
Metagenomic Taxonomic Inference (MTI)
Felix A. Sosa*

Electrical Engineering
and Computer Science,
University of Central

Florida

Trevor C. Ballard*
Electrical Engineering
and Computer Science,
University of Central

Florida

Harsh Patel*
Electrical Engineering
and Computer Science,
University of Central

Florida

Austin Vo*
Electrical Engineering
and Computer Science,
University of Central

Florida

Shibu Yooseph
Electrical Engineering
and Computer Science,
University of Central

Florida

Abstract—As biological data becomes more readily available
through the advancement of DNA sequencing technologies, the
need to efficiently extract non-trivial knowledge from this data is
becoming more urgent. In this paper, we propose an end-to-end
Metagenomic Taxonomic Inference (MTI) pipeline that allows
users to infer the taxonomic makeup and relative abundance
of a given sample of sequenced DNA data. The pipelines core
components are based on the GRAMMy [2] and BWA [3]
systems described herein but compose them in a novel fashion
on the newly installed COOMBS cluster at the University of
Central Florida, making MTI UCF’s first in-house end-to-end
bioinformatics tool.

Index Terms—Genomics, bioinformatics, expectation-
maximization algorithms, transforms, genetics, mixture models,
probabilistic computing

I. INTRODUCTION

Metagenomics is the direct genetic analysis of genomes
within an environmental sample. It applies a suite of technolo-
gies and bioinformatics tools to access the genetic content of
entire communities of organisms. The field of metagenomics
has been posited to be responsible for significant advances
in many subfields of biology including microbial ecology,
evolution, and diversity over the past 5 to 10 years [1]. As
the promise of further study into this field and technologies
grows, many research groups are actively engaging in it now
and there is a growing need for cohesive end-to-end tools for
researchers to choose from.

This paper proposes a cohesive end-to-end pipeline for
bioinformatics researchers to characterize communities of or-
ganisms under investigation. Using Mixture Model theory,
MTI is designed to make inferences of the taxonomic makeup
and relative abundances of any given metagenomic sample.
MTI composes Genome Relative Abundance using Mixture
Model theory (GRAMMy) by Xia et. al. [2] and the Burrows-
Wheeler Aligner (BWA) by Li and Durner [3] into a forward
pipeline to make accurate inferences on the relative abun-
dances of species within a metagenomic sample.

Composing GRAMMy and BWA together with custom vi-
sualizations into an end-to-end pipeline makes MTI a powerful
inference tool suitable for the technical needs of bioinformatics
researchers looking to characterize the taxonomies of their
metagenomic samples.

∗ Authors contributed equally

II. THE MTI PIPELINE

The MTI pipeline consists of four major pieces: Main File,
BWA, GRAMMy, and Visualization. See Fig. 1. The Main File
and Visualization are both written in Python 3.6, GRAMMy
is written in C++, and BWA is written in C. You can find
all of the code and documentation at the authors GitHub:
https://github.com/ballardt/mti. The pipeline is explained be-
low.

A. Main File

The Main File is the main entry point into the MTI pipeline.
It handles user input and input to and output from both
BWA and GRAMMy. Proper use of the Main File has a user
supply sample metagenomic data to be analyzed in the form
of a FASTA/Q file, a file format for representing nucleotide
or peptide sequences, and the reference genome data in the
form of an FNA file, an extension of the FASTA/Q format
to specify nucleic acid sequences, to be compared with the
sample for analysis. The output of the Main File a Genome
Relative Abundance (GRA) file containing the final output of
the pipeline.

The Main File passes the FASTA/Q input from the user into
BWA which then, after mapping the sample to the reference,
outputs a Sequence Alignment/Map (SAM) [4] file containing
the mappings. The SAM file is then input to a parser we
wrote in python 3.6 that parses the SAM file into a more
readable CSV file that is then input to GRAMMy. GRAMMy
then outputs a GRA file which is stored in local storage by
the Main File. At this point the analysis is complete and the
GRA file is used by Visualization to present to the user rich
visualizations of the data.

