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A field F Is a set of two or more elements, F={a §,...) closed under two operations, +

(addition} and = (multiplication) with the following properties:

a) F is an Abelian group under addition; the additive identity is called O and the

addiive inverse of « is called -cx,

b) The set of non-zero elements is ¢losed under multiplication (i.e., o0 H=0
implies a=f=0); there is a multiplicative identty called 1 (i.e., 1*a=as*l=a [or all

ct; and multiplication satisfies the associative and commutative laws,
¢) There is a multiplicative inverse, denoted c! for cach non-zero element .
d) The distributive law is satisfied: (ce+ B)sy=(cz=y)+{f=y)

A Galois field is a field with a finite number of elements. If a Galois field has q elements,
we denote it as GF{qg). An integral domain is a structure that satisfies conditions a), b), and
d) above. Conditions b} and ¢) above are equivalent to stating that the set of non-zero
elements is an Abelian group under multiplication. We separale these conditions here for
several reasons, First, lemma 1 below will show that condition ¢ is implied by the other
conditions if the set F is finite (i.c., that all finile integral domains are Galois fields).
Second, integral domains are important in their own right. They include the set of integers
(under ordinary addition and multiplication), and, as discussed later, the set of polynomials
over a field. Third, condition ¢} asserts that division is defined (i.¢., for any «€F and any
non-zero BEF, aff is defined as a«(p-1). When ¢) is not satisfied, one typically gets both a

quotient and a remainder when one ties to divide,



EXAMPLES:

1} The set of real numbers {or rational numbers, or complex numbers) using ordinary

addition and multplication.

2) The set F={0,1} using mod 2 additicn and multiplication. This is called the binary field

or GF(2) and satisfies the above conditions by inspection.

3) For any prime number p, the set F={0,1,...p-1} using mod p addition and multiplication.

This is called the p-ary field or GF(p) and we demonstrate shortly that it is a field.

The latter two examples are finite lields, or Galois fields; Galois fields are of interest for
algebraic coding, but the real field provides a guide in dealing with Galois fields, since the
usual rules for addition, subtraction, multiplication, and division apply for all fields. In

particular, the following rules apply to all integral domains, and thus also to fields.

1) e+=0sa=0 lor all aEF
2) -(asf)=(-a):P=a(-p)
3) For any B0, a+f=y+f == a=y (Cancellation law)

To verily rule 1, note that for any @ and , a+f = a=(B+0) = a+f+as). Thus a0 must
be the additive idenuty, which is 0. By commutativity, O+ce = 0. For rule 2, we have 0 =
Osfi = (a+(-c))+f} = a=P+(-a)«B. Thus (-a)ep is the additive inverse of a=f, which
means it is equal to (a=f}). Forrule 3, assume 0. Then csfmysf => asfi-(y+p)=0=>

asf+{-p)=f=0 =>{ o-y)+p=0 = avy=0 => a=y.

Now consider F={0,1....p-1} under mod p addition and multiplication. If p is not prime,
then for some positive integers o, f in F, af=p under ordinary multiplication, and thus
a=f3=0 under mod p multiplication. Thus, condition b) is violated and we see that Fisnot a
field {under mod p addition and multiplication) if p is not prime. If p is prime, conditions

a), b), and d) are easily verified. Since p is finite, the following lemma demonstrates the
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existence of a muluplicative inverse for all non-zero elements. Thus the setl of a prime

number p of elements with mod p addition and multiplication is a field, denoted GF(p).
LEMMA I: If an integral domain has a finite number of elements, it is a field.

Proof: We must establish the existence of a multiplicative inverse for an arbitrary element
a#0. In particular, consider {ct! o2....} where a! = c=cts...+cc with m terms. We must have
al=ce*+] for some positive i,j, since the set is finite. By rule 3 above, this implies that 1=cd,

Thus 1 = cescel-!, so that a1 is the multiplicative inverse of c.
VECTOR SPACES

We have already used the idea of representing binary code words as vectors of elements
from GF(2). Such vectors can be added (by adding the individual elements component-
wise) and multplied by feld elements {i.e., multiplying v by | yields ¥, and by O yields the

all zero vector 0). Formalizing and generalizing this, we have the definition:

A vector space V over a given field F is a set of elements (called vectors) closed under an
operation + called vector addition. There 1s also an operation = called scalar multiplication,
which operates on an element of F (called a scalar) and an element of V to produce an

clement in V. The follewing propertics are satisfied:
a) ¥ is an Abelian group under vector addition. Let 0 denote the additive identity.

