now we look at the vector version of Figure 3.1. If the source output is 0,
(H =0), the modulator produces the real vector @ = (ay,...,an)?. If the source output
is 1, the real vector b = (b, ...,b,)T is produced. Z = (Zy, ..., Z,)T is a noise rv assumed
to be N(0, 021) That is, Z1,... 2y are IID Gaussian rv’s, also independent of H. The
observation WY isb+Zorda+ 2, depending on whether H = 1 or 0. Thus, given H=1,
Y ~ N (b,021,), so that

} —(gk — b
Py (@ 11) = (9m2)n/2 pZ (y’f%z ) (3.22)
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Similarly, given H = 0, ¥ ~ N(@,02I), so that

P10 = 5= lz)n,zepz—(w (323)

The likelihood ratio is then given by

L —a 2 __ =% 2
A(y—rv) _ eXp} : (yk k) 202(9»‘6 k) (324)
2(br — ax)yx + (af — b3)
= Z 202
b—a)Ty aTa—blh i
= exp ( 02) A I 202 (3.25)

Substituting this into (3.6) and taking the logarithm of both sides,

> By
= <l 2
- In 2 = In(n) (3.26)

— T -+
b—a) g ala—>b'b
LLR(7) = & 02) %P 5

It can be seen that the test involves the observation § only in terms of the inner product
(6 — @)T7, so we can rewrite (3.26) in the form

A=l

=6 (3.27)

These equations are interpreted in Figure 3.3. Contours of equal probability density for
Py (7 | 0) are concentric spherical shells centered at @, whereas contours of equal probability

density for Py, H(g | 1) are concentric spherical shells centered at b. As can be seen from

(3.24), the locus of points of constant likelihood ratio are points § for which the squared
distance to @, less the squared distance to b is a constant. This set of points forms a straight
line for the two dimensional case shown in Figure 3.3. In general, as seen analytically by
(3.25), points of constant likelihood ratio are points for which (b @)T§ is constant, and
this is the equation of an affine space.!

We have seen from (3.27) that comparing A(%) to the threshold 7 is equivalent to comparing
(b @)7§ to the threshold ¢. Thus the affine space (b a)Ty ¢ separates the observation
space into two regions, where H = 1 for (b —@)T§ > ¢ and H = 0 otherwise.

n linear algebra, an n — 1 dimensional hyperplane in n dimensional space is by definition a linear space
in its own right; such a space must include the origin, and be spanned by = — 1 vectors. The translation of a
hyperplane away from the origin is called an affine space. For the case here, points 7 for which 5 &‘)T g =0
form a hyperplane of points perpendicular to (b — @). The set of points for which (5 — &)7% = ¢, for some
constant ¢, is thus an affine space.
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T=1

Figure 3.3: Decision regions for binary signals in additive IID Gaussian noise.

We also see from (3.26) that A() can be calculated from (b — &)T7, so that (b—@)T7 is a
sufficient, statistic. This says that the threshold test for this problem is based on the value
of a single number which is simply a linear combination of the observed variables. Note that
each observation gy is weighted by (bx — aj) in forming the sufficient statistic. This makes
sense intuitively, since if by — ax is very small, the observation g is mostly noise, whereas
if by — ag is large, the observation gives a much better indication of which hypothesis is
correct.

We can view (b — @)T# as the correlation? between b — @ and the observation 7. Thus a
threshold detector, for this additivg Gaussian noise case, is often called a correlation detector
in communication theory. Often b and @ are separately correlated with ¢ and the results
compared; this is also called a correlation detector.

If we view ¥ as a discrete time sequence yi,...,%n, then we can also visualize performing
this correlation function by convolving 1, . .., Yo With (b, —an), (bp—1 —@n—1), ..., (b1 —a1).
This is the output, at the appropriate sampling time, of a digital filter with the impulse
response (bp, — @n), ..., (b1 —a1). A filter with this impulse response is said to be a matched
filter to (b1 — a1),...,(bn — an). We will look at correlation detectors and matched filters
again later when we consider detection of waveforms. The important point to note here,
however, is that both the correlation detector and the matched filter simply compute the
inner product (b— &@)77.

Another way of viewing (3.27), and the most fundamental, is to view it in a different co-
ordinate basis. That is, view the observation § as a point in n dimensional space represented
in a particular co-ordinate system. Consider a different orthonormal basis where one of the
basis elements is (b— @)/ || 6 — @ ||, where || & — @ || is the length of b — &,

—

15— l=yE-aTE-a), (3.28)

Thus (b —a)/ I b—@ | is the vector b — & normalized to unit length.

*For the moment, we ignore any similarity between this use of the word correlation as an inner product
and the use of correlation as an expectation between random variables; we discuss this similarity later,
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The two hypotheses can then only be distinguished by the component of the observation
vector in this direction, i.e., by (b — &7/ | b— @& ||. This is what (3.27) says, but we now
see that this is very intuitive geometrically. The measurements in orthogonal directions
only measure noise. Because the noise is IID, the noise in these directions is independent
of both the signal and the noise in the direction of interest, and thus can be ignored. This
is sometimes called the theorem of irrelevance.

Note that 875 — a¥a@ = (b — @)T (b + @). Substituting this in (3.26), we get
, T 2 A=
b—a b+ad\ > 2
LLR(%) = - (ﬂ'—- i a) < In=2 = In(n) (3.29)

o? 2 < P1
A=0

This says that for ML detection, where In»n = 0, the decision regions are separated by the
affine space that forms the perpendicular bisector between @ and b.