B. BWA

The Burrows-Wheeler Aligner BWA is a software package
developed by Li and Durner that consists of three different
algorithms based on the Burrows Wheeler Transform for
mapping low-divergent sequences against a large reference
genome [3]. The three algorithms are BWA-backtrack, BWA-
SW and BWA-MEM. Each are suited for samples with differ-
ing properties.

BWA-backtrack is primarily designed for Illumina sequence
reads up to 100bp [3]. BWA-SW and BWA-MEM are suited
for longer sequence reads - usually from 70bp to 1Mbp [3].



BWA-MEM is the newest of the three and is recommended
due to its being faster, more accurate, and having overall better
performance than BWA-SW [3]. The MTI pipeline uses BWA-
MEM.

We chose BWA as our mapping tool for MTI because of
its greater read mapping speed [3] and ability to output the
standard SAM file format that can be used with the SAMtools
software package by Li et. al. [4]

C. GRAMMy

The Genome Relative Abundance using Mixture Model
theory was developed by Li and Durner as a computational
framework to make accurate inferences on the compositions
of microbial communities. GRAMMy utilizes Mixture Model
theory, a probabilistic model that allows for the robust repre-
sentation of the presence of subpopulations within an overall
population or, in other words, estimating the different popu-
lations within a metagenomic sample. GRAMMy is based on
an Expectation Maximization (EM) algorithm [2]. GRAMMy
accepts a CSV file from the parser and subsequently performs
the Maximum Likelihood Estimation (MLE) of the genomic
relative abundance levels within the sample [2].

Genomic relative abundance (GRA) is defined as the relative
abundance measure of mostly unicellular microbial organisms.
The sampling and sequencing procedure will go as follows:
Randomly choose a reference genome gj with probability j
that is proportional to ajlj, where aj is the abundance and lj is
the genome length. Randomly generate a read rj from gj.

With a reasonable assumption of independence between
steps 1 and 2, the procedure should be equivalent to sampling
from the mixture distribution 1.

M :M =

m∑
j=1

πjfgj (1)

Where fg is a probability distribution such that the proba-
bility of generating a read rj from gj is fg(rj).

The GRA for known genomes a = (a1, a2, ..., am1) is the
normalized abundance, where the relative abundance for the
j-th known genome is described in 2.

aj =
πj

lj
∑m−1
k=1

πk
lk

(2)

where j ∈ {1, 2, ...,m− 1}.
To estimate the mixing parameters πj for j genomes, the

following Expectation-Maximization (EM) algorithm will be
used to calculate the MLE of each read to each reference
genome.

We assume there is a responsibility matrix Z such that
each entry zij is the probability that read ri is from reference
genome gj . The following E and M-step procedures will list
out the EM algorithm implemented in GRAMMy. Note that
a variable with superscript t stands for its value at the t-th
iteration, i.e. p(t) is the estimate of at the t-th step.

Assuming that π(t) is known, Z(t) can be updated by the
corresponding posterior probabilities in 2 in the E-step where

U is the maximum number of mismatches allowed in the read
alignment [5].

Ztij =

{
σ2(1− σ)1−zπj if z ≤ U
0 if z > U∑m

k=1

{
σ2(1− σ)1−zπj if z ≤ U
0 if z > U

(3)

Assuming that Z(t) is known, the new mixing parameter
π(t+ 1) is updated in the M-step described in 3.

πt+1
j =

∑n
i=1 z

t
ij

n
(4)

When the MLE of π is found, the MLE of a can be calculated
using 2, thereby inferring the GRAs.

