Chapter 2

GAUSSIAN RANDOM
VECTORS

2.1 Introduction

Gaussian random variables and Gaussian random vectors {vectors whose components are
jointly Gaussian. as defined later) play a central role in detection and estimation. Part
of the reason for this is that noise like quantities in many applications are reasonably
modeled as Gaussian. Another, perhaps more hportant reason. is that Gaussian random
variables turn out to be remarkably easy to work with (after an initial period of learning
their peculiarities). Jointly Gaussian random variables are completely described by their
means and covariances. which is part of the simplicity of working with them. When we find
estimates or detection rules. and when we evaluate their performance. the answers then
involve only those means and covariances.

A third reason why Gaussian random variables and vectors are so importam is that we
shall find. in many cases. that the performance measures we get for estimation and de-
tection problems {or the Gaussian case often bounds the performance for other random
variables with the same means and covariances. For example. we will find that the mini-
mum meal square estimator for Gaussian problems is the same, and has the same mean
square performance. as the linear least squares estimator for other problems with the same
mean and covariance. We will also find that this estimator is quite simple and is linear
in the observations. Finally. we will find that the minimum mean square estimator for
non-Gaussian problems always has a better performance than that for Gaussian problems
ol the same mean and covariance. but that the estimator is frequently much more complex.
The point of this example is that non-Gaussian problems are often more easily and more
deeply understood if we first understand the corresponding Gaussian problem.

In this chaptler. we develop the most important properties of Gaussian random variables
and veetors. namely the moment generating funetion. the moments. the joint densities. and
the conditional probability densities. We also develop the properties of covariance matrices
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Figure 2.1: Graph of the density of a normalized Gaussian rv (the taller curve) and of
a zero mean Gaussian rv with variance 4 (the flatter curve).

(which apply to both Gaussian and non-Gaussian random variables and vectors), and review
a number of results about linear algebra that will be used in subsequent chapters.

2.2 (Gaussian Random Variables

A random variable (rv) W is defined to be a normalized Gaussian rv if it has the density

( .') 1 o _u‘g T
P L) = \/'Z.—T exp B) (—' )

Exereise 2.1 shows that p,, (@) integrates to 1 (i.c., it is a probability density), and that W
has mean 0 and variance 1. I we scale W by a positive constant ¢ to get the rv Z = ali'.
then the density of Z at z = ow salisfies p,(z)dz = p, (w)dw. Since dz/dw = o. the
density ol Z is

" =2

pz(2) = %?H-r(f}) = @%JUXD 2(:3) (2.2)
Thus the density function for Z is scaled horizontally by the factor o, and then scaled
vertically by /o (see Figure 2.1). This scaling leaves the integral of the density unchanged
with value 1 and scales the vartance by . I we let o approach 0, this density approaches
an impulse, l.e., 7 becomes the atomic random variable for which Pr(#Z=0) = 1. For
convenience in what follows, we use {2.2) as the density for Z for all & = 0. with the above
understanding about the o = 0 case. A rv with the density in {2.2), for any o > 0. is defined
to be a zero mean Gaussian rv. The values Pr(|Z| < o) = 682, Pr(|Z] < 3g) = 997 give
us a sense of how small the tails of the Gaussian distribution are.

Il we shift Z to t© = Z + m. then the density shifts so as to be centered at m. the mean
becomes n. and the density satisfies p, (1) = p, (u — m). so that

, 1 —(1 —m)*
pp(u) = —=——exp (———,— {2.3)

dra 207

A random variable U with this density. for arbitrary m and o > 0. is defined to be a
Gaussian rendom variable and is denoted {7 ~ A (m. o7).
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The added generality of a mean often obscures formulas; we will usually work with zero
mean rv's and random vectors (rv's) and insert the means later. That is. any random
variable can be regarded as a constant (the mean) plus a zero mean random variable (called
the fluctuation}. When necessary for notation, we denote U7 = m,. + U7 . where [7 is the
fluctuation of €7 around its mean .. and work with (i

The moment gencrating function (MGF) of an arbitrary rv Z is defined to be g,(s) =
Elexp(sZ)]. We usually take s to be a real variable, but it can also be regarded as complex.
with real part o and imaginary part jw. The two sided Laplace transform of the density of
Z is equal 1o g,(—s). Similarly, the Fourier transform of the density of Z. as a function of w.
is g, (—jw) and the characteristic function of Z is g,{(jw). The characteristic function and
Fourier transform have the advantage that. for real @, they exist for all random variables.
whereas the MGIF and Laplace transform (for real s # 0) exist only if the tails of the
distribution approach 0 at least exponentially. For the rv's of interest here. the MGIF exists
for at least a resion of real s around 0. and thus. if one caleulates one of these transforms.
say the MGF, the others lollow simply by substituting —s, jw, or —jw for s.

. = : - 2
For the Gaussian rv Z ~ N{(0. 7). g,(s) can be calculated as follows:

=g

1 o M_.2
g,ls) = FElexp(sZ)| = —\/Taf—x exp(sz)exp 2] dz
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= / exp —— + — ' dz {2.4)
VIng oo 20° 2|
S 1 e —(z —s0)? .
R | — | e exp | ——=—1 dx (2.5)
2 V2o o 20
s20?
= OXp|— (2.6)

We completed the square in the exponent in (2.4) and then recognized, in (2.5), that the
term in braces is the integral of a probability density and thus equal to 1. I the MGF of
Z exists for a region of real s around 0 (as it does for Gaussian rv's). it can be used to
caleulate all the moments of Z. As shown in Exercise 2.2, E[Z%¥], for Z ~ N(0,07). is
given. for all integers k > 1. by

i 1 (21\}15-)& - . . _ o -
E|Z*¥) s 1)(2h — 3){2k = 5) ... (3){1)e* (2.7)
Thus. £|ZY) 300, E|Z% = 156", ete. Sinee 2211 is an odd function of z and the

Gaussian density is an even [unetion, the odd moments of Z are all zero. or an arbitrary
Gaussian rv U~ AN(m.?). we have {7 = m + U, where U ~ N(0,0%). Thus g (8) =
Elexp(sim + U )] eSME|s e exp(s?a?/2). It turns out that the distribution

function ol a random variable is uniguely determined! by its moment generating function

