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Abstract— We present a new method for simplifying SDPs
that blends aspects of symmetry reduction with sparsity ex-
ploitation. By identifying a subspace of sparse matrices that
provably intersects (but doesn’t necessarily contain) the set
of optimal solutions, we both block-diagonalize semidefinite
constraints and enhance problem sparsity for many SDPs
arising in sums-of-squares optimization. The identified subspace
is in analogy with the fixed-point subspace that appears in
symmetry reduction, and, as we illustrate, can be found using an
efficient combinatorial algorithm that searches over coordinate
projections. Effectiveness of the method is illustrated on several
examples.

I. INTRODUCTION

Many problems in engineering and control can be posed as
semidefinite programs (SDPs)—convex optimization prob-
lems over the cone of positive semidefinite (psd) matrices.
While semidefinite programs are efficiently solvable in the-
ory, solving many SDPs of practical interest is computation-
ally infeasible unless problem specific structure is exploited.
In this paper, we present a new method for exploiting
problem structure that blends aspects of existing techniques,
namely symmetry reduction [11], [25], [6], [7] and sparsity
exploitation.

In symmetry reduction, one uses group structure of the
data matrices to find a subspace that provably intersects,
but doesn’t necessarily contain, the set of optimal solutions.
One then reduces the dimensionality of the problem by
restricting to this subspace, which given its structure, also
block-diagonalizes the semidefinite constraint after a change
of basis. Inspired by this, we present a method for finding
a subspace of sparse matrices (in the standard basis) that
provably intersects, but doesn’t necessarily contain, the set of
optimal solutions. In addition, the subspace we find is block-
diagonal, up to permutation. Hence, by restricting to this
subspace, we not only reduce the dimension of the feasible
set but also reduce the cost of the semidefinite constraint.

Since the identified subspace is block-diagonal (up to
permutation), it is trivially the symmetric part of a matrix *-
algebra. In contrast with *-algebra-based methods surveyed
in [6], our method does not require the data matrices generate
a low-dimensional algebra nor be invariant under the action
of a permutation group. Similarly, in contrast with other
sparsity-based techniques, our method does not require ag-
gregate sparsity of the data matrices [10] nor does it impose
sparsity at the potential cost of optimality [26] [18]. In other
words, it allows one to assume sparsity not immediate from
the problem description without penalty.
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To identify the desired subspace, we find what we call
the minimal-coordinate-projection of a given SDP, which is
analogous to the group-average operation from symmetry
reduction. The minimal-coordinate-projection has range of
minimum dimension among coordinate projections that sep-
arately leave sub-level sets of the cost function, the psd cone,
and the solution set of the linear constraints invariant. These
invariance properties ensure the range of this projection inter-
sects the set of solutions. In addition, a simple combinatorial
algorithm finds the minimal-coordinate-projection without
leveraging—nor requiring—any group structure.

As we will illustrate with examples, the minimal-
coordinate-projection frequently has low-dimensional range
for SDPs arising in sums-of-squares (SOS) optimization [3].
Indeed, finding the minimal-coordinate-projection general-
izes and strengthens extremely effective parsing algorithms
used to simplify these SDPs. The first algorithm, due to [16],
exploits sign-symmetries (where, e.g., a polynomial f(x, y)
is called sign-symmetric if f(x, y) = f(x,−y), f(x, y) =
f(−x, y), or f(x, y) = f(−x,−y)). The second, due to
[5], exploits polynomial sparsity. Though we omit proof,
the range of the minimal-coordinate-projection is always
contained in the subspaces (implicitly) identified by these
algorithms when SDPs are formulated using the monomial
basis. Finding this smaller subspace is also at no addi-
tional computational cost. Indeed, the minimal-coordinate-
projection can be found in polynomial-time, whereas [16]
and [5] (implicitly) find subspaces via exhaustive search.

An outline of this paper follows. We first introduce no-
tation and preliminaries. We then characterize projections
onto sets of sparse matrices that satisfy the desired invari-
ance conditions (Sections II and III). Section IV gives an
efficient combinatorial algorithm for finding the minimal-
coordinate-projection. We conclude by showing effective-
ness of our method on several SDPs arising in sums-of-
squares optimization—many taken from third-party libraries
(Section V)—and mention an implementation (Section VI).
Proofs are omitted and will appear in a full version of this
paper.