D. Visualizations

The information within a GRA file is important when
attempting to understand a metagenomic sample, but it is
difficult to reason about in the standard GRA format. A single
sample could yield a GRA file with thousands of columns,
which are nearly impossible to contextualize when presented
as raw numeric values and taxon IDs. Furthermore, the user
may want to consider the results per some metadata or query;
e.g., the relative abundance of bacteria in samples taken from
individuals over the age of 40 versus those under the age of 40.
We identified five visualization targets that will suffice for the
majority of use cases: heatmap, taxonomic tree, violin plots,
and bar chart.

A heatmap, as shown in Fig. 2, is a graph in which
values are represented as colors. There are many different
forms of heatmaps, but for our purposes the axes represent
the samples provided by the user and the microbial species
found within those samples, or some filtering or grouping
of either. The color of each cell in our heatmap represents
the relative abundance of a microbe in a sample. Taxonomic
trees, like phylogenetic trees or evolutionary trees, can take
on wildly different forms according to their purpose. In our
users case, a taxonomic tree offers a quick look at the rela-
tionship between the organisms in a sample and how similar
or dissimilar they are to each other. While there are some
critical differences between taxonomic and phylogenetic trees
concerning the arrangement of organisms, we have opted to
visualize taxonomy because it is often more useful to examine
the similarity of organisms in the sample than it is to chart
their raw evolutionary history.

In our visualization, each node includes the name of the
organism or taxonomic classification, the relative abundance
of that node in the sample, the error bound for the relative
abundance, and any arbitrary data specified by the user, such
as the presence of tagged genes. Certain values like relative
abundance are combined as one traverses towards the root
of the tree; e.g. if node A has children B and C, and B
and C each have a relative abundance of 0.25, node A will
show a relative abundance of 0.5. Users may filter and group



Metadata
CSV

Sample
FASTA/Q

Ref Files
RNA

Read 
Mapping

Reference 
Summary

Abundance 
Estimation Visualization

Fig. 1. The pipeline for MTI. Users provide the genomic sample, in the form of a FASTA/Q file, optional metadata, in the form of a CSV, and a reference
database. MTI then performs a read mapping using the Burrows-Wheeler Aligner and genomic inference with GRAMMy. Statistical summaries of the sample
are then visualized via multiple options including heatmaps, violin plots, bar graphs, and scatter plots.

samples or choose taxonomic classifications when displaying
the taxonomic tree similarly to heatmaps. Samples may be
excluded from the visualization, and users may choose to only
visualize one type of organism in the tree. For example, a user
may choose to visualize the taxonomic relationship between
all bacteria in samples 1 and 4, or they may wish to only see
all members of Enterobacterales present in sample 3.

Scatterplots, as shown in Fig. 3 are a very common way
to visualize the relationship between two variables. In two-
dimensional scatterplots, each point on the graph represents
a single instance of some data point with the value of the
horizontal and vertical axes at those values. The data points
may also be colored to represent a third variable. A line of
best fit is often plotted as well to specify and generalize the
correlation between the variables on the axes.

In our case, the scatterplot will most frequently be used
to visualize the relationship between the relative abundance of
some organism against some sample metadata provided by the
user, and points may be colored according to categorization.
For example, a user may want to know how the relative
abundance of pathogenic and non-pathogenic strains of some
bacteria. In this case, the relative abundance may represent the
horizontal axis, the age of the person each sample was taken
from may represent the vertical axis, and points may be blue
if they are non-pathogenic and red if they pathogenic.

This sort of use case is frequently one of the best ways to
better understand a users samples per some metric because it
offers a simple way to graph the relationship between two or
three arbitrary variables.

Bar charts, as shown in Fig. 5, are used in cases like those
for scatter plots, but are more suited to tracking changes over
time or comparing values between two or more categories. One
example of a situation in which bar charts could be helpful is
if the user wanted to compare the relative abundance of some
bacteria in a few different metagenomes over time, such as
three different people over the course of a year. The months
of the year may be placed on the horizontal axis, relative
abundance of the bacteria may be placed on the vertical axis,
and three bars may be placed at each month representing the
bacteria in each of the three individuals.