“More precisely. the distribution function is uniquely determined except on a set of points of measure
FASIEO N
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(if the MGF exists in an interval around 0). so we see that a random variable [/ is Gaussian
with mean m and variance o if and only if (iff} its moment generating function is
2 2

o s
g,(s) =exp | sm +

(2.8)

2.3 Gaussian Random Vector and MGF’s

An n by m malriz A is an array of nm elements arranged in n rows and m columns: a;;
denotes the jY' element in the i*" row. Unless specified to the contrary. the elements will
be real numbers. The franspose AT of an n by m matrix A is an m by n matrix 3 with
bji = agy for all ©.j. A matrix is square if n = m and a square matrix A is symmetric
if 4 = AT, If 4 and B are each n by m matrices, A + B is an n by m matrix (' with
¢y = g5 + by for all £.7. If Ais » by m and B is m by r, the matrix AB is an un by r
matrix ¢ with elements ¢, — Z; aiibye. A wveelor (or column vector) of dimension u is an
n by 1 mauwrix and a row veclor of dimension 1 is a 1 by » matrix. Since the transpose of a
vector is a row vector. we denote a vector @ as (ay. .. .. (L,,,)T. The reader is expected to be
familiar with vector and matrix manipuolations.

An n-dimensional random veclor {an n-rv') is o mapping from the sample space into the
space R™ of n-dimensional real veetors. We could view an n-rv simply as n individual
rancdom variables, bul vector notation allows us Lo state results mueh more compactly for
veetors than for the set of individual rv's. Sampled time stochastic processes can be viewed
simply as random vectors (although the dimension is often infinite), and continuous time
stochastic processes are usually best studied by various expaunsions that transform them to
s (although again often of infinite dimension). Thus, a thorough understanding of rv's is
essential to everything that follows in this subject.

The probability densily. ,uz.(_,:'). of an n-rv 7 = (Z1,Za, ... Zn)T is simply the joint prob-

ability density of the components Zy... .. Zn. The mean of Z, denoted iz, or F|Z]. is the
veal vector (g, Mzs.....Mz, 7 where gz, = F|Z;] for 1 < i < n. Similarly the covari-

ance matrix of Z. denote K ;. is defined as 17 (7 - n'if){g— ?Try.'JTJ', This is an 1 by n
symmetric matrix whose element in the ith row, 7th column, is the covariance of Z; and Z;.
e E|(Z; —ma)(Z; — my)|. Finally. the moment gencrating function (MGF) of an n-rv VA
is defined as g, (5) = E[(\xp(.s"'rf)] where § = (s1....,8,)7 is an n-dimensional vector. The
components of & could be taken to be complex. but we usually view them as real. If the
components of a rv are independent and identically distributed (I1D), we call the vector an
(1D v,

Example 2.1 An example that will become very familiar is that of an 11D n-rv W where

the components Wi, 1 <1 < . are each normalized Gaussian, W, ~ A(0. 1). By taking the
product of 1 densities given by (2.1). the density of W = (W Wo, .. W7 s
did 2 2 ST
3 —UWT — U5 — .., — U 1 -t —
P (&) exp ! = L= exp | —— (2.9)

fzr)u_;-_: 9 ) {27?):;.;‘2
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Figure 2.2: Contours of equal probability density for two normalized 1D Gaussian ryv's.

The joint density of Woat a sample value @ depends only on the squared distance o 4t
of the sample value [rom the origin. That is, -pu_,(-ur') is spherically symmetric around the
origin. and points of equal probability density lie on concentric spheres around the origin
(sce Figure 2.2).

The moment generating funection of W is easily caleulated as follows:

= i
9,.(8) = Elexp $TW)| = Elexp(s; W 4+ 4 s,W,| = E IH exp{s; W)

—————

2 L
' "_’I &

. ; s; ! .
: Hb lexp{s; Wi} = He.\:p —_;— =exp | =5 | {2.10)
T [
where we have used, first, the fact that the independence of {W..... W)} guarantees the
independence of {exp(siWi)... .. exp(s, W, )}, next. the fact that the expected value of a

product of independent rv's is equal 1o the produet of the expected values. and. linally, the
fact that (2.6) gives the MGFE of each W,

We now go on Lo define the general class of Gaussian rv's.

Definition: {Z).Z>,....%Z,} is a set of jointly Gaussian random variables, and Z =
(Zy. ..., Z0% is a Gaussian v, if, for all real vectors & = (s1.....: s,.)7 . the lincar com-
bination 877 - 141 &S24 A -+ sndy 1s a Gaussian random variable.

The intuitive idea here is that Gaussian rv's arise in practice because of the addition of laree
numbers of small essentially independent rv’s (the central limit theorem indicates that such
a sum can be approximated by a Gaussian rvj. For example. when a broad band noise
waveform is passed through a narrow band linear filter, the output at any given time is
usually well approximated as a Gaussian rv. A linear combination of outputs at different
times is also a sum ol the same set of small, essentially independent. underlying rv’s. and
that sum can again be approximated as Gaussian. Thus we would expect a set of outputs
at different times to be a jointly Ganssian set according to the above definition.

Note that if {Z..... Zp} is jointly Gaussian. then for each i, 1 < i < n. Z; is a Gaussian
random variable (as follows by choosing s; = | and s; = 0 for j # ¢ in the definition
above). In the same way. each subset of {Z;..... Zy } is also jointly Gaussian. However. if

VA T 7, are each Gaussian rv's. it does not necessarily follow that the set {7,...., Z,}
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is jointly Gaussian. As a simple example, let Z; ~ N(0,1). let X be +1 or —1. each with
probability 1/2, and let Z» = Z;Xy. Then Zs ~ N({0.1). The joint probability density.
Pz 70121, 22) 1s then impulsive on the diagonals where z; = =£z; and is zero elsewhere.
Then. Z; + Z» can not be Gaussian. since it takes on the value 0 with probability one half?.
Exercise 2.3 gives another example. The distinction between individually Gaussian and
jointly Gaussian rv’s is much more than mathematical nit picking, since the remarkable
properties of Gaussian random vectors follow largely from the jointly Gaussian property
rather than merely the property of being individually Gaussian.

