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ABSTRACT
This paper investigates how an airborne node can eavesdrop on
the underwater acoustic communication between submerged
nodes. Conventionally, such eavesdropping has been assumed
impossible as acoustic signals do not cross the water-air
boundary. Here, we demonstrate that underwater acoustic
communications signals can be picked up and (under certain
conditions) decoded using an airborne mmWave radar due
to the minute vibrations induced by the communication sig-
nals on the water surface. We implemented and evaluated
a proof-of-concept prototype of our method and tested it
in controlled (pool) and uncontrolled environments (lake).
Our results demonstrate that an airborne device can identify
the modulation and bitrate of acoustic transmissions from
an uncooperative underwater transmitter (victim), and even
decode the transmitted symbols. Unlike conventional over-the-
air communications, our results indicate that the secrecy of
underwater links varies depending on the modulation type and
provide insights into the underlying reasons behind these dif-
ferences. We also highlight the theoretical limitations of such
a threat model, and how these results may have a significant
impact on the stealthiness of underwater communications,
with particular concern to submarine warfare, underwater
operations (e.g., oil & gas, search & rescue, mining), and
conservation of endangered species. Finally, our investigation
uncovers countermeasures that can be used to improve or re-
store the stealthiness of underwater acoustic communications
against such threats.

CCS Concepts
• Networks→ Cyber-physical networks; Sensor networks;
Mobile networks; • Security and privacy → Mobile and
wireless security.
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1 INTRODUCTION
Over the years, acoustic wireless communication networks
have gained widespread acceptance and adoption by the naval
and oceanic communities [8, 16]. Generally, compared to op-
tical and RF, acoustic frequencies are preferred for long-range
communications due to their superior propagation character-
istics under the water [17, 46]. These acoustic waves act as
pressure waves that diverge as they propagate underwater.
When these waves hit the water’s surface, they cause minus-
cule vibrations, which can be sensed and decoded using an
airborne radar receiver. This phenomenon has been recently
exploited to establish a direct underwater-to-air communica-
tions link between two trusted cooperative parties [46]. Yet,
the security implications of such cross-medium sensing are
left unexplored. In other words, what if an air-borne non-
cooperative eavesdropper attempts to intercept underwater
communication links by picking up and extracting patterns in
such vibration signatures?

This paper investigates the vulnerabilities of underwa-
ter acoustic communication against airborne adversaries.
Specifically, we design, implement, and evaluate Snooping
Underwater communications using Radio Frequency (SURF),
the first eavesdropping framework that allows for intercepting
acoustic underwater communication links from the air. Our
system overview is captured in Fig. 1. An out-of-medium
eavesdropper can be particularly concerning as its presence
remains concealed from the victim, potentially even when
equipped with the most advanced SONAR techniques. Indeed,
because of the acoustic impedance mismatch between the two
mediums of water and air, emitted sound by the underwater
node reflects from the water-air interface [46]. Hence, SONAR
techniques cannot be used to detect airborne nodes. There
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Figure 1: SURF’s system overview. SURF uses a mmWave
FMCW radar to eavesdrop on acoustic communication hap-
pening in underwater environments. It senses the vibration of
the water surface and extracts the modulation and symbol rate
of the data to decode the message.

are two key threats: First, the water vibrations caused by the
legitimate acoustic transmitter may be picked up by adversary
radars and successfully decoded (under certain conditions).
Additionally, by picking up these vibrations, an adversary
radar may, in principle, identify the rough location of the
underwater transmitter. This is particularly important in the
context of naval assets since submarine locations are closely
regarded as trade secrets and even in conservation efforts
where scientific expeditions want to preserve the privacy of
the location of endangered species.

To understand these vulnerabilities, we first provide a com-
prehensive model of surface vibration as a function of the
speaker’s geometric and physical layer (PHY) parameters,
as well as by taking into account how the displacement at
one point propagates outward in the form of gravity-capillary
waves.1 Our model indicates that the spatial footprint of an
acoustic signal is non-negligible on the water surface and in-
deed the area of vibration expands as the underwater speaker
is submerged deeper into the water. This suggests that an
airborne receiver may pick up vibrations from an underwa-
ter acoustic source over a wider area than was previously
considered possible.

While our model demonstrates that the region of detec-
tion may be wide, an eavesdropper (Eve) still faces several
challenges in decoding messages sent from an uncooperative
underwater acoustic transmitter (Alice). First, because the
adversary is outside of the medium and since Alice is unco-
operative, extracting the underlying PHY layer parameters
(including carrier frequency, modulation type, and symbol
rate) is not straightforward for the adversary. Additionally, it is

1The same phenomenon causes rings of ripples when throwing a rock in a
calm pond.

difficult to synchronize Eve with Alice’s underwater speaker
due to a lack of knowledge of the preamble and training
sequence. All of this makes it challenging for Eve to identify
and decode the underwater transmissions.

To address these challenges, we exploit the fundamental
properties of the cross-medium channel. Specifically, we ex-
ploit that the underwater communication channel, the in-air RF
propagation, and the water-air (translational) boundary are all
linear. This means that the end-to-end channel acts as a linear
system, preserving the spectral properties of the transmitted
waveforms. Using this observation, we apply techniques from
communications theory that aim to classify and determine the
PHY properties of communication signals from uncoopera-
tive sources using spectral and temporal features, all achieved
without any training data or prior knowledge. Adapting such
past approaches to this cross-medium communication link
requires SURF to take into account unique properties and
constraints. For example, we show how the (significantly)
higher sampling rate of chirp signals transmitted from the
airborne radar enables higher-resolution measurements that
can be used to infer the PHY parameters of the underlying
acoustic communication. Our approach includes identifying
the modulation and bitrate of the underwater acoustic trans-
missions, estimating empirical decision boundaries, as well as
decoding the transmitter packets. Additionally, we quantify the
secrecy metrics of different underwater acoustic modulation
schemes.

A second challenge in eavesdropping on the underwater
acoustic transmissions is that Eve does not know the location
of the transmitting source. This is problematic because to
obtain a high signal-to-noise ratio (SNR) of the underwater
acoustic communication signals, Eve needs to hone in on the
area of the surface where the induced vibrations are strongest.
To address this challenge, SURF exploits the beamforming
capabilities of the millimeter-wave radars and combines them
with our derived model of the underwater-to-air channel. In
particular, to maximize the SNR, SURF performs a beam
search (using antenna array beamforming) to identify the
location on the surface that has the highest vibration caused
by the incident acoustic signals. Note that doing so requires
first mitigating the impact of the naturally occurring surface
waves (which are often 4-5 orders of magnitude higher than
the induced vibrations); it also requires performing a range-
vibration search over this surface, which SURF achieves using
2D FFTs.

