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Abstract— We present the design, implementation, and eval-
uation of 3D-BLUE, an ultra-low-power underwater 3D lo-
calization system that can be deployed on compact robots
to accurately localize them in shallow underwater environ-
ments. 3D-BLUE’s design introduces two core components.
First, it adapts a recent ultra-low-power underwater acoustic
communication technology (called piezo-electric backscatter) to
the underwater robotics localization problem; specifically, it
integrates backscatter nodes into the underwater robot and
uses them for localizing it. Second, it leverages the physical
properties of the backscatter technology to efficiently extract
spatio-temporal-spectral features from the backscatter signal;
using these features, it devises a particle-filter-based algorithm
to localize the corresponding robot accurately in challenging
shallow-water environments. We implemented an end-to-end
prototype of 3D-BLUE on a BlueROV2 robot and custom-
built backscatter localization system, and evaluated it in dozens
of experimental trials in a pool. Our results demonstrate
that 3D-BLUE can localize the robot with an accuracy of
around 0.25m at close range and an accuracy of around 1.4m
at a range of 10m. This high localization accuracy opens
important commercial, naval, and environmental applications in
challenging shallow-water environments such as shores, rivers,
pools, and narrow waterways.

I. INTRODUCTION

The past few years have witnessed exponential growth
in commercial underwater robotics, whose market size is
expected to rise to 3.5 billion dollars by 2028 [1]. This
growth has been propelled by the decrease in cost, power,
and size of underwater drones, which opened up new com-
mercial, scientific, and naval applications. The relatively
compact size and power of these robots have made them
desirable for deployments in shallow-water environments,
such as navigating narrow waterways for the navy; perform-
ing infrastructure inspections in pools, waterparks, and bays;
and environmental monitoring for near-coast habitats, coastal
resilience, and seafood production (offshore aquafarms) [2],
[3], [4], [5].

A key problem for this emerging class of subsea drones
is localization. While underwater localization is a classical
problem in marine robotics, the compact form factors and
new deployment environments for these drones pose new
challenges. In particular, the most common approach for
underwater robot localization relies on acoustic beacons
(such as LBL, SBL, and USBL systems) [6], [7], [8]. In these
systems, an acoustic transceiver on the underwater drones
leverages the deployed beacons for localization. However,
existing approaches do not meet the accuracy, power budget,
and cost requirements of compact underwater drones. In
terms of accuracy, most of these systems achieve tens or
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Fig. 1: Underwater Bacskcatter Localization. The figure shows the end-
to-end system design for 3D-BLUE . A backscatter node is mounted on
an UUV that bacskcatters the signals produced from the transmitter. A
hydrophone array receives the signals to perform localization. April tags
are used for ground truth location estimation

hundreds of meters of location accuracy, which is suitable
for the open ocean, but not for narrow waterways, coastal
environments, or commercial pools (e.g., for infrastructure
inspection). While some of the existing systems have higher
resolution (e.g., sub-meter), they struggle to maintain this
accuracy in shallow-water environments due to significant
acoustic reflections from the seabed and surface[8], [9], [10],
[11].

The poor accuracy of existing systems is exacerbated
by their cost and power requirements. For example, while
the price of a single USBL system (around $7K [12]) is
negligible for classical underwater drones (which cost tens
to hundreds of thousands of dollars), it is significant for many
compact underwater drones, which cost less than $1K [13].
Furthermore, due to the power consumption of their acoustic
transmissions, the beacons often require frequent battery
replacement [9], which increases their cost and maintenance
overhead.

In this paper, we ask whether it is possible to develop a
novel low-power, low-cost underwater localization method
tailored to this emerging class of underwater drones. Ideally,
such a localization system would consume only a fraction
of the power and cost of these drones. Moreover, it would
be capable of accurate localization (sub-meter accuracy) in
the expected shallow water environments. Achieving these
goals is challenging not only due to the power, cost, and size
constraints but also due to the significant acoustic reflections
off the seabed and water surface that make it difficult to
associate the acoustic signal with its source direction.