We now lind the moment generating function (MGT) of the v Z = (Z;... .. Z)T under
the assumption that Z is a zero mean Gaussian rv. The MGF, by definition, is

g,48) = E exp{é’y‘rf)} = FE lexp Zs,v’f?- 1

For any given s let X = sT7. Since Z is a Gaussian rv (le.. (Zy.....Z,) 1s joinlly
Gaussian), X is also Gaussian. and since Z is zero mean {il.e.. all components arc zero
mean). X is zero mean. From {2.6). g, (r) = exp[r?o3 /2], so that g (1) = exp|o3 /2]. For
X =877 then.

§,:(8) = E[exp(.ﬂ?;}'Z}] = Elexp(XN)| = g.(1) = exp(ai /2)

Finally ¢% = E|X?| = El§¥ 27278 = 57 K75, where K5 is the covariance matrix ol 7.

Thus. the moment generating function of an arbitrary zero mean Gaussian rv 7 is

e o
ol PR
g,(8) = exp | =22

(2.11)

Next let {f = (U),....Uy) " be an arbitrary Gaussian rv and. for 1 < i < n. lot my

;] and let Z; = U; — my be the fluctuation of Uy, Letting m = (my, .. )T and
7z (Zy. ... Zw). we have [7 = m + Z. Thus the MGF of U is given by 4. (9)

Elexp(sTm + §77) = uxp{.s"‘rr.’*}}g?(ﬂ. Using (2.11) and recognizing that Z and U have
the same covariance funetion.

T
5K ;8
9

g.(8) = oxp | &7+

Note that the MGF of a Gaussian rv' is completely specified by its mean and covariance. Be-
cause of this, we denote a Gaussian v [/ of mean 7t and covariance K+ as 7~ N (. Kk
Note also that if a r¥ U has the MGF in (2.12), then. as shown in Exercise 2.5, each linear
combination of the components of {7 is a Gaussian rv. Thus we have the theorem.

Theorem 2.1 A rv &/ with mean nt and covariance K is a Gaussian r¥ iff ¢ (s) is given
by (2.12).

“One frequently hears the erroneous statement that uncorrelated Gaussian rv's are independent. This
i false as the above example shows. The correct statement, as we see later, is that uncorrelated jointly
Ganssian rv's are independent.
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Note that the MGFEF's in (2.6). (2.8). and {2.11) are special cases of (2.12). Also the MGF
of the ITD rv' W in (2.10) agrees with (2.12) since the mean of " is zero and the covariance
is the identity matrix f. Thus W, not surprisingly. is a Gausslan rv. i.e.. W~ A{0, 7).

2.4 Joint Probability Densities for Gaussian Random Vec-
tors

In this section. we start with an example of a zero mean Gaussian rv' that is defined as a
linear transformation of the 11D normalized Gaussian rv W of example 2.1. We show later
that this example in fact covers all zero mean Gaussian rv's.

Example 2.2 Let A be an n by n real matrix, let W be an TID normalized Gaussian n-rv.
and let the n-rv Z be given by Z = AW, The covariance matrix of Z is

Ky E|ZZ" | = E[AWW AT| = AAT (2.13)

since E[W VT is the identity matrix. /,,. We can easily find the MGF of Z since

9,(5) = Elexp(s7Z)] = Elexp(sTAW)| = Elexp{(A"8)TW}] = g, (A7)
gl Aqls [ K 5]
= oxp ]%—)-—ﬂ - exp ’:—;—/—: (2.14)

Comparing {2.14) with (2.11}. we see that Z is a zero mean Gaussian rv. We shall see
shortly that any zero mean Gaussian rv can be represented in the form Z = AW [or some
real w by @ matrix 4 and TID normalized Gaussian rv W,

We next find the joint probability density of 7 = AW. First consider the corresponding
transformation of real valued veetors, 2 = Aw. Let € be the ith unit veetor (i.e.. the vector
whose #th component is | and whose other components are 0). Then A¢; — d;. where d,
is the ith column of A. Thus, £ = Ad transforms the unit vectors € into the columns «o;
of A. For n= 2. Figure 2.3 shows how this transformation carries the unit square with the
corners 0. ¢. €. and (€} + é4) into the parallelogram with corners 0, &y, @. and (&) + do).

I'or an arbitrary number of dimensions. the unit cube in the i space is the set of points
a such that 0 <, < 1 fori =1..... 1. There are 2" corners of the unit cube. and each
is some 0/1 combination of the unit vectors, L.e.. each has the form ¢ + ¢, + -+ + @,
The vransformation Au' carries the unit cube into a parallelepiped, where each corner of
the cube. ) + ¢, + -+ + 6, Is carried into a corresponding corner @y, +dy, + - + i;, of
the parallelepiped. One of the most interesting and geometrically meaningful properties of
the determinant. det(A), of a square matrix A is that the magnitude of that determinant.
|det(A)]. is equal to the volume of that parallelepiped (sec Strang. Linear Algebra. sec.
4.4). If det(A) = 0. i.e.. if A s singular. then the n-dimensional unit cube in the u space
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Figure 2.3: Unit square transformed to a parallelogram.

is transformed into a smaller dimensional parallelepiped whose volume (as a region of u-
dimensional space) is 0. We assume in what follows that det{A) # 0 so that the inverse of
A exists.

Now let " be a sample value of Z. and let & = A7'# be the corresponding sample value of
W, The joint density at z must satis{y

p,(2)|dz] = p (@)|di] {2.15}

where |dif| is the volume of an ineremental cube with dimension ¢ = dw; on each side.
and |dz] is the volume of that incremental cube transformed by A, Thus |[dwf] - 6" and
|dz] = 8" det(A)] so that |der(A)[. Using this in (2.15). and using (“J) for
p“._('f_'ﬁ) = 'Pﬁ-(/l“'z'). we see Lthat the density of a jointly Gaussian veclor Z = AW

exp {_—'3 T4~y a1 E']
27)7%/2| det( A)|

{(2.16)
From (2.13). we have K ; = AAT, so f\'ZZI = (AT 47 and det(K ;) = det{A4)det (A1) =
[det(A)]? > 0. Thus (2.16) becomes

oxp {——,; T h }
(27)%2 fder(K ( )

(2.17)

Eq. (2.17) doesn’t have any meaning when A, and thus K . is singular. since }\/ does not
then exist. In the case where 4 is singular. Aw' maps the set of n-dimensional vectors
into a subspace of dimension less than n, and p,(2) is 0 outside of that subspace and is
impulsive inside. What this means is that some components of the random vector Z ean
be expressed as lincar combinations of other components. In this case. one can avoid very
messy notation by simply defining the components that are linearly independent as forming
a random vector 2. and representing the other components as linear combinations ol the
components of 7. With this stratagem, we can always take the covariance of any such
reduced rv to be nonsingular.