We include violin plots, as shown in Fig. 4, as well because
they are a simple way of visualizing and comparing variable
distributions. For example, a user may want to compare the
distribution of a pathogenic strain of bacteria versus a non-
pathogenic strain of the same bacteria across multiple samples.
This would produce a violin plot with the relative abundance
on the horizontal axis and two variables representing the
bacterial strains on the vertical axis.

Each of the five visualizations has been sufficient to extract
significant knowledge about our simulated datasets during
testing.

III. TESTING AND BENCHMARKING

To test our pipeline, we needed simulated datasets with
known or expected GRA values that could be compared with
the MTI pipelines values given the dataset as input. The
datasets were manually created with the help of open source
software known as wgsim [4]. These simulated datasets served
as our benchmarks for testing and debugging throughout the
latter half of the development of the MTI pipeline. This
process of creating simulated data is referred to as pre-
processing.

Pre-processing included approximately eight steps. The first
step was to create a CSV file containing compiled meta-
data of complete genomes of bacteria. We accomplished this
by creating a bash script that searched online over NCBIs
GenBank for the necessary metadata including the GenBank
Account Number, Molecule Type, Molecule Length, Taxon
ID, Organism Name, and Taxonomy (ascending from direct
most parent to base cellular organism). After the collection of
metadata in a CSV, we would pick a subset of organisms from
the CSV.

After the selection of a subset of organisms, we would
ensure that the chosen organisms are associated to FASTA
files that correspond to the original CSV file. This is to
ensure we do not have data that does not correspond to
any metadata during analysis and lead to bad estimates from
GRAMMy. Specifically, we would check that all GenBank
Account Numbers in the chosen dataset are in each of the
associated FASTA files and that each of the GenBank Account



Fig. 2. Example of heatmap provided by MTI. The x-axis correlates to the
samples provided by the user and the y-axis is the inferred species. The colors
correlate with the relative abundance of the species within the sample with
red being denoted as an outlier value.

Numbers in the associated FASTA files are in the chosen
dataset. After ensuring the data is good, we would estimate
the GRA of the dataset with a given distribution using simple
spreadsheet formulas.

Fig. 3. Example of scatter plot provided by MTI. The axes both represent the
relative abundances of two samples, respectively. Users also have the option
to view pearson correlation.

After estimating the GRAs manually, we would generate a
bash script containing the reference genome database. This is

basically concatenating all of the FASTA files associated to
the dataset and is easily done using spreadsheet formulas.

Fig. 4. Example of violin plot provided by MTI.

After creating the bash script containing the FASTA files,
we generate a bash script that will utilize wgsim to create the
simulated data.

Fig. 5. Example of bar plot provided by MTI.

We then run both bash scripts to generate reference genomes
and simulated sample inputs in the Main File directory. Finally,
we input these simulated genome references and sample inputs
into the Main File and compare the GRA output by GRAMMy
with the estimated GRA from the fourth step. If the error
is acceptable (¡ 5% error) we conclude that GRAMMy is
successful in inferring the GRA of the simulated data and
complexify the data by changing parameters such as the
distribution and composition of the simulated sample until we
are confident in using real datasets. Otherwise, we debug the
pipeline until we get acceptable error rates with the simulated
data.

IV. DISCUSSION AND FUTURE DIRECTIONS

The MTI pipeline so far has proven to successfully pass
benchmarks and reach low error rates. Though this makes the
pipeline a success there are a few modifications and edits that



could be made to the pipeline to give it more power and rigor.
Three that are low-hanging fruit in that their implementation
would be simple and their benefit significant are automating
the pre-processing so as to decrease testing time and act as
quality assurance for any modifications, implement a parallel
GRAMMy system via general-purpose computing on graph-
ics processing units (GPGPU) with CUDA, and expand the
pipeline to incorporate genomes of organisms such as viruses.

