Physical Security Attacks

- Inertial (WALNUT)
- GPS Spoofing (Drone)
- Hacking Pacemakers
- Inaudible Voice Commands

Mobile Security Inaudible Voice Commands

BackDoor: Making Microphones Hear Inaudible Sounds

Microphones are everywhere

Microphones are everywhere

Microphones record audible sounds

Inaudible, but recordable!

Inaudible, but recordable!

Works with unmodified devices

It's not "near-ultrasound"

Exploiting fundamental nonlinearity

What can we do with it?

Application: Acoustic jammer

Application: Acoustic communication

Threat: Acoustic DOS attack

Threat: Acoustic DOS attack

Threat: Acoustic DOS attack

Blocking 911 calls

Talk outline

- 1 Microphone Overview
- 2 System Design
- (3) Challenges
- (4) Evaluation

Talk outline

- (1) Microphone Overview
- 2 System Design
- (3) Challenges
- (4) Evaluation

Talk outline

- (1) Microphone Overview
- 2 System Design
- (3) Challenges
- (4) Evaluation

Exploiting amplifier non-linearity

Exploiting amplifier non-linearity

Exploiting amplifier non-linearity

Talk outline

- (1) Microphone Overview
- (2) System Design
- (3) Challenges
- (4) Evaluation

Reminder of Modulation

Modulation

Why is Modulation useful?

- 1. Interference, Technology Co-existence
- 2. Spectrum Access (Legal)
- 3. Antenna size (wavelength/4)

Ultrasonic speaker

$$S_{out,AM}^2 = A_2 \{aSin(\omega_m t).Sin(\omega_c t)\}^2$$

 $= -A_2 \frac{a^2}{4} \{Cos(\omega_c t - \omega_m t) - Cos(\omega_c t + \omega_m t)\}^2$
 $= -A_2 \frac{a^2}{4} Cos(2\omega_m t) + (terms \ with \ frequencies$
 $above \ \omega_c \ and \ DC)$

Problem: speaker
has non-linearities
=> Audible sound

Frequency modulation

$$S_{FM} = \sin(\omega_c t + \beta \sin(\omega_m t))$$

Ultrasonic speaker

Frequency modulation

$$S_{FM} = \sin(\omega_c t + \beta \sin(\omega_m t))$$

Ultrasonic speaker

Frequency modulation

$$S_{FM} = \sin(\omega_c t + \beta \sin(\omega_m t))$$

Ultrasonic speaker

$$S_{FM}^2 \sim 1 + \cos(2\omega_c t + \text{ other terms })$$

Problem: microphone can't measure inaudible sound

Solution?

$$S_{FM} = \sin(\omega_c t + \beta \sin(\omega_m t))$$

Ultrasonic speaker

Add another speaker
How do we structure its
signal?

Talk outline

- (1) Microphone Overview
- 2 System Design
- (3) Challenges
- 4 Evaluation

Hardware generalizability

Implementation

Communication prototype

Jammer prototype

Communication performance

More power can increase the distance

BackDoor jammer

How would you design a system to secure against this attack?

Summary

- IoT Security: both digital and analog
- "Sensor" security & attacks:
 - Mobile acoustic attacks (inaudible voice commands)
 - Analog Sensor attacks (on MEMS accelerometers)
 - Drone Security (Spoofing GPS)
 - Medical Security (Hacking Pacemakers)
- Modulation schemes
 - AM
 - FM
 - Inter-modulation
- Fundamentals have implications beyond IoT (e.g., Cuban "acoustic attack")

MUTE: Bringing IoT to Noise Cancellation

Sheng Shen, Nirupam Roy, Junfeng Guan, Haitham Hassanieh, Romit Roy Choudhury
University of Illinois at Urbana-Champaign

ACM SIGCOMM 2018