b) For every v, w £ V and every o, p € F, we have
(e} v = cue{fav),
Ca(V+ W) = eV oW
{r2+Piav = Gy +P=y

l=v = v where 1 is the multplicative identity of F.
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Note that the operators + and # do double duty as the operations in the field and vector
space; this causes no confusion since it is always clear what is being operated on. We will
often leave out the * {i.e., replacing cisv with c.¥) when there is no danger of confusion.
There is nothing subtle hidden in the definition above; it is the same as the vector spaces
vou are used to, with an arbitrary field F in place of the real field. In most cases, V can be
represented by n-tuples of field elements for some given n; as we shall soon see, this is

always true when V is a finite set of vectors.

A sel of vectors v, v2...,. ¥k 18 said 1o be linearly independent if cjvy+azvet.. oy = 0
for all choices of scalars oy, @g, ...ct in which at least one scalar is non-zero. A set of
vectors v, ¥2,..,¥k 1 said to be a basis of the vector space if the set {¥{, v2.....¥k} is linearly
independent and if every vector w in V can be represented as @ v+ az¥o+...+apvy for
some choice of scalars ay, az, ..., ai- The space is said to be k dimensional if there are k
vectors that form a basis. Note thal, given a basis v{, ¥2,...,v, we can represent each vector
W = a ¥+ aova+. . +agvg by the k tuple (@), ag, ...,01); vector addition is then just
component wise addition on these K tuples and scalar multiplication is just multiplication of

the scalar by each element of the k wple.

LEMMA 2: Let V be a vector space over a Galois field with g elements. Il V has a finite

number of elements, then the number of elements is g" for some integer n>0.

Proof; Choose a basis by sclecting arbitrary non-zero vectors one at a time such that, after
selecting ¥, ¥2....,¥k, the next vector sclected is linearly independent of vy, vo,....¥g. If there
is no such vector, then all vectors can be represented as w = o v+ aava+... +ai vy for some
choice of &, ug, ..ok and vy, v2..., ¥ is a basis. Each distinct choice of scalars a g, o,
;G cotresponds to a distinct vector, since if o [Vi+ aavet+.. . +og Vg =

B1vi+Pavat... +Prvk. then we would have (a1-f1)vi+{aa-fa)vo+.. . +{ap-Prve = 0, which
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is a contradiction of the independence of vy, ¥s,..,vk. Finally, there are gk choices for the

set of scalars e, &g, ...,04, completing the proof.
POLYNOMIALS

An expression of the form [D24+ {1 D84+, 4+ D+fg (usually denoted f({D)) is called a
polynomial of degree n over F, where fy, fp-1,....fp are elements of a field F and f=0. In the
special case n=0, we regard the field elemenis as polynomials of degree (0. In particular, the
ﬁem field element is regarded as the zero polynomial. Two polynomials {{D) and g{D) are
said to be equal ifl they have the same degree n and fi=g; for Osi=n. The clementDina
palynomial is referred to as an indeterminate. It should not be thought of as a variable
within the field F and {{D) should not be thought of as a function mapping elements of F
into F. To see the issue here, consider the polynomials D? and D over GF(2) (we
consistently use the shorthand of writing 1 DK as just DK). We see that D2 and D,
considered as functions of D, both take value |1 for D=1 and value O tor D=0. Thus they

are equal as functions lrom GF2) into GF(2), but not equal as polynomials.

The sum of two palynomials {(D)+g(D)} is defined to be
f(D)+g(D) = ;i (fi+g))D!

Similarly, the product of two polynomials is given by convolution:

(DD =3, (D1 fig D
As an example, over GF(2),
(1+D+DHL+ D) =1+ (141D + (1+1)D2+ D3 =1+ D3
Note that the degree of the product of two non-zero polynomials is always the sum of the

degrees of the individual polynomials.

The set of polynomials over any given field can be seen to be an Abelian group under

polynomial addition. Conditions b) and d) also hold but ¢) does not. This gives another
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example where lemma 1 fails when the condition of a finite number of elements is violated
(note that the set of polynomials, even over GF(2), is infinite since the degree is unbounded;
if we consider the set of polynomials of degree less than n, then the set is finite, but is nol

closed under multiplication).

