MAS.S66 Computational Wireless Sensing

Lecture 5 (part 3): **Underwater to Air Communication**

Underwater-to-Air Comm Applications

Submarine-Airplane Communication

Finding Missing Airplanes

Ocean Scientific Exploration

Underwater-to-Air Comm Applications

Why is it difficult?

Submarines Cannot Communicate with Airplanes

Airplane

Submarine

Direct Underwater-Air Communication is Infeasible

Direct Underwater-Air Communication is Infeasible

Wireless signals work well only in a single medium

Wireless Signals Work Well Only in a Single Medium

Acoustic ----or SONAR

Wireless Signals Work Well Only in a Single Medium

Use Acoustic signals? Reflects off the Surface Acoustic

Use Acoustic signals?

Reflects off
the Surface

Acoustic

Use Radio Signals?

Radio Signals Die in Water

What are today's approaches for solving this problem?

Approach #1: Relay Nodes [OCEANS'07, ICC'11, ICC'14, Sensors'14]

Approach #1: Relay Nodes [OCEANS'07, ICC'11, ICC'14, Sensors'14]

Acoustic

Antenna

Acoustic Transceiver

Approach #2: Surfacing [ICRA'06, MOBICOM'07, OCEANS'10, ICRA'12]

First Technology that Enables Wireless Communication Across the Water-Air Boundary

How does it work?

Translational Acoustic RF Communication (TARF)

Surface

Acoustic Underwater speaker

RADAR

Translational Acoustic RF Communication

First technology that enables wireless communication across water-air interface

Theoretically achieves the best of both RF and acoustic signals in their respective media

Deals with practical challenges of communicating across water-air interface including natural surface waves

Implemented and tested in practical environments

Can We Sense the Surface Vibration Caused by the Transmitted Underwater Acoustic Signal?

Recording the Surface Vibration

Experiment: Transmit Acoustic Signals at 100Hz

ation s at 100Hz

Water Surface

Water Tank

Underwater Speaker

Recording the Surface Vibration Experiment: Transmit Acoustic Signals at 100Hz

How Can We Sense Microscale Vibration?

Idea: Use RADAR to measure the surface vibration

Underwater Speaker

How Can We Sense Microscale Vibration?

Idea: Use RADAR to measure the surface vibration

Problem: Measuring micrometer vibrations requires 100s of THz of bandwidth \rightarrow Impractical & Costly

Solution: Measure Changes in Displacement Using the Phase of Millimeter-Wave RADAR

Radio Wave

Solution: Measure Changes in Displacement Using the Phase of Millimeter-Wave RADAR **O**µm

The phase of the milimeter-wave RADAR encodes transmitted information from underwater

wavelength

5mm

Natural Surface Waves Mask the Signal

On Calm Days, Ocean Surface Ripples (Capillary Waves) Have 2cm Peak-to-Peak Amplitude

> 1,000 Times Larger than Surface Vibration Caused by the Acoustic Signal

Natural Surface Waves Can Be Treated as Structured Interference and Filtered Out

Naturally occurring waves (e.g., ocean waves) are relatively slow

Acoustic signals are transmitted at higher frequencies

Frequency

→ 1 – 2Hz

► 100 - 200Hz

Natural Surface Waves Can Be Treated as Structured Interference and Filtered Out

Natural Surface Waves Can Be Treated as Structured Interference and Filtered Out

Frequency (Hz)

$A_{ngle} = 360 \times \frac{displacement}{wavelength}$

$_{Angle} = 360 \times \frac{displacement}{wavelength} \mod 360$

$$A_{ngle} = 360 \times \frac{displacement}{wavelength}$$

mod 360

Wraps Around

By treating natural surface waves as structured interference, we are able to track and eliminate their impact on our signal

3.5

How Can We Decode?

#