3.1

ARITHMETIC CODING

6.441 Supplementary Notes 4, 2/24/94

Arithmetic coding is a somewhat different approach to data compression [rom the fixed to
variable length and variable to fixed length encoders we have considered up to now. The
idea in arithmetic coding is to map the source sequence uy, Us ... into a point X in the unit

interval on the real line and then to represent this point by its binary (i.e. radix 2) expansion,

where x;, 15 O or 1 for each n. If the mapping from uy, u; ... o X 18 done in such a way that
the random variable X is uniformly distributed on the real line, then each of the digits x;, X2

... in the expansion of ¥ is independent and equiprobably equal to O or 1.

To sec how to accomplish this, consider a source with the alphabet {0,1,...K-1} and denote
the random sequence produced by the source as uy, ug, Us,.... To start, assume that the
source is memoryless and let P, = Plug=i], O0s1<K,all m = 1. We shall see later that
the memoryless assumption can casily be dispensed with. Let u™ be the initial string vy, us,
..Uy of the source output for cach m = 1. The probability and self information of u™ are

then
ITh m m m I
Plu]= n.i=! P[Uj] Ifu)= Ej=l ()
In order to see how to map uy, us ... o X, let us recall some of the propertics of the binary
expansion, X = ¥ X, 2" The [irst n bits, x" = {x; X2,....%,}, of the expansion of x indicates

that x lies in the interval

3%

Wy = [2 £2, zxiz"' +2") (1)

Furthermore, J(x"*1) is contained in J(x") for each n. Also if Xy, X2,... are independent and

equiprobably O or 1, then the probability that x lies in a particular interval J{x") is 27"

Figures 1 and 2 illustrate how this can be generalized 1o a memoryless source. Define

-1
fiu) = Z P; (2)
0y [(1) [(2)
+—— P(0)=F, h+—P(1}=P1—I-4 P(Q}:pz—h-
Figure 1
For m=1 define
fum) = fu™") +) P™'); me] (3)
where f{u®) = 0 and P{u?} = 1.
[{0) f(n f(2)
P(O0) oD | P02y | R1O) P{11) |P(12)| P20}
f(00) f(01) f(02) {(10) fan 2y f20) f21) f(22)
Figure 2

Letting J{u™) be the interval [f(u™), f{u™) + P(u™)), we see that these intervals have the

nesting property: Ju™*'} is contained in J(u™) where u™ is the first m letters of u™"!

. For
the given source probabilities, the width of an interval Ju™) is equal to the probability of the
string u™. Assuming that all the letter probabilities are strietly less than 1, the width of

J(u™) then shrinks to () as m — for all sequences (U W3...Ug...). Thus we can visualize x

33

as the point to which the sequence of nested intervals J(u™) shrinks as m — %. There are
some minor mathematical difficulties in requining cach sequence u™ to correspond to a
dilferent point x; for example if u™ comes from a binary source, then 10000... and 01111...
cach correspond to the same point. We ignore this for the time being since it is

automatically taken care of when we come to grips with truncation errors.

We next visualize an encoder as operating on the letters vy u»... as they are emitted from the
source. On observing u™, the encoder knows that the limit point x lies in Lhe interval J(u™).
Thus if J(u™) is contained in Jx") for some binary string X" = X{ X3...X,, then the encoder
can emit X" as the first n bits of the binary representation of x. As the source emils
successive letters uy,, the interval J(u™) shrinks and successively more encoded bits can be
emitted. For the largest n such that f(u™) is contained in J(x™}, we have (see Fig. 3)

n

n
X2 U™ < Y %220 < [(uMHPET) < D x227 (g

i=l i=1

M:

I}
—

Fu™) fu™)+Peu™
| o @Y |
| | I
el P) --- >

Figure 3

Key questions in determining how well this type of encoding performs are the questions of
how rapidly binary digits come out of the encoder and how rapidly the source digits can be
reconstructed from the encoded digits. In particular, we want to show that when the source
has emitted u™, the encoder will have emitted close to [{u™) binary digits, and that this will

be sufficient for the decoder to decode all but the last few letters of u™. We first analyze the

34

number of letters that the source must emit in order for the encoder to emit the first n binary
digits. Let m(n) be the number of source letters that must be emitted by the source before
the encoder can emit some given sequence x%. Since P{um':“}) is the size of J’{um"'"]j and 21
is the size of J(x"), the fact that Ju™™) is contained in J(x™) implies that P[u™™) < 2.0,
Taking logs of this expression, I(u™") = n: intuitively this says that the source muslt
produce at least n bits of information before the I:Illmdcr can encode n bits. On the other
hand, this inequality can be arbitrarily loose. In terms of figure 3 above, successive source
letters could be selected in such a way that J(u™) continues to straddle the point x; 27! + _.
+ X2 4+ 277! for arbitrarily large m. Thus we want to show that for each n, E[I(u™™)]-n

is bounded.

