

See Through Walls with Wi-Fi

Fadel Adib and Dina Katabi

Can Wi-Fi Signals Extend Our Senses?

Wi-Vi uses Wi-Fi signals to see through walls:

- Detect and track human motion
- Identify the number of moving humans and their relative locations
- Allows humans to communicate without a transmitting device
- Through-wall gesture-based interface

Applications: law enforcement, gaming, intrusion detection, etc.

Tracking Human Motion

Reflections from Different Moving Humans Overlap:

- Correlated: reflections of same signal
- Spatially un-correlated: different angles

- Use Spatially Smoothed MUSIC algorithm to distinguish
- Automatically identify # of moving objects by computing spatial variance of output

Challenges in Designing Wi-Vi

Challenge #1: "Flash" Effect

RF signals penetrate walls:

- Reflect off objects on other side of wall
- Distinguish reflectors by their arrival times

At low bandwidth:

- Wall reflection much stronger than reflections coming from behind the wall
- Flash effect: wall reflection saturates the ADC.

Wi-Vi overcomes "Flash" by MIMO nulling

Multi-antenna Wi-Fi
nodes can pre-code
transmitted signal to
avoid interference

 $\alpha = -h_2$ and $\beta = h_1$ Signal is Zero at undesired receiver

- Flash Effect is Removed
- Non-static reflectors survive

Challenge #2: Tracking

Traditional systems:

Bulky antenna arrays (eg. 8 foot long) track angle of arrival of reflection

Wi-Vi uses Inverse Synthetic Aperture

Building Materials

Treat time samples as spatial samples of antenna array elements

Apply standard antenna array equations:

Angle of motion

Empirical Results

uman Detectio	Detected Actual	0	1	2	3
	0	100%	0%	0%	0%
	1	0%	100%	0%	0%
	2	0%	0%	85%	15%
	3	0%	0%	10%	90%