We designed and built a prototype of SURF and evaluated
it in different settings, including, controlled lab settings, in a
swimming pool, and in a natural lake. Our prototype was built
using a commercial off-the-shelf (COTS) millimeter-wave 77
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GHz Frequency Modulated Continuous Wave (FMCW) radar2

and an underwater acoustic speaker. Our choice of COTS radar
aimed to demonstrate how such eavesdropping may be feasible
even without custom-designed high-end equipment. We have
also demonstrated the feasibility of SURF when the radar is
mounted on a flying drone. We measure and compare the bit
error rate (BER) at the legitimate underwater hydrophone
receiver (Bob) against the airborne radar. Our experimental
evaluation demonstrates the following:
• SURF can accurately identify the underlying PHY layer

properties of the victim. Specifically, SURF classifies
the victim’s modulation type with an accuracy of 97.58%
and estimates the symbol rate with a root mean square
error of 9 bps, without any prior knowledge.
• Different modulation types exhibit different resilience

against a cross-medium eavesdropper. This has impor-
tant new implications for enhancing the security of
underwater links.
• SURF hints at the location of the underwater speaker

based on the area of vibration caused on the water’s
surface.

Our results and observations provide interesting insights for
securing the underwater communication channels against out-
of-medium eavesdroppers: (i) The likelihood of eavesdropping
is not the same for all modulations. In fact, frequency mod-
ulation is the most adopted modulation for underwater links
and is also the least secure. Amplitude modulation exhibits
the best secrecy property as natural environmental factors
(e.g., surface waves and wind) mask the minute fluctuation in
magnitude of vibration. (ii) the underwater link is more secure
under certain data rates and transmit power levels, and (iii)
the link secrecy improves if Alice transmits her data in several
short intervals with idle times in between that are longer than
the channel coherence time. This way, the eavesdropper does
not have sufficient samples to estimate the PHY parameters
and decision boundaries. Albeit, the enhanced secrecy is
achieved at the cost of hindering communication goodput.
Contributions: Contrary to the established belief that un-
derwater acoustic communication is secure from airborne
eavesdroppers, this paper demonstrates a first-of-its-kind
eavesdropping attack on such communication systems. It also
contributes to a prototype implementation and experimental
evaluation of such an attack in a lake, demonstrating the ability
to sense, identify, and decode transmissions from an underwa-
ter acoustic source. The paper highlights the implications of
such a threat, particularly on the stealthiness of underwater

2The choice of mmWave band for the radar is explained in more detail in
[46]. A larger wavelength, such as those used in WiFi or cellular, leads to
smaller phase variations, reducing robustness against noise. Conversely, a
very small wavelength, like those in THz or optical frequencies, causes quick
phase wrapping, which hinders the tracking of surface vibrations [14, 24].

links, and identifies countermeasures that may restore - or at
least improve - the security of these communication systems
against airborne eavesdroppers.

2 SURF’s DESIGN
2.1 Threat Model
Underwater communication mainly relies on acoustic signals
that can travel long distances underwater [5, 22]. Recently,
NATO’s Centre for Maritime Research and Experimentation
introduced JANUS, a standardized protocol for transmitting
digital information underwater using sound [33]. Because of
the limited bandwidth under the water, JANUS packets can
only be 64 bits in size. This means that traditional encryption
methods like Advanced Encryption Standard (AES) cannot
be used effectively.

We consider an underwater acoustic communication link
between an underwater transmitter (Alice) and a legitimate
underwater receiver (Bob). We assume that a portion of the
acoustic power aimed at Bob reaches the water’s surface.
This is reasonable as many underwater nodes deploy omni-
directional or quasi-omnidirectional antennas for SWaP-C
constraints [31, 37, 42]. Even with deploying directional
beams, the low attenuation of acoustic frequencies [34] and
their large beam divergence [28] make it possible for at least a
portion of the acoustic wave energy to reach the water’s surface.
However, we note that highly directional sound waves may
necessitate a different model of vibration for their detection,
interpretation, and positioning.

Upon reaching the surface, the energy in pressure waves
causes minute displacements of the water. The magnitude and
frequency of such displacements contain information about
the underlying communication link between Alice and Bob.
The attacker, Eve, is an airborne node located outside the
water with radar-sensing capabilities and aims at mapping
the vibration patterns to the stream of transmitted symbols
by Alice. We highlight that a naive eavesdropper can in
principle carry a tethered hydrophone from a drone and float
it in the water (or very close to the water surface) for direct
eavesdropping. However, such a setup is more challenging
to implement (particularly in mobile settings) and easier to
detect, e.g., using an underwater SONAR that detects the
hydrophone.

We assume Eve has no prior knowledge about the PHY-
layer parameters of the underwater nodes, including carrier
frequency, modulation type, and symbol rate. Additionally,
the eavesdropper is not cooperating nor synchronized with the
legitimate underwater nodes. Furthermore, since the eaves-
dropper is not inside the medium (water), she cannot directly
measure the channel conditions, i.e., dense vs. sparse multi-
path, delay spread, channel coherence time, etc. This imposes
interesting new challenges and tradeoffs that often do not exist
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Figure 2: Modeling of water-air interface. The pressure
waves emitted from the acoustic Tx hit the water’s surface at
the point of impact (𝑥𝑖 , 𝑦𝑖 ). The resulting displacement travels
outward as gravity-capillary waves.

in typical threat models in which all parties belong to the
same wireless medium.

2.2 Vibration Model
To infer the underlying modulated bit sequence through the
vibration pattern on the water’s surface, the first step is to
systematically model the water vibration as it interacts with
pressure waves. The amount of pressure is determined by the
characteristics of the transmitter, including the transmitted
power 𝑃𝑡𝑥 and directivity pattern 𝐷 (𝜃 ). The wave attenuation
due to expansion and absorption losses depends on the propa-
gation distance to the water surface, as well as the medium
properties: water density 𝜌 and speed of sound 𝑐𝑤 in the water.
As shown in Fig. 2, we can model the amount of acoustic
pressure at the impact point 𝑖 on the water’s surface with
coordinates (𝑥𝑖 , 𝑦𝑖 ) as [36]:

𝑝𝑖 =
𝐷 (𝜃 )
𝑑𝑖

√︂
𝑃𝑡𝑥𝜌𝑐𝑤

4𝜋
𝑒−𝛼𝑑𝑖 , (1)

where 𝑑𝑖 is the distance between the speaker and point (𝑥𝑖 , 𝑦𝑖 ),
𝛼 is the attenuation coefficient. The amplitude of the water
displacement 𝛿𝑖 caused by the incident pressure 𝑝𝑖 can be
derived as:

𝛿𝑖 =
𝑝𝑖 cos𝜃𝑖
𝜔𝜌𝑐𝑤

, (2)

where cos𝜃𝑖 represents the normal component of the pressure
wave hitting the surface, and 𝜔 is the angular frequency of the
acoustic signal. Note that the tangential component does not
contribute to the vibrations on the water’s surface.

The displacement created at the impact point propagates out-
ward in the form of exponentially decaying gravity-capillary
waves which propagate outward in a circular pattern. The
wave number of these waves, denoted by 𝑘𝑔𝑐 , can be obtained
by solving the dispersion relation [36]. We define 𝑟𝑖 (𝑥,𝑦) as
the distance between point 𝑖 and an arbitrary point (𝑥,𝑦) on
the water surface. Hence, the displacement at (𝑥,𝑦) caused
by the vibration originated from point 𝑖 is:

𝜂𝑖 (𝑥,𝑦, 𝑡) = 𝛿𝑖𝑒−𝛽𝑟𝑖 (𝑥,𝑦)𝑒 𝑗 (𝑘𝑔𝑐𝑟𝑖 (𝑥,𝑦)+𝑘𝑑𝑖−𝜔𝑡 ) , (3)
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Figure 3: Localizing vibration area. SURF localizes the
vibration area on the water’s surface by exploiting the beam-
forming abilities of the radar.

where 𝛽 represents the surface wave attenuation, and 𝑘 is the
wave number of the acoustic waves underwater.

