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We have derived a lower bound on error probability for fixed composition codes. We saw
that at high rates and at the best composition, the exponential rate at which this bound
approached zero, i.c., maxg Esp(R.Q) was the same as maxg E{R,Q). In other words, for
the best choice of Q, and at high rates, the random coding bound is tight and the error
probability, averaged over the ensemble of codes is substantially the same as the error
probability of the best code. In this section, we carry out a random coding argument for an
ensemble of fixed composilion codes. We denote the exponential rate at which the error
probability approaches zero as Eq(R.Q). We will see that [or large R and arbitrary Q,
E;p(R.Q) = E4(R.Q). In other words, even for non-optimal Q, the average lixed
composition codes is substantially as good as the best code of that composition. We
interpret this alter deriving the result.

For a given block length N, a given number of code words M, and a given composilion Q,
we consider the ensemble of codes in which each code word xp, is independently chosen,
with equal probability, to be any of the T{(Q) words of composition Q. That is, Prixp=x) =
IAT(QI for all XET(Q). Let Py denote the average crror probability (over this ensemble
of codes) when message m enters the encoder and maximum likelihood decoding is used at
the decoder. As in the random coding bound in the text, we first evaluate Prierror [ m,
Xm¥). the probability of an error conditional on message m entering the encoder, Xy, being
the first code word, and y being the received sequence. Thus, we arc evaluating this
probability over the random choice of Xy for each m'=m with the channel noise fixed.

For the given Xy and y, let P be the noise composition such that xy, y has the joint
composition QP. Also, let o be the output composition such that wj = ZxQgP(jlk) for each
j. O<j<J-1. We recall that P(ylxp) = exp[N S Qﬁ{jlk} InP(jlk}]. An error occurs if, for
some m'2m, X' is such that P{ylxy) = P(ylxy): we assume, in upper bounding enor
probability, that an error occurs when the maximum likelihood rule is ambiguous. Now
define Ty(P') as {x: xy € T(QP")}. Thus, Ty(P') is the set of input sequences that can be
carried into ¥ by the noise composition P'. Notice that since ¥ has composition o, we must
have

Sk QkP(IK) = o = Sk QuPGIK) ; Osj=l-1 (38)
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Note also that if xpy € Ty (P"), then P{ylxy) = exp[N Zij QxP'(jIK) InP(jlk)]. Thus, an
error occurs (conditional on message m, code word X, received sequence y) if there is
some other code word Xy 1n the set Ty (P) for some P' such that

exp[N Zk; QxP(Ik) InP(k)] = exp[N Xk Qkﬁ{jlk} InP(jlk)] and (39a)
Sk QeP(ik) = Zx QuP(IK) : Osj<I-1 (39b)

Define P{ﬁ) as the set of noise compositions P' such that (39) is satisfied. We then have
Pr(error | m, Xmq,¥) = Zm‘:m ZP‘EF@) Pr[meTr{P'}] (40)

Note that for a given m'#m, Pr[meTy{P'}] = [Ty(P)l / IT(Q)l. This is because Xy is
randomly selected (independent of xy) with equal probability over all sequences m T(Q),
and [Ty(P) is the number of sequences in Ty (P'); all of the sequences in Ty(P") are in T(Q)
since xy ET(QP"). We also have [Ty (P)l = IT(QP) / IT(w)l and thus

Pr{xmETy(P)] =% < ex{-N[(Q;P)]

(41)

Lemma 7. For yET,;{F},
Pr{error | m, xp,¥) = eJ{p{-N min_ [I{Q;P'} R aN]*} “2)
P'EFP(P)

where [z]* means max(0, z) and &, = (KJ-1) [In(N+1}I/N

Proof: There are fewer than (N+1)XF-1 joint compositions QP and thus fewer than this
many compositions P* in P{F]. Since there are M-1 choices of m'2m, we use (40} to get

Pr(error | m.Xm.¥) = (M-1)(N+1¥-! max Pr [meT,,{P'}]
P'=F(P)

Substituting (41) into this, using M-1 < eNR, we get

Prietror | m,Xm.¥) = max exp-N[I[{Q;P")-R-dy]
P'EF(P)

where &y satisfies the bound in the lemma. Taking the maximization inside, and

recognizing that a probabilily must be at most 1, we have (42).
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Lemma &:
Pem = expv{ ‘N min min D(PIPIQ) +[ QP -R - zﬁN]Jr (43)
P P'EAP) I

Recall from (18) that P[yET xm[ﬁ} | Xm] = exp{ —ND{FI IPIQ)}. We then have

Pem < Z‘l’; P error | m,xm,}'ET,;m{ﬁ}] exp[—ND{FIFIQ}]

Substituting (42) into this and upper bounding each term in the sum by the maximum, we
get (43).