Finally, we use (3.29) to evaluate Pr(e | H=0). E[Y — (b + @)/2 | H=0)] = (& — b)/2, so

(b—a)7(b—a)
202

E[LLR(Y) | H=0] = —

Defining - as .
[|b—al|

(22
this simplifies to E [LLR(Y)| H=0] = —?/2. Similarly, we see that VAR[LLR(Y)| H=0| =

~42. Thus, conditional on H = 0, LLR(Y) ~ N(—+2/2, 4%). The probability of error can
then be found (see Exercise 3.1 as

v = (3.30)

Pr(e | H=0) = Pr [LLR(Y) >In(n) | H=0] = Q (lfgi) + 12*-) (3.31)

Analyzing LL_B.(Y’) conditional on H =1 in the same way, we find that, conditional on
H =1, LLR(Y) ~ N(¥%/2,7%), and it follows that

-1
Pr(e| H=1) = Q (—ﬂ § 3) (3.32)
y 2
Note that both error probabilities are functions only of v = || b—a || /e. This is not

surprising in terms of our geometric interpretation. || b— @ || is the distance from @ to b,
and this is normalized by the standard deviation of the noise. That is, if we measure both
| &— ad || and ¢ in some other units, the error probability cannot change. We can interpret
| 6—@ || as the energy in the difference between the signals. We can also interpret 2 as
the energy per measurement of the noise. This says that what is relevant is not the number
of different measurement values (i.e., n), but rather the total signal difference energy used
over the set of measurements. With IID Gaussian noise, this signal difference energy can
be split up in any way without affecting the error probability. This is why the signal to
noise ratio is such an important parameter in digital communication.
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Example 3.3 We consider Figure 3.1 again, but now we generalize the noise to be N'(0, K 3)
where K 5 is non-singular. The likelihoods are then

exp [—3(7 - BT K (7~ )]

P (711 = , 3.33
(7| (27r)n/2\/det(KZ~) i)
=2 -4 -a7KZ; (7 - )] -
Py ig\¥ (zﬂ)nﬂ\/det(}{z.) ’
The log likelihood ratio is
Yo wPantia. <4 Lpa. P fhg S "
LLR() = 57 - &) K3'(§ — @) — 5 (7§ - DT K5 (7 - D) (3.35)
i Ty Lot da  Lapo. s
This can be rewritten as
o o[, b+d
LLR(%) = (b —a)TKZ’ [y -— } (3.37)

The quantity (3 —a)TKZ'7 is a sufficient statistic, and is simply a linear combination of
the measurement variabl%s Y1, -- -, Yn. Note that

E [LLR(Y | H=0)| = —(6 — &)TK;' (6 —a)/2
Defining vy as

i \/(5 — )Tk - a), (3.38)
we see that E[LLR(? | H=0)] = —?/2. Similarly,
VAR [LLR(?‘ | H:O)] — A2

Then, as before, the conditional distribution of the log likelihood ratio is given by (see
Exercise 3.2 .

Given H=0, LLR(Y) ~ N (—7%/2,7%) (3.39)
In the same way, .

Given H=1, LLR(Y) ~ N(¥%/2,7%) (3.40)
The probability of error is then

I
Pr(e | H=0) = Q (% 1 %) . Pr(e| H=1)=Q ( 3 -'21) (3.41)

Note that the previous two examples are special cases of this more general result. The
following theorem summarizes this.

—Inn
g

Theorem 3.2 Let the observed r# ¥ be given by ¥ = @+ Z under H=0 and by Y =b+2
under H=1 and let Z ~ N(0, K;) where K is nonsingular and Z is independent of H.
Then the distribution of the conditional log likelihood ratio rv’s are given by (3.39, 3.40)
and the conditional error probabilities by (3.41).
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3.4 Binary Detection with the Minimum Cost Criterion

An hypothesis test with a minimum cost criterion is often called a Bayes test. Bayes was an
early statistician who advocated studying statistics within the context of a probability model
(this is now called Bayesian statistics). In the next section, we discuss the Neyman-Pearson
test, which is a good example of a test that does not depend on a priori probabilities.

Assume a probability model in which the correct hypothesis H is a binary random variable
with possible values 0 and 1 and a priori probabilities Py and P;. Let Y be the observation,
with the likelihood functions Py, 7 ]0) and - (7| 1). The a posteriori probability of H
is given, as before, by

Py ()
Finally, we assume that there are costs associated with each decision and hypothesis. Let

Ci; be the cost of choosing ¢ if j is the correct hypothesis. Given a sample value ¥ for the
observation, the expected cost of decision 1 is

P oG9 = (3.42)

E [Cost, of H=i | Y=j] = CioPyy(0 | 9) + Cur Py (1| 9) (3.43)

The decision, H, that minimizes the expected cost for the observed sample value 7, is then

-~

H =arg mt_in [CfOPHn"/(O | 9) + C,-IPHI}-;(I | y“)} (3.44)

Writing this out explicitly,

A=

B

CooPpyp(019) +CorPyp(L19) 2 CioPyp(0]9) + CriPyp(1]7)
H=0
Rearranging terms,

H=1

>

(Co1 — Cu1) Py (1| 9) < (Cio=Coo)Pyp(0|7) (3.45)

A=0

Assuming that Cp; — Cy; > 0 (1. e., that the cost of an erroneous decision is greater than
that of a correct decision), we can divide (3.45) by this term and by pHn“'(O | 7) to get