The set of polynomials over a field F can be regarded as a vector space. The vector addition
is, of course, the polynomial addition defined above, and scalar multiplication is defined by
a (D) = 3 afiD! for «EF. Here the set of polynomials of degree less than n is an n
dimensional vector space, and the palynomials 1, D, D%, ...D"! form a basis. For this

vector space, the powers of D serve as little more than "place holders."

Polynomials can be divided by one another if one is willing to tolerate a remainder term.
The algorithm for dividing polynomials over an arbitrary field is the same as the long
division algorithm one learns in high school {(except, of course, that the division of field

clements uses the division rules of the given field). Example (for GF(2)):

D +1
3 5 3
D+D%1 +
P

D +D

+21

D
* D

D’+D%D+1

3 2

D+D% 1
D

The remainder (D in the above example) is always of lower degree than the divisor (il not,
the algorithm continues until it is). If we divide [(D) by g(D) using the algorithm above, we
can represent [{D) in terms of the quotient h{D} and the remainder (D) by f{D) =
g{Hh({D) + r{D). If g(D) has degree greater than 0, then there is a unique h(D) and a
umique (D) of degree less than g(D) that satisfies this equation. Il ¢(D) =0{l.¢c, if [(D) =
g(Dh{D}) then g(D) is said to be a factor or divisor of [{D). If 2(D) and h(D) are both of
degree greater than O, then f(D) is said to be reducible; if [{D) has no such divisors, [{D) is



Tl

imreducible. A polynomial (D} is said to be monic if its leading coetficient is 1 (i.c.. the
multiplicative identity of the field). The following theorem is familiar from elementary

algebra. Its proof, however, is surprisingly tricky and is given in the text (Theorem 6.4.3)

THEOREM 1: (Unique factorization) A polynomial f(D) over a given field has a unique
factorization into a field element times a product of monic irreducible polvnomials over the

field, each of degree greater than 0.

An element & of a field is defined to be a root of a polynomial f{D) over that field if f{e)=0,
i.e., il T fj=el = 0. We shall see that understanding Galois [ields is very closely coupled

with understanding the roots of various polynomials.

THEOREM 2: An element « of a field F is a root of a non-zero polynomial f{D) over F

iff (D-cx) is a factor of f{D). I f(D) has degree n, then at most n field elements are roots of

(D).

Proof: Dividing D-a into [{D), we have [(D) = {D-a)h({D)+1(D). Since r(D) has degree
lower than D-cx, it has degree O; thus f{D) = (D-c.)h(D)+rg where ry is a field element. It
follows that f{a)=ry, so a is a root of f{DY iff rg=0, i.e., iff D-c is a factor of {{D). Since
cach root corresponds to a factor of degree 1, the unique factorization theorem assures us

that there are at most n [actors and thus at most n roots.

We can now construct another example of a Galois field. We will show later that all Galois
fields can be represented in this way. Suppose {{D) is a given monic irreducible polynomial
of degree n over the field GF(p) for some prime p. Consider the set of polynomials of
degree less than n. We define two operations on these polynomials, one of which is the
polynomial addition already defined. The other is a new kind of multiplication, namely
polynomial multiplication modulo f{D); we denote this by the symbol =, so that 2(D)=h(D)
= g{Dh(D) modulo f{D), where g{D)h(D) modula (D) means the remainder when
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g(Dyh(D) is divided by (D). Since this remainder is of degree less than n, we see that the

set of polynomials of degree less than n is closed under multiplication modulo f(D).

THEOREM 3: Assume f(D)) is an immeducible polynomial over GF{p) of degree n. Then
the set of polynomials over GF(p) of degree less than n, under polynomial addition and
multiplication modulo f{D) forms a Galois field of p" elements.

Proof: We have already seen that the given set of polynomials forms an Abelian group
under polynomial addition, and it is straightforward to verify the distributive law, and the
associative and commutative laws for multiplication modulo f(D). By lemma 1, then, it is
enough to verify that h(D)+g(D) is non-zero for all h{D}=0 and g(D)=0. Thus we must
verifly that there is no polynomial q(D) such that h(D)g(D) = f{D)q(D). Applying the
unique factorization theorem o h{ID) and g(D), we see that h{D)g(D) umiquely factors into
polynomials of degree at most that of h(D) and g(D). Since {(D} is irreducible and of
degree greater than h{D) and g(D), there can be no (D) such that h{D)g(D)=RD)q(D).