We present 3D-BLUE (3D Backscatter Localization for
Underwater Environments) which is a compact, ultra-low
power localization module that can be directly integrated
onto the robot and enables localizing them in shallow



underwater environments (shown in Fig.1). Our approach
leverages a recent networking technology called underwater
backscatter, which consumes sub-milliWatt power [14]. Past
research has demonstrated the effectiveness of underwater
backscatter for communication, but leveraging it in localiza-
tion and navigation remains an open problem. We envision
integrating ultra-low-power backscatter nodes into compact
underwater drones to localize them in rivers, lakes and pools.
Such localization can be performed remotely from a base
station near shore/poolside or attached to the bottom of a
surface vessel, e.g. a ship.

Utilizing underwater backscatter for localization in
shallow-water environments presents multiple challenges.
Current state-of-the-art underwater localization systems rely
on computing the time-of-arrival (ToA) [6], [7]. In these
systems, a transceiver emits an acoustic pulse and awaits a
response from the transponder beacon. The time difference
between the initial pulse and the reply is used to determine
the distance between the two nodes (by multiplying it with
the sound speed in water). However, this ToA estimation
technique does not work with underwater backscatter nodes
in shallow water environments. This is because when acous-
tic signals travel in these environments, they repeatedly
bounce back and forth between the seabed and the water
surface before arriving at a receiver. Such dense multipath
reflections distorts the acoustic signals and make it difficult
to associate them with their source to estimate ToA.

To address these challenges, 3D-BLUE exploits the fun-
damental physical properties of underwater backscatter to
enable accurate localization. Unlike traditional underwater
acoustic communication systems, where each node generates
its own signals, backscatter nodes communicate by reflect-
ing acoustic signals in the environment (more specifically
modulating the reflections using a code). 3D-BLUE exploits
this property to extract rich spatio-temporal-spectral (space,
time, and frequency) features from the backscatter reflection
for localization. In particular, it leverages a helper base
station that transmits signals of different frequencies and
captures the reflections from different spatial positions. The
combination of these features enables 3D-BLUE to per-
form real-time localization even in environments with severe
multipath. 3D-BLUE improves the localization accuracy by
employing a particle filter-based algorithm, tailored to the
acoustic reflections in these environments. Furthermore, be-
cause backscatter is ultra-low-power, the power consumption
of these nodes is neglible with respect to that of the low-
power underwater drone.

This paper provides three main contributions:
• It presents the first ultra-low power system that can

perform 3D localization using underwater backscatter.

• It introduces a particle filter-based algorithm that exploits
the spatio-temporal-spectral features for robust localization
in shallow water environments and under mobility.

• It presents an end-to-end prototype implementation and
evaluation of 3D-BLUE . The implementation is built using
a BlueROV robot, mechanically fabricated backscatter node

and custom-built base station (consisting of a projector and a
multichannel receiver array with 8 hydrophones). The system
is evaluated in over 1900 locations and compared to an April-
tag-based ground truth location baseline. The evaluation
demonstrates that 3D-BLUE can localize a backscatter node
with an accuracy of around 0.25m at close range and an
accuracy of around 1.4m at a range of 10m. Moreover, it
demonstrates that 3D-BLUE can localize accurately in the
presence of motion with an accuracy of around 0.25m when
the node is moving with a speed of 0.1m/s.

While we demonstrated the performance of our system
on a BlueROV robot with a reasonably good power budget
(around 275W), in practice, it can also be extended to
low-power robots which have even more limited onboard
power [15], whereby the sub-milliWatt power consumption
of underwater backscatter would remain negligible. More-
over, each underwater backscatter node can be fabricated at
a cost less than $100 [14], making them much more cost-
effective than existing underwater localization systems.

