Building the Internet of Underwater Things

Fadel Adib

Doherty Chair & Associate Professor Founding Director, Signal Kinetics

Keynote Talk given at the NSF BLUE-UCI on January 12, 2021

@fadeladib

Taking the Internet of Things Underwater

Devices

- McKinsey, Deloitte, BCG, 2020

Decision Making & Prediction

Seas

DARPA has awarded a contract for the next phase of development of its Ocean of Things (OoT), a project to seed the seas with thousands of <u>floating sensors</u>, monitoring everything that passes from aircraft to submarines.

Fordes **DARPA Progress With** 'Ocean Of Things' All-Seeing Eye On The High

David Hambling Contributor 🛈 🕀

Aerospace & Defense

I'm a South London-based technology journalist, consultant and author

Taking the Internet of Things Underwater "More than 80% of ocean remains unobserved and unexplored."

Less than 1 in a million of IoT is underwater, even though oceans cover more than 70% of the planet

Aquaculture is the "fastest growing food sector" - UN Food & Ag org, 2010

- NOAA, 2018

Building the Internet of Underwater Things

TECHNOLOGIES

- Batteryless Underwater IoT & ulletLocalization
- Underwater-to-air comms

- ullet

COMMUNITY/POLICY **Open Source Organization & Policy** Engagement

Building the Internet of Underwater Things

TECHNOLOGIES

Batteryless Underwater IoT & ightarrowLocalization

• Underwater-to-air comms

COMMUNITY/POLICY Open Source Organization & Policy Engagement

Problem: Battery life of underwater sensors is extremely limited

Low-power underwater transmitters consume 10s-100s of Watts and cannot be recharged easily

Most state-of-the-art sensors for tracking marine animals only last for few hours or days

[Animal Biotelemetry'15, Scientific Reports'17]

Technology that Enables Underwater Backscatter (Batteryless) Networking

Published in: ACM SIGCOMM'19, ACM SIGCOMM'20,

IEEE/MTS OCEANS'20, ACM HotNets'20

Our Technology

Acoustic

Sensor reflects an existing acoustic signal

How can we control the reflections of acoustic signals?

Key Idea: Use piezoelectricity to design programmable acoustic reflectors

Piezoelectric materials transform mechanical to electrical energy

Piezoelectric Material

<u>Key Idea:</u> Use piezoelectricity to design programmable acoustic reflectors

Piezoelectric materials transform mechanical to electrical energy Switch

Electric signal

Key Idea: Use piezoelectricity to design programmable acoustic reflectors Piezoelectric materials transform mechanical to electrical energy Switch Switch closed open reflects

Can't vibrate

Piezo-Acoustic Backscatter

Switch open

Our sensor needs 1 million times less power (~100s microWatt) than standard underwater communication

And it harvests energy in non-reflective (absorptive) state \rightarrow battery-free

Incoming signal Can't vibrate

Switch closed

Hydrophone receiver

Projector (speaker)

batteryless PAB sensor

Large Experimental Pool

connected to circuit

Measuring the Backscatter Signal (by Hydrophone)

Algorithms and techniques to scale to many nodes and deal with other reflections in the environment

Fabricated & 3D printed (omnidirectional) transducer

Costs ~\$100. Consumes 100 of micro-Watts, i.e., 1 million times less power than state-of-the-art low-power underwater modems

Hardware for energy harvesting, bi-directional communication, sensor

Experimental Evaluation in River (with snow & rain)

- 500+ experimental trials at different ranges, throughputs, and number of nodes
- Throughput: 20kbps
- Range: 62m
- Concurrent nodes: 10
 - before spatial reuse
- Localization accuracy: centimeter-scale

h snow & rain) throughputs, and

Code+Schematics+Tutorials:

https://github.com/saadafzal24/ Underwater-Backscatter

Open Problems in Underwater Backscatter

1. How can we scale the range and throughput?

2. Can we build multi-hop architectures?

3. Can we build accurate simulators?

- 4. How can we further reduce the energy consumption?
- 5. How can we go beyond net-zero power to zero pollution?

Localization, Navigation, Sensing

How can we send the sensed information to outside the ocean?

Direct Underwater-Air Communication is Infeasible

Direct Underwater-Air Communication is Infeasible

Wireless signals work well only in a single medium

Work-arounds like relays, sunobouys, or surfacing are not cost-efficient or scalable

Use Radio Signals?

Radio Signals Die in Water

Technology that Enables Compact Sensors to Wirelessly **Communicate Across the Water-Air Boundary**

Published in: ACM SIGCOMM'18

Translational Acoustic RF Communication (TARF)

Introduced algorithms to deal with interference from naturally occurring waves & achieve optimal throughput

Evaluation in Different (Controlled) Environments

Swimming Pool Water Tank

Our technology can communicate (100s of bps) even in the presence of natural surface waves that are 1,000x larger than the acoustic vibrations

Swimming Pool with swimmers

Building the Internet of Underwater Things

TECHNOLOGIES

- Batteryless Underwater IoT & ulletLocalization
- Underwater-to-air comms

- ullet

COMMUNITY/POLICY **Open Source Organization & Policy** Engagement

Smart Oceans 2020 Oct. 5-9, 2020

Convergence Accelerator use-inspired and goal-oriented

Convergence Accelerator could help to meet "An Ocean of Need"

Innovative NSF program aims to address major ocean-related societal issues By Randy Showstack | November 19, 2020

Use-inspired VS curiosity-driven

http://www.mit.edu/~fadel/papers/ Executive_Summary_Ocean_IoT.pdf

The National Academies of

sciences engineering medicine

Ocean Decade U.S.

Batteryless Ocean IoT selected as "ocean-shot"

50+ state senators & legislators

batteryless node with temp & pressure sensor

Saturn's moon Titan

≡ Menu

Science & technology

Oct 17th 2020 edition >

Good vibrations

How to send underwater messages without batteries

A new device extracts energy from ambient noise

Robotics that can see the invisible via batteryless IoT sensors

Oct 17th 2020

Batteryless IoT micro-implants inside the human body

Andrew McCall

Muhammed Sulema S Thaniana

Building the Internet of Underwater Things

@fadeladib

Smart Oceans 2020