H=1
P19 > (C10 — Coo)

PHr}?(O | ¥) < . (001 —Cll)
H=0

(3.46)
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" Substituting (3.42) into this, we get our final result,

H=1
(Cio— Coo)Po

p?;g(gl 1)
(Co1 —Cn)P,

A = @10

>
< (3.47)

H=0

Note that the decision rule in (3.47) is again a threshold test, i.e., the decision depends only
on a comparison of the likelihood ratio A(7) with the threshold . The only difference from
our previous results is that i is now different. Note also that the costs affect the threshold
only through the differences Cp1 — C11 and Cyo — Coo. This is to be expected, since we can
view C11 as a fixed cost that occurs whenever hypothesis 1 occurs, and view the difference
Co1 — C11 as the additional cost if we choose H = 0.

Since the decision rule is a threshold test, Pr(e | H=0) and Pr(e | H=1) can again be found
as before (from (3.7) and (3.8) or from (3.10) and (3.11)). The expected cost then consists
of the fixed costs above plus the added costs when errors are made. Thus

E[C] = PoCoo + PiC11 + Py Pr(e | H=0)[Clo — Coo)

+P1 PI‘(C | H=1)l001 = Cu] (3.48)

The following theorem summarizes this.

Theorem 3.3 Assuming that Cy; —Ci; > 0, the Bayes rule, given in (3.47), minimizes the
expected cost conditional on each observed sample value § and also minimizes the overall
expected cost. The expected cost is given in (3.48), with Pr(e | H=0) = Pr(A(Y) > 5 | H=0)
and Pr(e | H=1) = Pr(A(Y) < 5 | H=0).

So far, we have looked at the minimum cost (Bayes) rule, the MAP rule, and the maximum
likelihood (ML) rule. All of them are threshold tests where the decision is based on whether
the likelihood ratio is above or below a threshold. For all of them, (3.7) to (3.11) determine
the probability of error conditional on H = 0 and H = 1, and these quantities determine the
other quantities of interest, as in (3.48). The next section treats how these error probabilities
change as a function of the threshold.

3.5 Effect of Threshold Variation; the Neyman-Pearson Test

In a binary threshold test, the likelihood ratio, A(%), is calculated from the observation 7.
A(f) is then compared with the threshold 7 and H is chosen to be 1 or 0, depending on
whether A(§) > 5 or A(§) < n. Let L = A(Y) be the likelihood random variable. An error
occurs if either H =0and L > norif H =1 and L < 7. Since we want to compare different
values of 7, and since the error event depends on 7, we denote the error event as e(n) in
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this section. When we want to look at some arbitrary non-threshold test A, we denote the
error event as e(A). We then have

Pr{e(n) | H=0) = Pr[L > n | H=0]; Pr(e(n) | H=1) =Pr[L < 5| H=1] (3.49)
Assuming that L has a finite probability density under each hypothesis,

dPr(e(n) | H=0) dPr(e(n) | H=1)

dn = ~Pyu(]0) dn =pyua(m|1) (3.50)

We now relate the conditional probability densities p,,(n | 1) and p,,(n | 0). Ignoring
terms of order smaller than ¢ for small &,

Punln| 6= [ oy (711 9 47 (3:51)

Fn<A@<n+s
Taking the ratio of these terms for i =1 and i =0,

Prin (TI | 1) — lim fﬁ:nﬁA(ﬂ'}{r}—i—é p?[y(gl 1) d@"
Prin (n]0) =0 fg’;ng}\(g’){ﬂ-;—é Py iy ('] 0)dy

Over the range of these integrals, Mg (7o)< Py, @ 11) <(n+08)py, 4 (71 0). Thus the
ratio of the integrals is between 5 and #n + 4. Going to the limit as é approaches 0,

P 1) =np, (0| 0) (3.52)

Substituting this in (3.50), we get

dPr(e(n) | H=1) _
dPr(e(n) | H=0)

—7 (3.53)

With (3.53), we can plot Pr(e(n) | H=1) as a parametric function of Pr(e(n) | H=0); we
call this the error curve.® As 7 is increased from 0 to oo, Pr(e(n) | H=0) decreases from 1
to 0, and Pr(e(n) | H=1) increases from 0 to 1. For any 7, the slope of the error curve at
Pr(e(n) | H=0) is —n. This is illustrated in Figure 3.4.

Since the slope of the error curve increases as n decreases, and hence as Pr(e(n) | H=0)
increases, we see that the error curve is convex.

We can interpret the error curve in terms of MAP detection. For a priori probabilities P
and Py, an arbitrary test A has the error probability

Pr(e(A)) = P, Pr(e(A)| H=1)+ Py Pr(e(A) | H=0)
= Py[Pr(e(A) | H=1) +nPr(e(4) | H=0)); n=Po/P;

3In the radar field, one often plots 1 — Pr(e(n) | H=1) as a function of Pr(e(n) | H=0). This is called
the receiver operating characteristic (ROC). If one flips the error curve vertically around the point 1/2, the
ROC results.
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Pr(e(n) | H=0) 1

Figure 3.4: The error curve; Pr(e(n)| H=1) as a parametric function of Pr{e(n) | H=0)

Here Pr(e(A) | H=1) is the probability of error when test A is used and the correct
hypothesis is i. For arbitrary positive Py, P;, the MAP test, i.e., the threshold test with
1 = FPy/P1, minimizes Pr{e(A)) over all tests, so for n = Py/P; and for all A,