Next consider {7 = 1+ AW, Deline 17 = AW as the fluctnation in U and note that (2.17)
can be used for the density of 7. Since E[U | = 0. we see that E[l/] = m. Assuming
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det{A) # 0. we can immediately write down the density for U as a translation of that for
.
exp [—%(u’ — i) TR (i — )

p.(t) = . = : (2.18)
‘ (2m )/ 2 V/det(Kz)

- e (I . . — =x . .
where Kz = E[U U | is the covariance matrix of both 7 and U . We soon show that this

is the general form of density for a Gaussian random vector U ~ N (. Ke)ifdet(Kg) # 0.
In fact, we have already shown that for any Gaussian rv & N{(m. Kp:). the MGF satisfies
(2.12), and it turns out that this uniquely specifies the distribution of £, Thus. if there is
a matrix A with det(A) # 0 such that Ky = AAT. then U~ N (i, K1) can be expressed
as 1 + AW, and (2.18) must be the density of 7. We shall soon see that Aany covariance
matrix K can be expressed as AAT for some square matrix 4. In most of what follows.
we restrict our attention to zero mean Gaussian rv’s. since, as we have shown, it is usually
simpler to deal with the fluetnation {7 of {7, and then include the mean later.

For the 2-dimensional zero mean case. let E|Zf| = r_rf, L[?’f] = 03 and ElZ1 725 = k.
Define the normalized covariance, p. as kia/(o102). Then det(K ;) = ojo3 — ki, = o703(1 —
p?). For A 1o be non-singular, we need det(K 7} = |det(A4)]* > 0, so we need |p| < 1. We
Lhen have

Rl | o5 —.-’.:12 _ 1 [ Ijz‘o“i-’ —p;’(mqrrgj 1
7 g'l'-’gg = ‘i‘"f}z —kyn o7 _ | =2 | —p/laroa) l/o3 ,

b2 - I o (—Zfﬂ‘% F 22122k — 25)0"]2)
e ’ (22 a2
SN oTod k)
B 1 exp —(z1/01)% + 2p(z1 /o1 22/ 02) — (z2/m2)? _—
2raioayT — p2 ) 2(1 — p?) o

This is why we use vector notation! There are 1wo lessons in this. First. hand calculation
is frequently messy for Gaussian rv'’s. and second, the vector equations are much simpler.
so we must learn to reason directly from the vector equations and use standard computer
programs to do the calculations.

2.5 Properties of Covariance Matrices

[ this section, we summarize some properties of covariance matrices that will be used
frequently in what follows. A matrix K is a covariance matriz if a zero mean rv 7 exists
such that K = fl//;"[ It is important 1o realize that the propertics developed here apply
to non-Gaussian as well as Gaussian rv's. An n by n matrix A is positive semi-definite if it
is symnetric and il. for all real n-vectors b, BTRE > 0. It is positive definite il. in addition.
HTKb > 0 for all non-zero b. Our objective in thig section is to list the relationships between



42 CHAPTER 2. GAUSSIAN RANDOM VECTORS

these types of matrices, and Lo state some other frequently useful properties of covariance
matrices.

1) Every covariance matrix A is positive semi-definite. To see this. let Z be a zero mean
n-rv such that K = E[ZZ7]. K is svmmetric since E|Z;Z;) = E|Z;Z;] for all i,j. Let b be
an arbitrary real n-vector, and let X — 67 Z. Then 0 < E[X?| = E [KfoTg} = b Kb.

2} A covariance matrix K is positive definite iff det(K) # 0. To see this. define Z as above
and note that if &1 Kb = 0 for some b # 0. then X = b’ Z has zero variance. and therefore
is zero with probability 1. Thus E|XZ7| = 0. so !)TE|ZZ-‘] = 0. Since b # 0 and bK = 0,
we must have det{A') = 0. Conversely, if det(/N) = 0, there is some & such that Kb = 0, so

bR is also 0.

3V A complex number A is an eigenvaelue of a matrix A if K¢ = Ag for some non-zero vector
¢: the corresponding ¢ is called an cigenvector. The following results about the eigenvalues
and eigenvectors of positive definite (semi-definite) matrices K are standard linear algebra
results (see for example, Strang, section 5.5)%

All elgenvalues of A are positive (non-negative}. All the eigenvectors can be taken to
be real. All eigenvectors of different eigenvalues are orthogonal, and if an eigenvalue has
multiplicity 4. then it has j orthogonal eigenvectors. Altogether, 1 orthogonal eigenvectors
can be chosen, and they can be sealed 1o be orthonormal.

1) If K is positive semi-definite. there is an orthonormal matrix € whose columns. g.. ... G
are the orthonormal eigenvectors above. @ satisfies KQ = QA where A = diag( M. .- .. Are)

is Lthe diagonal mauwrix whose ith element. A, is the eigenvalue of K corresponding to the
cigenveetor gi. This is simply the vector version of the eigenvector/eigenvalue relationship
in property 3. @ also satisfies Q7 Q = I where [ is the identity matrix. This follows since
qlq; = 6. We then also have Q7' = Q7

5) If K is positive semi-definite, and if Q and A are the matrices above. then K = QAQT.
If K is positive definite, then also K= - QA™IQ". The first equality follows from property
4, and the second follows by multiplying the expression for K by that for K= which exists
because all the eigenvalues are positive.

G) For a symmetric # by n matrix A, det A = [T} Ay where Ap..... A, are the eigenvalues
of K repeated according to their multiplicivy. Thus if A is positive definite. det A > 0 and
il A is positive semi-definite. det A" > (.

