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Abstract

We present a neural program synthesis approach
integrating components which write, execute, and
assess code to navigate the search space of possi-
ble programs. We equip the search process with
an interpreter or a read-eval-print-loop (REPL),
which immediately executes partially written pro-
grams, exposing their semantics. The REPL ad-
dresses a basic challenge of program synthesis:
tiny changes in syntax can lead to huge changes
in semantics. We train a pair of models, a policy
that proposes the new piece of code to write, and
a value function that assesses the prospects of the
code written so-far. At test time we can combine
these models with a Sequential Monte Carlo al-
gorithm. We apply our approach to two domains:
synthesizing text editing programs and inferring
2D and 3D graphics programs.

1. Introduction

When was the last time you typed out a large body of code
all at once, and had it work on the first try? If you are
like most programmers, this hasn’t happened much since
“Hello, World.” Writing a large body of code is a process of
trial and error that alternates between trying out a piece of
code, executing it to see if you’re still on the right track, and
trying out something different if the current execution looks
buggy. Crucial to this human work-flow is the ability to
execute the partially-written code, and the ability to assess
the resulting execution to see if one should continue with
the current approach. Thus, if we wish to build machines
that automatically write large, complex programs, designing
systems with the ability to effectively transition between
states of writing, executing, and assessing the code may
prove crucial.
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In this work, we present a model that integrates compo-
nents which write, execute, and assess code to perform a
stochastic search over the semantic space of possible pro-
grams. We do this by equipping our model with one of the
oldest and most basic tools available to a programmer: an
interpreter, or read-eval-print-loop (REPL), which imme-
diately executes partially written programs, exposing their
semantics. The REPL addresses a fundamental challenge of
program synthesis: tiny changes in syntax can lead to huge
changes in semantics. By conditioning the search solely
on the execution states rather than the program syntax, the
search is performed entirely in the semantic space.

In the spirit of systems such as AlphaGo (1), we train a
pair of models — a policy that proposes new pieces of code
to write, and a value function that evaluates the long-term
prospects of the code written so far, and deploy both at test
time in a symbolic tree search. Specifically, we combine
the policy, value, and REPL with a Sequential Monte Carlo
(SMC) search strategy at inference time. We sample next ac-
tions using our learned policy, execute the partial programs
with the REPL, and re-weight the candidates by the value
of the resulting partial program state. This algorithm allows
us to naturally incorporate writing, executing, and assessing
partial programs into our search strategy, while managing a
large space of alternative program candidates.

Integrating learning and search to tackle the problem of
program synthesis is an old idea experiencing a recent resur-
gence (2; 3; 4; 5; 6; 7; 8;9; 10; 11). Our work builds on
recent ideas termed ‘execution-guided neural program syn-
thesis,” independently proposed by (12) and (13), where a
neural network writes a program conditioned on interme-
diate execution states. We extend these ideas along two
dimensions. First, we cast these different kinds of execu-
tion guidance in terms of interaction with a REPL, and use
reinforcement learning techniques to train an agent to both
interact with a REPL, and to assess when it is on the right
track. Prior execution-guided neural synthesizers do not
learn to assess the execution state, which is a prerequisite
for sophisticated search algorithms, like those we explore
in this work. Second, we investigate several ways of inter-
leaving the policy and value networks during search, finding
that an SMC sampler provides an effective foundation for
an agent that writes, executes and assesses its code. We vali-
date our framework on two different domains (see Figure 1):
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inferring 2D and 3D graphics programs (in the style of com-
puter aided design, or CAD) and synthesizing text-editing
programs (in the style of FlashFill (14)).

2. An Illustrative Example

To make our framework concrete, consider the following
program synthesis task of synthesizing a constructive solid
geometry (CSG) representation of a simple 2D scene (see
Figure 2). CSG is a shape-modeling language that allows
the user to create complex renders by combining simple
primitive shapes via boolean operators. The CSG program
in our example consists of two boolean combinations: union
+ and subtraction — and two primitives: circles Cj , and
rectangles RY:"? specified by position z, y, radius r, width
and height w, h, and rotation §. The synthesis task is to find
a CSG program that renders to spec. Our policy constructs
this program one piece at a time, conditioned on the set
of expressions currently in scope. Starting with an empty
set of programs in scope, pp = {}, the policy proposes an
action a that extends it. This proposal process is iterated to
incrementally extend pp to contain longer and more com-
plex programs. In this CSG example, the action a is either
adding a primitive shape, such as a circle 02378, or applying
a boolean combinator, such as p; — ps, where the action
also specifies its two arguments p; and po.