Finally, Eq. (3) only considers the capillary waves generated
by a single point, namely, point 𝑖. However, all the points that
are displaced due to underwater pressure will be a source
of capillary waves. Therefore, the total displacement is the
superposition of all these complex forces:

𝑅(𝑥,𝑦, 𝑡) =
∞∑︁
𝑗=1

𝜂 𝑗 (𝑥,𝑦, 𝑡). (4)

Since the displacement caused by capillary waves exponen-
tially decays in space, in practice, only a fraction of spatial
points 𝑗 in close proximity of (𝑥,𝑦) will play a role in the
overall displacement profile.

2.3 Vibration Detection
When the pressure waves emitted from the speaker reach
the water’s surface, it impacts some areas of the surface,
depending on the speaker’s location and its radiation pattern.
It is advantageous for Eve to place herself directly over the
vibration area to boost her SNR and increase her chances of
eavesdropping. We assume that the vibration area is within
the field of view (FOV) of the radar. If that is not the case,
trajectory planning is needed, which can be addressed with
mission-oriented path planning (well-studied in UAV and
robotics). As shown in Fig. 3, when the radar is positioned
directly above the speaker, it senses vibration frequency (𝑓𝑐 )
with a considerably higher amplitude compared to when it is
not directly above.

Eve can employ conventional beamforming techniques to
find a rough estimate of the area of vibration and position
herself strategically. Specifically, Eve uses a multi-antenna
radar system with 𝑁 virtual antennas3 (number of transmit
3Low-cost COTS mmWave radar provides 8 to 12 virtual antennas [18, 19].
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Figure 4: SURF’s processing pipeline. First, we exploit FMCW signal processing for vibration detection. The middle blocks
show the extraction of unknown PHY information. Finally, we implement detection and decision making.

antennas × number of receive antennas) and uses the spatial
diversity of these channels to localize the vibration area. Note
that merely comparing the reflected power captured by the
radar under different beam conditions would not result in
vibration localization. Instead, SURF exploits the fact that
the vibration caused by acoustic signals falls within a certain
frequency band 𝐵. Thus, it performs a 3D beam search – over
angle 𝜙 , distance ℎ, and frequency 𝑓𝑐 – and localizes the
vibration area. This can be formulated as 3D FFT (range FFT
via FMCW signal processing, angle FFT, and Doppler FFT
for vibration frequency) and can be performed using standard
techniques [45, 46]. Mathematically, the angular location of
vibration relative to the radar (denoted as 𝜙∗) can be described
as:

𝜙∗ = argmax
𝜙
[max
ℎ,𝑓𝑐 ∈𝐵

Ψ(𝜙, 𝑓𝑐 , ℎ)] . (5)

where Ψ(𝜙, 𝑓 , ℎ) denotes the 3D FFT over vibration fre-
quency, distance, and angle.

One challenge is that at angles other than normal, the
reflected signal off the surface will not be pointed back to
Eve’s receiver as the water acts as a smooth mirror that
obeys Snell’s law. Hence, this implies that the amount of
reflected power decreases at higher angles 𝜙∗. While this trend
is generally true, in practice, the presence of natural waves
causes uneven surface levels and diversifies the reflection
angle of chirps, leading to some power being reflected to
the radar at incident angles other than normal. Additionally,
Eve can average over several transmissions to improve the
localization performance as she is primarily interested in
tracking the phase of multiple chirps and not decoding any
data at this stage.

As shown in Fig. 3, we denote the diameter of vibration
as 𝐷𝑣 by considering the distance at which the vibration
amplitude drops by 3 dB from its peak. Since 𝐷𝑣 is related to
the receiver depth, Eve can potentially infer the depth of the
speaker by measuring 𝐷𝑣 .

2.4 PHY Inference and Demodulation Pipeline
The overall system architecture of SURF is shown in Fig.
4. There are three main components: Preprocessing, extract-
ing PHY layer information, and non-coherent detection and
decision-making.

Preprocessing. First, Eve combines the signal received
by 𝑁 virtual antennas to enhance her SNR. The consequent
steps are standard FMCW radar processing steps that include
deriving the range-FFT matrix, calculating the phase at the
distance bin of maximum power, and unwrapping the phase, as
shown in the first block of Fig. 4. The resulting phase pattern
contains strong low-frequency components that stem from
natural surface waves (typically in the range of 0-10 Hz [23])
that can mask the phase profile. Hence, Eve removes such
unwanted low-frequency components using a high pass filter.
The resulting phase profile contains information about the
transmitted bit sequence by Alice. However, interpreting such
information is not straightforward as Eve is unaware of the
underlying PHY-level parameters including the modulation
type, symbol boundaries, and rate.

2.4.1 PHY Information Extraction
Modulation Classification: A fundamental challenge for Eve
is the unknown modulation used between Alice and Bob. To
tackle this, Eve leverages two characteristics of the underwater
channel: linearity and large channel coherence time4. Given
that the underwater channel is linear [36, 46], Alice’s carrier
frequency is directly seen as a peak in the Doppler-FFT heat
map. The presence of multiple dominant peaks suggests a
multi-carrier modulation, e.g., FSK or OFDM. Furthermore,
any temporal variation in the amplitude and phase at each
carrier frequency is a sign of amplitude and phase modulation,
respectively. Observing these features is possible because
the long coherence time guarantees that such fast-changing
variations in phase/amplitude are solely a function of Alice’s
transmission and not the channel.

The general strategy in identifying the modulation type
involves examining the amplitude and phase variations of
each carrier frequency in the short-time Fourier transform
(STFT) of the filtered unwrapped phase. Our pseudo-code is
shown in Algorithm 1. Specifically, by comparing the noise
level with the peak vibration, we infer whether there is any
ongoing acoustic transmission in that interval or not. Noise
can be calculated from the power received at other ranges of
frequency bins in the Doppler-FFT plot.