In order to accomplish this, let x" be lixed and let < be the final encoded point. The point x,
conditional on X", is a uniformly distributed random variable in the interval J(x™), but [or the
lime being we consider it as a fixed value. Define D(X) as the distance between x and the
nearest end point of J(x") (see Fig. 4). i.e.,

Dix) = rnir|:x— z 2, Z x;2‘i+2'“-x:| (5)
i=1 |

1=1

E . J[umm}"l)———:::

=T (U™

I
<= DX} 3

%
n : -
2|=]K'2 | Ein_i“‘r’ bR
o JOX e e >
Figure 4

We note that the point x must be contained in Ju™) for all m. Also, since m(n}, by

definition, is the smallest m for which A(u™) is contained in J(X™), we see that Ju™™ 1

3.5

must contain one of the end points of J(x") as well as x and thus must have a width of at

least D(x). Thus, for the given x, Pu™®"!y > D(x), and
[u™™1y < _log D(x) (6)

Now consider x as a random variable uniformly distributed over f{x"). D(x) is then
uniformly distributed between 0 and 21 (i.e., D(x) is the distance to the nearest end point

of J(x"), sois at most hall the size of J{x")). Using (6), we see that, [or the given x0
E[I(u™™1)] < -E[log (D). (7

Note that as x varies within the given interval J(x™"), um(n)-1 varies discretely, and the
expectation is taken condtional on the given x®. We can evaluate E[log (D(x))] since D(x)

15 uniformly distributed.

=l
2 P
Eflog(D(x))] = J‘{z“*lmug D)dD = [2“+'D|ng(me}]D = -n-1-log e
=0
E[I(u™™!] < n+l+log e = n + log(Ze) (8)

Next define Py as the probability of the least likely letter from the alphabet. Then [{u™) =

1(u™1) + log(1/Pyiq) for all mand u™, so that!

E[[(u™™)] = n + log(2e/Ppyin) ()

'One might think that E[I(u™)] = Eflu™™-1y] 4+ H(Uy, but this is not usually true since m{n) is a
random variable that depends on x. In particular, those source letters that produce outpuls from the encoder

tend Lo be less probable letters (on the average) than source letters that do not lead to oulputs.

3.6

Since we have seen that I{u™™) = n, we see that the encoder generates binary digits, on the
average, with only a slight delay from the ideal of one binary digit for each bit of self
information. Next we want to understand the delay between the generation of binary digits
al the decoder and the generation of decoded source letters. We choose some arbitrary
source sequence u™ and ask how many binary digits, n(m), must be received at the decoder
before the sequence u™ can be decoded. When the decoder sees x", the decoder knows that
x lies inside J{x"), and thus can decode u™ if Ju™) completely contains Jx"). Figure 5
shows the relationship of J(u™) to Ax™™)) and also shows Ju™), where m' is the

SR (T S—— >

o T
I | | [

Figure 5

number of source letters that must be generated for the encoder to generate Ax"™). Note
that the number of binary digits n{m) depends on u™ and also on the subsequent source
outputs. It is most convenient here, as in our previous analysis of the encoder, to first
condition the argument on a given limit point x contained in the interval J(u™). As before,

define D*(x) as the distance from X to the nearest edge of J{u™),ie.

