The Arimoto-Blahut Algorithm for Finding Channel Capacity

6.441 Supplementary Notes 4, 3/8/94

Consider a discrete memoryless channel with input alphabet {0, 1,... . K-1}, output

alphabet {0,1....,J-1} and transition probabilities Py, = P(y=jlx=k), 0=k =K-1,0<j =< J-1.

The average mutual information on the channel for a given input probability assignment Q =

{ Q{j- Q]..—.QK_|} is gi\’{tl‘l b}’

P,
I(Q) = Z QP In—E— nats (1)

2

The Arimoto-Blahut algorithm is an iterative algorithm for finding capacity, C = max [{Q),
where the maximum is performed over all probability assignments Q. Mote that we are

using natural logarithms for analylic convemence; this should be multiplied by log, ¢ for

capacity (or mutual information) in bits.

Mutual information can also be written as the log of the aposteriori probability of an

input given an output divided by the input probability, i.e.

Wy
Q) = Z QPyln gt @

where

W:ﬂ_

K
2 QF;

(3)

4.2

In the Arimoto-Blahut algorithm, we want to let W = {Wjy0,Wo . W 0. W 1. W1 51} be
an arbitrary conditional probability assignment on inputs given output (i.e., Z Wy;= 1 for

all j) rather than being defined by (3) as a function of Q. Thus, we define

W, |
QW) = 2 QPyIn Ekj (4)
J

and note that I{Q, W) = [{Q) when W is chosen to satisfy (3).

where the maximum is taken over W such that Wy =0 (all kj) Z Wy = 1 (all j); the

maximum occuwrs where (3) is satisfied.

Proof: The lemma can be proved in two ways: first, from (4) and (1},

W}dz @F;

QW) -KQ= D QP In— (6)
QW) qun A,

The numerator in the log term is a probability assignment, so the overall expression is the
negative of a divergence, and thus is al most 0 with equality where (3) is satisfied.
Allermatively, one can recognize that [(Q, W) is convex M in W and use Theorem 4.4.1 in the

lext

With the lemma, we now see that
C= I'I‘IEI_‘{Q”Q} = mnqw QW) (7)

The Arimoto-Blahut algorithm performs the maximization in (7) by alternating between
maximizing over Q and W. More precisely, it starts with an arbitrary probability vector Q,
with QE >0 for 0k £K-1, and starts with n =0. The body of the algorithm is then

43

QP
Y Qb

b) Find Qn+1 1o maximize 1{Q,Wn) over Q.

a) w:]: (®)

c) Increment n and goto step a.

The algorithm needs to be tidied up in three ways. First, how do we do the maximization in
step b? Second, when do we stop iterating? Third, how can we be sure that [{Qn,Wn)

approaches C?

To answer the first question, note that Qy, In(1/Q,) is convex M in Qy, and thus, from

{4), [{Q,W)isconvex M in Q.
AQW) Wy
e = VP In—2 -1

9Q, Z kT

From theorem 4.4.1, we know that all these partial derivatives are equal o some constant A

il all the optimizing Qy, are positive. Assuming this positivity for the moment, we have

hQ = EP InW-1-2

Solving for Q"' in terms of X, we have

1
Ql_m — B'.E exp(-1-A)
where we deline
It n
) = exp 2 P_E-: In Whi (9
3

-1 -

Choosing A to satisfy X Q.

4.4

Q = (10)

Note that sinee QY was chosen with all components positive, we must have ‘-Nﬁkj =)
for all k,j such that P;y. >0, and this guarantees that Q]{ >0forall k. It follows similarly
that Q) > 0 for all kand all n. It is possible for lim,_,, Q) to be 0, butit is the positivity
of QE that allows the (relatively) simple solution in (9) and (10). If {9) and (10) are
substituted into the expression for [(QP+1, W) (i.e. (4)), some algebraic manipulation and

some surprising cancellation of terms vields

I(QMI,WH) = In 2 cx;: {11)

It is convenient, before discussing termination or convergence of the algoerithm, o

express Qn*!1 directly in terms of Q. Using (8) for Wn, we have

n
P
u: = exp 2 ijln& {12}

Yk

il s (13)
3
From (12), we also get the relation
n
Ini: L 2 F.ik 1n—P‘]k— (14)
% 2 QP

4.5

MNote that the right hand side of (14) is the mutual information between input k and the
output, averaged over the outputs. As shown in problem 4.17, if Q% is the probability

assignment vielding capacity, then, for any Q©,

C =< ZQLE ijln Zlen— (15)
lej,

n
¥

- k
< max, In—
n

Q

By combining (11) and (15), and using (13}, we have

1
i1 i " QR
c-1Q W) = ZQkfn : (16)
Q
n+l
= maxkln—r-n— (17)
Q

Since I{Q", Wn) = [(Qm+] W) < [{Qn+1 Wn+l) < C, we can use (17) to terminate the
algorithm; that is, whenever the right hand side of (17) is less than some given £ of desired

accuracy, the algorithm is terminated with the assurance that I(Qn+1 Wn+1} is within £ of

capacity.

Finally, to prove convergence of the algorithm, we sum (16) over n.

= m+1
> ©1Q" W = > Qmn <

0
< max, In 1/Q, (18)

4.6

Since this bound is independent ol m, I{Q"*! Wn) must converge to C at least like 1/n.

In summary, the algorithm starts with n = 0, with an arbitrary positive assignment

QY, and an arbitrary e. Then
a) Find Qo+1 from (12) and (13)

b) If max, In (Q"*1/Q, M) > g, stop (Qn+! estimates the optimum Q and (11)

estimates C) else increment n and goto part a.

References:

Arimoto, 3., "An Algorithm for Computing the Capacity of Arbitrary DMCs", IEEE Trans.
LT., pp. 14-20, Jan. 1972.

Blahut, R., "Computation of Channel Capacity and Rate Distortion Functions”, IEEE Trans.
LT., pp. 460-473, July 1972.

Acknowledgement: This note is based on an earlier { 1983} note for 6.441 by Pierre
Humblet