Pre-processing for the pipeline proved to be difficult in
that preparing simulated data manually was time-intensive and
prone to human error. In the latter portion of our project,
when running benchmarks using larger genomes than usual
for testing scalability, we consistently had error rates in output
GRAs from expected GRAs upwards of 20%. We traced the
issue down to incorrect data prepared during pre-processing.
Though we fixed the issue and ensured the pipeline was
functional, the process took significant time from the pipeline.
Automating this process would provide a less time-intensive
and more consistent alternative to current manual methods
employed.

Another means of saving time would be to implement a
GRAMMy system using GPGPU with CUDA. Having access
to graphics processing would allow users to benefit from
potential significant speed increases and thus faster analyses.
This speed up could lead to quicker or more data that could
help intensive and important projects relying on this pipeline.
Importantly, an implementation of GRAMMy with CUDA
would not prove to be difficult relative to other possible
modifications as GRAMMy is written in C++ and benefits
from helpful libraries and online support for being translated
into CUDA.

Finally, an expansion or testing of the pipelines capacity
to effectively infer the GRA of other organisms has obvious
benefits on expanding the utility of the pipeline for other
researchers. Though, we are unsure if the implementation of
this capacity would be a simple task, testing the capacity of
GRAMMy its current state is sure to be. Thus, we believe it
as well as the other two suggested modifications could prove
fruitful for future efforts with the MTI pipeline.

V. CONCLUSION

We describe an end-to-end Metagenomic Taxonomic In-
ference pipeline that can be used to infer the taxonomic
makeup of metagenomic data. The pipeline features read
mappings performed by the Burrows-Wheeler Aligner, relative
abundance estimation through Genome Relative Abundance
using Mixture Model theory, and rich visualizations including
heatmaps, bar charts, scatter plots, taxonomic trees, and violin
plots.

Together, these components make MTI a valuable tool for
bioinformatics researchers looking to analyze the taxonomy of
any metagenomic sample. Though, the pipeline is finished and
functional, we also detailed three possible modifications that
would greatly increase the utility of the pipeline. These were
to implement parallel computations in GRAMMy through
GPGPU via CUDA, automating the testing and debugging

of the pipeline with simulated data, and testing the pipelines
capabilities with other genomic data to see if it can infer the
taxonomic makeup of organisms other than bacteria such as
viruses.

ACKNOWLEDGMENT

The authors wish to acknowledge the assistance and support
of Dr. Shibu Yooseph and Dr. Mark Heinrich of the Electrical
Engineering and Computer Science Dept. at the University of
Central Florida.

REFERENCES

[1] Thomas, Torsten, Jack Gilbert, and Folker Meyer. Metagenomics - a
Guide from Sampling to Data Analysis. Microbial Informatics and
Experimentation 2 (2012): 3. PMC. Web. 18 Apr. 2017.E power amplifier,
IEEE Trans. Microwave Theory Tech., vol. 48, no. 12, pp. 2397-2402,
December 2000.

[2] Xia LC, Cram JA, Chen T, Fuhrman JA, Sun F (2011) Accurate Genome
Relative Abundance Estimation Based on Shotgun Metagenomic Reads.
PLoS ONE 6(12): e27992. https://doi.org/10.1371/journal.pone.0027992.

[3] Li H. and Durbin R. (2010) Fast and accurate long-read alignment with
Burrows-Wheeler Transform. Bioinformatics, Epub. [PMID: 20080505]

[4] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils
Homer, Gabor Marth, Goncalo Abecasis, Richard Durbin, 1000 Genome
Project Data Processing Subgroup; The Sequence Alignment/Map for-
mat and SAMtools. Bioinformatics 2009; 25 (16): 2078-2079. doi:
10.1093/bioinformatics/btp352

[5] Tae-Hyuk Ahn, Juanjuan Chai, Chongle Pan; Sigma: Strain-level in-
ference of genomes from metagenomic analysis for biosurveillance.
Bioinformatics 2015; 31 (2): 170-177. doi: 10.1093/bioinformatics/btu641