D*(x) = mifx - fu™) , [(u™)+P@)-x] (10)

|-a:—-— BT T —

3.7
Figure 6

Since n{m) is by definition the number of binary digits required to decode u™, we see Lhat
the interval J(x"™-1y cannot lie inside J(u™) (see Fig. 6). Thus Jx™™"1) contains one of
the end points of {u™) and of course also contains x. Thus the size of J(x™™-1) (which is
2-mmbely ic ot least D*(x). Thus, conditioned on x, we have n(m)-1 = -log D¥(x). Next, for
a given u™, regard x as a random variable uniformly distributed over the interval f(u™).
D*(x) is then uniformly distributed between O and P(u™)/2 (i.e., half the size of J(u™)) and
E[D*{x)] can be evaluated as

P)2

Ellog(D*(xh] = f (’_’fF{um}} log(D¥) dD* = 1og(
F=0

P(u™
Ze)

Thus we can upper bound E[n{m) | u™] as
E[n(m) | u™] = 1 - log(P(u™) + log(2e) = 1(u™) + log(de) (1)

We now want to combine (9) and (11). Consider a given sequence u™ out of the decoder,
and suppose that XM is the required encoded sequence to decode u™. Conditional on
both u™ and x0m), we see that X is uniformly distributed over J(x0(M)), and thus the

extended source sequence u™’ required to produce xM™) satisfies (from 9)
E[u™)lxnm)] < n(m) + log(2¢/Pmin)

Using (11) to take the expected value of this over n{m}, we see that for any given u™, the
expected sell information of the extended source sequence u™ required from the source (o

produce the n{m) binary digits needed to decode u™ satisfies

EfLu™) | u™] - I(u™) = log(8e/Pmin) (12)

3.8

The expectation here is over the source leters Uy, Wyya, .. for the given sequence u™. i
is important to note that the bound does not depend on m or u™, Note that on the average
there is very littlle delay from encoder to decoder and that the average number of binary
digits, over the long term is exactly H(U) binary digits per source letter. The bound in (12)
is in terms of the additional sell information needed in additional source letters U, 1,... until
u™ can be decoded. To convert the bound into a bound on the number of letters,

m'-m, lel Pyay be the maximum source letter probability. Then log(1/Py,x) is the minimum

possible self information per source letter and

log(8e*/Ppin)

L m
R T P

(13)

IMPLEMENTATION & ROUND OFF ERRORS:

In actual implementation, it is not possible to caleulate the intervals used in encoding and
decoding exactly. We view the arithmetic as being done using binary fixed point arithmetic
with M binary digits of accuracy. There is some flexibility in how numbers are rounded to
M bits, but essential that encoder and decoder use exactly the same rule and that the
rounding is done at the appropriate time. [t is also essential, since P(u™) is approaching 0

with m, that the intervals be renormalized as the intervals shiink.

The encoder operates as follows: source Ieltcr-s come in one al a time and the corresponding
interval is calculated, with round ofl to M bits. Thus the encoder is a finite state encoder in
the sense of the Lempel-Ziv notes. After each source letter enters the encoder, as many
binary digits as possible are encoded using the rounded off intervals. After emitting a string
of binary digits, the interval is renormalized in the sense that the most significant binary
digits of f(u™) and g(u™) (i.c. the newly generated binary code digits) are shifted out of the

arithmetic unit, with the remaining digits becoming more significant. (see ligure 7).

39

((0) (1) [(2)
P(00) P(01) sz)| P(10) P(11) [P(12)|P(20
F(00) ((01) ((02) (11) 2) _H20) 1(21) 1(22)
(10 £ {12) [(20) L2 [y22)
Figure 7

If u1=2, then x1=1 can be emitted by the encoder as scon as uj enters the encoder. The
interval is then normalized by expanding the right half of the interval into the entire interval.
More precisely, the encoder keeps track of a normalized interval starting at [y{u™) and
ending at some point gn(ut) = Hg(u™)+Pa(u™) where Pn(u™) is the width of the
normalized interval. For reasons o be discussed later, it is desirable for the mapping from
u™ to X to be one lo one and onto. For this reason, we calculate the right and left end of
each interval (gn(u™) and f{u™)) directlly in such a way as to ensure that the right end of
one interval is equal to the left end of the next contiguous interval. The width Pn(u™) of the
interval is then gn(u™) - i(u™), We assume here that addition and subtraction are done
without round off and that multiplication is done with some consistent round off rule (i.e..
always round down, always round up, round to the nearest point, etc.). An algorithm is
given below, but it has a subtle bug connected with Egs. (15) and (16). After giving the

algorithm, we explain the bug and then give a corrected version of (15) and (16).
ALGORITHM FOR ARITHMETIC ENCODING (WITH BUG)
0) Initially fg(u®=0, ga(u®=1, m=0.