7) 11 N is a positive definite (semi-definite) matrix. then there is a unique positive definite
(semi-definite) square root matrix K satislying P =K.1In particular, £ is given by

H - Q;’\I-MQP‘P where A2 = diag (V”)\_i \f;\_-_: ..... \,"3\:) (2.20)

“Sirang also shows that K is positive delinite iff all the upper left square submatrices have positive
determinants. T'his is often called Sylvester’s Lest,  This test does not extend to positive semi-definite
t 0
0 —1
submatrices have non-negative determinants). A is positive semi-definite Iff all the principal submatrices
(i, the submatrices resulting from dropping a subset of rows and the corresponding subset of columns)
liave non-negative determinants.

matrices (for example. the matrix is ot positive semi-definite even though the upper left square
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8) If R is positive semi-definite, then A is a covariance matrix. In particular, K is the
covariance matrix of Z = RW where R is the square root matrix in (2.20) and ¥ is an [ID
normalized Gaussian rv.

9) For any real n by m matrix A. the matrix K = AA7 is a covariance matrix. In particular.
K is the covariance matrix of Z = AW,

For any given covariance matrix K. there are usually many choices for A satisfving A" =
AAT . The square root matrix R above is simply a convenient choice. The most important
of the results in this section are summarized in the following theorem:

Theorem 2.2 A real n by 1 matrix /& is a covariance matrix iff it is positive semi-definite.
Also it is a covariance matrix iff & = 447 for some real n bv n matrix A. One choice for
A iz the square root matrix K in (2.20).

We now see, as summarized in the [ollowing corollary. that example 2.2 above is completely
general.

COROLLARY 1: For any covariance matrix K. a zero mean Gaussian rv Z ~ N{0. K)
exists and 7 can be viewed as AW . where AAT = K and W ~ N(0. I,). The NMGF of 7 is
given by (2.11), and, if det{#’) 7 0. the probability density is given by (2.17). The density
for an arbitrary Gaussian rv {7 ~ (47, K, with det(K) # 0, is given by (2.18).

2.6 Geometry and Principal Axes for Gaussian Densities

Let 7 be an arbitrary zero mean Gaussian n-rv with non-singular covariance K. For any
given ¢ > 0, the points 2 for which 27 Kz = ¢ form a contour of equal probability density for
7. as seen by (2.17). This is a quadratic equation in 2 and is the equation for an cllipsoid
centered on the origin, The principal axes of this ellipsoid are given by the eigenvectors of
K. In order to understand this, lew € be an orthonormal matrix whose columns. . . . .. I
are the eigenvectors of A and let A be the corresponding diagonal matrix of eigenvalues (as
in property 4 above). Consider the transformation V = Q" Z. The covariance matrix of 1/
is then

Ky =EVVT] = EIQTZ77Q) = Q"KQ = A. (2.21)
where the last step follows from A = QAQT and QT = Q~'. Since 7 is a zero mean

Gaussian rv, V' is also. so it has the joint probability density

oxp [ITRE2] exp [ dfn] el

o (i) — il 3,99
]-’.._1({ ) {'.:,’?.’I)“-’rr";‘(l("t{ !\'\_:)[]Ir_‘ (2?;.)”_;2 [].—L \/’\_i:\ 2?/\: ( )

3=

The transformation V' = Q77 carries each sample value 2 for the v 7 into the sample
value o = QT2 of V. Visualize this transformation as a change of basis, i.e., 3 represents
some point & of n-dimensional real space in terms of a given co-ordinate system and
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Vg

=y

IFignre 2.4: Representation of a point in two different co-ordinate systems. Point # is

represented by (21,2017 in the €. ¢ system and by (v1.09)7 in the §i.¢: system.

represents the same @ i a different co-ordinate system (see Figure 2.4}, [n particular. let
1L, Ly be the basis vectors in co-ordinate svstem 1, and let ¢y, ¢5. ... ¢, be the basis
vectors in co-ordinate system 2. Then

i

g
F= mfi=) Ui (2.23)

2:=1 =]

In co-ordinate system 1. ¢; is simply the ith unit vector. containing 1 in position ¢ and 0
elsewhere. In this co-ordinate system. o« is represented by the n-tuple {zy..... 207, Also,
in co-ordinate svstem 1, ¢ is the ith normalized eigenvector of the matrix K. Since the
orthonormal matrix @ bas the columns §y.....¢,. the right hand side of (2.23) can be
written, in co-ordinate system 1. as Q. where ¥ is the n-tuple (... v, 7. Thus. in
co-ordinate system 1. 2 = Q. so ¥ = Q7% = Q7% verifying that ¢ = Q72 actually
corresponds to the indicated change of basis. Note that ¢y, ....4,. are orthonormal in both
co-ordinate systems, and ¢7..... ¢y are also orthonormal in both systems. This means that
the transformation can be viewed as a rotation, i.e.. distances are unchanged {see Exercise

LR

[For any given real number ¢ > 0. the set of vectors Z for which 7 K1z = ¢ form a contour
ol equal probability density for 7 (in co-ordinate system 1). The corresponding contour in
in co-ordinate system 2. with 2 = Q¢ is given by #7QTRK=1Qw = ¢. This can be rewritten
as 7AW = ¢, or T, trf/,\i = ¢ (as can also be seen from (2.22). This is the equation of an
ellipsoid, but the principal axes of the ellipse are now aligned with co-ordinate system 2.
using basis vectors 4. .. .. g (sec Figure 2.5). The distances from the origin o the ellipsoid

in these principal axis directions are ed,, | < i< n.
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Figure 2.5: Lines of equal probability density form ellipses. The principal axes of
these ellipses are the eigenvectors of K. The intersection of an ellipse with each axis is
propuortional to the square root of the corresponding eigenvalue.

2.7 Conditional Probabilities

Next consider the conditional probability p . (z|y) for two jointly Gaussian zero mean rv's
X and Y with a non-singular covariance matrix. From (2.19).

[ —(@/ay ) + 2p(x/o ) /o) — /o )|

vl f A = — X - =
Py (& oo V1 — p? 3 2(1 —p?)

where p = D|XY /{0, 0,). Since

Py (2y)
Iy \.(.'I.'iy) o B3 MR

.“\‘(?)'}
and Y ~ N0, n'f) we have
! —(x/o )V F2plafo N (yley ) — PP /o)
Py laly) = T R e { '\ T e .
o/ 27(1 — p?) 21 — p%)

This simplifies to

oxp | 2B =2l /o)’
oxV2r(l = p?) 203 (1 — p?)