A. Notation

Let Sn denote the vector space of n×n symmetric matrices
equipped with trace inner-product A ·B := Tr(ATB) and let
Sn+ denote the subset of matrices that are positive semidef-
inite (psd). Let A � 0 denote the condition that A ∈ Sn is
psd, and for a positive integer m, let [m] := {1, . . . ,m}.
For A,B ∈ Sn, let A ◦ B ∈ Sn denote the Hadamard,
or entrywise, product of A and B, defined by the equation
[A ◦ B]ij = AijBij . Let {0, 1}n×n equal the set of n × n



binary matrices. Finally, let rngP and kerP denote the range
and kernel of a linear map P .

B. Equivalent SDPs
For an affine set A ⊆ Sn and matrix C ∈ Sn, consider

the semidefinite program (SDP) in decision variable X

minimize C ·X
subject to X ∈ A ∩ Sn+.

(1)

Our goal is to efficiently find a linear subspace L (preferably,
of minimal dimension) for which the semidefinite program
(1) has optimal value equal to that of the semidefinite
program (2), given by

minimize C ·X
subject to X ∈ A ∩ Sn+ ∩ L.

(2)

We will find L using the following sufficient condition:
Proposition 1: For the semidefinite programs (1)-(2), let

P : Sn → Sn be a linear map with adjoint P ∗ : Sn → Sn
and assume the following conditions hold:
(a) P (Sn+) ⊆ Sn+, i.e., P is a positive map;
(b) P (A) ⊆ A;
(c) P ∗(C) = C,

where P (Sn+) :=
{
P (X) : X ∈ Sn+

}
and P (A) is similarly

defined. If one takes L = rngP , then the optimal values of
SDP (1) and (2) are equal.
Proposition 1 follows by noting P maps feasible (resp.
optimal) points to feasible (resp. optimal) points by (a)-(c).

C. The minimal-coordinate-projection
Finding a linear map P : Sn → Sn that satisfies (a)-

(c) with range of minimal dimension is a natural procedure
for finding L. In this paper, we consider a variant of this
procedure that admits an efficient combinatorial solution.
Specifically, we include an additional constraint,
(d) P is a coordinate projection, i.e., for a fixed M ∈ Sn ∩
{0, 1}n×n, P (X) = M ◦X for all X ,

and give an algorithm for finding the minimal-coordinate-
projection, defined using this extra constraint as follows:

Definition 1: The minimal-coordinate-projection is the
unique minimizer of dim rngP over linear maps P : Sn →
Sn satisfying conditions (a)-(d).
That the minimal-coordinate-projection is unique follows
from the fact maps satisfying (a)-(d) are closed under
composition, and the fact (d) defines a finite set of pair-
wise commuting maps. Specifically, these facts imply the
minimal-coordinate-projection equals the composition of all
coordinate projections satisfying (a)-(c).

D. Block-diagonalization
For reasons discussed in Section II-A, a coordinate projec-

tion that is also a positive map corresponds with a sparsity
pattern that is block-diagonal (up to permutation). For n = 4,
example sparsity patterns of this type include:
∗ 0 ∗ 0
0 ∗ 0 ∗
∗ 0 ∗ 0
0 ∗ 0 ∗

 ,


∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗

 ,


∗ 0 0 ∗
0 ∗ 0 0
0 0 ∗ 0
∗ 0 0 ∗

 .

(3)

Hence, by taking L equal to the range of the minimal-
coordinate-projection, the cost of the semidefinite constraint
in SDP (2) is reduced. Specifically, Sn+∩L decomposes into
a direct-sum of smaller psd cones.

E. Additional notation and remarks

1) Coordinate projections and binary matrices: In the
rest of the paper, we make the correspondence between
coordinate projections and binary matrices explicit, i.e., for
M ∈ Sn ∩ {0, 1}n×n, we define PM : Sn → Sn via
PM (X) = M ◦ X . We will often state results directly in
terms of M .