1} Accepl Uy nto the encoder,

2) Calculate the new interval by the equations

3.10

Pafu™ = ga(u™) - fn(u™ (14)
™) = I(u™) + £ (U1)Pr(u™) (15)
anfum 1) = Gg(u™) + Fy(um+11Pau™) (16)

where f1(K) =1
3) Find the longest string yy, ¥2....yj such that |
S, vt s ™l g@™hs S yatead - (17)
(MNote that | might be O).
Produce ¥y, y2....¥j as output and renormalize by the rule
f(u™ 1) := 2Jf]y - |2 ™y (18)
g™y = Do) - g (™)) + 1 (19)
4) Increment m and goto step 1
Note that the renormalization in step 3 is done with no roundoff errors. One is simply
eliminating the encoded binary digits (which are no longer needed for encoding), and
adding less significant digits that increase the precision as the intervals shrink. One can
visual8ize (18) as shifting the binary number f left] places and then dropping the integer
part. Eq. (19) does the same thing, but also treats correctly the special case in which the
resulting value of gy is 1. In order to relate these normalized intervals to the actual intervals,
as modified by roundott errors, let x = X1, X2,...Xp be the binary string already emitted by
the encoder before Uy 1 enters the encoder and let X" be the corresponding number x)2-
Ly x52-24.. 320, Then the normalized interval [fa(um*1), en(u™*13) corresponds to the

actual interval, with roundoff but no renormalization,
Jumely = [4 2 Nfpqum+ 1), X + 2-Rg(ume 1)) (20)

In order to understand the bug in the above algorithm, consider the example of a termary
equiprobable source. First consider a long string of 1's as the input to the encoder.

Without roundoff errors, J(ul} = [1/3, 2/3), J(u?) = [4/9, 5/9), and in general J(u™) =

3.11

[(1-3-my/2, (14+3-1)/2), Thus, for this string, J{u™) continues to straddle the point 1/2 and
no binary digits are emitted by the encoder. With only M binary digits of accuracy,
however, the left and right ends of these intervals must cach be multiples of 2-M, and also
must get close to 1/2, so that the way in which the roundoff is done is clearly important.
Figure 8 illustrates the kind of problem that can arise. If the rounded off version of Ju™)
becomes [1/2-2-M, 1/2+2-M), then no binary digit can be emitted, but when the next digit
enlers the encoder, it is not possible to sphit the interval into three distinet intervals. The
simplest solution to this problem is round off in such a way as o avoid such small intervals
around the point 1/2.

4 +1 .
N ™) g(Ly
—>d < 1/2

- }P{ ul]1+ 1}:__ .

Note that the indicated interval around the point 1/2 does not allow a binary digit 1o be sent,

but also, with the increments of size 2-M as shown, forces an ambiguity in the next source
letter since there are only two increments for an alphabet size of 3.

Figure &
There are many ways of correcting this problem. The one we choose is slightly more
complicated than necessary because we wanl [0 preserve the one to and and onto nature of
the mapping. The approach used heie is that whenever the left hand edge f(um+1) gels too
close to the point 1/2, we move it to 1/2; to maintain the one to one onto mapping, we also
move the right hand edge gy of the adjuining interval for u' where u™=u® but u'y, | =
U+ |-1. Figure 9 shows the correction that is made, and this is followed by the corrected
algorithm. The parameter L is chosen small enough that Py > 28-M, This guarantees that
the interval at the beginning of an iteration is large enough 1o be split without rounding any

interval size down Lo 0.

3,12

m+
a(u’])
j‘(u'm"']) fum+h g{lPHl}
2-2- \ 12
ol ™)
f{urm+L} f(1:|:1+1'JI g{um +1)
L 172
Figure 9

A correction to avoid intervals straddling the point 1/2.

3.13

ALGORITHM FOR ARITHMETIC ENCODING (WITHOUT BUG)
0) Initially fin(u®=0, gnu®=1, m=0.

1) Accepl ug .1 into the encoder.