4Coherent time of a few hundred milliseconds reported in prior work [3]
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Algorithm 1 Modulation Classification Algorithm
Require: The filtered unwrapped phase, 𝑥 [𝑛].
Require: Peak detection algorithm 𝑔

Require: Noise level𝑎𝑛 , Hyper parameters 𝑆𝑁𝑅𝑚𝑖𝑛 .
Ensure: Predicted class of 𝑥 [𝑛]
1: 𝑋 [ 𝑓 ] ← FFT of 𝑥 [𝑛]
2: �̃� [ 𝑓 , 𝑡 ] ← STFT of 𝑥 [𝑛]
3: (𝑎1, . . . , 𝑎𝐾 , 𝑓1, . . . , 𝑓𝐾 ) ← 𝑔 (𝑋 [ 𝑓 ] ) {Sorted

peaks in the descending order, 𝑎1 > 𝑎2 > . . .}
4: if 𝑎1

𝑎𝑛
< 𝑆𝑁𝑅𝑚𝑖𝑛 then

5: return No Data
6: else if 𝐾 > 1 then
7: 𝐴𝑘 [𝑡 ] ← Amplitude of (�̃� [ 𝑓𝑘 , 𝑡 ] )
8: if ∃(𝑖, 𝑗, 𝑡 ) (𝑖 ≠ 𝑗 ) : 𝐴𝑖 [𝑡 ]

𝑎𝑛
> 𝑆𝑁𝑅𝑚𝑖𝑛 and

𝐴𝑗 [𝑡 ]
𝑎𝑛

> 𝑆𝑁𝑅𝑚𝑖𝑛 then
9: return OFDM

10: else
11: return FSK
12: end if
13: else
14: 𝑃1 [𝑡 ] ← Phase of (�̃� [ 𝑓1, 𝑡 ] )
15: if 𝑃1 [𝑡 ] is linear function of 𝑡 then
16: return ASK
17: else
18: return PSK
19: end if
20: end if

When the presence of surface vibration due to data-modulated
symbols is confirmed, SURF proceeds to detect the modula-
tion type. We denote 𝑥 [𝑛] as the filtered unwrapped phase, and
𝑋 [𝑓 ] as its FFT. Firstly, Eve runs a peak detection algorithm
on 𝑋 [𝑓 ] to identify the peaks in the frequency domain. The
amplitude of these peaks is denoted by 𝑎𝑘 and their frequency
by 𝑓𝑘 . The number of peaks at a given instant, denoted by
𝐾 , determines whether the underlying modulation is single-
carrier or multi-carrier (e.g., OFDM or FSK). Distinguishing
between OFDM and FSK is straightforward as in FSK only
one dominant peak exists in STFT intervals while OFDM has
several sub-carriers.

For a given carrier frequency 𝑓𝑘 , Eve assesses the temporal
phase and amplitude variations (note that for single-carrier
modulation, 𝐾 = 1). This is achieved by computing the STFT
of 𝑥 [𝑛] and extracting the unwrapped phase at the frequency
of interest. Therefore, Eve determines the modulation type by
observing the variation in the unwrapped phase at the detected
vibration frequency over consecutive chirps.5

Packet Detection: Another key challenge for an asynchro-
nous eavesdropper is finding the start time of a symbol sent by
the underwater Alice. Conventionally, the coarse and fine syn-
chronization between wireless nodes is achieved via known
preambles [47]. Unfortunately, Eve may not know the pe-
riod and content of such preambles between Alice and Bob

5The inference and measurement of QAM are reserved for future work.

and hence cannot rely on conventional techniques. Instead,
Eve exploits the fundamental discrepancy between the hard-
ware capabilities of acoustic transmitters and high bandwidth
mmWave radars. Specifically, the chirp transmission rate at
a mmWave radar is often drastically higher than the symbol
time. Hence, Eve can track abrupt changes in the vibration
profile and find the beginning of a symbol. In practice, we
define a threshold for the minimum amount of vibration fluc-
tuations and we use this threshold to determine the beginning
of a packet. We highlight that the accuracy of this coarse and
non-cooperative method is a function of radar’s hardware,
carrier (or vibration) frequency, and symbol rate.

Symbol Rate Estimation: Finally, Eve needs to estimate
Alice’s symbol rate to be able to correctly segment the temporal
vibration into symbol intervals. A common approach is auto-
correlating the baseband signal and assessing its local peaks
and troughs [6]. This approach, however, proves less effective
for Eve since these typically work well in low noise (high SNR)
conditions. Distortion due to surface waves adds significant
noise to the extracted phase data and accurate inference of
symbol rate is difficult.

To address this challenge, SURF employs a new strategy
that involves finding the optimal symbol period (𝑇 ∗𝑠 ) such that
the segmented symbols with that period have the maximum
variance in terms of their information-carrying parameter
(phase, amplitude, or spectral content depending on the modu-
lation). Our rationale is that under the accurate value of symbol
period (𝑇 ∗𝑠 ), the time-domain segmented signals of 𝑠 (𝑡, 𝑡 +𝑇𝑠 )
would only contain the information of one symbol. Hence, the
variance of the measured phase/amp/spectral features across
all symbols would be maximized.

More specifically, SURF estimates the symbol rate (i.e.
1
𝑇 ∗𝑠

) through the following process: First, SURF finds a range
of possible candidates for 𝑇𝑠 . Next, it divides the baseband
waveform into individual symbols 𝑠𝑖 and extracts the parame-
ter of interest (phase/frequency/amplitude) according to the
estimated modulation type. SURF searches for the symbol
period that maximizes the 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 of the modulation-specific
parameter 𝑉 as follows:

𝑇 ∗𝑠 = argmax
𝑇𝑠

𝑣𝑎𝑟 {𝑉 (𝑠𝑖 ,𝑇𝑠 )}, (6)

where 𝑣𝑎𝑟 denotes the variance operation and 𝑉 represents
the phases of 𝑠𝑖 for PSK, the energy of 𝑠𝑖 for ASK, and for
FSK it encompasses the frequency of each symbol.
2.4.2 Non-Coherent Detection and Decision Making
Utilizing the previously estimated PHY layer information,
SURF aims to empirically estimate the decision boundaries for
detection in the absence of channel knowledge. Conventionally,
such boundaries are estimated at the receiver through channel
sounding to remove all sorts of non-idealities like multipath.
Without channel information, SURF has no choice but to
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infer such boundaries by observing the temporal variations
of the water vibration profile in a given observation window.
Assume the decision boundaries are estimated after obtaining𝐿
symbols at Eve. There exists one fundamental trade-off: When
𝐿 is very large, it is likely to have an equal number of symbols
from each constellation point (i.e., 𝐿/𝑀 for 𝑀 constellation
points). This enables Eve to calculate𝑀 uniformly distributed
boundaries. However, the caveat is that the channel might not
remain coherent during this time hindering the accuracy of
the estimated boundaries. In contrast, with a short observation
time, only a few symbols will be obtained. While the channel
is likely stable during short intervals, all symbols might not
appear equally likely and it is more difficult to eliminate the
noise due to a limited number of symbols. We will evaluate
the impact of the observation window in §4.3.

For M-ASK modulation, let us denote the average value
of the baseband signal in the 𝑖-th symbol period by 𝑄𝑖 . Eve
finds the decision boundaries by computing the 100𝑘/𝑀 − 𝑡ℎ
percentile of the ordered 𝑄𝑖 values, when 𝑘 = {1, ..., 𝑀 − 1}.
A similar approach is used for M-PSK modulation, however,
in this case, 𝑄𝑖 is defined as the phase of carrier frequency
at the 𝑖-th symbol. It is important to note that FSK does not
require boundary selection in a conventional sense. Instead,
Eve only needs to compare the averaged baseband power at all
carrier frequencies relative to each other. While it is evident
from Eq. (2) that the vibration magnitude is inversely related
to frequency, this relationship is deterministic and known a
priori. Hence, Eve can equalize the power accordingly before
detection and decision-making.

Since FSK does not require absolute decision boundary
estimation, we expect it to be more prone to eavesdropping.
Interestingly, due to the inherent robustness of FSK against
channel fluctuations and its superior performance at low
SNR regimes, it is often the modulation of choice in long-
range underwater communications [33]. We will compare the
security vulnerabilities under different modulations in §4.