II. RELATED WORK

Past work in underwater drone localization and naviga-
tion includes acoustic and non-acoustic methods, described
below.
Acoustic Underwater Localization. Conventional underwa-
ter localization systems primarily rely on deploying bea-
cons in the ocean and using their signals for localization.
Earlier methods used the received signal strength (RSSI)
or the angle-of-arrival (AoA) to perform triangulation or
trilateration[16], [17]. State-of-the-art underwater localiza-
tion systems, known as Long Baseline (LBL), Short Baseline
(SBL), and Ultra-Short Baseline (USBL) methods [6], [7],
[8], employ ToA-ranging techniques. These systems utilize
transceivers to emit pulses on the downlink and transponders
to receive and respond with pulses for ToA estimation. While
these systems perform well in the deep ocean, the accuracy
of these systems is compromised by severe multipath inter-
ference, limiting their functionality in shallow underwater
environments [8], [9], [10], [11]. Moreover, these systems
depend on generating acoustic pulses from the transponders,
each consuming approximately 25W [18], [19], [20]. This
power consumption can significantly deplete a drone’s bat-
tery, which makes them undesirable for low-power robots.

To address the issue of multipath, researchers have also
explored methods for performing underwater localization
in shallow water environments. For instance, one approach
involves deploying a large number of nodes or drones and
combining the data from them to eliminate the impact of
multipath using geometry [21]. Other methods rely on fin-
gerprinting techniques via bathymetry, pattern matching, or
underwater waveguide channel models to address multipath
issues [22], [23], [24]. However, these systems make unreal-
istic assumptions that are difficult to implement in practice:
while some of them assume that the entire underwater
channel is known apriori, others require the deployment of
hundreds of nodes which is not feasible or cost-effective in
real-world settings.
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Fig. 2: 3D-BLUE E2E System. The figure shows the end-to-end system
for 3D-BLUE. The base station transmits sound and receives the backscatter
response Xi,k . It computes the channel estimate Hi,k to generate the
location probability heat map which is improved via a particle filter to
obtain the final location estimate (x∗, y∗, z∗)

3D-BLUE shares the motivation of these systems but it
is the first system that enables practical and low-power
underwater acoustic localization in shallow environments.
It does so using backscatter which consumes much less
power (sub-milliWatt) compared to a few tens of watts power
consumption of traditional acoustic localization systems. In
doing so, it builds on recent research that demonstrated the
feasibility of using backscatter in 1D localization at close
distances (≤1m) [25], and is the first to demonstrate accurate
3D backscatter-based localization for underwater robotics at
decimeter ranges.
Non-Acoustic Underwater Localization. Previous research
has explored alternative methods for underwater positioning
beyond acoustics, including visual odometry and geomag-
netism [26], [27], [28], [29]. However, geomagnetism suffers
from poor localization accuracy (approximately 100m) due to
fluctuating magnetic fields. Visual odometry can achieve high
accuracy in clear waters but suffers in turbid environments
and is prone to long-term drift. Despite attempts to mitigate
drift through SLAM models, these solutions demand sig-
nificant computational power, often unavailable on energy-
constrained AUVs [30]. In contrast, 3D-BLUE can work well
in turbid environments, similar to typical underwater acoustic
localization methods, and it can do so in shallow-water and
at low-power.

III. SYSTEM OVERVIEW

The primary objective of 3D-BLUE is to localize un-
derwater robots in shallow-water environments. In a typical
deployment scenario, we envision integrating a backscatter
node onto the robot/drone, while a base station is at nearby
shore or ship to localize the drone as shown in Fig. 2. The
base station estimates the drone’s location, which can be
directly utilized in diverse applications (e.g., to understand
where footage from the drone is being captured for infras-
tructure/environmental/naval monitoring). Moreover, if the
drone requires its location (e.g., for navigation), the base
station may transmit it to the drone through a standard
acoustic link.