2) Calculate the new interval by the equations

Pu(u™) = gnu™) - ffu™) (14)
Bu™) = (™) + (U) Ps{U™ (15)
gn(um+ 1) = HAu™) + (U +1)Pa(u™) (16)

where [((K) = 1

If 142 - 2L ig(um+ 1) « 142 < gpg(um+1) then

f(u™ Y =112 {15a)
IF 172 - 2ho< gn(um+ 1y < 172 < Brfu™) + £ (Ume 1+2)Py(u™) then

gn(um+1y .= 142 {16a)
(Note that gn(u™) > 1/2, so gy(um+1)<1/2 implies uy, 1 +2<K)

3) Find the longest string ¥, ¥2.-..¥j such that

zji:] }rii'i = fN{um“); gn{um""} < z=| ;-,riz'i i (17)
(Note that] might be).
Produce ¥1, ¥2....¥j as output and renormalize by the rule

fr U™t = ijN{um”} - j_zj[N{u“‘“"l}] (18)

an(u™) 1= g umHhy - r2lg ™ hy] 4 1 (19)

4} Increment m and goto step |

Next consider the decoder. Tt is simplest to visualize the decoder as decoding one letter at a
time and maintaining a queue of incoming binary digits and also a replica of the encoder.
Initially, of course, m=1 and the queue is empty. The decoder, in attempting to decode ug 4 |

{with m initally 0), uses (14) to (16a) to calculate fiy(u™+1} and ex(u™+1) for all K choices

3.14

of Uy (and, of course, the already decoded value of um). As new binary digits enter the
queue, we can consider the queued digits as a normalized binary fraction of j significant bits,
where j is the queue length. When this fraction, viewed as an interval of size 273, lies within
one of the K normalized intervals calculated above, the decoder decodes ugy.. 1, renormalizes
fa and gy by the encoder rules and deleles the corresponding binary digits from the front of

the queue. It then increments m and repeats the above process.

The encoder, in generating the string of binary digits used in decoding uy, is constantly
renormalizing while generaling these binary digits, whereas the decoder is maintaining the
normalization in elfect when vy, was generated. Fortunately, because of the nesting
property, each new letier to enter the encoder generates an interval strictly contained in the
previous interval. Also, since no rounding off is incurred while renormalizing, (18) shows
that preserving the nesting property at the encoder implies that the nesting property is also

maintained al the decoder, even though the normalization is different.

Next note that when uy, enters the encoder, the interval end points are calculated to M binary
digits ol accuracy, and thus after M binary digils are emitted by the encoder, the resulting
interval, according to the decoder normalization after decoding uy,. j, must have size 2-M and
thus uy is decodable at this point if not before. This means that decoding always occurs
with at most M binary digits in the queue. Thus the round off forced on us by using a real
arithmetic unit also limits (to M} the difference between the number of binary digits
required to decode u™ and the number of binary digits produced by encoding u™. Thus
using a small value of M can reduce Lhe delay between encoding and decoding, although of

course il also implies a loss in efficiency.

Note that occasionally the encoder will Fall quite far behind (j.e., I(u™™)-n can become quite
large (although not larger than M) in improbable cases even though E[I(u’”{“jj—n] is small}.

This causes an increase in roundofl error and causes the binary code digits to be not exactly

3.15

equiprobable. The loss in efficiency is quite negligible for large M, since the number of bits

of accuracy is proportional to M (the number of bits of accuracy in the arithmetic unit} less

[1(u™™N-n).

For a source with memory, no new complications arise. The encoder simply uses P{ug,| u,,.
1...uy) in place of P(uy,). The replica of the encoder at the decoder also uses P{uy,| up,
1--:11) in the same way. The encoder can also be adaptive. Thal is, the probability
assignment for vy, can be based on the observed string u™. Again the encoder and its
replica at the decoder can operate in the same way. This, in fact, leads 1o a more general
observation: any adaptive encoder can be viewed as estimating the probability assignment
for u,,,; based on the observed string u™. Any rule for doing this estimation is equivalent
to a probabilistic source model with memory; i.e.. P(up.i| 0™) is matched to the adaptive
probability of u,,,) based on the past history u™. That is, adaptation is simply a convenient
way of rationalizing some particular assignment of apriori probabilities to sequences. The
adaptation can be viewed as dealing with the distant memory, and the probabilities found
from adaptation can be viewed as short term memory. This means that the real question in
data compression is not whether to use an adaptive scheme or a scheme with memory but
rather to look at the tradeofT between complexity and different kinds of source memory.

References: Rissanen, J. & G.G.Langdon, "Universal Modeling and Coding", IEEE Trans.
IT, Jan 1981, pp 12-23.

Rissanen, J. & G.G. Langdon, "Arithmetic Coding," IBM J. Res. and Dev., March 1979,
pp. 149-162.