To help the policy make good proposals, we augment it
with a REPL, which takes a set of programs pp in scope
and executes each of them. In our CSG example, the REPL
renders the set of programs pp to a set of images. The policy
then takes in the REPL state (a set of images), along with
the specification spec to predict the next action a. This way,
the input to the policy lies entirely in the semantic space,
akin to how one would use a REPL to iteratively construct
a working code snippet. Figure 2 demonstrates a potential
roll-out through a CSG problem using only the policy.

However, code is brittle, and if the policy predicts an incor-
rect action, the entire program synthesis fails. To combat
this brittleness, we use Sequential Monte Carlo (SMC) to
search over the space of candidate programs. Crucial to our
SMC algorithm is a learned value function v which, given
a REPL state, assesses the likelihood of success on this
particular search branch. By employing v, the search can
be judicious about which search branch to prioritize in ex-
ploring and withdraw from branches deemed unpromising.
Figure 3 demonstrates a fraction of the search space leading
up to the successful program and how the value function v
helps to prune out unpromising search candidates.

3. Our Approach
3.1. The Semantic Search Space of Programs

The space of possible programs is typically defined by a
context free grammar (CFG), which specifies the set of
syntactically valid programs. However, when one is writing
the code, the programs are often constructed in a piece-wise
fashion. Thus, it is natural to express the search space of
programs as a markov decision process (MDP) over the set
of partially constructed programs.

State The state is a tuple s = (pp, spec) where pp is a set
of partially-constructed program trees (intuitively, ‘variables
in scope’), and spec is the goal specification. Thus, our
MDP is goal conditioned. The start state is ({}, spec).

Action The action a is a production rule from the CFG (a
line of code typed into the REPL).

Transitions The transition, 7', takes the set of partial pro-
grams pp and applies the action a to either:

1. instantiate a new sub-tree if a is a terminal production:
T(pp,a) = pp U {a}

2. combine multiple sub-trees if a is a non-terminal:

T(pp,a) = (ppU{a(ty.. . ty)}) —{t1...tx}

Note that in the case of a non-terminal, the children ¢; ... ¢
are removed, or ‘garbage-collected’ (13).

Reward The reward is 1 if there is a program p € pp that
satisfies the spec, and 0 otherwise.

Note that the state of our MDP is defined jointly in the
syntactic space, pp, and the semantic space, spec. To bridge
this gap, we use a REPL, which evaluates the set of partial
programs pp into a semantic or “executed” representation.
Let pp be a set of n programs, pp = {p; ...p,} and let [p]
denote the execution of a program p, then we can write the

REPL state as [pp] = {[p1] - - - [p=]}-

3.2. Training the Code-Writing Policy 7 and the
Code-Assessing Value v

Given the pair of evaluated program states and spec ([pp],
spec), the policy 7 outputs a distribution over actions, writ-
ten 7(a | [pp], spec), and the value function v predicts the
expected reward starting from state ([pp], spec).

Pretraining 7. Because we assume the existence of a
CFG and a REPL, we can generate an infinite stream of
training data by sampling random programs from the CFG,
executing them to obtain a spec, and then recovering the
ground-truth action sequence. Specifically, we draw sam-
ples from a distribution over synthetic training data, D,
consisting of triples of the spec, the sequence of actions,
and the set of partially constructed programs at each step:
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Figure 1. Examples of programs synthesized by our system. Top, graphics program from voxel specification. Bottom, string editing
program from input-output specification.
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Figure 2. A particular trajectory of the policy building a 2D wrench. At each step, the REPL renders the set of partial programs pp into
the semantic (image) space. These images are fed into the policy 7 which proposes how to extend the program via an action a, which is
incorporated into pp via the transition 7'.
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(spec,{at}t;<p . {pPt};<r) ~ D, and maximize:

LPrerin () — B Z log 7 (at|[pp:], spec) (D
t<T

Training 7 and v. We fine-tune the policy and train the
value function by sampling the policy’s roll-outs against
spec ~ D in the style of REINFORCE. Specifically, given
spec ~ D and reward R, we train v and 7 to maximize:

LR (v, 1) = R Z log v([pp:], spec)

t<T
+(1-R) Z log(1 — v([pp:], spec))
t<T
+R Z log 7(a¢|[ppe], spec) (2)
t<T

3.3. An SMC Inference Algorithm That Interleaves
Writing, Executing, and Assessing Code

At test time we interleave code writing, i.e. drawing ac-
tions from the policy, and code assessing, i.e. query-
ing the value function (and thus also interleave execu-
tion, which always occurs before running these networks).
We implement this by constructing a Sequential Monte
Carlo sampler (15) that proposes search moves using
m, and then reweights and resamples in proportion to v.
SMC techniques are not the only reasonable approach:
one could perform a beam search, seeking to maximize
log w({at}, 7 |spec) + logv([ppr], spec); or, A* search
by interpreting —log w({a¢},_, [spec) as cost-so-far and
—log v([ppr], spec) as heuristic cost-to-go. SMC confers
two main benefits: (1) it is a stochastic search procedure,
immediately yielding a simple any-time algorithm where
we repeatedly run the sampler and keep the best program
found so far; and (2) the sampling/resampling steps are eas-
ily batched on a GPU, giving high throughput unattainable
with serial algorithms like A*.

4. Experiments

To assess the relative importance of the policy, value func-
tion, and REPL, we study a spectrum of models and test-
time inference strategies in both of our domains. For each
model and inference strategy, we are interested in how ef-
ficiently it can search the space of programs, i.e. the best
program found as a function of time spent searching. We
trained a pair of models: our REPL model, which conditions
on intermediate execution states (architectures in appendix),
and a ‘no REPL’ baseline, which decodes a program in one
shot using only the spec and syntax. This baseline is in-
spired by the prior work CSGNet (16) and RobustFill (8)
for CAD and string editing, respectively.

4.1. Inverse CAD

Modern mechanical parts are created using Computer Aided
Design (CAD), a family of programmatic shape-modeling
techniques. Here we consider two varieties of inverse CAD:
inferring programs generating 3D shapes, and programs
generating 2D graphics. We use CSG as our CAD modeling
language, and the the goal is to write a program that renders
to the target image by algebraically combining parametric
primitive drawing commands via addition and subtraction.
Our REPL renders each partial program p € pp to a distinct
canvas, which the policy and value networks take as input.

Experimental evaluation We train our models on ran-
domly generated scenes with up to 13 objects. Figure 4
(bottom) measures the quality of the best program found
so far as a function of time, where we measure the quality
of a program by the intersection-over-union (IoU) with the
spec. Incorporating the value function proves important
for both beam search and sampling methods such as SMC.
Given a large enough time budget the ‘no REPL’ baseline is
competitive with our ablated alternatives: inference time is
dominated by CNN evaluations, which occur at every step
with a REPL, but only once without it. Qualitatively, an
integrated policy, value network, and REPL yield programs
closely matching the spec (Figure 4, top). Together these
components allow us to infer very long programs, despite
a branching factor of ~1.3 million per line of code: the
largest programs we successfully infergo up to 19 lines of
code/102 tokens for 3D and 22 lines/107 tokens for 2D, but
the best-performing ablations fail to scale beyond 3 lines/19
tokens for 3D and 19 lines/87 tokens for 2D.

4.2. String Editing Programs

Learning programs that transform text is a classic program
synthesis task (17) made famous by the FlashFill system,
which ships in Microsoft Excel (14). We apply our frame-
work to string editing programs using the RobustFill pro-
gramming language (8), which was designed for neural
program synthesizers. Our formulation suggests modifica-
tions to the RobustFill language so that partial programs can
be evaluated into a semantically coherent state (i.e. they ex-
ecute and output something meaningful). Along with edits
to the original language, we designed and implemented a
REPL, which, in addition to the original inputs and outputs,
includes additional features of the intermediate program
state, described in the appendix.