Example: Consider the immeducible polynomial D24D+1 over GF(2) (to verify that
DZ+D+1 is irreducible, show that neither D nor D+1 are lactors; these are the only degree
| polvnomials over GF(2)). The resulting field of polynomials of degree less than 2 over
GF(2) modulo D2+D+1 contains 4 elements, namely 0, 1, D, D+1. These elements can be
represented (in the vector form) by 00, 01, 10, 11 respectively. The addition and «
multiplication tables are then given below. Note that 01 is the multiplicative identity. In
understanding the multiplication table, note that, for example, (D+1)(D+1)mod(D2+D+1)
= (D24 1)mod{D2+D+1) = D. Thus the lower right hand corner of the table indicates
(11)=(11) = (10).
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+ 00 01 10 11 » 00 01 10 11
00 00 01 10 11 00 00 00 00 00
01 01 00 11 10 01 00 01 10 11
10 10 11 00 01 10 00 10 11 01
11 11 10 01 00 11 00 11 01 10

THE STRUCTURE OF GALOIS FIELDS

A subfield is a field whose elements are a subset of the original field and whose

multiplication and addition operations are the same as those of the original field.

LEMMA 3: If the elements of a subset F of a Galois field F are closed under the addiuon

and multiplication operations of F, then F' is a subfield.

Proof: For any « in F, repeated addition of « to itself comes back to the additive inverse

-1, and with one more addition of «, to the additive identity element (). Thus F, with the
addition operation of F, is an Abelian group. Similarly, repeated multiplication shows that «-
! and 1 are in the subset, so that the non-zero elements of F forms an Abelian group under
multiplication. Since we have closure under the addition and multiplication of F, and the

distributive law iz satislied, F' then satisfies all the axioms of a field.

Note that this lemma is not true for [ields in general; for example in the real field, the set of
numbers greater than or equal to 1 is closed under addition and multiplication, but it is

certainly not a subfield.
THEOREM 4: Every Galois ficld has a subfield with a prime number of clements.

Proof: Consider the subset {0, 1, 1+1, 1+1+1, ...}. This is a cvclic subgroup of the
additive group of the field and has some number p of elements. Denoting the sum of 1 1's

as the element 1 for i<p, we note that addition on this subgroup is just addition modulo p.
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Using the distributive law to discover the multiplication law on these elements, we see that it
has to be multiplication modulo p. Thus this subset is closed under multiplication. Finally,
if pwere not prime, and had two factors, say i and j, then 14, in the = operation of the field,
would be the sum of p 1's, which is 0. This is a contradiction since F is a field, and thus p is

prime.

[t is clear [rom the construction above that the prime subfield above is unique and that any
other subfield must contain all these elements (since it contains 0, 1, and sums of 1's). Thus
p is called the characteristic of the finite field and the elements of the subfield are called the
integers of the ficld. Since any field of p elements has these same integers with the same
mod p operations, this is the only field of p elements, justifying calling it GF(p). What we
really mean when we say that there is only one field of p elements is that any field of p
elements is isomorphic to the field above in the sense that the elements can be mapped into
these integers with preservation of the + and = rules. We show later that all fields with any

given number g of elements are isomorphic, thus justifying the notation GF(q).

Given a Galois field, it is useful to consider the elements of the Galois ficld as vectors ina
vector space in which the scalars are the integers of the lield. The elements of the field can
be added, subtracted, and can be multiplied by field elements within the vector space
structure. It follows then from lemma 2 that the field must have p® elements for some

posilive integral n; we state this as a theorem.
THEOREM 5: A Galois field of characteristic p has p? elements for some integer >0,

Carrying the linear vector space view a little further, let a0 be an arbitrary element in a field
GF(pm), and let m be the largest integer such that 1, a, «:2,....a™-1 (considered as vectors

over GF(p) are linearly independent. This means that the set of clements

m-1
S(a) = { Ykial : KGEGH(p), O<i<m-1} (1)
i=(]
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contains p™ distinct elements (note that m might be smaller than n since S(o) need not
contain all elements of the field; for example, S{a) contains only p elements il o itselfl is an
integer of the lield). Since a™ is a linear combination of 1, a,..a™1, we see that

m-1

M F ™ L+ T a4+ Tp = O lor some choice of field integers fp, ...[jp-1. This means that

a is a root of the polynomial f(D) = D™+ f Dl +1 1D+l

The minimal polynomial f (D) of an element a of a field GF(p™) is defined as the monic
polynomial of lowest degree over GF(p) for which o« is a root. Thus f(D) above is the
mimimal polynomial of & and we see that the minimal polynomial of each element has
degree less than or equal to n. Recall that the only example we have seen of a Galois field
with pt, n>1, elements is that of the set of polynomials modulo an irreducible polynomial.
The polynomial representation of such an element is not at all the same as the minimal
polynomial of the element, and to avoid confusion between the two, it is often preferable lo

represent elements of the field either abstractly (e.g., an element ) or as a vector.