2) Sparsity of the cost matrix: For a coordinate projection
PM , condition (c) of Proposition 1 is equivalent to the
condition that M ◦ C = C. Hence, the proposed method
works well—i.e., the range of PM is of low dimension—only
if C is sparse. While this is a strong constraint to impose
in general, C is typically extremely sparse for SDPs arising
in sums-of-squares optimization (e.g., [2]), and, of course,
equals zero for SDP feasibility problems.

II. POSITIVE COORDINATE PROJECTIONS AND
BINARY-PSD-MATRICES

This section characterizes binary matrices M for which
PM (Sn+) ⊆ Sn+, i.e., we characterize coordinate projections
that satisfy condition (a) of Proposition 1. We quickly find
the matrices M equal the set of binary, psd matrices, and then
recall characterizations of this latter set from the literature.
We remark [8] studies the cone PM (Sn+) for arbitrary M ∈
Sn∩{0, 1}n×n. The relationship between positive maps PM

and binary-psd-matrices is now established:
Lemma 1: Fix M ∈ Sn ∩ {0, 1}n×n. Then, the map PM

is positive, i.e., PM (Sn+) ⊆ Sn+, if and only if M is positive
semidefinite.

Proof: Sufficiency follows from the Schur product theo-
rem (e.g., [14], Chapter 7), which states the Hadamard prod-
uct of psd matrices is psd. For necessity, note PM (11T ) =
M , where 11T is the psd matrix of all ones.
Characterizations of binary-psd-matrices using partitions of
[n] and transitive relations now follow.

A. Binary-psd-matrices and partitions

A non-zero, binary matrix is psd if and only if it is the
sum of binary, psd matrices that are rank one [15] [9]. It
is not hard to see this characterization is equivalent to the
following. (A direct proof, assuming the diagonal entries of
M are non-zero, appears in Proposition 19.9 of [17].)

Lemma 2: For M ∈ Sn ∩ {0, 1}n×n, the following state-
ments are equivalent:

• The matrix M is psd.
• There exists disjoint subsets S1, . . . , Sp of [n] for which

Mij =

{
1 ∀(i, j) ∈ ∪pk=1Sk × Sk

0 otherwise.
(4)



For n = 4, the following illustrates the correspondence
between a binary, psd matrix M and subsets Sk of [n]:

M =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 M =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 1


S1 = {1, 3}, S2 = {2, 4} S1 = {1, 2}, S2 = {4}.

Notice this characterization implies M is psd if and only if
M is block-diagonal up to permutation, where each block
equals a matrix of all ones or a matrix of all zeros.

B. Binary-psd-matrices and relations

The following corollary of Lemma 2 characterizes binary-
psd-matrices in terms of symmetric, transitive relations:

Lemma 3: Let M ∈ Rn×n ∩ {0, 1}n×n be the adjacency
matrix of a relation R ⊆ [n]×[n], i.e., Mij = 1 iff (i, j) ∈ R.
The following statements are equivalent:
• The matrix M is symmetric and positive semidefinite.
• The relation R is symmetric and transitive.

This characterization is useful algorithmically; in particular, a
basic step of our combinatorial algorithm will be computing
the transitive closure of a relation. Also observe when R is
symmetric and transitive, but not reflexive, at least one row
and column of M is zero.

III. INVARIANT AFFINE SUBSPACES

This section characterizes binary matrices M that satisfy
the inclusion PM (A) ⊆ A, where A is an affine subspace
of Sn, i.e, it characterizes coordinate projections that satisfy
condition (b) of Proposition 1. For concreteness, we define
A as the solution set to A(X) = b, where b ∈ Rm and
A : Sn → Rm is defined by A1, . . . , Am ∈ Sn via A(X) =
(A1 ·X, · · · , Am ·X)T . We also let X? denote the solution
to A(X) = b with minimum Frobenius norm. Concretely:

A(X) := (A1 ·X, · · · , Am ·X)T , (5)
A := {X ∈ Sn : A(X) = b} , (6)

X? := argmin
X∈A

‖A‖F . (7)

Note with these definitions, A = X? + kerA.