Py (Tly) = (2.24)

This says that, given any particular sample value y for the rv Y, the conditional density
of X is Gaussian with variance r,r:"\:f_l — p?) and mean plox/oy)y. Given Y = 3. we can
view X as a random variable in the restricted sample space where Y = y. and in that
restricted sample space. X s N (plox /oy )y, r:r_:;'([ I — p*)). This means that the Auctuation
of A in this restricted space, has the same density for all . When we study estimation,
we shall find that the facts that, first. the conditional mean is linear in y. and. second.
the fluctuation is independent of y. are crucially important.  These simplifications will
lead to many important properties and insights in what follows. We now go on to show
that the same kind of simplification occurs when we study the conditional density ol one
Gaussian random vector conditional on another Gaussian random vector. assuming that all
the variables are jointly Gaussian.
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Let U be an 1+ m dimensional Gaussian r¥. View U as a pair of rv's X.Y of dimensions
m and n respectively. That is. U7 = (U, Us, ... Upim) = (X1, Xoo oo X Y1 Y) =
(XT. Y1), X and ¥ are called jointly Gaussian rv's. If the covariance matrix of U/ is non-
singular, we say that X and Y are jointly non-singular. In what follows, we assume that X
and Y are jointly Gaussian. jointly non-singular. and zero-mean?. The covariance matrix
Ky of {7 can be partitioned into m rows on top and 1 rows on bottom. and then further
partitioned into m and n columns. vielding:

FIg Ky B (@)
fopss| S T ; EEb=l T (2.25)
I i,-}- ; Ky ¢t p

Hero Ky = E[XX"). Ky = E[XV"]. and Ky = E[FY"|. The blocks K ¢. Ky, B, and
D are all non-singular (see Exercise 2.11). We will evaluate the blocks B. C. and D in
terms of Ay, Ky and K gy later. but first we find the conditional density. Pe ol | i) in
terms of these blocks. What we shall find is that for any given ¢, this is a Gaussian density
with a conditional covariance matrix equal to B~ As in (2.24). where X and )} are one-
dimensional. this covariance does not depend on y. Also, the conditional mean of X, given
Y = 4. will turn out Lo be —=B~'C'§. Thus, X, conditional on Y = F. i N(=B~'Ci, B,
ie..

P AT = : (2.26)

Ay (2}-:-;,”,,"'_' Va"det_(B‘—l )
In order to see this, express ;n\_,H._,{::r‘g;:)‘; as P (2. ;,:‘I}/;u)__(y'). From {2.17).

. exp _i(:{—,_-ff':?}&")1\-;1(:}-;’1':ﬂrf'}T}
Ve (A27) = -

(2 )lmdmn/2 \I,f"det{ I\'E.-'i )

exp —% (:Eﬂ- B+ 47C7+§7CT7 + '_-’]’II‘D';}‘)]

(27) (e +m)/2 \/d('l-( f\'EI )

We note that 4 only appears in the first three terms of the exponent above. and that 2 does
not appear at all in p.. (%) Thus we can express the dependence on & in p . },{::’Ig}') by

- [:}"’q Bi+ #TCcy+ §TeTs

¥

)U\.}(:I: 1 E/) = f‘.{f} exp
where f(4) is some [unction of . We now complete the square around 3 in the exponent
above. gelling

—(F+B'CcyyBE+B'CH + FTeTB\C
2

Py 1‘(:E: | 4) = J(#) exp {

MExercise 2.12 generalizes this 10 the case with an arbitrary mean.
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Since the last term in the exponent does not depend on & we can absorb it into f(g). The
remaining expression is in the form of (2.26). Since p - (2[¢) must be a probability clensu.\
for each ¢, the modified coefficient f() must be the reciprocal of the denominator in (2.26).
so that p . . (#]y) is given by (2.26).

To interpret (2.26). note that for any sample value § for Y. the conditional distribution of
X ha«: a mean given by — B~ and a Gaussian fluctuation around the mean of variance
B~ This fluctuation has 1he same distribution for all U and thus can be represented as a
rv ‘v that is independent of Y. Thus we can represent X as

X -GY +V: Y.V independent (2.28)

where

G=—-B"1C and V ~N(0.B™) (2.29)
V is often called an innovation because it is the part of X that is independent of Y. It is also
called a noise term for the same reason. We will call K = B =1 the conditional covariance
of X given any sample value i for Y. In summary. the unconditional covariance, K ¢, of
X is given by the upper left block of Kz in (_)._’ ), while the conditional covariance K is
the inverse of the upper left block, B. of the inverse of Kg

From (2.28), we can express (7 and K'p in terms of the covariances of X and Y. To do this,
note that

Ky = BIXYT| = BIGYYT + VY| = GKy (2.30)
Ky~ E[GY + VHGY + V)T = GKpGT + Ky (2.31)
Solving these equations, we get
= Kgpltc’ (2.32)
Kp = Kg—=CORpG = K¢ = Kep K3 KT (2.33)

where we have substituted the solution from (2.32) into (2.33). We can summarize these
results in the following theorem.

Theorem 2.3 Let X and Y be zero mean, jointly Gaussian. and jointly non-singular.
Then they can be represented in the formn X =GV + V where Y and V are independent.
V'~ N(O. Ky). G s given by (2.32), K is non-singular and given by (2.33), and the
conditional density of X given Y i

exp { Sl =i ik !\ (a2 — Gyﬂ
(27 )7/ -\/de (Ky)

P g5 (&) =

We can also solve lor the matrix 3 = [\'F_’ from (2.33).

o L
R = [i\'_\; — }\’_\;fh'}._;' K“;,-’;] {2.35)
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Similarly, from (2.29) and (2.32).
O= =R i0==Rg Kgpls (2.36)

From the symmetry belween X and Y. we can repeat the above arguments. reversing the
roles of X and Y. Thus, we can mple‘;enl Y as

Y=HX1Z, X7 independent (2.37)
where ) _
H - -D7'¢" and Z~N(@©.D) (2.3%)

Using (2.37). we express H and A 5 in terms of the covariances of X and Y.