Now suppose that m, the degree of the above polynomial (D), is strictly less than n. Thus
S(at) is strictly a subset of F. On the other hand, o™ = -f 1™ 1., -fjo-fg is contained in
Sta). Tt follows that ™! = ~alfm. 1™ L.+ a+1p) is also contained in Stc), since the
first term in the above expression is fjn.jo™, which, as we have just seen, is in S(c).
Extending this argument, ol is in S{a) forall i, and it follows easily that S{a) is closed
under multiplication and addition, and thus S(c) is a sublield of F. Since all the elements in
S{ce) are penerated by additions and multiplications between « and the integers of the field,
o cannot be in any smaller subfield than S{c). Finally, we can consider GF(p) to be a
linear vector space over the subfield S{a) (instead of over GF(p)). Lemma 2 then shows
that the number of elements in the [ield is (pm}j for some integer j. This means that m must

be a factor of n. We have proved the following theorem:
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THEOREM 6: [n afield of p® elements, each element o0 has a minimal polynomial with
a degree m(a) that is either equal o n or divides n. The element o is contained in a subfield
of F with pm(et) elements (if m{c)=n, this subfield is F itself) and e is contained in no

subfield with fewer than p™{} elements.

LEMMA 4: Lel P(D) be a polynomial over GF(p) and let « EGF{p") have minimal
polynomial fz(D). Then a is a root of P(D) if and only if f{DD) is a factor of P(D); also
(D) is irreducible over GF(p).

Proof: [f [,{D) is reducible, then o is a root of one of its factors, which contradicts the

definition of a minimal polynomial. If we divide f4(D) into P(D), we get
P(D) = [o(D)q(D) + (D)

where r(D) is of degree smaller than {(D). Thus we have P{a)=r(a). Il a is a root of
P(D}, then r{ct) is zero. I i{D} is not the zero polynomial, then it can be multiplied by some
element of GF(p) to make it monic; o is a root of this monic polynomial and this
polynomial has degree less than f,{D); this is a contradiction, so r{D) is zero and f,(D)
divides P(D). If « is not a root of P(D), then P{a)=0, ria)=0, (D)0, and f{D) does not

divide P(D).

We have seen that iff an irreducible polynomial of degree n over GF(p) exists, then a Galois
field of g=p" elements exists. We also know from Lagrange's theorem that the
multiplicative order of each non-zero element divides g-1 and thus that each non-zero

element is a root of D111,

THEOREM 7: Assume that GF{q) exists for g = p2. Let (D), f3(D),...[ (D} be the

distinct minimal polynomials (over GF(p})) of GF{(q). Then

L
DI ] = [ 6D (2)
i=1
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Proof: Each non-zero element of GF{q) is a root of the polynomial on the right, which
therefore has degree at least g-1. Each minimal polynomial is an irreducible factor of
D4-1-1, however, so the right hand side divides the left ; since the right side is monic and its

'dcgmc is not less than the degree of the left side, the two must be equal.
The left side of (2} can be factored in another way - for any k that divides g-1, we have
D% .1 = (AR DI L DR (3)

Some of the minimal polynomials on the right side of (2) are factors of DK-1 and some are
factors of DI ¥+ DI 12, | 1 DR41. The elements of GF(q) that have a multiplicative
order equal 1o k or a divisor of k are roots of DX-1 and there must be k such elements (since

every non-zero element of GF(q) is a root of one of the polynomials on the right side of (3).

THEOREM 8: The multiplicative group of every Galois field GF(p®) is cyclic. That s,
there is some element a (called a primitive element) whose powers include all non-zero

elements of the field; the degree of {5(D) is n.