A. General characterization

A general characterization of coordinate projections satis-
fying PM (A) ⊆ A arises from a general characterization of
linear maps D : Sn → Sn with this property, given next
by Lemma 4. To understand Lemma 4, it helps to view
D as a matrix in Rp×p and A as the set of solutions to
Ax = b for A ∈ Rm×p. With this notation, Lemma 4
generalizes a classical result that states the kernel of A is
an invariant linear subspace of D if and only if AD = TA
for some T ∈ Rm×m (Proposition 1.4.4, [12]). Specifically,
Lemma 4 states A is an invariant affine subspace if and only
if AD = TA and, in addition, Tb = b.

Lemma 4: Let A be a non-empty, affine subspace defined
as in (6) and let D : Sn → Sn be a linear map with adjoint
D∗ : Sn → Sn. The following statements are equivalent.

1) D(A) ⊆ A.
2) There exists T ∈ Rm×m for which

D∗(Ai) =
∑m

j=1 TijAj ∀i ∈ [m]

Tb = b.
Direct application of Lemma 4 yields:

Theorem 1: Let A be a non-empty, affine subspace de-
fined as in (6) and fix M ∈ Sn ∩ {0, 1}n×n. The following
statements are equivalent.

1) PM (A) ⊆ A.
2) There exists T ∈ Rm×m for which

M ◦Ai =
∑m

j=1 TijAj ∀i ∈ [m]

Tb = b.
We now simplify Theorem 1 by assuming Ai and bi have
structured sparsity.

B. Characterization assuming disjoint support

Our next characterization assumes the Ai have disjoint
support, i.e., Ai ◦ Aj = 0n×n for all i 6= j. This condition,
while strong, frequently holds in SOS optimization (see, e.g.,
[2], where this condition is used to develop an efficient first-
order method for unconstrained SOS optimization). It also
leads to a much simpler characterization: in particular, the
terms TijAj from Theorem 1 vanish for i 6= j:

Theorem 2: Let A be a non-empty, affine subspace de-
fined as in (6), and suppose the Ai have disjoint support,
i.e., suppose Ai ◦ Aj = 0n×n for all i 6= j. Fix M ∈
Sn ∩ {0, 1}n×n. The following statements are equivalent.

1) PM (A) ⊆ A.
2) M ◦Ai ∈ {Ai, 0n×n}, where M ◦Ai = Ai if bi 6= 0.

As Section IV-B.2 shows, Theorem 2 eliminates certain lin-
ear algebra computations from our combinatorial algorithm.

C. Characterization of projections

We now characterize orthogonal projections P satisfying
P (A) ⊆ A. in terms of rngP and X?, the minimum-
Frobenius-norm solution to A(X) = b:

Theorem 3: Let A, A and X? be defined as in (5)-(7), let
PkerA denote the orthogonal projection onto kerA, and let
P : Sn → Sn be an orthogonal projection. The following
statements are equivalent.

1) P (A) ⊆ A.
2) rngP is an invariant subspace of PkerA containing X?.

Our algorithm uses this characterization for general Ai.

IV. COMBINATORIAL ALGORITHM

We now give a simple combinatorial algorithm for finding
the minimal-coordinate-projection of an SDP with cost ma-
trix C and feasible set A ∩ Sn+—where Section I-C defined
this projection as the minimizer of dim rngPM among
coordinate projections PM mapping Sn+ into Sn+, A into
A and C to C. The algorithm is based on the following
observations:
• For any S ⊆ Sn, the set of maps PM satisfying
PM (S) ⊆ S is closed under composition;

• For binary matrices M1 and M2, the composition of
PM1

and PM2
equals PM1◦M2

, i.e., it is defined by the
Hadamard product M1 ◦M2.



From these observations, we conclude the set of supports
of matrices Mi satisfying PMi(S) ⊆ S is closed under
intersection, where the support of a binary matrix M ∈ Sn
is the following subset of [n]× [n]:

suppM := {(i, j) : Mij = 1} .

This intersection property allows us to define the following
closure operator clS(·):

Definition 2: For S ⊆ Sn and a binary matrix M ∈ Sn,
let {Mi} denote the set of all binary matrices in Sn satisfying

PMi
(S) ⊆ S,

supp(Mi) ⊇ supp(M).

Then, clS(M) is defined to be the unique binary matrix with
support equal to

⋂
i supp(Mi).