Py[Pr(e(n) | H=1) + 7 Pr(e(n) | H=0)] < P1[Pr(e(A) | H=1) + 1 Pr(e(4) | H=0)] (3.54)

Figure 3.4 interprets this equation. The vertical axis intercept of the tangent line is Pr{e(n) |
H=1)+n Pr(e(n) | H=0). Eq. (3.54) says that for any other test, the point [Pr(e(A) | H=0),
Pr(e(A) | H=0)| lies on or above that tangent line. Since this is true for all positive choices
of a priori probabilities, and thus for all 7,0 < n < oo, the point [Pr(e(A) | H =0),
Pr(e(A) | H=0)] lies on or above all the tangent lines, and thus lies on or above the curve
of threshold tests. Thus the threshold tests are optimal in the sense of achieving the best
tradeoffs between Pr(e(A) | H=1) and Pr(e(A) | H=0).

The Neyman-Pearson test is defined as the test A that minimizes Pr(e(A) | H=1) for a
given maximum allowable value o for Pr(e(A) | H=0). This test is then a threshold test,
choosing that value of 7 for which o = Pr(e(n) | H=0). More explicitly, in terms of the
error curve in Figure 3.4, we find the point a on the horizontal axis. The minimum value
of Pr(e | H=1), for Pr(e | H=0) < «, is then the value of the error curve evaluated at a,
and the threshold is the magnitude of the slope at that point.

The derivation of Pr(e(n) | H=1) as a function of Pr(e(n) | H=0) above depended on the
assumption that the likelihood random variable L has a finite density everywhere. We next
look at the more general case where the distribution function of L, conditional on H = 0,
contains discontinuities. This occurs both when Y is discrete and also in cases like that
shown in Figure 3.5. At a point of discontinuity, say n*, we have Pr(L=n* | H=0) > 0. As
in (3.51), we have P, (n* | 1) = [ 7 =A) pwy(ﬁl i) dy. Over the range of these integrals,
;u?m(g';‘l 1) = n*p?m(ﬂ | 0). Thus, Pr(L=n* | H=1) = * Pr(L=n* | H=0). The same result
can be seen to hold when Y does not have a density.

For a threshold test at n*, the “don’t care” event, L = n*, is significant, since it occurs with
non-zero probability. Thus, as 7 goes from just below n* to just above n*, Pr(e(n) | H=0)
jumps downward by Pr(L=n* | H=0) and Pr(e() | H=1) jumps upward by |n*| times
as much. This is illustrated in Figure 3.5d by a straight line portion, of slope —7*, on the
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PyMD) \ AS)
y y

0 1 2 3 ©
(a)
Pr(e(n)IH=1)
 —a— Range of points
P (¥I0 L™ ' for which m=1
YIH
y
(b) Pr(e(n)IH=0)

(d)
Figure 3.5: The two likelihood functions in (a) and (b) are equal for 1 <y < 2, and
the likelihood ratio is 1 over this region. For a threshold test with n=1, the region
1 <y < 2is a don’t care region. As the fraction of those points mapped into H
increases, Pr(e | H=0) increases and Pr(e | H=1) decreases along the straight line
indicated between the solid dots in part (d).

error curve. If the don’t care cases with L = n* are all decided as H = 1 (according to
our convention as in (3.5)), the corresponding point on the error curve is at the lower right
of the straight line portion. If the don’t care cases are all decided as H = 0, then the
corresponding point is at the upper left of the straight line portion. As the fraction of those
points decided as H = 1 is increased from 0 to 1, we move from upper left to lower right
on the straight line portion of the curve.

We have been referring to the event L = n*, for the threshold test at n* as a ‘don’t care
case’ because decisions in this case do not effect the overall error probability for the MAP
rule with Pp/P; = n*. We have now seen that if * is a point of discontinuity for L, then
decisions in this case do effect the individual error probabilities Pr(e | H=i), i = 0,1. To
handle this systematically, we generalize our definition of a likelihood test to allow flexibility
in handling the ‘don’t care cases’. In particular, define Pr(e(n, q) | H=0) as the probability
of error, given H=0, for a threshold test at 1 for which,if A(7) = n, the decision is H=1 with
probability ¢ and H=0 with probability 1 — ¢. Then for an 5* at which L is discontinuous,
Pr(e(n*,q) | H=0) increases with ¢, and the corresponding Pr(e(n*,q) | H=1) decreases
with g, along the straight line portion of the error curve.

For a Neyman-Pearson test under the constraint Pr(e | H=0) < a), we find the point on
the error curve where o« = Pr(e(n, ¢) | H=0). If the resulting 7 is at a point of discontinuity
for L, then, when the event L = n occurs, the decision H =1 is made with probability
q and otherwise H = 0. For situations such as that in Figure 3.5, this decision can be
made according to the particular value of . On the other hand, if Y is discrete, then some
additional binary random variable X, with Px(1) = ¢ is required to make the decision.