Lemma S
Pen < exp{-N min DPIPIQ) +[ QP)-R- zaN]+} (a4
P
Proof: Note that if [(Q:P") = I(Q:P), then
D(BIIPIQ) + [I(Q:P" - R]* = D(PIPIQ) + [I(Q;P) - RI* (45)
We shall show that in the alternative case, I(Q:P) < [(Q:P),
D(PIPIQ) + [I(Q:P) - RI* = D(PIIPIQ) + [I{Q:P) - RI* (46)

This will complete the proof since it will show that all terms in the minimization of (43} are
lower bounded by terms in the minimization of (44). To demonstrate (46), recall that
TRQP'(IK) = w; = SkQiP(Ik). Thus (Q:PY) < [(Q:P) implies that Ty j QxP'(jIK) In P(jlk)
< Tij QkP(iIK) In B(jlk). Also, sinee P' € P(B), Sk j QeP(jIK) In P(jlk) = Si j QiP(ilk) In
P(jlk). Combining these two inequalities shows that D[FHF!Q} = D{P'IIPIY) and (46)
follows.

THEOREM 5: Over the ensemble of codes of fixed composition Q with block length N
and rate R, the average error probability for cach message m using max likelihood decoding

salisfies
Pen = exp{-N[Eq(R,Q)} - 26N]} where {47)

E4(R.Q) = maxozpet [F(p.Q)-pR]; F(pQ) =ming [DEIPIQ) + pl(QF)] (48)
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Proof; Note that [I[{Q:P)-R]* > pI{Q;ﬁ}-pR for all p, O=p=1. Substituting this into (46)
vields {(47) and (48).

Recalling that Egp(R,Q) = maxp.q [F(p,Q)-pR], we see that Eqp(R.Q) = Ex(R,Q) for all R
such that the maximizing p in maXeq [F(p,Q)-pR] is at most 1. Recalling that this
maximizing p is the negative of the slope of Exp(R.Q) in R, we see that the relationship is
that given in the figure below,

We have already scen (from Eq. (31)) that E{R,Q} is strictly less than Eq,(R,Q) for all rates
less than 1(Q:P) and for all but the optimizing Q. Thus, E{R,Q) < Eq(R,Q) for all but the
optimizing Q. This is not the result of any weakness in the derivation of E{R,Q), but rather
18 that the fixed composition codes {for non-optimum Q) are better (as an ensemble) than
the ensemble with independently chosen letters. The reason for this is that in the random
coding bound with independently chosen letters, typical code words have a range of
different compositions, most of them close to composition Q. After optimizing over Q, the
error probability of code words of compositions close to Q is about the same as those of
composition Q (because Q is at a stationary point). For non-optimal Q, however, the code
words of poorer composition than Q have markedly poorer error probability than those of
composition Q, leading 1o larger error probability over all.

6) ADAPTIVE DECODING FOR UNKNOWN CHANNELS

Suppose that we know that a channel is a discrete memoryless channel, but we do not know
the channel transition matrix P. We can still choose a random code of fixed composition Q,
but we can not implement a max likelihood decoder. As an altlemnative (albeil not very
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practical), we can consider a decoder which, when presented with y, calculates the empirical
noise distribution between X, and y for each code word xp, in the code. Denote this
distribution as Fxm. Thus ﬁ,m i¢ that noise composiion P such that x;n ¥ ET{Qﬁ}. We
then decode that m for which ﬁxm(ylxm} 1s maximal. What is very surprising 15 that the
random coding exponent using this decoding rule is equal to E4(R,Q). In other words, the
fact that the decoder does not know what the channel is does not matenially effect the error
probability over that when the decoder can use 'hi“ information. To derive this result, we
again look at Priermror | mxg¥y) for xq ¥ € T(QP). We calculate this for the channel P, but
using the adaptive decoder above which does not know P. An error ocewrs if there is some
Xm' € Ty (P} for some P’ such that

exp[N Zi; QxP'(jIk) InP'(ik)] = exp[N Zi; Qk'ﬁ(jlk} Inﬁ{jlk}] and (49a)
Sk QPG = Ik QPG 1 Ogj<I-1 (49b)
Define P*(F} as the set of noise compositions P' such that (39) is satisfied. We then have

Pr{error | m, X, ¥) = Zm'#m EPEP*::;} 1:"”["“"1'Erli’“}n"] (500

Using the same arguments as in lemmas 7 and B,
P oo axp{q-r min min D{PIPIQ) +[I(Q;P'] Hr 1&..;;]* 51)
P P'EP(P) I
From (49), it follows that I[(Q:P") = I(Q:P) forall P'E€ P*(P), and thus
Pepy & -::xp{-N min DPIPIQ) +[ 1(QP) -R - zﬁN]* i )
P

From this it follows that Pe i = exp{-N[Ef(R.Q)-28)} as claimed.