The coordinate projection PclS(M) has the following in-
terpretation: among projections mapping S into S whose
range contains rngPM , it has range of minimum dimen-
sion, since—by definition—it equals the composition of all
coordinate projections with these properties. Based on this,
our combinatorial algorithm finds the minimal-coordinate-
projection using only evaluations of clA(·) and clSn+(·). It
appears next in Algorithm 1:

Algorithm 1: Finds minimal-coordinate-projection PM .
Initalize M to the zero matrix.
Set Mij = 1 for all (i, j) = supp(C).
repeat

Set M = clSn+(M).
Set M = clA(M).

until converged;

Correctness follows from a few basic observations: if PM∗

is the minimal-coordinate-projection, then PM∗◦M = PM at
each step of the algorithm, by definition of clSn+(·) and clA(·).
In addition, the algorithm terminates only if PM (A) ⊆ A,
PM (Sn+) ⊆ Sn+, and PM (C) = C—hence, at termination
PM must equal PM∗ . Moreover, it must terminate given
any closure operator clS(·) is extensive—i.e., supp(M) ⊆
supp(clS(M)).

Remark 1: Viewing the set of all closure operators as a
lattice (as in Section 3 of [4]), Algorithm 1 evaluates the meet
of clSn+ and clA at the binary matrix with support equal to
suppC. Note the meet is not (in general) equal to clA∩Sn+(·).
The follows given that projections may leaveA∩Sn+ invariant
but not Sn+ and A.

A. Evaluating the closure operator clSn+(·)
We describe evaluation of clSn+(·) by first recalling two

facts:
• PM (Sn+) ⊆ Sn+ if and only if M is a binary-psd-matrix

(Lemma 1);
• Binary-psd-matrices are in one-to-one correspondence

with symmetric, transitive relations (Lemma 3).
From these facts, it follows that clSn+(M) corresponds to the
transitive closure of the relation defined by M . Formally:

M =


1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 1 0 1 0∗

0 1 0 0∗ 1


1

3

2

54

Fig. 1: Graphical illustration of clSn+(·)

Proposition 2: Fix M ∈ Sn∩{0, 1}n×n, let R ⊆ [n]× [n]
denote a relation for which (i, j) ∈ R iff Mij = 1, and let
R denote the transitive closure of R. Then,

[clSn+(M)]ij =

{
1 ∀(i, j) ∈ R

0 otherwise.
(8)

Evaluation of clSn+(M) also has a graphical interpretation
if we assume Mii = 1 for all i. Viewing M as an adjacency
matrix of a graph on n nodes, clSn+(M) is the adjacency
matrix of the graph obtained by completing connected-
components to complete graphs. As an example, consider
the matrix M and corresponding graph in Figure 1. Here, the
entries marked 0∗ are set to one in clSn+(M) and correspond
to the dashed edge.

B. Evaluating the closure operator clA(·)
To describe evaluation of clA(·), we employ the definition

of A given by (6). We first make no assumptions on the
matrices Ai. When then assume the Ai have disjoint support,
i.e., Ai ◦Aj = 0 for i 6= j.

1) General case: The general case is based off Theo-
rem 3, which states PM (A) ⊆ A if and only if the following
two conditions hold:
• The range of PM contains X?, the minimum-Frobenius-

norm solution to A(X) = b;
• The range of PM is an invariant subspace of PkerA,

the orthogonal projection onto kerA with respect to the
trace inner-product.

Since PM is a coordinate projection, these conditions are
equivalent to conditions on the support of M . Specifically,
PM (A) ⊆ A if and only if the following conditions hold:
• The support of M contains the support of X?;
• If (i, j) ∈ supp(M), then PkerA(Eij +Eji) is as well,

where Eij is a standard basis vector of Rn×n.
This conditions yield a procedure for evaluating clA(M):

Proposition 3: Let A, A and X? be defined as in (5)-(7)
and let PkerA denote the orthogonal projection onto kerA.
For a binary matrix M ∈ Sn, the following holds:

[clA(M)]ij =

{
1 ∀(i, j) ∈ SN

0 otherwise,

where S0 := supp (X?) ∪ supp(M),

Sk+1 := Sk

⋃ ⋃
(i,j)∈Sk

suppPkerA(Eij + Eji)

 ,

and N is any integer for which SN = SN+1.