If Y is discrete, then Pr(e(n,q) | H=1), as a parametric function of Pr(e(n,q) | H=0), is
piecewise linear. Each linear portion of the curve corresponds to a particular value n* taken
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Pr(e(n) | H=1)

r(e(n) | H=0) = Pr(e(n) | H=1)

45°

Pr(e(n) | H=0)

Figure 3.6: The minmax test. Increasing 7 from the point shown increases Pr(e | H=
1,7n), and decreasing i increases Pr{e | H=0,7).

on by the likelihood variable with non-zero probability. The point on that linear portion is
then determined by g. The following theorem summarizes the above results

Theorem 3.4 The error curve is given by Pr{e(n,q) | H=1) as a parametric function in
n and ¢ of Pr(e(n,q) | H=0). The error curve is convex and has straight line segments of
slope 7* at each 7* at which the distribution function of L = A(Y) (conditional on H=0)
has a discontinuity. For any test A, the point (Pr(e(4) | H=0), Pr(e(A) | H=1)) lies on or
above the error curve.

There is one more interesting variation on the theme of threshold tests. If the a priori
probabilities are unknown, we might want to minimize the maximum probability of error.
That is, we visualize that we first choose a test, and then nature chooses H to maximize
the probability of error. Our objective is to minimize the probability of error under the
assumption that nature will then choose H to maximize Pr(e). The resulting test is called
a minmax test. It can be seen geometrically from Figure 3.6 that the minmax test is the
threshold test at the intersection of the error curve with a 45° line from the origin. If there
is symmetry between H = 0 and H = 1, then the error curve will be symmetric around the
45° degree line, and the threshold will be at n = 1 (i. e., the ML test is also the minmax
test).

3.6 Repeated Observations

Consider an experiment in which n identically distributed observations are made with the
same hypothesis. That is, the observations (Y;,Y3,...,Y,) = Y7 have the same conditional
density py, . (7 | H=1) = IT§=1Py 5 (Y« | ©) where p,,, is the conditional density for each
variable Yi,...,Y,. Example 3.2 above, with the additional constraint that ax = a; and
b = by for 1 < k < n is an example of such repeated observations. This is also a reasonable
model for many situations in which multiple noisy measurements are made of a given set
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of alternatives. For the binary hypothesis case, the likelihood ratio is given by

HE:l Py\g (yk | 1) _ i py|H(yk I 1)

AR = = || —=—F—= 3.55
(y—') H}cl:l DPyv\u (yk | 0) k=1 py;g(yk I 0) ( )

Taking the log of each side, we get the log likelihood ratio, LLR(%),

b T
pyjy(yk | 1)
LLR(%) = ) In [——-—— = » LLR(yx) (3.56)
;:1 pﬂy(yk | 0) o
where LLR () is the log likelihood ratio of the k** observation yj,
Py (Y | 1)1 B,

LLR =In|—— 3.57
(yk) [py|y(yk | 0) ( )

Thus, conditional on each hypothesis, LLR()"") is a sum of n IID random variables. For a
threshold test with threshold 5, define # = In(n). Then

Pr(e | H=1) = Pr[LLR(Y) < 8] | H=1) = Pr {i LLR(Yz) < 8| Hml} (3.58)
k=1

Pr(e | H=0) = Pr{LLR(Y) > 8 | H=0| = Pr E: LLR(Yx) > 3 | H=0] (3.59)
k=1

We could calculate these error probabilities for any given likelihood ratios and choice of
n, but we are more interested in finding a simple upper bound to these quantities that
shows what happens when n gets large. The appropriate tool here is the Chernoff bound,
or exponential bound. Recall that the moment generating function (MGF) of a random
variable U is g, (s) = E[exp(sU)]. The Chernoff bound states that for any s > 0 such that
g, (8) exists, and for any real number g,

Pr(U = B) < e™*gy(s) (3.60)

To derive this, assume that U has a density p, (u). Then

PrU > ) = f:ﬁpy(u) Bz / ® sy (4) du

< [ e P, () du=eg, (s

where the first inequality follows because exp[s(u—3)] > 1 for u > 3, and the second follows
because the integrand is non-negative for all . Since this bound is valid for all s > 0, we
have?

Pr(U > B) < mine™* g, (s) (3.61)

“In a few very bizarre cases, this minimum has to be replaced with an infimum, but we won't have to
worry about that here.
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This bound can be rewritten in the following more convenient form:

Pr(U 2 f) < mipexp [—sB + In(g, ()] (3.62)

It can be shown that the second derivative of —s8 + In[g,(s)] is non-negative over the
values of s for which g, (s) exists. Thus we can minimize —s@ + In[g, (s)] over s by setting
the derivative with respect to s equal to 0. The minimum (over all s} thus occurs at

= d[In{g,(s)]/ds. If B8 > E[U], this minimum occurs for s > 0, so the s for which
B = dIn(g, (s)]/ds minimizes (3.62). If 3 < E[U], then (3.62) is minimized by s=0, leading
to the trivial bound Pr(U > ) < 1.

This bound is particularly convenient for sums of IID random variables. Let U = V] + Vo +
-+ + Vi, where Vi,...,V,, are IID. Then, as shown in Exercise 3.4, g, (s) = [g,-(5)]"*. Thus

Pr(U 2 B) < minexp [—~sf +nln(g, ()] (3.63)

For the application at hand, let go(s) be the MGF of LLR(Y%) under hypothesis 0, so

. o2 pyu,'(yl l) - _ oo 1—s
0o() = | Praw!0) L—m dy= [ [pru@!0] [Pl D] dy (360
Thus, for a threshold test with threshold i, Pr(e | H=0) < exp[—sn + nIn(go(s))] where
go(s) satisfies (3.64). By almost the same argument as used in deriving (3.60), there is an
equivalent bound on P(U < f3). For any r < 0,