Kep = BIX(HX + Z)T = KHT (2.39)
Ky = E[(HX + Z)HX + Z)7] = HK HT + K (2.40)
Solving, we get B
H = K:"\;f, ;\'t' (2.41)
Kz=Ky—HKgH" = Ny — K3 KG'K (2.42)

The conditional density can now be expressed as

exp [—é(u —~HTRZ Z (yr — Ha ;]

Py () = L (2,43}
' (B ym/= riel{h
where I and K, are given in (2.41) and (2.42).

Finally, from (2.42}). D = K;] is
D = [Ky - KTkl 5] (2.4
Sy = A gy hy \_\,,-.} {2.44)

Similarly, from (2.38) and (2.41).
T o= e g e you i
"= =KW = =R KGu K3 (2.45)

The matrices B, €. and D can also be derived directly from setting h'i-”t";:] = [ in {2.26)
(see Exercise 2.16).

In many estimation problems. we start with the formulation ¥ — HX + Z and want to
find G and Ky in the dual formulation X = GY + V. We can use (2.32) and {2.33)
directly. but the following expressions are frequently much more useful. From {2.29), we
have (' = —K+(, and from (2.3%), we have ff = “'KZ("T'- or equivalently. (0 = —H f\;].
Combining, we have J
G =Kol K3 (2.46)
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Next, we can multiply Ky, as given by (2.33), by KEI to get

= ] g -—1 2 = TP =t '1{- . ~—1 £ AT
1" — }\'\,j\i-; IXX},)(\}—; h'\,},}\\-; \“"h;

From (2.36) and (2. we can express (7 in the following two ways:
O = }\?lh \:Y,A—‘ -K;'H (2.48)

The first of these expressions appears at the end of (2.47}. and replacing it with the second.
(2.47) becomes

I KgK3 —Kgghiz H (2.49)

o

L\

Pre-multiplying all terms by h’% and substituting H7 for h LK we get the final result.

Ny

Ket=KJ' + H'R;'H (2.50)

We will interpret these equations in Chapter 4 on estimation.

2.8 Summary

A zero mean n-rv Z with a covariance matrix K7 is a Gaussian n-vv {equivalently. the n
components are jointly Gaussian) if #7' 7 is Gaussian for all real n-vectors b. An equivalent
condition is that Z has the MGF in (2.11). Another equivalent condition is that Zisa
linear vransformation of » LD novmalized Gsuhsian rv's. For the case in which K is non-
singular, a final equivalent condition is that Z / has the density in (2.17). If 7 has a singular
covariance matrix. it should be viewed as a A-(ilmpnsmndl v, k < n, with a non-singular
covariance matrix. plus n — & variables that are linear combinations of the first &, If Z has
a mean 7. it is a Gaussian n-rv' il the fluctuation Z — i is a zero mean Gaussian n-rv.

For a Gaussian n-rv, the regions of equal probability density formn concentric ellipsoids
around the mean. The principal axes for these ellipsoids are the eigenvectors of the co-
variance matrix and the length of each axis is proportional to the square root of the corre-
sponding eigenvaluc,

X X oo XN Vi Yo, are zero mean. jointly Gaussian, and have a nou-singular over-
all covariance matrix, then the conditional density p\;n-;(:z"' | %) is a Gaussian m-rv for each
g. and has a fixed covariance Ky — K \:)-:!\'._,.l!\"‘f,ﬁ - for each 3 and has a mean K¢y 1\')'_211}'.
which depends linearly on g, This situation can be equivalently formulated as X Q¥ 7V

where Vs a zero mean Gaussian m-rv independent of Y. Equivalently it can be formulated
as Y = HX | Z where Z is a zero mean Gaussian n-rv independent of X',



50 CHAPTER 2. GAUSSIAN RANDOM VECTORS

2.9 Exercises

Exercise 2.1 a) Let X, Y be IID rv's, each with density p(x) = aexp(—a?/2}. In part
(b). we show that a must be 1/v/27 in order for p,(2) to integrate to 1, but in this part.
we leave o undetermined. Let S = X2 4 Y2 Find the probability density of S in terms of
(.

b) Prove from part (a) that o must be 1/v/27 in order for S, and thus A and Y. to be
random variables. Show that £]X]| = 0 and that E[X?| = 1.

c) Find the probability density of Il = VS, R s called a Rayleigh rv.

. . . . m ; S |
Exercise 2.2 a) By expanding in a power series in (1/2)s -, show that

b o242 A 4 2k -2k
sta R s'o s
exp( < ):1—. + W =k | 2o

' 2 2(22) 2k (k1)

b) By expanding e*” in a power series in sZ. show that

i -5 7 §E|Z
4,(5) = Ele%] = 1 + sE[Z] 4 f——JI—L s—(;lT] fosven

c) By matching powers of s between (a) and (b). show that for all integer & = 1.

. 2'.'1.2# 3 " i
E|Z%] = (—-,’,53—}- =2k —1)(2k—3) - @) (De* ;  EZ%V|=0

Exercise 2.3 Let X and Z be 11D normalized Gaussian random variables. Let Y -
|Z] Sgn(X), where Sgn(X) is 1 if X > 0 and —1 otherwise. Show that X and Y are
each Gaussian, but are not jointly Gaussian. Sketeh the contours of equal joint probability
density.

Exercise 2.4 a) Lot X ~ N/(0.a7) and let Xo ~ A(0.43) be independent of Xj. Convolve
the density of Xy with that of X to show that X +4 X5 is Gaussian.

b) Combine part (a) with induction to show that all linear combinations ol [1D normalized
Gaussian rv's are Gaussian.

Exercise 2.5 a) Let U be a rv with mean m and covariance A” whose MG is given by
(2.12). Let X = s'/ for an arbitrary real vector § Show that the MGF of X is given by
Gy (r) = exp [rE[X] | P03 /2] and relate £|X| and o3 to 7 and A.

b) Show that [/ is a Gaussian rv.
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Exercise 2.6 a) Let 7 N(0, i) be n-dimensional. By expanding in a power series in
(1/2)8T K §. show that

3
[T Ks ¥ bisi| Kl g > i85 K],
. “1 e N :::zgi__iail___L;i oot ( il ’) -

gz(8) = exp - .
9z 2 2mm!