Experimental Evaluation We trained our model and a
reimplementation of RobustFill on string editing programs
randomly sampled from the CFG. We originally tested on
string editing programs from (6) (comprising training tasks
from (4) and the test corpus from (18)), but found perfor-
mance was near ceiling for our model. We designed a
more difficult dataset of 87 string editing problems from 34



Write, Execute, Assess: Program Synthesis with a REPL

templates comprising address, date/time, name, and movie
review transformations. This dataset required synthesis of
long and complex programs, making it harder for pure neu-
ral approaches such as RobustFill.

The performance of our model and baselines is plotted in
Figure 5 (bottom), and examples of best performing pro-
grams are shown in Figure 5 (top). The value-guided SMC
sampler leads to the highest overall number of correct pro-
grams, requiring less time and fewer nodes expanded com-
pared to other inference techniques. We also observe that
beam search attains higher overall performance with the
value function than beam search without value. Our model
demonstrates strong out-of sample generalization: Although
it was trained on programs whose maximum length was 30
actions and average length approximately 8 actions, during
test time we regularly achieved programs with 40 actions or
more, representing a recovery of programs with description
length greater than 350 bits.

5. Discussion

Related Work Within the program synthesis community,
both text processing and graphics program synthesis have
received considerable attention (14).We are motivated by
works such as InverseCSG (19), CSGNet (16), and Robust-
Fill (8), but our goal is not to solve a specific synthesis
problem in isolation, but rather to push toward more general
frameworks that demonstrate robustness across domains.

We draw inspiration from recent neural “execution-guided
synthesis” approaches (13; 12) which leverage partial evalu-
ations of programs, similar to our use of a REPL. We build
on this line of work by explicitly formalizing the task as
an MDP, which exposes a range of techniques from the RL
and planning literatures. Our addition of a learned value
network demonstrates marked improvements on methods
that do not leverage such learned value networks. Prior
work (20) combines tree search with ()-learning to synthe-
size small assembly programs, but do not scale to large
programs with extremely high branching factors, as we do
(e.g., the > 40 action-programs we synthesize for text edit-
ing or the >1.3 million branching factor per line of code in
our 3D inverse CAD).

Outlook We have presented a framework for learning to
write code combining two ideas: allowing the agent to ex-
plore a tree of possible solutions, and executing and assess-
ing code as it gets written. This has largely been inspired
by previous work on execution-guided program synthesis,
value-guided tree search, and general behavior observed in
how people write code.

An immediate future direction is to investigate programs
with control flow like conditionals and loops. A Forth-style

stack-based (21) language offer promising REPL-like repre-
sentations of these control flow operators. But more broadly,
we are optimistic that many tools used by human program-
mers, like debuggers and profilers, can be reinterpreted and
repurposed as modules of a program synthesis system. By
integrating these tools into program synthesis systems, we
believe we can design systems that write code more robustly
and rapidly like people.
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A. Appendix
A.1. Neural network architectures
A.2. Graphics Programming Language

CFG The programs are generated by the CFG below:
P—>P+PIP-—PIS

# For 2D graphics

S —> circle(radius=N, x=N, y=N)
| quadrilateral (x0=N, yO0=N,
x1=N, yl=N,

x2=N, y2=N,

x3=N, y3=N)

N — [0 : 31 : 2]

+=

For 3D graphics

S —> sphere(radius=N, x=N, y=N, z=N)
| cube(x0=N, y0=N, z0=N,
x1=N, yl=N, zI=N)
| cylinder (x0=N, y0=N, zO0=N,
x1=N, yl=N, zl1=N, radius=N)

N —> [0 : 31 : 4]

In principle the 2D language admits arbitrary quadrilaterals.
When generating synthetic training data we constrain the
quadrilaterals to be take the form of rectangles rotated by 45
increments, although in principle one could permit arbitrary
rotations by simply training a higher capacity network on
more examples.