Pr(U < B) < exp[rf + In(gy (r))] (3.65)
If U is the sum of n IID rv’s each with MGF g(r), this becomes
Pr(U < B) < exp[rB + nin(g(r))] (3.66)
For the application at hand, we let g;(r) be the MGF of LLR(Y}) under hypothesis 1, so
Py (¥ | )‘I
3 1 d 3.67
0 = [ poawl ’mew y (3.67)
S —r 14r
= [ [peu@! 0] [pratw | D] dy (3.68)
Note that g;(—1 + s) = go(s), so we have the ﬁ£1al answer:
Pr(e | H=0) < 0%1321 exp|—sn + nln(go(s))] (3.69)
Pr(e| H=1) < min expl(1— )1+ nln(go(s)) (3.70)

It can be seen from the figure that as n increases, the exponents increase approximately
linearly with n. Eventually, the threshold # becomes insignificant. It can be shown that
these bounds are asymptotically tight in the sense that for both H =1 and H = 0,

Jim min ln[Pr(enl H=i)]

= (21, Injgo(s)] (3.71)
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(1—35)8+ nlnge(s)

—58 + nlng(s) slope

Figure 3.7: Exponents in Chernoff bound on Pr(e | H=0) and Pr(e | H=1)

Exercise 3.12 shows that for example 3.2, with ax = a and b = b,
go(s) = exp [~s(l —s8)(b— a)z/(202)} , (3.72)

so the bound becomes
Pr(e | H=i) < exp [—(b — a)?/(807)] (3.73)

As shown in Exercise 3.5, @(«) can be approximated closely for large z by ﬂ’&;—:z@l so this
bound has the right exponent but ignores the term 1/[v/27a].

3.7 More than Two Hypotheses

Consider an hypothesis testing problem with m hypotheses. H is then a random variable
with the possible values 0,1, ...,m —1 and given a priori probabilities P; = Py (7). Assume
that Cj; is the cost of choosing ¢ when H = j and consider the Bayes test where H is
selected to minimize cost. As in (3.43), for an observed sample value § of the observation
VY,

m—1

Elcost of H=i | Y=y] = > CiiPyp(i | 9) (3.74)
=0
The minimum cost decision for the observed sample value § is then
R m—1
H = argmin 3. Cij Py (3 1 9) (3.75)
7=0

As before, if the minimizing i is not unique, we follow the convention of choosing the largest
minimizing i. Using Bayes’ formula for PH]};(j | 7) and canceling () since it is common
to all terms in the minimization,

m—1

H =argmin Y Cy;Pip, , (7 ) (3.76)
=0
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Finally, define the likelihood ratios, A«(7) = py, (7 z‘)/p},mr (# | 0). With this definition,
Ag(7) = 1. The use of hypothesis 0 for normalization is arbitrary, but we assume it here.
We then have

m—1

H = argmin l:CmPQ + Z CiijAj(g‘)} (3.77)
i =

Recall that for m = 2, the decision was simply a threshold test on the value of A;(%). Here
the decision is based on the m—1 dimensional vector of likelihood ratios (A1 (), . . .y Am—1 ()7
Let R; be the region in this vector space mapped into a decision ¢. Then points in R; are
those points that satisfy

m—1
[CmPo + Y iy PiA;(7)

m—1
< [CkOPO +> ijPjAj(ﬁ')] /o allk<i

=1 j=1
m—1 m—1
CioPo+ Y. CiiPiAi(iD | < |CroPo+ Y CoiPiAs(@)| 5 allk >
#=l1 i=1
This can be rewritten as
I m—1
(Cio— Cro)Po + Y _ (Cij — Ci) PiA;(H) | <05 allk < (3.78)
) j=1
i m—1
(Cio— Cro)Po+ Y _(Cij — Cis) PA;() | <0; allk>i (3.79)
7=1

For each k # i, this inequality corresponds to a ‘half space,’ i.e., the set of points on one
side of the affine space given by

m—1
(Cio —Cro)Po+ > (Ci5 — ij)PjAj(ZT)] =0
i=1

Thus, R; is the convex region bounded by this set of m —1 affine spaces. These affine spaces
separate the various decision regions, but, for example, the affine space separating decision
region 0 from region 1 depends on all the likelihood ratios, since all the likelihood ratios
enter the decision (i.e., Ci2 might be much greater than Cpz so that when A is large, the
decision is biased toward H = 0. Not a great deal more can be said about these decision
regions with this generality.

Many of the situations in which costs are important can be put in the form where Cy; =0
for all 4, and Cy; = f; for all 4 # j. That is, f; is the cost of making an error when H = j,
but it does not depend on which incorrect decision is made. In this case,

m—1 m—1
Y- CuPihs(@) = Y fiPiAs (i) — fiPha(i) (3.80)
J=0 i=0
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Since the sum on the right hand side of (3.80) is common to all 4, (3.77) becomes

-,

H = arg max f; P;A;(%) (3.81)

This can be viewed as a set of binary threshold comparisons, i.e., for all j,,5 > 1,

>
2 = Nji (3.8'2)

It can be seen that, if A;(7) > Ai(¥) for all i # j, then (3.82) eliminates all hypotheses
other than j, which then becomes the ML decision.