A. Primer on Underwater Backscatter

Before describing 3D-BLUE’s localization algorithm, we
provide a brief background of underwater backscatter and
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Fig. 3: Piezo-Acoustic Backscatter. A node communicates bits of zero
and one by switching the impedance control.

refer the interested reader to past work for more details [14].
Underwater backscatter nodes are piezoelectric transduc-
ers that communicate by reflecting rather than generating
acoustic signals. Fig. 3 depicts the basic operation of this
communication technology focusing on a single backscatter
node (the same can be extended to a network [14]). In
these systems, the base station transmits sound, and the
backscatter node communicates by reflecting (modulating)
the sound. Specifically, by switching between reflective and
non-reflective states, the node encodes its data in binary,
and the changes in reflections can be decoded by a remote
receiver (hydrophone).

Underwater localization requires estimating the path be-
tween the backscatter node and the receiver. By estimating
this path, one could apply different localization techniques
such as computing the angle (for triangulation) or the dis-
tance (for trilateration). To estimate the path, the receiver
needs to extract features from the received signal that come
from its propagation underwater. These features are encoded
in what is typically called the underwater backscatter chan-
nel.

This channel can be extracted using standard communica-
tion techniques [31]:

h(X) = H =
1

T

∑
t∈T

X(t)p∗(t) (1)

where X is the received signal, p is the known transmitted
signal (from the backscatter node), and h(.) is a function that
maps the received signal X to the corresponding channel H .
t and T denote time and the period for the transmitted signal
p.

B. Problem Definition

3D-BLUE’s goal is to estimate the 3D position of the robot
from the backscatter response, which is received by one or
more hydrophones as shown in Fig. 2. More formally, it aims
to solve the following optimization problem:

pnode(x̂, ŷ, ẑ) = arg max
(x,y,z)

g(h(X)) (2)

where g(.) is a function that combines spatio-temporal-
spectral features from the channel and outputs a probability
heatmap of the node’s location. 3D-BLUE uses this infor-
mation to estimate the corresponding robot’s location.

C. Backscatter Localization in Multipath Free Environments

A classical approach for underwater localization is to
perform angle-of-arrival (AoA) estimation using multiple
hydrophones. At a high level, a receiver combines the
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Fig. 4: 3D-BLUE Localization Parameters. The figure plots the probability of UUV at the corresponding locations as a heatmap in 2D space, where
yellow and purple correspond to higher and lower power respectively. The red and pink stars represent the actual and estimated locations. (a) shows a
simulated case with a single frequency, 8 hydrophones, and no multipath. (b),(c) and (d) represents a real scenario where 8 hydrophones are used with 1,3
and 6 frequencies to perform localization in the presence of multipath. The error in localization is shown in the top right corner.

received signals from multiple hydrophones and uses them
to estimate the angle to the acoustic source. This approach
can also be used to perform 2D localization by either
combining two hydrophone arrays or performing non-linear
array processing [32]. This AoA estimation approach can be
applied to underwater backscatter using a receiver array, by
operating on the estimated channel at a single frequency H
obtained from Eq. 1. Mathematically, we can formulate this
as:

pnode(x, y, z) = arg max
(x,y,x)

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
i=1

Hie
−j2πdi(x,y,z)

λ

∣∣∣∣∣
∣∣∣∣∣ (3)

where λ is the wavelength of the sound frequency, N
denotes the number of hydrophones used, Hi is the channel
measurement of the ith hydrophone and di is the total round-
trip distance traveled by the signal from the transmitter to the
backscatter node and back to the ith hydrophone.

We simulated such backscatter localization by transmitting
a single frequency and using 8 hydrophones separated by
0.56cm to understand the performance of this method in
the absence of multipath (i.e., similar to open-ocean envi-
ronments where there is no significant multipath). Fig. 4(a)
depicts the output of Eq. 3 as a location probability heatpmap
over 2D space, where yellow denotes higher probability of
node location and navy blue represents lower probability. The
red and pink stars represent the actual and estimated location
and the error in localization is shown in the top right corner.
We observe that the method works extremely well in the
absence of multipath giving us a localization accuracy of
0.01m.

