VARIABLE TO FIXED LENGTH SOURCE CODING
- TUNSTALL CODES

6.441 Supplementary Notes 1, 2/10/94

So far, we have viewed source coding as a mapping from letters of a source alphabet into
strings from a code alphabet. We saw that Huffman coding minimized the expecled
number of code letters per source letter, subject to the requirement of unique decodability.
We then saw that by accumulating L source letters at a time into a "super letter” from the
alphabet of source L-tuples, the expected number of code letters per source letter, ny , could
typically be reduced with increasing L.. This reduction arose in two ways, first by taking
advantage of any statistical dependencies that might exist between successive source letters,
and second by reducing the effect of the integer constraint on code word length.

We saw that (l'or stationary sources) the expected number of binary code letiers per source
letter, np, satisties

He=np = Hp + UL where limp—=Hp = Hes

By taking L to be arbitrarily large, and viewing it as the lifetime ol the source, we see that in
a very real sense, Hg: is the minimum expected number of binary code letlers per source
letter that can be achieved by any source coding technique, and that this value can be
approached arbitrarily closely by Huffman coding over L-tuples of source letters for

sutficiently large L.

We see [rom this that, from a purely theoretical standpoint, there is not much reason to
explore other approaches to source coding. From a slightly more practical viewpoint,
however, there are hwo important questions that must be asked. First, are there
computationally simpler techniques to approach the limit H.? Note that a Hulfman code on
L-tuples from a source alphabet of size K contains K- code words; this is not attractive
computationally for large L. The second question has to do with the assumption of known
source probabilities. Usually such probabilities are not known, and thus one would like 1o
have source coding techniques that are "universal” in the sense that they work well
independent of the source probabilities, or "adaptive™ in the sense that they adapt to the
existing source probabilities. There is not much difference between universal and adaptive
source coding, and we discuss these topics later. The important point for now, however, is

1.2

that we need a richer set of tools than just Huffman coding in order to address both the
problem of computational complexity and the problem of adaptation.

A broader viewpoint of a source coder than that taken for Huffman codes is given in figure
1, where the encoder is broken into two paris, a parser and a coder. The parser segments the
source oulpul sequence into a concatenation of strings. As an example:

abaacbaabacaaabc..
(ab)(aac)(b)(aab)(ac)(aaa)(b)(c)...

The string encoder then maps the set of possible strings produced by the parser into binary
code words (or more generally DY code words). For example, the parser might simply
parse the source output into L-tuples, as analyzed earlier. The primary concern here,
however, is the case where the parser output is a set of variable length strings (as in the
example above) . We assume that there is a finite dictionary of M allowable strings and that
the string encoder maps the set of such strings into binary code words. If these binary code
words are uniquely decodable (which we assume), then a decoder can reproduce the parsed
strings, from which the original source output is obtained.

Binary
String code
Encoder

abaac (ab){aac)
Source P Parser >

Figure 1: Maodel of Source encoder

We see from the above description that an essential element of a parser is its dictionary of
strings. Assuming that any combination of source letters (from the given K letter alphabet)
is possible, the dictionary must have the property that every possible source sequence has a
prefix that is in the dictionary {for otherwise the parser could not produce an initial string).
Such a dietionary is said to be a valid dictionary. We shall also restrict our attention
temporarily to dictionaries that satisly the prefix condition, i.e., that no dictionary entry is a
prefix of any other dictionary entry.

1.3

aaa
aaa
© aa aab
aa
ah aac
ab
b b ac
b ac
¢ ¢
C
a) Non-valid b) Valid, Prefix

c¢) Valid, non-prefix

Figure 2

A dictionary can be represented as a rooted tree, as illustrated for a ternary source alphabet
in figure 2. Note that the non-valid dictionary in Fig 2a is not capable of parsing ab...,
illustrating that parsers must usc valid dictionaries. Note also that the non-prefix condition
dictionary in Fig. 2¢ allows the sequence aaab... to be parsed either as (aaa)(b) or (aa){ab).
This is not a serious problem, except that the parser is not fully described by such a
dictionary; it also needs a rule for choosing between such alternatives. Practical adaptive

source coders often use such non-prefix condition dictionaries, The rule usually used,
given the dictionary of strings ¥|. ¥p....¥y . 18 for the parser 1o pick the longest prefix of the
SOUTCE SeqUENce Uy Uy,... that is in the dictionary (say uy,...up . Fora prefix condition

dictionary, of course, the dictionary fully specifies the parsing process.

Note that the dictionary tree here is analogous to the code tree for a Huffman code. A valid
prefix condition dictionary corresponds to a complete prefix condition code wree. [t is
interesting to observe that validity is necessary for the parser, whereas completeness is only
desirable tor efficiency in the code tree.