Z

b) By expanding ¢¥“ in a power series in s;Z; for each i, show that

.A NE & s
_rgf(s) = I |exp Zsi_/j,i - Z Z G UH)IEIZI ol

i s1=0 4,=0

¢) Let D = {iy.in. .. ..i2m } be a set of 2m distinet integers each between 1 and n. Consider
the term s;, 85, - - - Sig, B 21y Ziy -+ - Zia,,, | in part (b). By comparing with the set of terms in
part (&) containing the same product s;, 83, -+ - Sy, . show that

LA n [ s - - [

A2 — | P

ElZZiy - Zig = Y.

= L 271?.]?3_]
J1da-dam
where Lhe sum is over all permutations (1. ja.. . .. Jom) of the set D).

d) Find the number of permutations of £2 that contain the same set set of unordered pairs

{95 8 by {Jom—1.Jom }). For example. ({1.2}. {3.4}) is the same set of unordered pairs
as ({3.4}.{2.1}}. Show that
Elzil 'Zf'.’ . Ziun.‘ - Z []\']JJJE[I{]JS?-I = |‘I\—].}I2nr— 132 (2.51)

Jrdaeendom

where the sum is over distinet sets of unordered pairs of the set D. Note: another way
to say the same thing is that the sum is over the set of all permutations of D for which
Joic1 < joi for | <4< m and joi—) < josqr for1 <i<m—1.

e) To find £]2{" --- Zi|, where ji 4 ja+ -+ + ju = 2m, construct the random variables
/- Uape. where Uy, ... Uy, are all identically equal to 7y, where Uy, 4y, ..., Uj 44, are

identically equal 10 Zu. ete., and vse (i) to find E[UUs -+ - Uspy|. Use this formula to find
B\ 73 Za ). E\23223), and B\ 20|

Exercise 2.7 Let () be an orthonormal matrix. Show that the squared distance between
any two vectors 2 and ¢ is equal to the squared distance between Q2 and Qyf.

' - 75 .20 ' 4 i . g 2
Exercise 2.8 a) Let A = [3’ 23] Show that 1 and 1/2 are eigenvalues of K and find the

(RN
normalized eigenvectors. Express A as QAQ ™" where L is diagonal and Q is orthonormal.
b) Let AY = o\ for real a # 0. Find the eigenvalues and eigenvectors of K’. Don’t use
brute force— think!
¢) Consider the m"
)f\"'ﬂ'!

power of K. K™ for m > 0. Find the cigenvalues and cigenvectors of
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Exercise 2.9 Let X and ¥ be jointly Gaussian with means m . m,.. variances o3. o%..
and normalized covariance p. Find the conditional density p.,.(x | y).

i @ R e o . . 3 ; 2 5
Exercise 2.10 a) Let X and Y be zero mean jointly Gaussian with variances 0. 0y, and
normalized covariance p. Let 1¥ = ¥*. Find the conditional density Pyp-{ | v). Hint: This
requires no computation.

b) Let U = ¥'? and find the conditional density of p
this is harder than part a).

vl | w). Hint: first understand why

Exercise 2.11 a) Let /7 = (X7.¥7) have a non-singular covariance matrix K. Show
that A ¢ and Ky are positive definite. and thus non-singular.

b) Show that the matrices B and D in (2.25) are also positive definite and thus non-singular.

Exercise 2.12 Let X and Y be jointly Gaussian rv's with means m ¢ and 7iy:. covariance
malrices Ky and Ay and cross covariance matrix K gp. Find the conditional probability

density p 7 (# | ). Assume that the covariance of (X7, Y7T) is non-singular. Hint: think

X
of the fluctuations of X and Y.

Exercise 2.13 a) Let 1" be a normalized 11D Gaussian n-r¥ and let ¥ be a Gaussian m-rv.
Suppose we would like the cross covariance [£|W }";:T! 10 be some arbitrary real valued n by
m matrix K. Find the matrix 4 such that ¥ = AW achieves the desired cross covariance.
Note: this shows that any real valued 1 by m matrix is the cross covariance matrix for some
choice of random vectors,

b) Let 7 be a zero mean Gaussian 7-rv with non-singular covariance R ;. and let Y be a
Gaussian m-rv. Suppose we would like the cross covariance E[ZY 7] to be some arbitrary
real valued » by m matrix K/, Find the matrix B such that ¥ = BZ achieves the desired
cross covariance. Note: this shows that any real valued n by m matrix is the cross covariance
matrix for some choice of random veetors Z and Y where K 7 is given (and non-singular).

¢) Now assume that Z has a singular covariance matrix in part b}. Explain the constraints
this places on possible choices for the cross covariance E[ZYT]. Hint: vour solution should
involve the eigenvectors of K ;.

Exercise 2,14 a) Let W = (W W, .. .. W) bea 2n dimensional 11D normalized Gaus-
sian rv. Let Su, = Ifi”f i 'l'i-"-_,z foooe 4 1'1’5)”. Show that Sy, is an nuth order Erlang rv with

i — - —s/2 1 . - i . s e
parameter 1/2. i.e. that ps,, (s} = 27"~ 1e™/2/(n — 1)1, Hint: look at Sa from Exercise
1.

b) Let Ro, = Su2,,. Find the probability density of R,

¢) Let w2,(r) be the volume of a 2n dimensional sphere of radius r and let b2,(r) be the
surface area of that sphere, i.e., ba,(r) = dvs,(r)/dr. The point of this excreise is to show
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how to calenlate these quantities. By considering an infinitesimally thin spherical shell of
thickness 8 at radius r. show that

Pry, (1) = b2 (1) Py () |y igor i 2

d) Calenlate by, (r) and v2,(r). Note that for any fixed § < r. the volume within ¢ of the
surface of a sphere of radius r to the total volume of the sphere approaches 1 with increasing
7.

Exercise 2.15 a) Let [/ = (X.Y)7_ Solve directly for B. . and D in (2.25) for this case.
and show that (2.26) agrees with (2.24)

b) Show that vour solution for B. C. and ) agrees with (2.35), (2.36). and (2.44).
Exercise 2.16 Express 3. (', and D in terms of K¢, Ay and A gy by multiplying the

block expression for Kz by that for K{T,l, Show that your answer agrees with that in (2.35),
(2.36). and (2.44).
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