2) With disjoint support: Now suppose the matrices
A1, . . . , Am defining the map A : Sn → Rm have disjoint
support. By Theorem 2, the following statements are equiv-
alent:

1) PM (A) ⊆ A.
2) M ◦Ai ∈ {Ai, 0n×n}, where M ◦Ai = Ai if bi 6= 0.

From these statements, a procedure for evaluating clA(M)
easily arises that does not require access to PkerA or X?.
In particular, clA(M) is determined only by the sparsity
patterns of M , Ai and b. Formally:

Proposition 4: Let A be defined as in (6), and assume the
matrices A1, . . . , Am have disjoint support, i.e., Ai ◦ Aj =
0 for all i 6= j. For a binary matrix M ∈ Sn, let T :=
{i ∈ [m] : M ◦Ai /∈ {Ai, 0n×n}},

S1 :=
⋃
i∈T

suppAi, and S2 :=
⋃

i:bi 6=0

supp(Ai).

The following holds:

[clA(M)]ij =

{
1 ∀(i, j) ∈ S1 ∪ S2 ∪ supp(M)

0 otherwise.

V. COMPUTATIONAL RESULTS

We now present examples illustrating effectiveness of our
technique. For each example, we apply Algorithm 1 to find
the minimal-coordinate-projection PM and report the sizes
of the psd cones in the resulting block-diagonalizations. If,
for instance,

M =


1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1

 ,

we report block-sizes (2, 1, 1). For the examples of V-A and
V-C, the data matrices have disjoint support, i.e., Ai ◦Aj =
0 for i 6= j; hence, evaluating the closure operator clA in
Algorithm 1 be be simplified per Section IV-B.2.

A. Copositivity of quadratic forms

This example pertains to SDPs that demonstrate copos-
itivity of certain quadratic forms. A quadratic form xTJx
is copositive if and only if xTJx ≥ 0 for all x in the
non-negative orthant. Deciding copositivity is NP-hard, but
a sufficient condition can be checked using sum-of-squares
techniques and semidefinite programming. To see this, note
a polynomial f(x1, . . . , xp) is copositive if f(x2

1, . . . , x
2
p)

is globally non-negative. In turn, f(x2
1, . . . , x

2
p) is non-

negative if, for instance,
(∑p

i=1 x
2
i

)
f(x2

1, . . . , x
2
p) is a sum-

of-squares—a condition that can be checked with SDP.
Using this approach, we formulate SDPs for demonstrating

copositivity of the parametrized quadratic form B(x;m) :=(∑3m+2
i=1 xi

)2
− 2

∑3m+2
i=1 xi

∑m
j=0 xi+3j+1, where m is an

integer parameter and the subscript for x wraps cyclically,
i.e., xr+n = xr. Note B(x;m) was studied in [1] and, for
m = 1, equals the so-called Horn form.

For these SDPs, Algorithm 1 yields dramatic reductions,
both in problem size and solve time (Table I). Indeed, for

Before After Ts Before Ts After
B(x; 1) 35 5× 5, 1× 10 .5 0.2
B(x; 2) 120 8× 8, 1× 56 10.8 .74
B(x; 3) 286 11× 11, 1× 165 3589 0.3
B(x; 4) 560 14× 14, 1× 364 OOM .76
B(x; 5) 969 17× 17, 1× 680 OOM 2.3

TABLE I: Sizes of psd constraints and solve times before
and after simplifications (Section V-A). The notation n×m
indicates m semidefinite constraints on matrices in Sn. Solve
time Ts is shown in seconds for SeDuMi [24] and OOM
indicates an out-of-memory error.

m ≥ 4, the SDPs are otherwise unsolvable on a modern
desktop with 16 GBs of RAM. Crucially, executing Algo-
rithm 1 is also inexpensive relative to solve time, taking
less than a second on each example. Finally, these SDPs
can also be simplified using facial reduction techniques, as
demonstrated in [22]. Combining the proposed method with
these techniques simplifies these SDPs even further.