2.5 Eavesdropping Regimes and Bounds
Intuitively, the likelihood of successful eavesdropping would
depend on Alice’s PHY layer parameters (carrier frequency,
symbol rate, etc) as well as Eve’s hardware specifications.
Here, we explain this dependency with the goal of determining

Figure 5: Important chirp parameters. Chirp configuration
impacts the eavesdropping bounds.

the range of PHY layer parameters which may lead to secure
underwater communication. Fig. 5 summarizes the relevant
FMCW parameters including the fast sampling frequency of
radar’s ADC (𝐹𝑠 ), the chirp slope (𝑠), chirp duration (𝑇𝑐 ), idle
time (𝑇𝑖 ), and the number of ADC samples per chirp (𝑁𝑠 ).

First, vibration estimation is achieved by tracking the phase
of multiple consecutive chirps, and the phase sampling rate
is 𝑓𝑠 = 1

𝑇𝑖+𝑇𝑐 . To maximize 𝑓𝑠 , we need to either reduce 𝑇𝑖 or
𝑇𝑐 . Yet, 𝑇𝑖 is not very flexible as it should be greater than the
transient phase time as shown in Fig. 5. Further, we cannot
make 𝑇𝑐 arbitrarily small. This is because, if 𝑇𝑐 is set too low,
it will yield insufficient samples after de-chirping leading
to poor range estimation. This is because, at a fixed ADC
sampling rate of 𝐹𝑠 , the number of samples (𝑁𝑠 ) is determined
by the chirp time, i.e., 𝑁𝑠 = 𝑇𝑐𝐹𝑠 .

Second, for a center frequency of 𝑓𝑐 and a bandwidth of
𝑊 , according to Nyquist’s criterion, 𝑓𝑠

2 ≥ 𝑓𝑐 +𝑊 /2 must
hold. Thus, the maximum detectable vibrating frequency is
bounded by 𝑓𝑠 . Furthermore, to avoid ambiguity and aliasing
in vibration estimation, the phase evolution over several chirps
should observe at least one complete period of the vibration
and ideally many more. Due to hardware constraints, there is a
limit on the number of continuous chirps that can be recorded,
which we call 𝑁𝑝 . Hence, for a vibration frequency 𝑓𝑐 , we
have: 1

𝑓𝑐
≪ 𝑁𝑝

𝑓𝑠
. Lastly, generalizing this inequality to the data

bandwidth of𝑊 and combining it with Nyquist’s criterion,
we can find the range of detectable vibrations at an airborne
radar as:

𝑓𝑠

𝑁𝑝
+𝑊

2
≪ 𝑓𝑐 ≤

𝑓𝑠

2
−𝑊

2
. (7)

Eq. (7) suggests that if Alice chooses an extremely high or
extremely low center frequency 𝑓𝑐 , or employs a very high
data rate/bandwidth𝑊 , she can prevent her information from
being detected on the water surface. However, increasing the
center frequency would cause high path loss at Bob and may
hinder his successful reception. On the other hand, utilizing
very low frequencies limits the achievable data rate at Bob.

2.6 Security Metrics
To quantify the ability of SURF to eavesdrop, we exploit well-
known security metrics: (i) Eve’s BER: We use BER at Eve as
a measure of her ability to extract the correct bit sequence from
the vibration signatures on the water. (ii) Secrecy Capacity:
We look at Eve’s eavesdropping relative to Bob’s reception. In
other words, high BER at Eve might, at first glance, suggest a
secure channel, however, this security matters only if Bob can
successfully decode his message. Therefore, for comparison
purposes, we define secrecy capacity (𝑆𝐶) as:

𝑆𝐶 = log(1+𝑆𝑁𝑅𝐵𝑜𝑏) − log(1+𝑆𝑁𝑅𝐸𝑣𝑒 ) [𝑏𝑖𝑡𝑠/𝑠𝑒𝑐/𝐻𝑧], (8)

where 𝑆𝑁𝑅𝐵𝑜𝑏 and 𝑆𝑁𝑅𝐸𝑣𝑒 are SNR at Bob and Eve in linear
scale, respectively. Secrecy capacity is a well-known metric in
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Figure 6: Experimental platform. (a) Different components of our setup in the lake experiments; (b) showing the underwater
speaker (Alice - elevated for better visibility), hydrophone (Bob), and mmWave radar (Eve); (c) our pool setup.

information theory and refers to the maximum rate at which
confidential or private information can be transmitted over
a communication channel [26]. A higher secrecy capacity
means the channel is more secure and vice versa.

3 EXPERIMENTAL PLATFORM

We evaluate the vulnerabilities of underwater communications
through extensive measurements in controlled environments
and in the wild: (i) we perform controlled experiments in
the lab using a 120 × 45 × 60 cm fish tank and motorized
translational stages to precisely adjust and vary the position of
the eavesdropper (radar); (ii) we run experiments in a natural
lake to evaluate the performance of SURF in real-world
settings. The experiments were conducted across different
days, times of the day, and weather conditions; and (iii) we
performed additional experiments in a swimming pool during
the presence of other swimmers to test greater depths. The
key components of our setup are shown in Fig. 6a.
Acoustic Transmitter (Alice). We use an Electro-Voice
UW30 underwater speaker [12], which is connected to a
Pyle PT270AIU amplifier [35]. To feed signals to the ampli-
fier and the speaker, we use a combination of SIGLENT SDG
1032X waveform generator [43] for single-tone signals and
the 3.5 mm jack on the Windows laptop for modulated data.
Acoustic Receiver (Bob). We use an Ambient ASF-2 hy-
drophone [1] connected to a MOTU M2 audio interface [29]
to mimic the functionality of an acoustic receiver. All the
recordings are done with a sampling rate of 48 KHz.
mmWave Radar (Eve). We use a low-cost commercial radar
(TI IWR1642BOOST [18] and a DCA1000EVM [20]) for
sensing the vibration signatures from the water surface. The
recording of radar files is done through TI mmWave Studio
software [21]. We set the radar parameters as follows: chirp
time = 50𝜇s, total number of chirps = 2.56 × 105, and total
frame time = 12.8 s. These values were empirically obtained
to satisfy the bounds derived in §2.5.
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Figure 7: Inferring PHY parameters. SURF’s performance
in (a) detecting the modulation type and (b) estimating the
symbol rate.

The experiments in the wild were conducted in the presence
of standard conditions of wind and surface waves which
represents a practical scenario where SURF would be used.
Additionally, the radar was attached to a tripod that stood on
top of a floating dock.

4 EVALUATION
4.1 Inferring PHY Parameters of the Underwater

Link
First, we explore SURF’s capability to identify PHY parame-
ters of underwater communication systems, notably without
the cooperation of the underwater node. We evaluate the clas-
sification of modulation schemes and the estimation of symbol
rates. We conduct lake-based experiments spanning various
transmission modulations and symbol rates, ranging from 50
to 150 symbols per second. The speaker was submerged at a
shallow depth (20 cm) beneath the water’s surface. Experi-
ments in §4.2 and §4.3 use the same setup. Fig. 7a presents
the result of modulation detection via a confusion matrix
encompassing four classes: ASK, FSK, PSK, and No Data.
Eve achieves a classification accuracy of 97.58%. Misclassifi-
cation errors, mostly mistaking FSK for ASK, are attributed
to noise overshadowing one of the FSK tones in low SNR
environments, thus resembling an ASK signal.
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Figure 8: SURF’s eavesdropping performance. (a) BER at
Bob and Eve under different modulation schemes and data
rates; (b) corresponding secrecy capacity.