A.3. String Editing Programming Language

CFG Our modified string editing language, based on (8)
is defined as follows:
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Program P —> concat(E,.., E) (atmost6E’s)
Expression E —> F | N | N(N)
| N(F) | Const

Substring F —> Subl (k) Sub2(k)

| Spanl(r) Span2(i) Span3(y)

Span4(r) Span5(i) Span6(y)

Nesting N —> GetTokenl (t) GetToken2 (i)

| ToCase(s) | GetUpTo(r)

| GetFrom(r) | GetAll(t)

| GetFirstl (t) GetFirst2 (1)
Regex r —> t | d
Type t —> Number | Word |

| Digit | Char |

| Proper | Lower
Case s —> AllCaps | PropCase | Lower
Delimiter d —> &,.2!@0)[1%{}/#$:;""
Index i —> {-5 6}
Boundary y —> Start |

AlphaNum
AllCaps

End

REPL Our read-eval-print-loop exposes the following in-
termediate program states: The committed string maintains,
for each example input, the output of the expressions synthe-
sized so far. The scratch string maintains, for each example
input, the partial results of the expression currently being
synthesized until it is complete and ready to be added to the
committed string. Finally, the binary valued mask features
indicate, for each character position, the possible locations
on which transformations can occur.

A.4. Training details

String Editing We performed supervised pretraining for
24000 iterations with a batch size of 4000. We then per-
formed REINFORCE for 12000 epochs with a batch size of
2000. Training took approximately two days with one p100
GPU. We use the Adam optimizer wiht default settings.

Our Robustfill baseline was a re-implementation of the
“Attn-A" model from (8). We implemented the “DP-beam"
feature, wherein during test-time beam search, partial pro-
grams which lead to an output string which is not a prefix
of the desired output string are removed from the beam. We
trained for 50000 iterations with a batch size of 32. Training
also took approximately two days with one p100 GPU.

2D/3D Graphics We performed supervised pretraining
with a batch size of 32, training on a random stream of
CSG programs with up to 13 shapes, for approximately
three days with one p100 GPU. We use the Adam optimizer
wiht default settings. Over three days the 3D model saw
approximately 1.7 million examples and the 2D model saw
approximately 5 million examples. We fine-tuned the pol-
icy using REINFORCE and trained the value network for
approximately 5 days on one p100 GPU. For each gradient

step during this process we sampled B; = 2 random pro-
grams and performed By = 16 rollouts for a total batch size
of B = B; X By = 32. During reinforcement learning the
3D model saw approximately 0.25 million examples and the
2D model saw approximately 9 million examples.

For both domains, we performed no hyperparameter search.
We expect that with some tuning, results could be marginally
improved, but our goal is to design a general approach which
is not sensitive to fine architectural details.

A.5. Data and test-time details

For both domains, we used a 2-minute timeout for testing
for each problem, and repeatedly doubled the beam/number
of particles until timeout is reached.

String Editing We originally tested on string editing pro-
grams from (6) (comprising training tasks from (4) and the
test corpus from (18)), but found our performance was near
ceiling for our model (Figure 8). Thus, we designed our
own dataset, as described in the main text. Generation code
for this dataset can be found in our supplement, in the file
generate_test_robust.py.

2D/3D Graphics We generate a scene with up to k objects
by sampling a number between 1 to k, and then sampling
a random CSG tree with that many objects. We then re-
move any subtrees that do not affect the final render (e.g.,
subtracting pixels from empty space). Our held-out test
set is created by sampling 30 random scenes with up to
k = 20 objects for 3D and k£ = 30 objects for 2D. Running
python driver.py demo -maxShapes 30 using
the attached supplemental source code will generate exam-
ple random scenes. Figure 7 illustrates ten random 3-D/2-D
scenes and contrasts different model outputs.

A.6. Architecture details
A.6.1. STRING EDITING

For this domain, our neural architecture involves encoding
each example state separately and pooling into a hidden
state, which is used to decode the next action. To encode
each example, we learn an embedding vector of size 20 for
each character and apply it to each position in the input
string, output string, committed string, and scratch string.
For each character position, we concatenate these embed-
ding vectors, additionally concatenating the values of the
masks for that spatial position. We then perform a 1-d con-
volution with kernel size 5 across the character positions.
Following (13), we concatenate the vectors for all the char-
acter positions, and pass this through a dense block with 10
layers and a growth rate of 128 to produce a hidden vector
for a single example. We perform an average pooling on the
hidden vector for each example. We then concatenate the
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resulting vector with a 32-dim embedding of the previous
action and apply a linear layer, which results in the final
state embedding, from which we decode the next action.
Our value network is identical, except the final layer instead
decodes a value.