We now restrict our attention to valid prefix condition dictionaries. As we saw before, each
intermediate node in such a dictionary tree has K immediate descendants (where K is the
source alphabet size) and the total number of leaves in such a tree is of the form M=a(K-
L)+1 for some integer o, where ¢ is the number of intermediate nodes, including the root.

We also now restrict our attenlion to variable to fixed length codes in which the string
encoder maps each dictionary string into a fixed length binary string of length n. This
requires the number of strings to satisfy M=2" and for efficiency, we make M as large as
possible subject to M=a(K-1)+1 and M=<2™ Thatis, M lies in the range 2"-(K-2)=M=2",

1t is intuitively plausible that the appropriate objective, given the constraints above, is to find
that dictionary of at most 2" strings that maximizes the expected number, E[L], of source

1.4

letters per dictionary string. We shall see that there is a remarkably simple algorithm, due to
Tunstall (B. Tunstall, "Synthesis of Noiseless Compression Codes”, Ph.D. Thesis, Georgia
Tech, 1968) for constructing such a dictionary. To justify maximizing E[L], consider a
memoryless source (i.e., a source with statistically independent letters). For a given
dictionary, let L1, La, ... be the lengths of successive strings used by the parser in encoding
the source. The number of source letters per code letter encoded by the first v parser
strings is (Li+La+...+Ly)/(vn). By the law of large numbers, this approaches E[L]/n with
probability 1 as v — o= and thus the number of code letters per source letter approaches
n/E[L] with probability 1. A somewhat cleaner way of seeing this, for those familiar with
renewal theory, is to view a renewal as occurring at each parsing point in the source
sequence.

We now reeall that E[L] is the expected length of the dictionary tree and that this expected
length can be found simply by summing the probabilities associated with each intermediate
node in the tree, including the root. In particular, given the dictionary tree, label each leaf by
the probability of the corresponding string and label each intermediate node by the sum of
probabilities of all leaves growing from that node. E[L] is then the sum of the probabilities
of all intermediate nodes, counting the root (see figure 3).

343
aaa
098
aab
049
b aae
1 b ac

P(a)=.7, P(b)=0.2, P(c)=0.1

E[L]=1+0.7 + 0.49 = 2.19

Figure 3

Our problem now is to choose a valid prefix condition dictionary tree with M=a(K-1)+1
nodes so as 10 maximize E[L], which means to maximize the probabilities of the set of
intermediate nodes. Visualize starting with a full K-ary tree including all nodes out to level
M, labelled with the probabilities of the corresponding strings. Then prune the tree down 1o
M leaves (o intermediate nodes, counting the root) in such a way as to maximize E[L]. We

1.5
maximize E[L] by choosing the « nodes of maximum probability and using all of them as

intermediate nodes in the pruned tree.

This is simple, however; pick out the highest probability nodes one by one starting at the
root. Each node picked has all of its ancestors already picked, since they each have higher
probability than the given node.

Tunstall algorithm:

13 Start with the root as an intermediate node and all level 1 nodes as leaves.
2) Pick the highest probability leaf, make it intermediate, and grow K leaves on it.
3) If the number of leaves < M, goto step 2 else stop.

Figure 4 gives an example of this algorithm for M=4.

343

0.49 0.49 / % am
U-"; 07 an 0 Va\&;“;
43 D?c 0.21 S~ 021
b - ab 0.3 ab

b b
Figure 4a: Tunstall algorithm for a source with P(a) = 0.7, P(b) = (0.3, M = 4.

.168
34%,,-’/‘] &

o) aaaab
0.49 / B

147 aaab
0.7 O aab Observe that each leal node is
0.21 147 less probable than each inter-
A4 aba mediate node, and thus the inter-
: G'NS mediate nodes selected are
\G‘ ba abiti those of maximum probability.
0 bb
0.09

Figure 4b: Extension of ligure 4ato M =8,

Note that this algorithm was demonstrated o maximize E[L] only lor the case of a
memoryless source. There is a subtle, but very senious, problem in trying to generalize this
algorithm to sources with memory. The problem is that the probability of a given siring of

1.6

letters, starting with a parsing point, depends on how the parsing points are chosen, which
depends on the dictionary itself. For example, in Figure 4a, a parsing point appears after the
letter b with probability 0.657, whereas the letter b appears in the source sequence with
probability 0.3. It appears to be a reasonable heunstic to maximize E[L] by the algorithm
above, assuming that the source starts in steady state, but this is not optimum since, as seen
above, such a tree will not leave the source in steady state.