Next, we evaluate the performance of SURF in estimating
the symbol rate. Fig. 7b illustrates the estimated versus ground
truth data rates across modulation types, with error bars
representing the 25th and 75th percentiles. Eve obtains a root
mean squared error (RMSE) of 9 bps across the different
data rates. In comparison, the auto-correlation method has an
RMSE of 72 bps.6 This analysis demonstrates the superior
accuracy of our symbol rate detection method compared to
traditional auto-correlation schemes.

4.2 SURF’s Eavesdropping Performance
In this section, we evaluate SURF’s efficacy in intercepting
the underwater communication between Alice and Bob. Our
experiments, conducted in a lake, explored a range of modu-
lations and data rates, transmitting 104 bits per configuration
and recording the BER using both a hydrophone and our radar.
The results are illustrated in Fig. 8a. As expected, higher data
rates correlate with increased BER for Bob and Eve, attributed
to reduced samples per symbol and subsequent SNR decrease.

Note that the rate of increase for BER varies between
the radar and hydrophone across different bit rates, forming
three separate data rate regimes. At lower data rates (50
and 75 bps), both Bob and Eve demonstrate low BERs with
FSK and PSK modulations indicating that the channel is
not secure. Increasing the data rate to 100 bps significantly
increases Eve’s BER without affecting Bob’s, making this the
optimal range for maximizing link secrecy. Further increases
in data rate compromise Bob’s reception quality, narrowing
the performance gap with Eve and hence, degrading the link
secrecy. Fig. 8b demonstrates that the secrecy capacity peaks
at 100 bps for PSK and FSK, with a decline observed at both
higher and lower rates, suggesting that Alice can optimize
data rates to hinder Eve’s eavesdropping attempts.

The eavesdropping performance for ASK is subpar, es-
pecially at lower bit rates, where Eve’s detection accuracy
suffers due to environmental factors (i.e. wind, surface waves,
etc) affecting the vibration magnitude which is where the

6Increased error at 150 bps is mainly due to significant intersymbol interfer-
ence (ISI).
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Figure 9: Effect of duration of transmission. Demonstrating
BER at Eve for (a) ASK and (b) PSK modulation as a function
of the duration of continuous transmission at Alice.

information is encoded. Despite employing high-pass filters
to mitigate the effect of surface waves, the significant magni-
tude of environmental noise compared to acoustic vibrations
degrades Eve’s detection capability which means that ASK
offers enhanced secrecy at lower data rates.

Interestingly, we observe an increase in secrecy capacity at
150 bps for all modulation schemes (which does not follow
the general trend). This is because when Bob’s reception is
poor, the value of the secrecy rate is not an informative metric
for evaluating the vulnerabilities of the system. In other words,
even if the theoretical value of secrecy is high, operating in
this regime is not desirable because of Bob’s poor reception.
Indeed, this is why we report the secrecy capability alongside
the exact values of BER in Fig. 8a.

This comprehensive analysis reveals that by strategically
adjusting data rates and modulation schemes, Alice can ef-
fectively minimize the risk of eavesdropping by Eve, with
ASK modulation presenting a particularly intriguing option
for enhancing communication secrecy at lower data rates.

4.3 Enhanced Secrecy with Bursty Transmission
We explained in §2.4.2 that Eve has to empirically estimate
the decision boundaries by collecting several samples. Here,
we evaluate the eavesdropping performance as a function of
the total duration of Alice’s transmission (i.e., the number
of available samples). To this end, we vary the duration of
transmission at Alice. With smaller transmission time (bursty
traffic) fewer symbols are available at Eve for inference and
decision making. Note that we consider long idle times in
between consecutive transmissions. Hence, data cannot be
aggregated across transmissions as the idle time is much
longer than the channel coherence time, meaning the same
decision boundaries would not apply.

Fig. 9 plots the BER for both PSK and ASK (we explained
in §2.4 that FSK does not require absolute decision bound-
aries) as a function of the duration of the transmission. We
observe that when the transmission duration is very short, Eve
struggles to find the correct threshold due to random noise
and the potential difference between the number of 0 and 1
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Figure 10: Impact of depth. The eavesdropping performance
degrades as Alice is submerged deeper into the water. The
error bars correspond to the 25th and 75th percentiles.

bits in that duration. Hence, Eve’s BER improves when she
can accumulate more symbols before forming the decision
boundaries. Interestingly, the rate at which the BER changes
depends on the data rate at Alice. In the low data rate regimes,
even slightly increasing the transmission duration makes a
big impact, whereas, for high data rates, there are already
ample samples to make a reasonable estimate of the decision
boundary. A key security implication of this result is that Alice
can enhance the security of its transmission by transmitting

“bursty” traffic. Specifically, Alice can send a small chunk
of data, so that Eve cannot estimate the decision boundary
correctly, and then wait for the channel to change before
sending another chunk. The tradeoff is that Alice sacrifices
the achievable goodput for communication.

4.4 Effect of Speaker’s Depth
To understand the impact of depth on SURF’s performance,
we evaluated the system in a swimming pool setting and varied
the depth of the underwater speaker from 25 cm to 2.7 m.
We powered the speaker with the Crown XLi 2500 amplifier
[2] and configured it to transmit BFSK modulated data (both
coded7 and uncoded) at a rate of 50 bps.

Fig. 10 shows our results. This figure plots the interception
probability (defined as the ratio of the number of bits correctly
decoded by Eve to the total number of data bits) as a function of
depth. This metric represents Eve’s likelihood of successfully
intercepting messages from Alice/Bob. The error bars in the
figure represent the 25th and the 75th percentiles. As expected,
Eve’s ability to eavesdrop worsens as the speaker’s depth
increases because of the reduced vibration amplitude on the
surface. However, we can observe that SURF can reliably
intercept with a probability of 93.6% when the speaker is at
a depth of 1 m (for the uncoded case) and can intercept with
a probability of 95% even when the depth of the speaker is
increased to 2.7 m (coded case).8 It is worth noting that even

7The coded data was transmitted with a code rate of 0.1.
8In standard underwater communication protocols, coding is applied to packet
headers, which is known [33].
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Figure 11: Impact of orientation. (a) The setup; (b) the BER
at Eve as a function of different orientation angles.

a small information leakage (or even detecting that there is
a communication link) can have significant consequences
for the victim in many sensitive underwater communication
settings.

Given the limitations of our setup, we cannot extend the
depth beyond 2.7 m in the pool. To understand how this
eavesdropping approach would perform in a more practical
real-world scenario, we simulated the performance at a larger
depth and a higher transmit power.