A.6.2. INVERSE CAD

The policy is a CNN followed by a pointer network which
decodes into the next line of code. A pointer network (22)
is an RNN that uses a differentiable attention mechanism
to emit pointers, or indices, into a set of objects. Here
the pointers index into the set of partial programs pp in the
current state, which is necessary for the union and difference
operators. Because the CNN takes as input the current REPL
state — which may have a variable number of objects in
scope — we encode each object with a separate CNN and
sum their activations, i.e. a ‘Deep Set’ encoding (23). The
value function is an additional ‘head’ to the pooled CNN
activations.

Concretely the neural architecture has a spec encoder, which
is a CNN inputting a single image, as well as a canvas en-
coder, which is a CNN inputting a single canvas in the
REPL state, alongside the spec, as a two-channel image.
The canvas encoder output activations are summed and con-
catenated with the spec encoder output activations to give
an embedding of the state:

3-D CNN architecture: The 3D spec encoder and canvas
encoder both take as input 32 x 32 x 32 voxel arrays, passed
through 3 layers of 3x3 convolution, with ReLU activations
after each layer and 4x4 max pooling after the first layer.
The first 2 layers have 32 hidden channels and the output
layer has 16 output channels.

No REPL baseline: Our “No REPL” baselines using the
same CNN architecture to take as input the spec, and then
use the same pointer network architecture to decode into
the program, with the sole difference that, rather than attend
over the CNN encodings of the objects in scope (which are
hidden from this baseline), the pointer network attends over
the hidden states produced at the time when each previously
constructed object was brought into scope.

A.7. String editing additional results

Figure 8 shows results on the string editing dataset from (6).

stateEncoding(spec, pp) = specEncoder(spec) ® Z canvasEncoder(spec,[p])

pPEPP

(3)
for Wy, W5 weight matrices.

For the policy we pass the state encoding to a pointer net-
work, implemented using a GRU with 512 hidden units and
one layer, which predicts the next line of code. To attend to
canvases p € pp, we use the output of the canvas encoder as
the ‘key’ for the attention mechanism.

For the value function we passed the state in coding to a
MLP with 512 hidden units w/ a hidden ReLU activation,
and finally apply a negated ‘soft plus’ activation to the out-
put to ensure that the logits output by the value network is
nonpositive:

v(spec, pp) = —SoftPlus(W,ReLU (W stateEncoding(spec, pp)))

“)
SoftPlus(z) = log(1 + %) ®)

2-D CNN architecture: The 2D spec encoder and canvas
encoder both take as input 64 x 64 images, passed through 4
layers of 3x3 convolution, with ReLLU activations after each
layer and 2x2 max pooling after the first two layers. The
first 3 layers have 32 hidden channels and the output layer
has 16 output channels.
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Figure 4. Top: Qualitative inverse CAD results: Rerendering program inferred from voxels from novel viewpoints. Bottom: Quantitative
results for CAD on out-of-sample testing problems. Both models trained on scenes with up to 13 objects. Left: 2D models tested on
scenes with up to 30 objects. Right: 3D models tested on scenes with up to 20 objects. SMC achieves the highest test accuracy.
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Figure 5. Top: Comparison of best programs on held-out inputs. Best programs determined by Levenshtein distance of program outputs
to spec outputs. Leveraging the policy network, value network, and REPL-based execution guidance, SMC is able to consistently find
programs with the desired behavior. Bottom: Results for String Editing tasks. Left: tasks solved vs number of nodes expanded. Right:
tasks solved vs total time per task. Our SMC-based search algorithm solves more tasks using 10x fewer node expansions and less time
than previous approaches. Note that x-axes are log scale.
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Figure 6. Left: CAD architecture. The policy is a CNN followed by a pointer network (22) (attending over the set of partial programs pp)
which decodes into the next line of code. The value function is an additional ‘head’ to the pooled CNN activations. Right: String Editing
architecture. We encode each example using an embedding layer, apply a 1-d convolution and a dense block, and pool the example hidden
states to predict the policy and value.