B. SOSTOOLS and SOSOPT demonstrations

We consider SDPs constructed by demo scripts packaged
with SOSTOOLS [19] and the SOS analysis tools available
at

http : //www.aem.umn.edu/˜AerospaceControl/,

which include SOSOPT [23]. Many of these demos solve
SDPs demonstrating stability of nonlinear dynamical sys-
tems. Table II illustrates the potentially-broad applicability
of our method, showing reductions for several of these SDPs.
Note many of these scripts construct several SDPs; with the
exception of IOGainDemo_(1|3), reported results are for the
first SDP constructed. For this exception, SDPs come from
the so-called V -s iteration of the script. For some examples,
it was also necessary to eliminate free variables to put SDPs
in the form (1).

C. Comparison with method of Dai and Xia

Our final example compares performance of Algorithm 1
to a simplification strategy described in [5]. Table III illus-
trates improvement over this strategy for SOS-based proofs
of the monotone column permanent conjecture ([13], Con-
jecture 2). These proofs show particular polynomials pi,j
are sums-of-squares, where definitions of pi,j can be found
in [5] and references therein. Table III compares block-
diagonalizations by reporting sizes of the largest blocks.

VI. IMPLEMENTATION

An implementation of the proposed method is integrated
into frlib, a set of MATLAB tools for SDP pre-processing
introduced by the authors in [22]. Both frlib and Se-
DuMi files for the examples of this paper are available at
www.mit.edu/~fperment.



Script Name Before After
sosdemo2 13, 3 3, 2× 3, 1× 7

sosdemo4 35 5× 5, 1× 10

sosdemo6 21, 6 16, 5× 2, 1
sosoptdemo2 13, 3 3, 2× 3, 1× 7

sosoptdemo4 35 5× 5, 1× 10

gsosoptdemo1 9, 5 6, 3× 2, 2

IOGainDemo_1 8, 3 5, 3× 2

IOGainDemo_3 15, 8 10, 5× 2, 3

Chesi(1|2)_IterationWithVlin 9, 5 6, 3× 2, 2

Chesi3_GlobalStability 14, 5 8, 6, 3, 2

Chesi(3|4)_IterationWithVlin 9, 5 6, 3× 2, 2

Chesi(5|6)_Bootstrap 19, 9 13, 6× 2, 3

Chesi(5|6)_IterationWithVlin 19, 9 13, 6× 2, 3

Coutinho3_IterationWithVlin 9, 5 6, 3× 2, 2

HachichoTibken_Bootstrap 19, 9 12, 7, 6, 3

HachichoTibken_IterationWithVlin 19, 9 12, 7, 6, 3

Hahn_IterationWithVlin 9, 5 6, 3, 3, 2

KuChen_IterationWithVlin 19, 9 13, 6× 2, 3

Parrilo1_GlobalStabilityWithVec 3, 2 2, 1× 3

Parrilo2_GlobalStabilityWithMat 3, 2 2, 1× 3

Pendubot_IterationWithVlin 14, 4 10, 4× 2

VDP_IterationWithVball 5, 4 3× 2, 2, 1

VDP_IterationWithVlin 9, 5 6, 3× 2, 2

VDP_LinearizedLyap 9, 5 6, 3× 2, 2

VDP_MultiplierExample 5, 2 3, 2, 1× 2

VannelliVidyasagar2_Bootstrap 19, 9 13, 6× 2, 3

VannelliVidyasagar2_IterationWithVlin 19, 9 13, 6× 2, 3

VincentGrantham_IterationWithVlin 9, 5 6, 3× 2, 2

WTBenchmark_IterationWithVlin 19, 9 13, 6× 2, 3

TABLE II: Sizes of psd constraints before and after sim-
plifications (Section V-B). The notation n ×m indicates m
semidefinite constraints on matrices in Sn.

Proposed (Dai, Xia ’14) [5]
p1,2 15 77
p1,3 8 15
p2,2 12 62
p2,3 10 39

TABLE III: Comparison of largest block-size for SDPs
described in Section V-C.

VII. CONCLUSION

We have given a technique for simplifying SDPs and
illustrated its effectiveness on examples arising in SOS
optimization. The proposed technique is easily combined
with other simplification methods, e.g., [20] and [21], to
yield even smaller SDPs. Algebraic interpretations of the
method and proofs will be given in a full version of this
paper. Finally, a common generalization of the presented
method and techniques based on coherent configurations
[6] is possible. This generalization will be explored in a
forthcoming paper.
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