Example 3.4 Consider the same communication situation as in Figure 3.1, but assume
the source produces one of m possible outputs, 0 to m — 1, and output ¢ is mapped into

a; = (@41, 042, - - -, Gin). Using the same analysis as in example 3.2, the analogous result to
(3.27) is :
B
T T
5 as; a; — a; a;
@-a)7g % o ln(m) + 15— (3.83)
B

The geometric interpretation of this, in the space of observed vectors 7, is shown in Figure
3.8. The decision threshold between each pair of hypotheses is again an affine space perpen-
dicular to the line joining the two signals. We also note that (&;—do) g for1 <j < m—11is
a sufficient statistic for this m-ary problem. Thus if the dimension n of the observed vectors
7 is greater than m — 1, we can reduce the problem to m — 1 dimensions by transforming to
a co-ordinate basis in which, for each i, 1 <i < m, @; — dp is a linear combination of m —1
(or perhaps fewer) basis vectors. Using the theorem of irrelevance, the components of 7 in
all other directions can be ignored.

Even after the simplification of representing an additive Gaussian noise m-ary detection
problem in the appropriate m — 1 or fewer dimensions, calculating the probability of error
for each hypothesis can be messy. For example, in Figure 3.8, Pr(e | H=2) is the probability
that the noise, added to @, carries the observation § outside of the region where H = 2.

This can be evaluated numerically using a two dimensional integral over the given constraint
region. In typical problems of this type, however, the boundaries of the constraint region
are several standard deviations away from @y and it is often sufficient to provide a good
upper bound to the error probability. The appropriate bound here is the union bound. That
is, for any set of events, Fy, F», ..., E,

k K
P (U Ej) < > P(E)) (3.84)
j=1 =1
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Figure 3.8: Decision regions for 3 signals in additive IID Gaussian noise.

For the problem at hand, the error event, conditional on H = 4, is the union of the events
that the individual binary thresholds are crossed. Thus, using (3.83),

i - =4 AT = b ﬁg’a.? 5 a"g‘a‘“
Pr(e | H=i) < 3 P ( (@ — )77 2 o In(ny:) + 2205 (3.85)
i
Using (3.31) to evaluate the terms on the right hand side,
Pr(e| H=i) < @ (22, 15 -& | (3.86)
Gki " aj — G4 ” 20

3.8 EXERCISES

Exercise 3.1 a)Verify (3.31) from the fact that, conditional on H = 0, LLR(Y) ~ AN (—2/2, 72).
b) Similarly, verify (3.32) from the fact that, conditional on H = 1, LLR(Y) ~ N'(y2/2, 73)

¢) Define U = (b—a)TY. Find the mean and variance of U conditional on H=0. Use this,
along with (3.27) to find Pr(e | H=0). Verify that your answer agrees with (3.31).

d) Note that U, as defined above, is a sufficient statistic. View the sample value v of U as
the observation, and find the LLR of w.

e) Find Pr(e | H=0) and Pr(e | H=1) by applying (3.18) to this one dimensional problem.
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Exercise 3.2 a)Let U = (b— a)TKgll_}. Find the conditional variance of U conditional
on H=0and on H = 1.

b) Find E[U | H=0] and E[U | H=1].

c) Give the threshold test in terms of the sample value u of U, and evaluate Pr(e | H=0)
and Pr(e | H=1) from this and part b). Show that your answer agrees with (3.41) .

d) Explain what happens if K is singular. Hint: you must look at two separate cases,
depending on the vector b — a.

Exercise 3.3 Let ¥ be the observation rv for a binary detection problem, let  be the
observed sample value. Let v = f(#) be a sufficient statistic and let V be the corresponding
random variable. Show that the likelihood ratio, A(%), is equal to py, , (f (¥} | 1)/py, 5 (f () |
0). In other words, show that the likelihood ratio of a sufficient statistic is the same as the
likelihood ratio of the original observation.

Exercise 3.4 Let U =V} + .- + V,, where V),...,V, are IID rv’s with the MGF g, (s).
Show that g, (s) = [g,,(s)]”. Hint: You should be able to do this simply in a couple of lines.

Exercise 3.5 a)Consider example 3.3, and let 7 = AW where W N{(0,I) is normalized
IID Gaussian. The observation r7' Y is @+ 2 given H = 0 and is b+Z given H = 1. Suppose
the observed sample value 4 is transformed into # = A~'§. Explain why ¥ is a sufficient
statistic for this detection problem (and thus why MAP detection based on 7 must yield
the same decision as that based on ).

b Consider the detection problem where V = A~13@+ W given H = 0 and A=1h+ W given
H = 1. Find the log likelihood ratio LLR(%) for a sample value 1}'401‘ V. Show that this is
the same as the log likelihood ratio for a sample value = A of Y.

¢) Find Pr(e | H=0) and Pr(e | H=1) for the detection problem in part b) by using the
results of example 3.2. Show that your answer agrees with (3.41). Note: the methodology
here is to transform the observed sample value to make the noise IID; this approach is often
both useful and insightful, and we use it often in subsequent chapters.

Exercise 3.6 a)Calculate go(s) as given in (3.64) for the decision problem in example 3.2
with ax = a and by = b, 1 < k < n. Verify (3.72) and (3.73).

b Upper bound Q(«) by substituting y = 2 — & for z as the variable of integration in the
integral defining @Q(x) and then dropping the quadratic term in y. Explain why this results
in a good approximation for larege « (nothing very elaborate is expected here).