Figure 7. Derendering random scenes vs. ablations and no-REPL baseline. Teal outlines show shape primitives in synthesized 2D
programs.
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Figure 8. Results for String Editing tasks on dataset from (6). Left: tasks solved vs number of nodes expanded. Right: tasks solved vs
total time per task. Note that x-axes are log scale.
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inputs:
(’3/16/1997°,°4/17/1986°, °6/12/2003’, *4/23/1997")
outputs:

(’date: 16 mo: 3 year: 1997°, *date: 17 mo: 4 year: 1986°, *date: 12 mo: 6 year: 2003’, *date: 23 mo: 4 year: 1997’)
Const(d), Commit, Const(a), Commit, Const(t), Commit, Const(e), Commit, Const(:), Commit, Const( ), Commit, Re-

placel(/), Replace2( ), GetToken1(Number), GetToken2(1),

Commit, Const( ), Commit, Const(m), Commit, Const(o), Commit, Const(:), Commit, Const( ), Commit, GetUpTo(Number),
Commit, Const( ), Commit, Const(y), Commit,

Const(e), Commit, Const(a), Commit, Const(r), Commit, Const(:), Commit, Const( ), Commit, GetFrom(/), Commit

inputs:
(CApril 19, 2:45 PM’, ’July 5, 8:42 PM’, ’July 13, 3:35 PM’, "May 24, 10:22 PM’)
outputs:

(CApril 19, apé)rox. 2PM’, ’July 5, apE[))rox. 8 PM’, ’July 13, approx. 3 PM’, "May 24, approx. 10 PM”)
GetUpTo( ), Commit, GetFirst](Number), GetFirst2(-3), Commit, Const(,), Commit, Const( ), Commit, Const(a), Commit,

Const(p), Commit, Const(p), Commit, Const(r),

Commit, Const(o), Commit, Const(x), Commit, Const(.), Commit, Const( ), Commit, GetFrom(,), GetFirstl(Digit),
GetFirst2(3), GetFirst1(Digit), GetFirst2(-3), Commit,

Const( ), Commit, Const(P), Commit, Const(M), Commit

inputs:
(cell: 322-594-9310°, *home: 190-776-2770°, "home: 224-078-7398’, "cell: 125-961-0607")
outputs:

(’(322) 5949310 (cell)’, *(190) 7762770 (home)’, ’(224) 0787398 (home)’, ’(125) 9610607 (cell)’)
Const((), Commit, ToCase(Proper), GetFirstl(Number), GetFirst2(1), GetFirst1(Char), GetFirst2(2), Commit, Const()),

Commit, Const( ), Commit, GetFirstl(Number),

GetFirst2(5), GetFirst1(Char), GetFirst2(-2), GetToken1(Char), GetToken2(3), Commit, SubStr1(-16), SubStr2(17), Get-
Firstl1(Number), GetFirst2(4), GetToken1(Char),

GetToken2(-5), Commit, GetFirst1(Number), GetFirst2(5), GetToken1(Char), GetToken2(-5), Commit, GetToken1(Number),
GetToken2(2), Commit, Const( ), Commit,

Const((), Commit, GetUpTo(-), GetUpTo(Word), Commit, Const()), Commit

inputs:

(’(137) 544 1718, ’(582) 431 0370, *(010) 738 6792’, *(389) 820 9649’)

outputs

(Carea code: 137, num: 5441718, *area code: 582, num: 4310370, ’area code: 010, num: 7386792’, ’area code: 389, num:
8209649)

Const(a), Commit, Const(r), Commit, Const(e), Commit, Const(a), Commit, Const( ), Commit, Const(c), Commit, Const(0),
Commit, Const(d), Commit, Const(e), Commit,

Const(:), Commit, Const( ), Commit, GetFirstl(Number), GetFirst2(0), Commit, Const(,), Commit, Const( ), Commit,
Const(n), Commit, Const(u), Commit, Const(m),

Commit, Const(:), Commit, Const( ), Commit, GetFrom()), GetFirst1(Number), GetFirst2(2), Commit

Figure 9. Examples of long programs inferred by our system in the string editing domain.