D. Backscatter Localization in Multipath Rich Environments

So far we have explored the application of underwater
backscatter for localizing a node in deep water with minimal
multipath interference, let us now examine its feasibility
in shallow underwater environments. Fig. 4(b) shows a
real scenario where the backscatter node was placed in a
swimming pool. Unfortunately, the method outlined in §III-C
proved ineffective in this scenario, resulting in a localization
error of 2.68m. This error is predominantly due to multipath
effects.

Multipath makes underwater localization challenging be-
cause the backscatter reflections are corrupted from the
echoes coming from the air-water and water-sediment in-
terfaces in such environments. Specifically, in shallow water

environments (e.g., depth ≤ 4m), both the direct and reflected
paths tend to have similar lengths, thereby resulting in
comparable amplitudes. This similarity leads to interfer-
ence between subsequent symbols (i.e., between different
backscatter states). Failure to address this makes it hard to
estimate the wireless channel (Hk) accurately and results in
high localization error.

To mitigate this challenge, we leverage the frequency-
agnostic characteristic of underwater backscatter by employ-
ing multiple frequencies instead of a single one. Specifically,
when a backscatter node toggles its internal state between
“reflective” and “non-reflective,” it modulates all transmitted
frequencies accordingly. 3D-BLUE uses this property by
employing frequency hopping and estimates the channel Hi,k

for the kth frequency and the ith hydrophone receiver.
By exploiting the frequency-agnostic characteristic of un-

derwater backscatter, 3D-BLUE can utilize not only spatial
features but also spectral features for localization. Specif-
ically, it can combine these features to achieve better lo-
calization accuracy in the presence of multipath, which is
formulated as:

P (x, y, z) =

∣∣∣∣∣
∣∣∣∣∣ 1

M

1

N

M∑
k=1

N∑
i=1

Hi,ke
−j2πdi(x,y,z)

λk

∣∣∣∣∣
∣∣∣∣∣ (4)

pnode(x̂, ŷ, ẑ) = arg max
(x,y,x)

P (x, y, z) (5)

where M represents the number of transmitted frequencies.
Fig. 4(c) and (d) depict scenarios where the number of
frequencies was increased to 3 and 6 respectively. These
heatmaps illustrate that increasing the frequencies substan-
tially diminishes the error, enabling 3D-BLUE to accurately
localize the backscatter node even in multipath-dense envi-
ronments.

E. Underwater Localization under Mobility

In the previous section, we delved into how 3D-BLUE
leverages spatial and spectral features to estimate the node’s
location in shallow water environments. While this algorithm
demonstrates resilience to multipath in scenarios where the
node remains stationary, it faces challenges when localizing a
moving node. This difficulty stems from the dynamic nature
of multipath reflections, which change over time as the node
moves. Consequently, despite the incorporation of spatial and
spectral features, the accuracy of the location estimate may
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Fig. 5: Localization under mobility. The figure shows the sample heat
map for a moving node in a shallow environment (without particle filter).

fluctuate. Fig. 5 shows a heatmap for the scenario where a
node is moving in shallow water. We can observe that despite
using multiple frequencies and hydrophones, the localization
error increased from 5 cm (in the previous example) to
1.26 m.

To tackle this issue, one could theoretically add more
frequencies and hydrophones. However, both options present
drawbacks. The number of frequencies is constrained by the
bandwidth of the underwater channel and the node itself,
while increasing the number of hydrophones would increase
the overall cost and size.