Exercise 3.7 Derive the union bound given in (3.84).
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Exercise 3.8 Binary frequency shift keying (FSK) with incoherent receptlon can be mod-
eled in terms of a 4 dlmensmnal observation _vector Y = (Y1, Y3, Y3, Yy)T. Y = X + Z where
Z ~ N(0,62I) and Z is independent of X. Under H = 0, X = (acosé,asing,0,0)7,
whereas under H =1, X = (0,0, acos ¢,asin$)”. The random variable ¢ is uniformly dis-
tributed between 0 and 27 and is independent of everything else. The a priori probabilities
are Po = Pl = 1/2.

a) Convince yourself from the circular symmetry of the situation that the ML receiver
calculates the sample values vy and v; of Vo = Y? 4+ Y and V; = Y# + Y and chooses
H =0 if vo > v and chooses H = 1 otherwise.

b) Find Pr(V; > v; | H=0) as a function of v; > 0.
c) Show that

2

2 2
Fo— — 2 =
exp[ y:— 13 +2ya—a

pYIy),ﬂiH9¢(yl!y2 | 01 0) = D) 20,2

d) Show that
Pr(Vi > Vg | H=0,¢=0) = f Py, valHe(U1, %2 | 0,0) Pr(Va > 4§ + 93 )dyrdy»

Show that this is equal to (1/2) exp(—a?/(46?).

e) Explain why this is the probability of error (i.e., why the event V; > V} is independent
of ¢, and why Pr(e | H=0) = Pr(e | H=1).

Exercise 3.9 Binary frequency shift keying (FSK) on a Rayleigh fading channel can be
modeled in terms of a 4 dxmens:onal observation vector Y = (Y1, Yo, }’3, %)%, Y=X+2
where Z ~ N(0,02I) and Z is independent of X. Under H = 0, X = (X1, X2,0,0)7,
whereas under H =1, X = (0,0, X3, X4)T. The random variables X; ~ N(0,a?) are IID.
The a priori probabilities are Py = P = 1/2.

a) Convince yourself from the circular symmetry of the situation that the ML receiver
calculates sample values vo and v; for Vp = Y2 + Y2 and V| = }’32 + ¥ and chooses H = 0
if v > V; and chooses H = 1 otherwise.

b) Find p,, ,(vo | 0) and find p,. , (v1 | 0).
c) Let U = Vp — V; and find p, (u | H=0).

d) Show that Pr(e | H=0) = [2 + a%/¢?)]~!. Explain why this is also the unconditional
probability of an incorrect decision.

Exercise 3.10 A disease has two strains, 0 and 1, which occur with a priori probabilities
Py and P respectively.
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a) Initially, a rather noisy test was developed to test which strain is present for patients
who are known to have one of the two strains. The output of the test is the sample value
y1 of a random variable Y7. Given strain 0 (H=0), Y1 = 5+ Z;, and given strain 1
(H=1), Y1 = 1+ Z;. The measurement noise Z; is independent of H and is Gaussian,
7y ~ N(0,02). Give the MAP decision rule, i.e., determine the set of observations y; for
which the decision is H =1. Give Pr(e | H=0) and Pr(e | H=1) in terms of the function

Qx)

b) A budding medical researcher determines that the test is making too many errors. A
new measurement procedure is devised with two observation random variables Y} and Y>.
Y: is the same as in part a). Y5, under hypothesis 0, is given by Y> = 5+ Z; + Z2, and,
under hypothesis 1, is given by Y5 = 14 Z; + Z2. Assume that Z5 is independent of both
Zy and H, and that Zy ~ N(0,02). Find the MAP decision rule for H in terms of the Jomt
observation (y1,¥2), and find Pr(e | H=0) and Pr(e | H=1). Hint: Find py,y; #(¥2 | ¥1,0

and Pygyy,m(v2 | 11, 1).

c) Explain in laymen’s terms why the medical researcher should learn more about proba-
bility.

d) Now suppose that Z, in part b), is uniformly distributed between 0 and 1 rather than
being Gaussian. We are still given that Z, is independent of both Z; and H. Find the
MAP decision rule for H in terms of the joint observation (y;,y2) and find Pr(e | H=0) and
Prie | H=1).

e) Finally, suppose that Z; is also uniformly distributed between 0 and 1. Again find the
MAP decision rule and error probabilities.

Exercise 3.11 a)Consider a binary hypothesis testing problem, and denote the hypotheses
as H=1and H=-1. Let @ = (a1,02,...,a,)7 be an arbltrary real n-vector and let the
observation be a sample value § of the random vector Y = H@ + Z where Z ~ N (0,0%1,)
and I, is the n by n identity matrix. Assume that Z and H are independent. Find the
maximum likelihood decision rule and find the probabilities of error Pr(e | H =0) and
Pr(e | H=1) in terms of the function Q(z).

b) Now suppose a third hypothesis, H=0, is added to the situation of part a). Again the
observation random vector is ¥ = H@ + Z, but here H can take on values —1,0, or +1.
Find a one dimensional sufficient statistic for this problem (i.e., a one dimensional function
of y from which the likelihood ratios

Pyin(y 1)
A(G) =
Py W 0)

a(y] =1
ond A'l(m:p;)l (?yllﬂ))
Y|H

can be calculated).

c) Find the maximum likelihood decision rule for the situation in part b) and find the
probabilities of error, Pr(e | H=h) for h = —1,0, +1.

d) Now suppose that Z;,...,Z, in part a) are IID and each is uniformly distributed over
the interval —2 to +2. Also assume that @ = (1,1,...,1)7. Find the maximum likelihood
decision rule for this situation.
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Exercise 3.12 Verify (3.72).
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