Note also that the assumption of the prefix condition is essential in the demonstration
above. One can easily find examples in which E[L] can be increased beyond its value in the
Tunstall algorithm by using a valid dictionary of the same size that does not satisly the
prefix condition. If the dictionary does not satisfy the prefix condition, however, the
conditional probability distribution on the first source letter after a parse might be different
than the unconditional distribution (see Figure 5).

aa The string (a) is used only when
the following letter is either b or
4 c. Asaresult, the strings (b) and
b (c) appear more often than one might
expect and E[L] = 1.7/1.21

c
Figurc 5 P{a)=.7, P(b)=0.2, P(c)=0.1

We now analyze Tunstall codes (again assuming a memoryless source). Let Q be the
probability of the last intermediate node chosen in the algorithm. For each leaf v;, P(v{)=0Q
since Q was the probability of the most probable leaf immediately before that leal” was
turned into an intermediate node. Similarly, each intermediate node has a probability at least
Q. Since any leaf vj can be reached from its immediate ancestral intermediate node with
probability at least Pryin, P(vi)2QPmjn. Thus, for each leaf,

QPmin = P(vj) = Q (1

Summing the left side of (1) over the M leaf nodes, we have QPyinM < 1, so that Q
= (MPpjin)!. Combining this with the right side of (1),

P(vi) = (MPpjip)! (2)

We can now use (2) to lower bound the entropy of the ensemble of leaf nodes,

1.7

Y|
| M
H[V}:EP{vi)]ng'p(T” = EF‘{vi]lug(MPnﬂu} = log(MPin) (3)
i=1 =1

The entropy of the ensemble of leaf nodes is also equal to the source entropy H(U) times
the expected number of source letters E[L] in a dictionary entry (see homework set 3,

problem 2).
H(V log(MPumin)
BIL=F0) = HO | &

We have already argued that n, the number of binary code letters per dictionary entry,
satisfies n = log{M+K-2}, Combining this with (4), we finally obtain

n log(M+K-2)
Bl = HU) Tog(MPmim) (5

We see that the right hand side of (5) approaches H(U) in the limit as M->%2 (in particular
the limit is approached as [/log M}. Thus the number of binary code letters per source digit
can be made as close to H(U) as desired by variable to fixed length coding with a
sufficiently large dictionary. Note, however, that our result here is weaker than our earlier
coding theorem using lixed to vanable length codes, since the result here does not apply o

sources with memory.

Although the analysis here does not apply to sources with memaory, one of the major
reasons for being interested in variable to [ixed length coding is because of the potential
application to sources with memory, For example, if one thinks of ordinary English text,
one finds many common words and phrases, involving in the range of 5 to 30 characters, for
which it would be desirable to provide code words. Providing code words lor all strings of
30 characters would of course be computationally infeasible, whereas a variable to fixed
length dictionary could easily include highly probable long strings.

Appendix: One additional topic of academic interest (i.e., read at your own peril) is to
find the asymptotic performance of Tunstall codes for large M as opposed Lo simply
bounding their performance. The appropriate tool for this problem is to view the process of
generating self information from the source as a renewal process. That is, let Uy, Ua, ... be
the sequence of source letters, let I{LJ;) be the self information (in nats) of the ith letter, let S}
= U PD+H(Uz)+... +1(U;), and let {N(t); =0} be the renewal process defined, for each =0,
by specifying the random variable N(1) as the largest integer j for which 8j=t<S;,. By

1.8

Blackwell's theorem (assuming that [{U) has a non-arithmelic distribution), the expected
number of renewals in the interval (i, t+€} approaches e/H(U) as t-»% for any e>{), where
H(U) is in nats, For £ sufficiently small, this is just the probability of a renewal in (t,t+¢).
If a renewal occurs in (t,1+€), then §; lies in (t,t+€) for some j, and the corresponding string
uy, ...u5 has a probability between et and e"(¢). Thus the number of different strings
uy,-..,1j for which 8; is in (1,t+¢) tends to eeYH(U) for small & and large L.

Now let T = In(1/Q) be the sell information of the last intermediate node chosen in a
Tunstall code. We can lind the number of leaf nodes for which the last source letter is
some given a; by observing that each intermediate node of sell information between
T+InP{a;j) and T has cne such leaf. Since all nodes with sell’ information in this range are
intermediate nodes in the Tunstall code, we can integrate the number of nodes of self
information t from t=7+InP(a;) to . Thus the total number of leaves ending in g; is
approximately ¢t{ 1-P(a;))/H(U). It follows by summing overi that the total number of leaf

nodes is approximalely
M = e¥(K-1)/H({U) (6)

Next, the sell information of a sample dictionary entry can be interpreted as the (irst renewal
afler ©in the renewal process. Thus, we have

TiP(a) (-In P(a;)y2
HUEIL] = H(V) =T+ 3 S;p(@)(1n Play) 9

Finally, taking n = logaM (since for large M, the difference between M and M-K+2 is
negligible), Eq. (6) vields

n = Tlogae + loga[(K-1)/H(L}]

2iP(ai) (-In P(a;))2
= E[LIHUlogse - 3 5Bay(n Play 10226 + logal(CDHUI @)