To address these challenges, 3D-BLUE incorporates tem-
poral features by employing a particle filter-based algorithm.
Fig. 6 illustrates our algorithm for robust location estimation.
As described in Section §III-D, 3D-BLUE uses the probabil-
ity heatmap P to find the location of the node from the peak.
However, this is not the optimal strategy in the presence
of changing multipath (i.e. mobility), which may lead to
fictitious peaks around the true peak location, increasing
the probabiltiy of location error. To solve this, 3D-BLUE
refines the observation model and creates a new probability
distribution Pn by constructing a mixture Gaussian using N
Gaussians, where each Gaussian is centered at one of the
peak locations peaki

1 in P and has a fixed variance of σp.2

This can be expressed mathematically as:

Pn(r) =

N∑
i=1

1

σp

√
2π

e
− 1

2

(
r−peaki

σp

)2

(6)

Since Pn combines different maxima from P , it contains
the contribution from both the true location peak and er-
roneous peaks. 3D-BLUE uses Pn to iteratively narrow in
on the true location and ignore the other erroneous peaks.
It achieves this in three steps: in the first step, it creates
another filter map Pf (initialized as all 1’s) and projects
it onto the mixture gaussian Pn to generate the location
probability map Pl. The second step is the estimation step
where 3D-BLUE obtains the location estimate by finding
the coordinate (x∗, y∗, z∗) that maximizes Pl. Finally, in the
update step 3D-BLUE moves the entire location map Pl in
the same direction as the robot, using the velocity v(x, y, x)

1We selected N = 60 peaks that were separated by at least 4 cm. The
number of peaks and minimum separation are hyperparameters.

2This is a hyperparameter that can be tuned, we experimented with
different values and realized that a value of 50cm for σp gives the best
performance
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Fig. 6: Robust Location Estimation using 3D-BLUE’s Particle Filter.
Using the raw heat map P , 3D-BLUE generates a Gaussian mixture
distribution Pn. It projects this distribution onto a filter map Pf and uses the
output to obtain the location map Pl which it uses for location estimation.
The location is updated with a motion model.

of the robot and the time interval ∆t between samples 3.
3D-BLUE then replaces the filter map Pf with the updated
location map P+

l and repeats the process. Mathematically
this can be expressed as:

1.) Projection Step: Pl = Pn · Pf

2.) Estimation Step: (x∗, y∗, z∗) = arg max
(x,y,z)

Pl

3.) Update Step: P+
l = Pl + v(x, y, x)∆t

Pf ← P+
l

By incorporating temporal features from the motion model
of the robot into the location estimation process, 3D-BLUE
can iteratively narrow down on the true location peak and
then consistently track the location of the robot with low
error. Figure 7 illustrates how 3D-BLUE employs the particle
filter to refine the location probability to a smaller area.
The first row presents the raw heatmap P , while the second
row depicts the corresponding mixture Gaussian heatmap Pn

generated from P . The third row shows the evolution of the
location map Pl. We make the following observations:
• The size of the yellow region in Pl (third row) decreases

over time, indicating a reduction in 3D-BLUE’s uncertainty
regarding the location estimate.

• After applying the particle filter (third row of Figure 7),
the error is significantly reduced compared to the other two
rows, demonstrating the benefit of the particle filters.

• Interestingly, in some cases (e.g., column 1, row 2),
simply applying the mixture of Gaussians from the projection
step in the particle filter results in a significant reduction
in error. This is because the Gaussians average out nearby
estimates, increasing confidence in the mean of their corre-
sponding locations which may be close to the true location.

F. From 2D to 3D

So far we discussed how 3D-BLUE can perform 2D
localization in multipath rich underwater environments and
under mobility. To extend this to 3D localization, one option
is to create a 2D hydrophone array. However, such an
approach would add cost and complexity to the system.

3This velocity can be obtained using an IMU sensor on the robot
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Fig. 7: 3D-BLUE’s Particle Filter. The figure plots the probability distribution of the robot’s location as a heatmap over 2D space, where yellow and
navy blue indicate highest and lowest probabilities respectively. Rows 1, 2 and 3 show the heatmaps of P , Pn, and Pl respectively vs time.

Instead, 3D-BLUE employs a pressure sensor to estimate
the depth of the robot (corresponding to the z-axis location).
Specifically, the estimated pressure can be converted to depth
by accounting for water density. The obtained depth data is
then transmitted to the base station, which incorporates it
into the optimization framework (as outlined in equation 4)
to search for the optimal (x,y) coordinates maximizing the
received power P . This completes the loop for end-to-end
3D localization for 3D-BLUE.