We first use the Sound Pressure Level (SPL) as a metric
to characterize the power of our underwater transducer. SPL
measures the pressure generated by an acoustic transducer at a
distance of 1 m, relative to a reference pressure, such as 1 𝜇Pa,
for a given input voltage. Specifically, our underwater speaker
has an SPL of 157.1 dB re 1 𝜇Pa when driven with an input
RMS voltage of 36.11V [12]. In comparison, marine SONARs
transmit with an SPL ranging from 210 to 240 dB re 1 𝜇Pa [50].
Since marine SONARs are significantly more powerful, they
can be submerged much deeper while producing the same
pressure at the water’s surface as our underwater speaker,
which operates at a shallower depth.

To be more precise, two speakers with SPL values of 𝑆1 and
𝑆2, submerged at depths 𝑑1 and 𝑑2, would generate the same
pressure at the water’s surface if 𝑆1 − 𝑆2 = 20 log10 (𝑑1/𝑑2).9

For example, according to Fig. 10, SURF can intercept
underwater communication with a probability of 93.6% for
uncoded data at a depth of 1 m. Assuming a submarine trans-
mits with an SPL of 220 dB re 1 𝜇Pa, we can calculate using
the previous equation that this submarine’s communication
link can be intercepted with the same probability of 93.6%
when it is submerged 1.4 km deep in the water. Furthermore,
SURF can intercept underwater communication with a prob-
ability of 95% for coded data at a depth of 2.7 m. Using a
similar calculation, we can show that SURF can achieve a
95% interception probability when the submarine transmits
coded data at a depth of 3.8 km.

9We use 20 log10(depth) because acoustic power decays as a function of 1
𝑑2

with depth [46].
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Figure 12: Impact of drone vibration. (a) The setup; (b)
large-scale drone movements over time; (c) vibration spectrum
before processing; (d) vibration spectrum after processing.
4.5 Effect of Speaker Orientation
In previous experiments, the speaker faced the surface of the
water. Here, we evaluate the impact of the speaker’s orien-
tation. In principle, if the speaker’s transmissions are truly
omnidirectional, the orientation of the speaker has little to no
impact on the vibration patterns on the surface. However, in
practice, tilting the speaker may yield a reduction of the vibra-
tion magnitude detected by Eve’s radar. For this experiment,
we positioned the speaker at a depth of 1 m and transmitted
2 × 103 BFSK modulated random bits at a rate of 50 bps. The
measurements were repeated under the speaker’s tilt angle of
0, 15, 30, 45, 60, and 75 degrees, as illustrated in Fig. 11a.

Fig. 11b shows the resulting BER at Eve as a function of the
tilt angle. The BER gradually increases as the speaker tilts away
from the water’s surface due to its imperfect omnidirectional
pattern, which reduces the amplitude of surface vibrations
and hinders data extraction. This data was collected with the
radar fixed directly above the speaker, meaning Eve decodes
vibrations from above the speaker, not from the point of
maximum vibrations, which shifts as the speaker rotates.
Eve could improve interception by locating the maximum
vibrations using the procedure explained in §2.3 and position
herself to maximize SNR. However, a narrow beamwidth at
Alice could still limit eavesdropping, as discussed in §6.

4.6 Effect of Drone Vibrations
So far we have only considered cases where the radar is
perfectly stable. However, in practical scenarios, the radar is
mounted on an airborne vehicle, e.g., a drone. The random

movements of a hovering drone in the air (due to the wind) and
the airflow generated by propellers create new challenges for
SURF. Namely, since motion is relative, the drone displace-
ment can distort the phase readings of the radar, as if the water
is vibrating instead. Additionally, as the propellers of the drone
push the air down to allow the drone to stay afloat, they might
disturb the water’s surface, further destroying the speaker’s
vibration signature. The amount of such disturbances is a
function of the propellers’ speed.

To remove such drone-related non-idealities, we exploit two
key insights: First, the large-scale movement of the drone con-
sists of much lower frequency components than the speaker’s
carrier frequency and hence can be mitigated using signal
processing techniques. Second, the propeller effect on the
water surface is negligible when the drone’s altitude relative
to the water is sufficiently high (i.e., above a certain minimum
altitude threshold). Note that such minimum altitude threshold
is a function of the propellers’ speed and can be known by
Eve in advance.

We placed a speaker in an inflatable outdoor pool filled
with water at a depth of 15 cm. The speaker transmitted a
single-tone signal with a frequency of 140 Hz. The airborne
node (Eve) consists of a cheap COTS drone, DJI Phantom 4
Pro [11], carrying a LattePanda delta 3 processor [25] that
communicates with the same radar as before. The setup is
depicted in Fig. 12a. The drone is manually controlled to
hover around 5 to 6 m to minimize the effect of propellers on
the water’s surface. To prove that Eve can detect vibrations
while flying, we also repeated the same experiment while the
speaker was turned off.

The results of this experiment are plotted in Fig. 12. Firstly,
we can see the effect of the drone’s movement on the un-
wrapped phase in Fig. 12b. The slow time-varying signal
is tracking how the drone is moving as its distance to the
water’s surface changes. It also has the speaker vibrations
added on top of it but it is not immediately visible. Note that
the visible difference between the two cases of “On” and “Off”
is mainly due to the different trajectories of the drone and not
the speaker’s vibration. The normalized frequency spectrum
of these signals is plotted in Fig. 12c. As illustrated, the two
cases share similar spectral contents with most of the power
concentrated in low frequencies. We use signal-processing
techniques to separate the speaker vibrations from the un-
wanted movements of the drone. Specifically, by exploiting
a moving average filter, we first extract the movement of the
drone and remove it from the time domain signal. Hence, we
are left with the speaker’s vibrations. The spectrum of the
signal after post-processing is depicted in Fig. 12d. Clearly,
the speaker vibrations at 140 Hz show a pronounced peak at
the correct frequency and hence can be used by Eve for further
demodulation and decoding.
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It is interesting to note that, although the speaker was placed
at a shallow depth of 15 cm, we transmitted at low power using
a signal with an RMS voltage of 3.8 V, which corresponds
to an SPL of 137.6 dB re 1 𝜇Pa [12]. As discussed at the
end of §4.4, a real submarine transmits with much higher
acoustic power. Consequently, its vibrations can be detected
at much greater depths than the 15 cm we tested with our
system. A similar analysis to the one presented at the end
of §4.4 suggests that the depth at which we could achieve
comparable detection of the center frequency from marine
SONARs is around 2 km. This implies that it is possible to
detect the vibration profile from a drone hovering at a height
of 5 m in real-world underwater scenarios.

This proof-of-concept experiment demonstrates that an air-
borne node with an FMCW mmWave radar can decode mes-
sages by detecting vibration frequencies using post-processing
techniques. Once the frequency is identified, the temporal
variation of the carrier can be monitored to demodulate bits, as
shown in §4.2. Note that this experiment uses low-cost COTS
equipment; without specialized hardware, such as more power-
ful radars or drones with higher payload capacities, decoding
messages would be significantly more challenging. Advanced
hardware could also extend the eavesdropper’s range beyond
5 to 6 m, further reducing its visibility from the water. We
leave this topic for future research.