Proof: For any m dividing g-1, the number of elements whose multiplicative order is m or
a divisor of m is m; this 15 the same as in a cyclic group of g-1 elements (L.e., if km=g-1 ina
eyclic group {a, a2, ..., a¥l=1}, then {ak, aZk . amk=1} is the set of elements of order m
or a divisor of m}.. It follows that the number of elements whose order is exactly g-1 is also
the same as in a cyclic group. This is at least one since a cyclic group of g-1 elements by
definition has an element of order g-1. Taking « as such a primitive element, let m{c) be
the degree of (D). From theorem 6, if m{a)<n, then a is an clement of a subfield with
p{e) elements, and the multiplicative order of ¢ is at most pm{a) -1 this is a contradiction,

50 mici=n.
EXAMPLE: Consider GF(2+. Using (3), we have DI5-1 = (D3-1)}(D10+ D34 1),

D3-1 = (D-1}D*+ D34 D24+D+1) (4)



7.14

D104 D3] = (D24 D+ 1) DD+ 1YD4+ D3+ 1) (5)

The minimal polynomial (D-1) on the right side of (4} is the minimal polynomial of the
identity element 1. D4+ D3+ D2+D+1 is the minimal polynomial of the other four roots of
D>-1, which are the four elements of multiplicative order 5. In terms of a primitive element
a, these elements are a3, a8, @9, and @12 (10 see this for o3, for example, note that (a3)° =
«!3=1). The minimal polynomial D2+D+1 is a lactor of D3-1; it is the minimal
polynomial of the elements (other than 0, 1) in the subfield GF{4); in terms of «, these
elements are & and a1, For a a root of D¥*+D+1, we see thal ad=a+ a2 and
a10=1+a+ a2, from which the fact that these elements, along with O and 1, form a subfield
is not too surprising. The final two minimal polynomials in (5) are primitive polynomials.
Primitive polynomials over GF(2} always come in symmetric pairs (where the symmetry is
to interchange coefficients fj and fp, ; for each i=n/2). I one is the minimal polynomial for

¢, the other is the minimal polynomial for a-l.
THEOREM 9: All Galois [ields with the same number of elements are isomorphic.

Proof: Theorem 7 showed that Eq. (2) determines the set of minimal polynomials of an
arbitrary field with g=p" elements, so all fields with q elements have the same minimal
polynomials. Theorem 5 shows that the set of minimal polynomials includes at least one of
degree n. Letting o be an arbitrary root of a given polynomial of degree n, S(e) in (1)
contains all the elements of the ficld and gives the addition operation in terms of the vector
additdon over GF(p). The multiplication operation is uniquely defined since a? is
determined as an element of S(at) by [;(a)=0. Since all fields with p® elements have this

same addition and multiplication rule, they are isomorphic.

We next want 1o show that GF(p™) exists for all primes p and all integers n. In order to do
this, we first develop a result about the irreducible factors of DP™!, and then we demonstrate

the existence of irreducible polynomials for all p and n.



7.15

THEOREM 1{: Let f{D) be an irreducible monic polynomial over GF(p) of degree m; then
f(D} is a factor of DP™1 - 1 iff m divides n.

Note that this theorem is quite similar to theorem 6, except that here we do not assume the

existence of GF{p?). Before proving the theorem, we need wo lemmas.

LEMMA 5: Assume GF(p™ exists for some prime p and integer n. For «, ff in GF(p™)

and any integer m={),
(ct PP = ™ + BPY. (6)
Proof: We can use the binomial theorem to expand (a+ )P,
- p-1 (P) wigp P
(a+f) =a* +pa™ B+ .+ N\ a B .+ P (7)

(],j) uiﬁp'i is to be interpreted as the sum of (I:) terms, each ntiﬁ-PFi . We have

P, _ Kell
G)=Tpn! = Tp-in

This is an integer and p is prime. For O<i<p, the denominator does not contain the lactor p,

so the denominator must divide (p-1)!. Thus (E]) is a multiple of p, which in a field of

characteristic p is 0; thus only the outer terms in (7) remain, completing the proof for m=1.
Applying the result (a+ PP = aP + BP twice, once to « and B, and then to aP and fiP,

(a+ BYP* = ((ct P = (P + BPYY = o + BP? (®)
Repeating this argument m-1 times, we get Eq. (6).

LEMMA 6: Suppose GF{(p™) exists. For any positive integer n, the set of elements of
GF(p™) that are roots of DP"-D form a subfield of GE(p™) (where the sublield might be
GF(p™) itself).
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Proof: Note that 0 is a root of DP"-D and the other roots are the elements whose
multiplicative order divides pi-1. Let T be the set of elements of GF(p™) that are rools of
DF'_-D. From lemma 3, it suffices to show that T is closed under addition and

multiplication. Suppose o f € T. From (6),
<a+r$1p“ = o+ B =a+p

The final equality above resulis from «f} € T, and this shows that a+BET. Also
(axB)P’ = oP' % BP" =a= B

completing the demonstration.