IV. IMPLEMENTATION

Backscatter Node: The core of the backscatter node trans-
ducer is the SMC5447T40111 piezoceramic cylinder from
Steminc, with a nominal resonance frequency of 17 kHz
in radial mode. To fabricate the transducer, we followed a
similar process to past work [14].
Transceiver: We use a similar transducer (as the backscatter
node) as our transmitter. The transmitter node is connected to
a class-D power amplifier TI TPA3245 through a high-power
transformer matching network. The backscattered signal is
received by a 8-element receiver hydrophone array which
consists of 8 low-cost Aquarian Audio A5 hydrophones [33].
The received signal at each hydrophone is sampled by a 24-
bit ADC Cirrus Logic CS5381.
UUV Platform: Our experiments were conducted using a
BlueROV2 robot. It was controlled through a Mac Mini
2018 with 6-core Intel Core i5 processor, running Ubuntu
20.04 and ROS Noetic. We utilized the mavros library to
send control commands to the BlueROV2 and interface with
its onboard sensors. Additionally, we implemented a PID
controller to enable the robot to either maintain a stationary
position or follow a specified trajectory at a designated speed.
Ground Truth System: We developed our ground truth sys-
tem based on vision-based techniques. The system includes
AprilTags and the onboard camera of the BlueROV2. The

AprilTags were printed in two sizes, 0.166m and 0.558m, to
accommodate different ranges. The onboard camera is a low-
light HD camera with a resolution of 2 Megapixels at 1080p.
We integrated the AprilTag ROS wrapper to determine the
positions of the AprilTags relative to the camera and con-
ducted matrix transformations to map the UUV’s location
to the global frame. The locations computed served as the
ground truth for our experiments. Note that the ground truth
uses vision, which works well in our testing environment but
not in rivers or lakes due to turbidity (see II).

V. RESULTS

We collected data for more than 1900 locations. This data
is split in 25 experiments with a UUV to evaluate the local-
ization accuracy of 3D-BLUE, and understand the impact of
mobility, trajectory, array size, number of frequencies, and
particle filter.

A. Range vs Accuracy

First, we analyzed the localization accuracy of 3D-BLUE
at different ranges in Figure 8a. We evaluated 3D-BLUE
from a range of 1.6m to 11m, both with and without the
particle filter technique defined in Section §III-E. The blue
and pink line represents the median 3D localization error
with and without the use of a particle filter respectively. The
error bars represent the 25th and 75th percentile respectively.
Based on the results, we make the following remarks:
• 3D-BLUE outperforms its partial implementation coun-

terpart without the particle filter in median localization error.
As the range increases, the particle filter helps to smooth out
erroneous location estimates and strengthens the weights of
the estimates at the correct location. At ranges greater than
5m, the median error is reduced by an average of 0.82m.
This proves that our system can provide more robust location
estimates with a particle filter.
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Fig. 8: 3D-BLUE evaluation. The figure shows the localization error of 3D-BLUE (in blue) vs (a) range, (b) speed, (c) number of frequencies, and (d)
array size. The pink plots show the accuracy without the particle filter.

• 3D-BLUE is capable of achieving a localization error of
less than 0.32m within a 4-meter range. Beyond this range,
the median error continues to increase until it reaches 1.35m
at a range of 11m.

• The limiting factor to the localization range of 3D-BLUE
is the signal-to-noise ratio (SNR) of the backscattered signal
received by the hydrophone array. The maximum range
of a classical omnidirectional backscatter node (similar to
that used by 3D-BLUE) is 11m. In the future, this range
can be extended up to 150 m using more sophisticated
retro-directive backscatter nodes [34] and applying the same
algorithms developed in 3D-BLUE.
B. Accuracy under Mobility

We evaluated the localization accuracy of 3D-BLUE while
the UUV was in motion. We predefined 8 trajectories with
target speeds ranging from 0.01m/s to 0.2m/s. Figure 8b
shows the localization error of 3D-BLUE at different robot
movement speeds. Figure 9 shows three sample 3D trajecto-
ries of the UUV (both ground truth and estimated locations).
We note the following:
• 3D-BLUE exhibits better median localization error com-

pared to the implementation that does not use a particle
filter. When the robot is moving at a target speed of 0.2m/s
along the predefined trajectory, the median localization error
is 0.43m. In contrast, the baseline without the particle filter
presents a median localization error of 0.74m.