4.7 Potential for Node Localization
Finally, we show the feasibility of pinpointing the area of
vibration from the air through a combination of radar beam-
forming and mobility. We positioned the radar at a height of 1
m above the water’s surface where the speaker was submerged
10 cm below the surface in the fish tank setup described in §3.
The speaker transmits a single tone and we move the radar by
15 cm in both the positive and negative directions along the 𝑥
axis with 1 mm increments using a motorized translational
stage. At each point, the radar measures the amplitude of
speaker vibrations on the water surface. We repeat the same
experiment at different speaker depths and power levels.

First, Fig. 13a plots the normalized magnitude of vibration
as a function of radar’s position for two speaker depths and
two transmit power levels. We observe that the diameter of
vibration is solely a function of speaker depth and not the
transmitted power. As expected, the diameter of vibration
(shown with green arrows) increases with speaker depth
because the acoustic beam impacts a larger area on the surface.
This implies that one could create a one-to-one relationship
between Alice’s depth and the diameter of the vibration as seen
by Eve. We emphasize that although the vibration magnitude
depends on both the depth of the speaker and its transmitting
power, normalized vibration magnitude is solely a function
of depth. Such a model can be leveraged by the adversary for
node localization. Fig. 13b shows that the estimated depth
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Figure 13: Localization performance. (a) Normalized
vibration magnitude at different speaker depths and power
levels; (b) estimated depth vs. true depth; (c) estimated angle
vs. true angle. The dotted line in (b) and (c) represents the
ideal case, i.e., no error.
(extracted from the vibration diameter) matches closely to the
ground truth speaker’s depth in a controlled lab setting.

Similarly, Eve applies beamforming to determine the AoA
of the vibration center by implementing the beam search
algorithm described in §2.3. Fig. 13c shows that the estimated
angles align with the ground truth. Although these initial
results are promising, further modeling and measurements
are required to fully assess the technique’s performance and
limitations for localization, which we leave for future work.

5 RELATED WORK
Cross-Medium Communication. Various approaches estab-
lish communication links between air and water mediums,
such as visible light methods [4, 7]. Closest to our work
are TARF-based systems [36, 38, 46], utilizing mmWave
radars to capture underwater speaker vibrations. Unlike prior
works assuming transmitter-receiver cooperation, we adopt
an adversarial perspective, unveiling eavesdropping tactics
for non-cooperative entities. We evaluate the security perfor-
mance under various PHY parameters and suggest appropriate
countermeasures. Finally, we test cross-medium communica-
tion in a lake for the first time.
Vibration-Based Eavesdropping. Many researchers have
taken advantage of the fact that acoustic signals vibrate their
surrounding objects and have used sensors to pick up these
vibrations and eavesdrop on potential victims [48, 49, 51].
However, in all existing efforts, the communication parties
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and the adversary belong to the same medium (air) and do not
account for the challenges of out-of-medium eavesdropping.
Cross-Medium Eavesdropping. Conventional systems for
cross-medium eavesdropping required deploying passive sono-
buoys on the water surface to listen to messages underwater
using hydrophones and then relay them to an aircraft using
an RF transceiver [13]. Later approaches relied on (large)
meta-material patches which are also deployed on the water
surface and aim to amplify underwater vibrations to be picked
up by a remote airborne receiver [27, 41, 52]. The challenge
with these systems is that the eavesdropper itself becomes
detectable (much more detectable than a drone that is above
the surface) from an underwater transceiver. Moreover, these
approaches have a limited coverage area of eavesdropping in
comparison to drones that can, in principle, fly over and scan
wider areas of the surface.

6 LIMITATIONS AND DISCUSSIONS
Effect of Radar’s Height. Our experiments were performed at
radar heights ranging from 1 m to 5 m. As the research evolves,
it will be important to evaluate SURF at different heights
and RF power levels. COTS radars, which have a transmit
power of 12.5 dBm, could accurately measure vibrations
with a negligible error (about 3.174 𝜇m) at 5 m height when
measuring a vibration amplitude of 100 𝜇m [15]. Navy radars
are much more powerful (having more than 10 kW of transmit
power [9, 10]), and thus would be expected to detect these
vibrations from significantly greater distances above the water.
Potential Counter Measures. The secrecy of underwater
communications can be improved through several strategies:
First, Alice and Bob could form a null toward the water
surface to block pressure waves. However, this requires real-
time orientation estimation and complex arrays, increasing
complexity and power use. Null forming might not fully stop
distant waves due to beam divergence. Another rather counter-
intuitive approach is to place Alice close to the water’s surface
to minimize the area of impact (area of vibration on the water)
hoping that Eve’s radar cannot pick it up. We will investigate
effective countermeasure strategies in the future.
Impact of Encryption. Although encryption could poten-
tially complicate the eavesdropping process of SURF , it
is often challenging to implement in power-constrained de-
vices [39, 40], particularly in underwater environments. En-
cryption schemes are generally divided into two categories:
asymmetric (no shared key) and symmetric (shared key).
Asymmetric encryption requires significant computational
power, leading to high energy consumption, which is un-
suitable for the resource-limited devices commonly used in
underwater environments [30]. Additionally, underwater sen-
sor nodes often rely on batteries that are difficult to recharge or
replace in harsh conditions [32], making asymmetric encryp-
tion impractical for many underwater applications. Symmetric

encryption, such as AES, uses a pre-shared key among nodes
for the encryption and decryption of messages. However, due
to the ad-hoc nature of underwater communications, a sig-
nificant challenge is presented when a new node without a
pre-shared key attempts to join the network. Conventional
solutions from terrestrial networks either require a pre-shared
secret or impose communication overhead [44] or require
a third party that is trusted by both nodes which might not
always be available. As a result, symmetric encryption is
also often not used in underwater communications. Addition-
ally, even with encryption, traffic pattern analysis enabled
by SURF can reveal sensitive information, such as packet
length, timestamps, message frequency, and the identities
of communicating parties. This makes encryption less effec-
tive in protecting communication between underwater nodes,
especially in contexts involving naval assets.
Scaling to Real Naval Settings. In this paper, we have demon-
strated the feasibility of a novel eavesdropping methodology
targeting acoustic underwater nodes. However, deploying this
technique in real-world naval scenarios presents a multitude
of challenges that remain unresolved. Among these are the
mobility of underwater nodes (that can cause Doppler shifts
to the transmitted data, further complicating the demodulation
process for the eavesdropper), large natural waves in the ocean,
the challenge of operating at greater depths, and the need to
accommodate increased data rates (e.g. Eve could use a radar
with a higher sampling rate to eavesdrop on higher data rates
- as discussed in §2.5), frequencies, and higher-order and
more complex modulation schemes. Moreover, as the research
evolves, more sophisticated techniques and hardware can be
developed that allow for joint drone-based localization and
detection during flight to enable efficient eavesdropping of
sub-sea transmitters.

7 CONCLUSION
This paper presents SURF the first system that demonstrates
eavesdropping of underwater links with an out-of-medium
non-cooperative adversary. We demonstrate the feasibility of
such attack using low-cost COTS mmWave radar. By sensing
subtle surface disruptions, SURF intercepts underwater com-
munication signals, without prior knowledge of channel and
PHY parameters. Our rigorous evaluation validates its efficacy
in diverse settings, including natural lakes. This paper holds
important insights for securing underwater communication
links, from maritime defense and submarine warfare to oil
and gas exploration, search and rescue, mining, and aquatic
species conservation.
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