Proof of theorem 10: Let GF(p™) be the field formed by the polynomials over GF(p) with
multiplication modulo {(D) and let aEGF(p™) be a root of f{D). Assume that f{D} is a
factor of DP""! - |. Lemma 6 implies that the roots of DP™1 - | constitute all the non-zero
elements of a subfield of GF(p™}. Since « is in this subfield, and since theorem 6 shows
that & is not in any subfield smaller than GF(p™), the subfield must be GF{p™} itself.

Thus the primitive elements of GF(p™) must be roots of DP"-1 - 1, so that p™-1 must divide
p™-1. Carrying out the division, p2-1 = (p-1){pm-0 + pm-20 + ) which shows that m must
divide n. Next assume that m divides n. Then, from the division above, p™-1 divides p-1

and thus DP™1-1 is a factor of DP™1-1, Thus f(D) is also a factor of DP™1-],
THEOREM 11: GF(p") exists for all primes p and all positive integers n.

Proof: We already know that GF(p) exists for all prime p, so we need consider only n=2.
We also know that GF(p®) exists if an irreducible polynomial over GF{p) of degree n
exists. We complete the proof by considering the factorization of DP"-1-1 over GF(p). The
irreducible monic factors of this polynomial, from theorem 10, all have degrees of n or

divisors of n. Thus each irreducible factor has degree n or a degree at most /2. We merely
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need to show that there are not enough monic irreducible polynomials of degree n/2 or less
to yield a product of degree p?-1. Let m=n/2. The sum of the degrees of all monic
irreducible polynomials of degree m is at maost p™-1 (from theorem 7). Upper bounding
this by p2-1 and summing over m=n/2, we see that there are at most (n/2)p"'2 -1
irreducible monic polynomials of degree n/2 or less. Showing that p? - (n/2)p®2 > () is thus
sufficient to show that monic irreducible polynomials of degree n exist. 'We note by
inspection that this inequality is satisfied for p=2, n=2, and the left side is an increasing

function of nand p for all larger n and p.

We complete this section with the following theorem, which is sometimes useful in

hardware manipulations with Galois fields.

THEOREM 12: For any non-zero a in GF(pT), let {{D) be the minimal polynomial of a.

Then the roots of (D) are o, aP, cxpg‘, ...,-::unf‘"’"1 where m 1s the degree of f{D).

Proof: Let f(D) = D™+l D™ L4...+f1D+fg be the minimal polynomial of «; thus
f(ce)=0. We first show that f{P)=0, demonstrating that  and o have the same minimal
polynomial. Using (6), we have

m-1

m-1
()P = (@™ + Pfial ) = aP™ + (Yol )P 9
i=0 1=0

Using (6) again on the final term in (9},

el m-2 m-2
( zfiﬁ' W= ([, am! + Efiﬂ-i W= (6, )P aP®D 4 ( Ef‘iai »
s = i=0)

Since fy,.1 is an integer of the field, (fy-1)P=fp-1, and we have

m-2
[f(c))P = cpm 4 fm_]up'[m-l} +( Efiﬂi »
i=0
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Continuing with the remaining terms in the same way,

[[(cx)]P = aPm + fm_lupim‘l-.‘ +...4 fiapi .ot fiaP + h=HaP) (10

Since f{a)=0, the left side of (10} is 0 and thus f{aP) =0. Since « is arbitrary, we can now
substitute o for ¢ and assert that o and (P)P have the same minimal polynomial. In the

same way P has the same minimal polynomial forall i

Next observe that & = aP' iif o is a root of DP'"! - 1. From theorem 10, this is true iff m
divides i. Thus & # aP' for 1<ism-1. Similarly, if aP' = P for j=i, we can define f§ = ab
togetf = ﬁl’j'i . Since B is a root of (D) just like «z, it follows from the previous argument
that f} = [il"i'-l for lsj-i=m-1. Thus aP' 2 ab for Os<i<j=m-1. Since (D) has m rools, they

vd -
must be ¢, o, P, . aP™

For GF(24) in the preceding example, if o is a root of D%4D+1, then o2, ¢4, and of are the

other toots . The mots of D* D341 are then a-l = a4 2= al3, g4 = oll, and 8=

al,