• 3D-BLUE is capable of achieving a low localization error
when the UUV moves at a speed lower than 0.1m/s, with
median errors all below 0.3m at speeds under 0.1m/s.

• Higher median localization errors are observed at higher
speeds, e.g., 0.2m/s movement. This could be attributed to
two factors: the displacement of the UUV’s position at higher
speeds, leading to larger errors within the 6-second location
estimate period, and the non-negligible Doppler effect at
higher speeds.

• 3D-BLUE’s location estimates align with the ground
truth, without accumulating errors like IMU, which means
that loop trajectories can close without drift.

C. Number of Frequencies

We also evaluated 3D-BLUE with different number of
frequencies. Figure 8c shows the mean localization error
of 3D-BLUE with 10th and 95th percentile error bar as a

function of different number of frequencies. The system’s
performance is assessed within a range of approximately 3m,
both when the UUV is stationary and when it is in motion.
All of the trials applied the particle filter.

Our results show that 3D-BLUE can obtain more robust
and accurate location estimates with more frequencies. If
3D-BLUE only uses a single frequency, the 95th percentile
localization error is 2.52m, and the mean error is 0.57m.
However, as we start incorporating more frequencies, the
95th percentile localization error decreases. When 3D-BLUE
uses 6 frequencies, the 95th percentile localization error is
0.25m, and the mean error is 0.15m. This indicates that
3D-BLUE can achieve more accurate location estimates with
more frequencies.

D. Hydrophone Array Size

We explored the impact of array size on the localization
error of 3D-BLUE. Figure 8d displays the median localiza-
tion error with error bars for the 25th and 75th percentiles
across different array sizes. The system’s performance is
assessed within a range of around 3m, both when the UUV
is stationary and when it is in motion. The particle filter was
applied in all trials.

Our results show that larger array size results in a lower
localization error. Longer hydrophone arrays can provide
greater spatial diversity for the measurements, which reduces
both the error and the variance in location estimates. At an
array size of 3.71m, the median error is 0.12m, with the 25th
and 75th percentiles at 0.1m and 0.16m.

VI. DISCUSSION & CONCLUSION

3D-BLUE is an ultra-low-power underwater 3D local-
ization system designed for compact robots in shallow
underwater environments. Unlike previous localization sys-
tems which were tailored primarily for larger/more-powerful
marine robots in low-multipath environments, 3D-BLUE
introduces multiple innovations to enable ultra-low-power
accurate localization of compact robotics in shallow-water
environments. By integrating temporal, spatial, and spectral
features of acoustic backscatter, 3D-BLUE achieves high lo-
calization accuracy even in environments with rich multipath.
As the research evolves, it would be interesting to extend
it to longer ranges using more sophisticated backscatter
designs [34]; explore sensor fusion (acoustic-visual) methods
that combine acoustic backscatter with VIO for localization;
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Fig. 9: Robot Trajectory. The figure plots the robot trajectory while it moves in 3D space (a) and (c) plot the scenario when the robot moves in X-Y
plane, however (b) plots the case when the robot moves in the X-Z plane. Blue and orange dots represent the estimated and ground truth locations.

develop advanced signal processing techniques to deal with
Doppler at higher speeds; and integrate this method on
swarms of micro-robots where its ultra-low-power would be
even more instrumental. More generally, it would be valuable
to apply this technology for various commercial, naval, and
environmental UUV-based monitoring applications.
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